Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
ef326c73
Commit
ef326c73
authored
Nov 19, 2024
by
Alan Turner
Browse files
Merge remote-tracking branch 'origin/develop' into migraphx-update
parents
b7775add
e4dfe4d8
Changes
511
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
816 additions
and
443 deletions
+816
-443
client_example/05_layernorm/layernorm4d_fwd.cpp
client_example/05_layernorm/layernorm4d_fwd.cpp
+202
-0
client_example/06_softmax/CMakeLists.txt
client_example/06_softmax/CMakeLists.txt
+1
-1
client_example/06_softmax/softmax4d.cpp
client_example/06_softmax/softmax4d.cpp
+2
-1
client_example/07_grouped_convnd_fwd/CMakeLists.txt
client_example/07_grouped_convnd_fwd/CMakeLists.txt
+24
-4
client_example/07_grouped_convnd_fwd/common.hpp
client_example/07_grouped_convnd_fwd/common.hpp
+304
-0
client_example/07_grouped_convnd_fwd/grouped_conv1d_fwd.cpp
client_example/07_grouped_convnd_fwd/grouped_conv1d_fwd.cpp
+12
-202
client_example/07_grouped_convnd_fwd/grouped_conv2d_fwd.cpp
client_example/07_grouped_convnd_fwd/grouped_conv2d_fwd.cpp
+12
-170
client_example/07_grouped_convnd_fwd/grouped_conv3d_fwd_bf8.cpp
..._example/07_grouped_convnd_fwd/grouped_conv3d_fwd_bf8.cpp
+46
-0
client_example/07_grouped_convnd_fwd/grouped_conv3d_fwd_bf8_fp8.cpp
...mple/07_grouped_convnd_fwd/grouped_conv3d_fwd_bf8_fp8.cpp
+50
-0
client_example/07_grouped_convnd_fwd/grouped_conv3d_fwd_fp8.cpp
..._example/07_grouped_convnd_fwd/grouped_conv3d_fwd_fp8.cpp
+46
-0
client_example/07_grouped_convnd_fwd/grouped_conv3d_fwd_fp8_bf8.cpp
...mple/07_grouped_convnd_fwd/grouped_conv3d_fwd_fp8_bf8.cpp
+50
-0
client_example/08_fused_attention/CMakeLists.txt
client_example/08_fused_attention/CMakeLists.txt
+6
-4
client_example/08_fused_attention/fused_attention.cpp
client_example/08_fused_attention/fused_attention.cpp
+1
-1
client_example/08_fused_attention/fused_attention_bias.cpp
client_example/08_fused_attention/fused_attention_bias.cpp
+1
-1
client_example/09_quantization/CMakeLists.txt
client_example/09_quantization/CMakeLists.txt
+15
-15
client_example/09_quantization/conv2d_fwd_bias_relu_perchannel_quantization.cpp
...tization/conv2d_fwd_bias_relu_perchannel_quantization.cpp
+2
-2
client_example/09_quantization/conv2d_fwd_bias_relu_perlayer_quantization.cpp
...antization/conv2d_fwd_bias_relu_perlayer_quantization.cpp
+13
-13
client_example/09_quantization/conv2d_fwd_bias_tanh_perchannel_quantization.cpp
...tization/conv2d_fwd_bias_tanh_perchannel_quantization.cpp
+2
-2
client_example/09_quantization/conv2d_fwd_bias_tanh_perlayer_quantization.cpp
...antization/conv2d_fwd_bias_tanh_perlayer_quantization.cpp
+13
-13
client_example/09_quantization/conv2d_fwd_perchannel_quantization.cpp
...le/09_quantization/conv2d_fwd_perchannel_quantization.cpp
+14
-14
No files found.
Too many changes to show.
To preserve performance only
511 of 511+
files are displayed.
