Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
ef326c73
Commit
ef326c73
authored
Nov 19, 2024
by
Alan Turner
Browse files
Merge remote-tracking branch 'origin/develop' into migraphx-update
parents
b7775add
e4dfe4d8
Changes
511
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
474 additions
and
234 deletions
+474
-234
client_example/14_instance_id/CMakeLists.txt
client_example/14_instance_id/CMakeLists.txt
+1
-1
client_example/14_instance_id/batchnorm_fwd_instance_id.cpp
client_example/14_instance_id/batchnorm_fwd_instance_id.cpp
+1
-1
client_example/15_convnd_bwd_data/CMakeLists.txt
client_example/15_convnd_bwd_data/CMakeLists.txt
+6
-4
client_example/15_convnd_bwd_data/conv3d_bwd_data_fp16.cpp
client_example/15_convnd_bwd_data/conv3d_bwd_data_fp16.cpp
+1
-1
client_example/15_convnd_bwd_data/conv3d_bwd_data_fp32.cpp
client_example/15_convnd_bwd_data/conv3d_bwd_data_fp32.cpp
+1
-1
client_example/15_gemm_add_multiply/CMakeLists.txt
client_example/15_gemm_add_multiply/CMakeLists.txt
+4
-3
client_example/15_gemm_add_multiply/gemm_add_multiply.cpp
client_example/15_gemm_add_multiply/gemm_add_multiply.cpp
+2
-1
client_example/15_reduce/CMakeLists.txt
client_example/15_reduce/CMakeLists.txt
+1
-1
client_example/15_reduce/reduce_nhwc_c.cpp
client_example/15_reduce/reduce_nhwc_c.cpp
+1
-1
client_example/16_convnd_fwd/CMakeLists.txt
client_example/16_convnd_fwd/CMakeLists.txt
+14
-4
client_example/16_convnd_fwd/common.hpp
client_example/16_convnd_fwd/common.hpp
+19
-15
client_example/16_convnd_fwd/conv3d_fwd_fp16.cpp
client_example/16_convnd_fwd/conv3d_fwd_fp16.cpp
+1
-1
client_example/16_convnd_fwd/conv3d_fwd_fp16_comp_fp8.cpp
client_example/16_convnd_fwd/conv3d_fwd_fp16_comp_fp8.cpp
+46
-0
client_example/16_convnd_fwd/conv3d_fwd_fp32.cpp
client_example/16_convnd_fwd/conv3d_fwd_fp32.cpp
+1
-1
client_example/17_grouped_gemm_fastgelu/CMakeLists.txt
client_example/17_grouped_gemm_fastgelu/CMakeLists.txt
+4
-2
client_example/17_grouped_gemm_fastgelu/grouped_gemm_fastgelu.cpp
...xample/17_grouped_gemm_fastgelu/grouped_gemm_fastgelu.cpp
+1
-1
client_example/18_groupnorm/CMakeLists.txt
client_example/18_groupnorm/CMakeLists.txt
+8
-2
client_example/18_groupnorm/groupnorm_bwd_data.cpp
client_example/18_groupnorm/groupnorm_bwd_data.cpp
+182
-0
client_example/18_groupnorm/groupnorm_bwd_gamma_beta.cpp
client_example/18_groupnorm/groupnorm_bwd_gamma_beta.cpp
+180
-0
client_example/18_groupnorm/groupnorm_swish.cpp
client_example/18_groupnorm/groupnorm_swish.cpp
+0
-194
No files found.
Too many changes to show.
To preserve performance only
511 of 511+
files are displayed.
Plain diff
Email patch
client_example/14_instance_id/CMakeLists.txt
View file @
ef326c73
add_executable
(
client_batchnorm_fwd_instance_id batchnorm_fwd_instance_id.cpp
)
target_link_libraries
(
client_batchnorm_fwd_instance_id PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_batchnorm_fwd_instance_id PRIVATE composable_kernel::device_
other_
operations
)
client_example/14_instance_id/batchnorm_fwd_instance_id.cpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <functional>
#include <numeric>
...