Plain diff
Email patch
client_example/05_layernorm/layernorm4d_fwd.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization_fwd.hpp"
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
SaveMeanInvStdDataType
=
ck
::
half_t
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
#define SAVE_MEAN_INV_STD
constexpr
int
Rank
=
4
;
constexpr
int
NumReduceDim
=
3
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
index_t
N
=
256
;
ck
::
index_t
H
=
16
;
ck
::
index_t
W
=
16
;
ck
::
index_t
C
=
8
;
std
::
vector
<
ck
::
index_t
>
strideXY
=
{
H
*
W
*
C
,
W
*
C
,
C
,
1
};
std
::
vector
<
ck
::
index_t
>
strideGammaBeta
=
{
0
,
W
*
C
,
C
,
1
};
std
::
vector
<
ck
::
index_t
>
strideSaveMeanInvStd
=
{
1
};
SimpleDeviceMem
x_device_buf
(
sizeof
(
XDataType
)
*
N
*
H
*
W
*
C
);
SimpleDeviceMem
gamma_device_buf
(
sizeof
(
GammaDataType
)
*
H
*
W
*
C
);
SimpleDeviceMem
beta_device_buf
(
sizeof
(
BetaDataType
)
*
H
*
W
*
C
);
SimpleDeviceMem
y_device_buf
(
sizeof
(
YDataType
)
*
N
*
H
*
W
*
C
);
#ifdef SAVE_MEAN_INV_STD
SimpleDeviceMem
save_mean_device_buf
(
sizeof
(
SaveMeanInvStdDataType
)
*
N
);
SimpleDeviceMem
save_inv_std_device_buf
(
sizeof
(
SaveMeanInvStdDataType
)
*
N
);
#endif
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationFwd
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
PassThrough
,
Rank
,
NumReduceDim
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
({
N
,
H
,
W
,
C
},
// lengths
strideXY
,
// xStrides
strideGammaBeta
,
// gammaStrides
strideGammaBeta
,
// betaStrides
strideXY
,
// yStrides
strideSaveMeanInvStd
,
// save_mean Strides
strideSaveMeanInvStd
,
// save_inv_std Strides
{
1
,
2
,
3
},
// reduceDims
1e-4
,
x_device_buf
.
GetDeviceBuffer
(),
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
(),
y_device_buf
.
GetDeviceBuffer
(),
#ifdef SAVE_MEAN_INV_STD
save_mean_device_buf
.
GetDeviceBuffer
(),
save_inv_std_device_buf
.
GetDeviceBuffer
(),
#else
nullptr
,
nullptr
,
#endif
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_byte
=
sizeof
(
XDataType
)
*
N
*
H
*
W
*
C
+
sizeof
(
GammaDataType
)
*
H
*
W
*
C
+
sizeof
(
BetaDataType
)
*
H
*
W
*
C
+
sizeof
(
YDataType
)
*
N
*
H
*
W
*
C
;
#ifdef SAVE_MEAN_INV_STD
num_byte
+=
sizeof
(
SaveMeanInvStdDataType
)
*
N
*
2
;
#endif
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
if
(
found
)
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
({
N
,
H
,
W
,
C
},
// lengths
strideXY
,
// xStrides
strideGammaBeta
,
// gammaStrides
strideGammaBeta
,
// betaStrides
strideXY
,
// yStrides
strideSaveMeanInvStd
,
// save_mean Strides
strideSaveMeanInvStd
,
// save_inv_std Strides
{
1
,
2
,
3
},
// reduceDims
1e-4
,
x_device_buf
.
GetDeviceBuffer
(),
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
(),
y_device_buf
.
GetDeviceBuffer
(),
#ifdef SAVE_MEAN_INV_STD
save_mean_device_buf
.
GetDeviceBuffer
(),
save_inv_std_device_buf
.
GetDeviceBuffer
(),
#else
nullptr
,
nullptr
,
#endif
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/06_softmax/CMakeLists.txt
View file @
ef326c73
add_executable
(
client_softmax4d softmax4d.cpp
)
add_executable
(
client_softmax4d softmax4d.cpp
)
target_link_libraries
(
client_softmax4d PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_softmax4d PRIVATE composable_kernel::device_
other_operations composable_kernel::device_reduction_
operations
)
client_example/06_softmax/softmax4d.cpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <functional>
#include <functional>
#include <numeric>
#include <numeric>
...
@@ -140,6 +140,7 @@ int main(int argc, char* argv[])
...
@@ -140,6 +140,7 @@ int main(int argc, char* argv[])
<<
best_op_name
<<
std
::
endl
;
<<
best_op_name
<<
std
::
endl
;
// run the best intance
// run the best intance
if
(
found
)
{
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
...
...
client_example/07_grouped_convnd_fwd/CMakeLists.txt
View file @
ef326c73
add_executable
(
client_grouped_conv2d_fwd grouped_conv2d_fwd.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx9"
)
target_link_libraries
(
client_grouped_conv2d_fwd PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_conv2d_fwd grouped_conv2d_fwd.cpp
)
target_link_libraries
(
client_grouped_conv2d_fwd PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_grouped_conv1d_fwd grouped_conv1d_fwd.cpp
)
add_executable
(
client_grouped_conv1d_fwd grouped_conv1d_fwd.cpp
)
target_link_libraries
(
client_grouped_conv1d_fwd PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_grouped_conv1d_fwd PRIVATE composable_kernel::device_conv_operations
)
if
((
DTYPES MATCHES
"fp8"
)
OR
(
NOT DEFINED DTYPES AND GPU_TARGETS MATCHES
"gfx94"
))
add_executable
(
client_grouped_conv3d_fwd_fp8 grouped_conv3d_fwd_fp8.cpp
)
target_link_libraries
(
client_grouped_conv3d_fwd_fp8 PRIVATE composable_kernel::device_conv_operations
)
endif
()
if
((
DTYPES MATCHES
"bf8"
)
OR
(
NOT DEFINED DTYPES AND GPU_TARGETS MATCHES
"gfx94"
))
add_executable
(
client_grouped_conv3d_fwd_bf8 grouped_conv3d_fwd_bf8.cpp
)
target_link_libraries
(
client_grouped_conv3d_fwd_bf8 PRIVATE composable_kernel::device_conv_operations
)
endif
()
if
((
DTYPES MATCHES
"fp8"
AND DTYPES MATCHES
"bf8"
)
OR
(
NOT DEFINED DTYPES AND GPU_TARGETS MATCHES
"gfx94"
))
add_executable
(
client_grouped_conv3d_fwd_fp8_bf8 grouped_conv3d_fwd_fp8_bf8.cpp
)
target_link_libraries
(
client_grouped_conv3d_fwd_fp8_bf8 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_grouped_conv3d_fwd_bf8_fp8 grouped_conv3d_fwd_bf8_fp8.cpp
)
target_link_libraries
(
client_grouped_conv3d_fwd_bf8_fp8 PRIVATE composable_kernel::device_conv_operations
)
endif
()
endif
()
client_example/07_grouped_convnd_fwd/common.hpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <string>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
template
<
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetFlops
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
)
{
// 2 * G * N * K * C * <output spatial lengths product> * <filter spatial lengths product>
ck
::
index_t
G
=
weights_lengths
[
0
];
ck
::
index_t
N
=
output_lengths
[
1
];
ck
::
index_t
K
=
weights_lengths
[
1
];
ck
::
index_t
C
=
weights_lengths
[
2
];
return
static_cast
<
std
::
size_t
>
(
2
)
*
G
*
N
*
K
*
C
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
output_lengths
),
NumNonSpatialDim
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
weights_lengths
),
NumNonSpatialDim
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
InDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetInputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
input_lengths
)
{
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return
sizeof
(
InDataType
)
*
std
::
accumulate
(
std
::
begin
(
input_lengths
),
std
::
end
(
input_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
WeiDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetWeightByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
)
{
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return
sizeof
(
WeiDataType
)
*
std
::
accumulate
(
std
::
begin
(
weights_lengths
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
OutDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetOutputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
)
{
// sizeof(OutDataType) * (G * N * K * <output spatial lengths product>);
return
sizeof
(
OutDataType
)
*
std
::
accumulate
(
std
::
begin
(
output_lengths
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<
std
::
size_t
>
());
}
template
<
ck
::
index_t
NumDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
ck
::
index_t
NumNonSpatialDim
=
3
,
typename
AComputeType
=
InDataType
,
typename
BComputeType
=
AComputeType
>
bool
run_grouped_conv_fwd
(
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_lengths
)
{
std
::
size_t
in_mem_size
=
GetInputByte
<
InDataType
,
NumDimSpatial
>
(
in_lengths
);
std
::
size_t
wei_mem_size
=
GetWeightByte
<
WeiDataType
,
NumDimSpatial
>
(
wei_lengths
);
std
::
size_t
out_mem_size
=
GetOutputByte
<
OutDataType
,
NumDimSpatial
>
(
out_lengths
);
SimpleDeviceMem
in
(
in_mem_size
);
SimpleDeviceMem
wei
(
wei_mem_size
);
SimpleDeviceMem
out
(
out_mem_size
);
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_strides
;
in_strides
.