...
client_example/15_convnd_bwd_data/CMakeLists.txt
View file @
ef326c73
add_executable
(
client_conv3d_bwd_data_fp16 conv3d_bwd_data_fp16.cpp
)
add_executable
(
client_conv3d_bwd_data_fp32 conv3d_bwd_data_fp32.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx9"
)
add_executable
(
client_conv3d_bwd_data_fp16 conv3d_bwd_data_fp16.cpp
)
add_executable
(
client_conv3d_bwd_data_fp32 conv3d_bwd_data_fp32.cpp
)
target_link_libraries
(
client_conv3d_bwd_data_fp16 PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_conv3d_bwd_data_fp32 PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_conv3d_bwd_data_fp16 PRIVATE composable_kernel::device_conv_operations
)
target_link_libraries
(
client_conv3d_bwd_data_fp32 PRIVATE composable_kernel::device_conv_operations
)
endif
()
client_example/15_convnd_bwd_data/conv3d_bwd_data_fp16.cpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
...
...
client_example/15_convnd_bwd_data/conv3d_bwd_data_fp32.cpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
...
...
client_example/15_gemm_add_multiply/CMakeLists.txt
View file @
ef326c73
add_executable
(
client_gemm_add_multiply gemm_add_multiply.cpp
)
target_link_libraries
(
client_gemm_add_multiply PRIVATE composable_kernel::device_operations
)
\ No newline at end of file
if
(
GPU_TARGETS MATCHES
"gfx9"
)
add_executable
(
client_gemm_add_multiply gemm_add_multiply.cpp
)
target_link_libraries
(
client_gemm_add_multiply PRIVATE composable_kernel::device_gemm_operations
)
endif
()
client_example/15_gemm_add_multiply/gemm_add_multiply.cpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
...
...
@@ -204,6 +204,7 @@ int main(int argc, char* argv[])
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
if
(
found
)
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
...
...
client_example/15_reduce/CMakeLists.txt
View file @
ef326c73
add_executable
(
client_reduce_nhwc_c reduce_nhwc_c.cpp
)
target_link_libraries
(
client_reduce_nhwc_c PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_reduce_nhwc_c PRIVATE composable_kernel::device_
reduction_
operations
)
client_example/15_reduce/reduce_nhwc_c.cpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <functional>
#include <numeric>
...
...
client_example/16_convnd_fwd/CMakeLists.txt
View file @
ef326c73
add_executable
(
client_conv3d_fwd_fp16 conv3d_fwd_fp16.cpp
)
add_executable
(
client_conv3d_fwd_fp32 conv3d_fwd_fp32.cpp
)
if
((
DTYPES MATCHES
"fp16"
)
OR NOT DEFINED DTYPES
)
add_executable
(
client_conv3d_fwd_fp16 conv3d_fwd_fp16.cpp
)
target_link_libraries
(
client_conv3d_fwd_fp16 PRIVATE composable_kernel::device_conv_operations
)
target_link_libraries
(
client_conv3d_fwd_fp16 PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_conv3d_fwd_fp32 PRIVATE composable_kernel::device_operations
)
endif
()
if
((
DTYPES MATCHES
"fp8"
)
OR
(
NOT DEFINED DTYPES AND GPU_TARGETS MATCHES
"gfx94"
))
add_executable
(
client_conv3d_fwd_fp16_comp_fp8 conv3d_fwd_fp16_comp_fp8.cpp
)
target_link_libraries
(
client_conv3d_fwd_fp16_comp_fp8 PRIVATE composable_kernel::device_conv_operations
)
endif
()
if
((
DTYPES MATCHES
"fp32"
)
OR NOT DEFINED DTYPES
)
add_executable
(
client_conv3d_fwd_fp32 conv3d_fwd_fp32.cpp
)
target_link_libraries
(
client_conv3d_fwd_fp32 PRIVATE composable_kernel::device_conv_operations
)
endif
()
client_example/16_convnd_fwd/common.hpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
...
...
@@ -11,7 +11,7 @@
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_
ab
d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
...
...
@@ -94,7 +94,9 @@ template <ck::index_t NumDimSpatial,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
ck
::
index_t
NumNonSpatialDim
=
3
>
ck
::
index_t
NumNonSpatialDim
=
3
,
typename
AComputeType
=
InDataType
,
typename
BComputeType
=
AComputeType
>
bool
run_grouped_conv_fwd
(
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_lengths
)
...
...
@@ -173,18 +175,20 @@ bool run_grouped_conv_fwd(std::array<ck::index_t, NumDimSpatial + NumNonSpatialD
std
::
size_t
flop
=
GetFlops
<
NumDimSpatial
>
(
out_lengths
,
wei_lengths
);
std
::
size_t
num_bytes
=
in_mem_size
+
wei_mem_size
+
out_mem_size
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
AComputeType
,
BComputeType
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
...