fill
(
0
);
wei_strides
.
fill
(
0
);
out_strides
.
fill
(
0
);
in_strides
.
back
()
=
1
;
wei_strides
.
back
()
=
1
;
out_strides
.
back
()
=
1
;
std
::
partial_sum
(
rbegin
(
in_lengths
),
std
::
prev
(
rend
(
in_lengths
)),
std
::
next
(
rbegin
(
in_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
wei_lengths
),
std
::
prev
(
rend
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
out_lengths
),
std
::
prev
(
rend
(
out_lengths
)),
std
::
next
(
rbegin
(
out_strides
)),
std
::
multiplies
<>
{});
// transpose NDHWGC/KZYXGC/NDHWGK to GNDHWC/GKZYXC/GNDHWK to GNCDHW/GKCZYX/GNKDHW
std
::
rotate
(
std
::
next
(
rbegin
(
in_lengths
)),
std
::
next
(
rbegin
(
in_lengths
),
2
),
rend
(
in_lengths
));
std
::
rotate
(
rbegin
(
in_lengths
),
std
::
next
(
rbegin
(
in_lengths
)),
std
::
next
(
rbegin
(
in_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
in_strides
)),
std
::
next
(
rbegin
(
in_strides
),
2
),
rend
(
in_strides
));
std
::
rotate
(
rbegin
(
in_strides
),
std
::
next
(
rbegin
(
in_strides
)),
std
::
next
(
rbegin
(
in_strides
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
wei_lengths
),
std
::
next
(
rbegin
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
wei_strides
),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
next
(
rbegin
(
wei_strides
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
out_lengths
)),
std
::
next
(
rbegin
(
out_lengths
),
2
),
rend
(
out_lengths
));
std
::
rotate
(
rbegin
(
out_lengths
),
std
::
next
(
rbegin
(
out_lengths
)),
std
::
next
(
rbegin
(
out_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
out_strides
)),
std
::
next
(
rbegin
(
out_strides
),
2
),
rend
(
out_strides
));
std
::
rotate
(
rbegin
(
out_strides
),
std
::
next
(
rbegin
(
out_strides
)),
std
::
next
(
rbegin
(
out_strides
),
NumDimSpatial
+
1
));
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_dilations
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
;
conv_filter_strides
.
fill
(
1
);
conv_filter_dilations
.
fill
(
1
);
input_left_pads
.
fill
(
1
);
input_right_pads
.
fill
(
1
);
std
::
size_t
flop
=
GetFlops
<
NumDimSpatial
>
(
out_lengths
,
wei_lengths
);
std
::
size_t
num_bytes
=
in_mem_size
+
wei_mem_size
+
out_mem_size
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
AComputeType
,
BComputeType
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{{}},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{{}},
out_lengths
,
out_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
false
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{{}},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{{}},
out_lengths
,
out_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
true
;
}
client_example/07_grouped_convnd_fwd/grouped_conv1d_fwd.cpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "common.hpp"
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
...
@@ -31,199 +24,16 @@ static constexpr ck::index_t X = 3;
...
@@ -31,199 +24,16 @@ static constexpr ck::index_t X = 3;
static
constexpr
ck
::
index_t
Wi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
28
;
static
constexpr
ck
::
index_t
Wo
=
28
;
static
constexpr
ck
::
index_t
Wo
=
28
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
()
int
main
()
{
{
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_lengths
{
G
,
N
,
Wi
,
C
};
return
run_grouped_conv_fwd
<
NumDimSpatial
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_strides
{
0
,
0
,
0
,
1
};
InDataType
,
WeiDataType
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_lengths
{
G
,
K
,
X
,
C
};
OutDataType
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_strides
{
0
,
0
,
0
,
1
};
InLayout
,
WeiLayout
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_lengths
{
G
,
N
,
Wo
,
K
};
OutLayout
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_strides
{
0
,
0
,
0
,
1
};
3
>
({
N
,
Wi
,
G
,
C
},
{
G
,
K
,
X
,
C
},
{
N
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
std
::
partial_sum
(
rbegin
(
in_lengths
),
:
EXIT_FAILURE
;
std
::
prev
(
rend
(
in_lengths
)),
std
::
next
(
rbegin
(
in_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
wei_lengths
),
std
::
prev
(
rend
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
out_lengths
),
std
::
prev
(
rend
(
out_lengths
)),
std
::
next
(
rbegin
(
out_strides
)),
std
::
multiplies
<>
{});
// transpose GNWC/GKXC/GNWK to GNCW/GKCX/GNCW
std
::
rotate
(
rbegin
(
in_lengths
),
std
::
next
(
rbegin
(
in_lengths
)),
std
::
next
(
rbegin
(
in_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
in_strides
),
std
::
next
(
rbegin
(
in_strides
)),
std
::
next
(
rbegin
(
in_strides
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
wei_lengths
),
std
::
next
(
rbegin
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
wei_strides
),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
next
(
rbegin
(
wei_strides
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
out_lengths
),
std
::
next
(
rbegin
(
out_lengths
)),
std
::
next
(
rbegin
(
out_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
out_strides
),
std
::
next
(
rbegin
(
out_strides
)),
std
::
next
(
rbegin
(
out_strides
),
NumDimSpatial
+
1
));
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
G
*
N
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
G
*
N
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{},
{},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Wo
*
X
;
std
::
size_t
num_bytes
=
sizeof
(
InDataType
)
*
G
*
N
*
Wi
*
C
+
sizeof
(
WeiDataType
)
*
G
*
K
*
X
*
C
+
sizeof
(
OutDataType
)
*
G
*
N
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{},
{},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
}
}
client_example/07_grouped_convnd_fwd/grouped_conv2d_fwd.cpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "common.hpp"
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
...
@@ -34,167 +27,16 @@ static constexpr ck::index_t Wi = 28; // input W
...