...
client_example/16_convnd_fwd/conv3d_fwd_fp16.cpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
...
...
client_example/16_convnd_fwd/conv3d_fwd_fp16_comp_fp8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
3
,
ck
::
f8_t
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
G
,
K
,
Z
,
Y
,
X
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/16_convnd_fwd/conv3d_fwd_fp32.cpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
...
...
client_example/17_grouped_gemm_fastgelu/CMakeLists.txt
View file @
ef326c73
add_executable
(
client_grouped_gemm_fastgelu grouped_gemm_fastgelu.cpp
)
target_link_libraries
(
client_grouped_gemm_fastgelu PRIVATE composable_kernel::device_operations
)
\ No newline at end of file
if
(
GPU_TARGETS MATCHES
"gfx9"
)
add_executable
(
client_grouped_gemm_fastgelu grouped_gemm_fastgelu.cpp
)
target_link_libraries
(
client_grouped_gemm_fastgelu PRIVATE composable_kernel::device_gemm_operations
)
endif
()
client_example/17_grouped_gemm_fastgelu/grouped_gemm_fastgelu.cpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
...
...
client_example/18_groupnorm/CMakeLists.txt
View file @
ef326c73
add_executable
(
client_groupnorm_swish groupnorm_swish.cpp
)
target_link_libraries
(
client_groupnorm_swish PRIVATE composable_kernel::device_operations
)
add_executable
(
client_groupnorm_bwd_data groupnorm_bwd_data.cpp
)
target_link_libraries
(
client_groupnorm_bwd_data PRIVATE composable_kernel::device_other_operations
)
add_executable
(
client_groupnorm_bwd_gamma_beta groupnorm_bwd_gamma_beta.cpp
)
target_link_libraries
(
client_groupnorm_bwd_gamma_beta PRIVATE composable_kernel::device_other_operations
)
add_executable
(
client_groupnorm_swish_fwd groupnorm_swish_fwd.cpp
)
target_link_libraries
(
client_groupnorm_swish_fwd PRIVATE composable_kernel::device_other_operations
)
client_example/18_groupnorm/groupnorm_bwd_data.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization_bwd_data.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/groupnorm_bwd_data.hpp"
using
DYDataType
=
float
;
using
XDataType
=
float
;
using
GammaDataType
=
float
;
using
MeanInvStdDataType
=
float
;
using
DXDataType
=
float
;
constexpr
int
Rank
=
5
;
constexpr
int
NumReduceDim
=
3
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
index_t
N
=
32
;
ck
::
index_t
H
=
16
;
ck
::
index_t
W
=
16
;
ck
::
index_t
G
=
64
;
ck
::
index_t
C
=
128
;
std
::
size_t
length
=
N
*
H
*
W
*
G
*
C
;
std
::
vector
<
ck
::
index_t
>
strideDy
=
{
H
*
W
*
G
*
C
,
W
*
G
*
C
,
G
*
C
,
C
,
1
};
std
::
vector
<
ck
::
index_t
>
strideX
=
strideDy
;
std
::
vector
<
ck
::
index_t
>
strideDx
=
strideDy
;
std
::
vector
<
ck
::
index_t
>
strideGamma
=
{
0
,
0
,
0
,
C
,
1
};
std
::
vector
<
ck
::
index_t
>
strideMeanInvStd
=
{
G
,
0
,
0
,
1
,
0
};
SimpleDeviceMem
dy_dev
(
sizeof
(
DYDataType
)
*
length
);
SimpleDeviceMem
x_dev
(
sizeof
(
XDataType
)
*
length
);
SimpleDeviceMem
gamma_dev
(
sizeof
(
GammaDataType
)
*
G
*
C
);
SimpleDeviceMem
mean_dev
(
sizeof
(
MeanInvStdDataType
)
*
N
*
G
);
SimpleDeviceMem
inv_std_dev
(
sizeof
(
MeanInvStdDataType
)
*
N
*
G
);
SimpleDeviceMem
dx_dev
(
sizeof
(
DXDataType
)
*
length
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationBwdData
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
DXDataType
,
Rank
,
NumReduceDim
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
({
N
,
H
,
W
,
G
,
C
},
strideDy
,
strideX
,
strideGamma
,
strideMeanInvStd
,
strideMeanInvStd
,
strideDx
,
{
1
,
2
,
4
},
// reduceDims
dy_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
gamma_dev
.
GetDeviceBuffer
(),
mean_dev
.