@@ -34,167 +27,16 @@ static constexpr ck::index_t Wi = 28; // input W
static
constexpr
ck
::
index_t
Ho
=
28
;
// output H
static
constexpr
ck
::
index_t
Ho
=
28
;
// output H
static
constexpr
ck
::
index_t
Wo
=
28
;
// output W
static
constexpr
ck
::
index_t
Wo
=
28
;
// output W
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
()
int
main
()
{
{
// We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space
return
run_grouped_conv_fwd
<
NumDimSpatial
,
// However, CK's API only accept length and stride with order of GNCHW/GKCYX/GNCHW
InDataType
,
// Hence, we need to adjust the order of stride
WeiDataType
,
std
::
array
<
ck
::
index_t
,
5
>
in_lengths
{
G
,
N
,
C
,
Hi
,
Wi
};
OutDataType
,
std
::
array
<
ck
::
index_t
,
5
>
in_strides
{
C
,
Hi
*
Wi
*
G
*
C
,
1
,
Wi
*
G
*
C
,
G
*
C
};
InLayout
,
std
::
array
<
ck
::
index_t
,
5
>
wei_lengths
{
G
,
K
,
C
,
Y
,
X
};
WeiLayout
,
std
::
array
<
ck
::
index_t
,
5
>
wei_strides
{
K
*
Y
*
X
*
C
,
Y
*
X
*
C
,
1
,
X
*
C
,
C
};
OutLayout
,
std
::
array
<
ck
::
index_t
,
5
>
out_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
3
>
({
N
,
Hi
,
Wi
,
G
,
C
},
{
G
,
K
,
Y
,
X
,
C
},
{
N
,
Ho
,
Wo
,
G
,
K
})
std
::
array
<
ck
::
index_t
,
5
>
out_strides
{
C
,
Ho
*
Wo
*
G
*
C
,
1
,
Wo
*
G
*
C
,
G
*
C
};
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
G
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{},
{},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
G
*
C
+
sizeof
(
WeiDataType
)
*
G
*
K
*
Y
*
X
*
C
+
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{},
{},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
}
}
client_example/07_grouped_convnd_fwd/grouped_conv3d_fwd_bf8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
bf8_t
;
using
WeiDataType
=
ck
::
bf8_t
;
using
OutDataType
=
ck
::
f8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
3
,
ck
::
bf8_t
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
G
,
K
,
Z
,
Y
,
X
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/07_grouped_convnd_fwd/grouped_conv3d_fwd_bf8_fp8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
bf8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
OutDataType
=
ck
::
f8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
AComputeType
=
ck
::
bf8_t
;
using
BComputeType
=
ck
::
f8_t
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
3
,
AComputeType
,
BComputeType
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
G
,
K
,
Z
,
Y
,
X
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/07_grouped_convnd_fwd/grouped_conv3d_fwd_fp8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
OutDataType
=
ck
::
f8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
3
,
ck
::
f8_t
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
G
,
K
,
Z
,
Y
,
X
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/07_grouped_convnd_fwd/grouped_conv3d_fwd_fp8_bf8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
bf8_t
;
using
OutDataType
=
ck
::
f8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
AComputeType
=
ck
::
f8_t
;
using
BComputeType
=
ck
::
bf8_t
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
3
,
AComputeType
,
BComputeType
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
G
,
K
,
Z
,
Y
,
X
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/08_fused_attention/CMakeLists.txt
View file @
ef326c73
add_executable
(
client_fused_attention fused_attention.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx9"
)
target_link_libraries
(
client_fused_attention PRIVATE composable_kernel::device_operations
)
add_executable
(
client_fused_attention fused_attention.cpp
)
target_link_libraries
(
client_fused_attention PRIVATE composable_kernel::device_other_operations composable_kernel::device_gemm_operations
)
add_executable
(
client_fused_attention_bias fused_attention_bias.cpp
)
add_executable
(
client_fused_attention_bias fused_attention_bias.cpp
)
target_link_libraries
(
client_fused_attention_bias PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_fused_attention_bias PRIVATE composable_kernel::device_other_operations composable_kernel::device_gemm_operations
)
endif
()
client_example/08_fused_attention/fused_attention.cpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <vector>
#include <vector>
...
...
client_example/08_fused_attention/fused_attention_bias.cpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <vector>
#include <vector>
...
...
client_example/09_quantization/CMakeLists.txt
View file @
ef326c73
if
(
DTYPES MATCHES
"int8"
OR NOT DEFINED DTYPES
)
if
(
GPU_TARGETS MATCHES
"gfx9"
AND
(
DTYPES MATCHES
"int8"
OR NOT DEFINED DTYPES
)
)
add_executable
(
client_conv2d_fwd_bias_tanh_perchannel_quantization conv2d_fwd_bias_tanh_perchannel_quantization.cpp
)
add_executable
(
client_conv2d_fwd_bias_tanh_perchannel_quantization conv2d_fwd_bias_tanh_perchannel_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_bias_tanh_perchannel_quantization PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_conv2d_fwd_bias_tanh_perchannel_quantization PRIVATE composable_kernel::device_
conv_operations composable_kernel::device_other_operations composable_kernel::device_gemm_
operations
)
add_executable
(
client_conv2d_fwd_bias_relu_perchannel_quantization conv2d_fwd_bias_relu_perchannel_quantization.cpp
)
add_executable
(
client_conv2d_fwd_bias_relu_perchannel_quantization conv2d_fwd_bias_relu_perchannel_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_bias_relu_perchannel_quantization PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_conv2d_fwd_bias_relu_perchannel_quantization PRIVATE composable_kernel::device_
conv_operations composable_kernel::device_other_operations composable_kernel::device_gemm_
operations
)
add_executable
(
client_conv2d_fwd_bias_tanh_perlayer_quantization conv2d_fwd_bias_tanh_perlayer_quantization.cpp
)
add_executable
(
client_conv2d_fwd_bias_tanh_perlayer_quantization conv2d_fwd_bias_tanh_perlayer_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_bias_tanh_perlayer_quantization PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_conv2d_fwd_bias_tanh_perlayer_quantization PRIVATE composable_kernel::device_
conv_operations composable_kernel::device_other_operations composable_kernel::device_gemm_
operations
)
add_executable
(
client_conv2d_fwd_bias_relu_perlayer_quantization conv2d_fwd_bias_relu_perlayer_quantization.cpp
)
add_executable
(
client_conv2d_fwd_bias_relu_perlayer_quantization conv2d_fwd_bias_relu_perlayer_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_bias_relu_perlayer_quantization PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_conv2d_fwd_bias_relu_perlayer_quantization PRIVATE composable_kernel::device_
conv_operations composable_kernel::device_other_operations composable_kernel::device_gemm_
operations
)
add_executable
(
client_conv2d_fwd_perchannel_quantization conv2d_fwd_perchannel_quantization.cpp
)
add_executable
(
client_conv2d_fwd_perchannel_quantization conv2d_fwd_perchannel_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_perchannel_quantization PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_conv2d_fwd_perchannel_quantization PRIVATE composable_kernel::device_
conv_operations composable_kernel::device_other_operations composable_kernel::device_gemm_
operations
)
add_executable
(
client_conv2d_fwd_perlayer_quantization conv2d_fwd_perlayer_quantization.cpp
)
add_executable
(
client_conv2d_fwd_perlayer_quantization conv2d_fwd_perlayer_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_perlayer_quantization PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_conv2d_fwd_perlayer_quantization PRIVATE composable_kernel::device_
conv_operations composable_kernel::device_other_operations composable_kernel::device_gemm_
operations
)
add_executable
(
client_gemm_quantization gemm_quantization.cpp
)
add_executable
(
client_gemm_quantization gemm_quantization.cpp
)
target_link_libraries
(
client_gemm_quantization PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_gemm_quantization PRIVATE composable_kernel::device_
conv_operations composable_kernel::device_other_operations composable_kernel::device_gemm_
operations
)
endif
()
endif
()
client_example/09_quantization/conv2d_fwd_bias_relu_perchannel_quantization.cpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iomanip>
#include <iostream>
#include <iostream>
...
@@ -80,7 +80,7 @@ int main(int argc, char* argv[])
...
@@ -80,7 +80,7 @@ int main(int argc, char* argv[])
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
G
*
K
);
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
G
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D
<
NumDimSpatial
,
NumDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
...
...
client_example/09_quantization/conv2d_fwd_bias_relu_perlayer_quantization.cpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iomanip>
#include <iostream>
#include <iostream>
...
@@ -78,18 +78,18 @@ int main(int argc, char* argv[])
...
@@ -78,18 +78,18 @@ int main(int argc, char* argv[])
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
using
DeviceOp
=
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D
<
NumDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
ck
::
Tuple
<
BiasLayout
>
,
ck
::
Tuple
<
BiasLayout
>
,
OutLayout
,
OutLayout
,