GetDeviceBuffer
(),
inv_std_dev
.
GetDeviceBuffer
(),
dx_dev
.
GetDeviceBuffer
());
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_byte
=
sizeof
(
DYDataType
)
*
length
+
sizeof
(
XDataType
)
*
length
+
sizeof
(
GammaDataType
)
*
G
*
C
+
sizeof
(
MeanInvStdDataType
)
*
N
*
G
*
2
+
sizeof
(
DXDataType
)
*
length
;
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
// run the best intance
if
(
found
)
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
({
N
,
H
,
W
,
G
,
C
},
strideDy
,
strideX
,
strideGamma
,
strideMeanInvStd
,
strideMeanInvStd
,
strideDx
,
{
1
,
2
,
4
},
// reduceDims
dy_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
gamma_dev
.
GetDeviceBuffer
(),
mean_dev
.
GetDeviceBuffer
(),
inv_std_dev
.
GetDeviceBuffer
(),
dx_dev
.
GetDeviceBuffer
());
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/18_groupnorm/groupnorm_bwd_gamma_beta.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization_bwd_gamma_beta.hpp"
#include "ck/library/tensor_operation_instance/gpu/groupnorm_bwd_gamma_beta.hpp"
using
DYDataType
=
float
;
using
XDataType
=
float
;
using
GammaDataType
=
float
;
using
MeanInvStdDataType
=
float
;
using
DGammaDataType
=
float
;
using
DBetaDataType
=
float
;
constexpr
int
Rank
=
5
;
constexpr
int
NumReduceDim
=
3
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
index_t
N
=
32
;
ck
::
index_t
H
=
16
;
ck
::
index_t
W
=
16
;
ck
::
index_t
G
=
64
;
ck
::
index_t
C
=
128
;
std
::
size_t
length
=
N
*
H
*
W
*
G
*
C
;
std
::
vector
<
ck
::
index_t
>
strideDy
=
{
H
*
W
*
G
*
C
,
W
*
G
*
C
,
G
*
C
,
C
,
1
};
std
::
vector
<
ck
::
index_t
>
strideX
=
strideDy
;
std
::
vector
<
ck
::
index_t
>
strideMeanInvStd
=
{
G
,
0
,
0
,
1
,
0
};
std
::
vector
<
ck
::
index_t
>
strideDGammaBeta
=
{
C
,
1
};
SimpleDeviceMem
dy_dev
(
sizeof
(
DYDataType
)
*
length
);
SimpleDeviceMem
x_dev
(
sizeof
(
XDataType
)
*
length
);
SimpleDeviceMem
mean_dev
(
sizeof
(
MeanInvStdDataType
)
*
N
*
G
);
SimpleDeviceMem
inv_std_dev
(
sizeof
(
MeanInvStdDataType
)
*
N
*
G
);
SimpleDeviceMem
dgamma_dev
(
sizeof
(
DGammaDataType
)
*
G
*
C
);
SimpleDeviceMem
dbeta_dev
(
sizeof
(
DBetaDataType
)
*
G
*
C
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationBwdGammaBeta
<
DYDataType
,
XDataType
,
MeanInvStdDataType
,
DGammaDataType
,
DBetaDataType
,
Rank
,
NumReduceDim
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
std
::
size_t
num_bytes
=
sizeof
(
DYDataType
)
*
length
+
sizeof
(
XDataType
)
*
length
+
sizeof
(
GammaDataType
)
*
G
*
C
+
sizeof
(
MeanInvStdDataType
)
*
N
*
G
*
2
+
sizeof
(
DGammaDataType
)
*
G
*
C
+
sizeof
(
DBetaDataType
)
*
G
*
C
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
({
N
,
H
,
W
,
G
,
C
},
strideDy
,
strideX
,
strideMeanInvStd
,
strideMeanInvStd
,
{
G
,
C
},
strideDGammaBeta
,
strideDGammaBeta
,
{
0
,
1
,
2
},
// reduceDims
dy_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
mean_dev
.
GetDeviceBuffer
(),
inv_std_dev
.
GetDeviceBuffer
(),
dgamma_dev
.
GetDeviceBuffer
(),
dbeta_dev
.
GetDeviceBuffer
());
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
float
gb_per_sec
=
num_bytes
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
// run the best intance
if
(
found
)
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
({
N
,
H
,
W
,
G
,
C
},
strideDy
,
strideX
,
strideMeanInvStd
,
strideMeanInvStd
,
{
G
,
C
},
strideDGammaBeta
,
strideDGammaBeta
,
{
0
,
1
,
2
},
// reduceDims
dy_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
mean_dev
.
GetDeviceBuffer
(),
inv_std_dev
.
GetDeviceBuffer
(),
dgamma_dev
.
GetDeviceBuffer
(),
dbeta_dev
.
GetDeviceBuffer
());
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/18_groupnorm/groupnorm_swish.cpp
deleted
100644 → 0
View file @
b7775add
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization_swish.hpp"
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
float
;
using
BetaDataType
=
float
;
using
YDataType
=
ck
::
half_t
;
using
ComputeDataType
=
float
;
using
Swish
=
ck
::
tensor_operation
::
element_wise
::
Swish
;
constexpr
int
Rank
=
5
;
constexpr
int
NumReduceDim
=
3
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
index_t
N
=
32
;
ck
::
index_t
H
=
16
;
ck
::
index_t
W
=
16
;
ck
::
index_t
G
=
64
;
ck
::
index_t
C
=
128
;
std
::
size_t
xy_size
=
N
*
H
*
W
*
G
*
C
;
std
::
size_t
gamma_beta_size
=
G
*
C
;
std
::
vector
<
ck
::
index_t
>
xy_strides
=
{
H
*
W
*
G
*
C
,
W
*
G
*
C
,
G
*
C
,
C
,
1
};
std
::
vector
<
ck
::
index_t
>
gamma_beta_strides
=
{
0
,
0
,
0
,
C
,
1
};
SimpleDeviceMem
x_device_buf
(
sizeof
(
XDataType
)
*
xy_size
);
SimpleDeviceMem
gamma_device_buf
(
sizeof
(
GammaDataType
)
*
gamma_beta_size
);
SimpleDeviceMem
beta_device_buf
(
sizeof
(
BetaDataType
)
*
gamma_beta_size
);
SimpleDeviceMem
y_device_buf
(
sizeof
(
YDataType
)
*
xy_size
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalization
<
XDataType
,
GammaDataType
,
BetaDataType
,
ComputeDataType
,
YDataType
,
Swish
,
Rank
,
NumReduceDim
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
const
auto
&
generic_op_ptr
=
op_ptrs
[
0
];
auto
generic_argument_ptr
=
generic_op_ptr
->
MakeArgumentPointer
({
N
,
H
,
W
,
G
,
C
},
// lengths
xy_strides
,
// xStrides
gamma_beta_strides
,
// gammaStrides
gamma_beta_strides
,
// betaStrides
xy_strides
,
// yStrides
{
1
,
2
,
4
},
// reduceDims
1e-6
,
x_device_buf
.
GetDeviceBuffer
(),
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
(),
y_device_buf
.
GetDeviceBuffer
(),
nullptr
,
nullptr
,
Swish
{});
if
(
!
generic_op_ptr
->
IsSupportedArgument
(
generic_argument_ptr
.
get
()))
{
throw
std
::
runtime_error
(
"The generic kernel instance should be able to support any input shapes"
);
};
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
({
N
,
H
,
W
,
G
,
C
},
// lengths
xy_strides
,
// xStrides
gamma_beta_strides
,
// gammaStrides
gamma_beta_strides
,
// betaStrides
xy_strides
,
// yStrides
{
1
,
2
,
4
},
// reduceDims
1e-6
,
x_device_buf
.
GetDeviceBuffer
(),
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
(),
y_device_buf
.
GetDeviceBuffer
(),
nullptr
,
nullptr
,
Swish
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_byte
=
sizeof
(
XDataType
)
*
xy_size
+
sizeof
(
GammaDataType
)
*
gamma_beta_size
+
sizeof
(
BetaDataType
)
*
gamma_beta_size
+
sizeof
(
YDataType
)
*
xy_size
;
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
// run the best intance
if
(
found
)
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
({
N
,
H
,
W
,
G
,
C
},
// lengths
xy_strides
,
// xStrides
gamma_beta_strides
,
// gammaStrides
gamma_beta_strides
,
// betaStrides
xy_strides
,
// yStrides
{
1
,
2
,
4
},
// reduceDims
1e-6
,
x_device_buf
.
GetDeviceBuffer
(),
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
(),
y_device_buf
.
GetDeviceBuffer
(),
nullptr
,
nullptr
,
Swish
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
Prev
1
2
3
4
5
6
7
8
9
…
26
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment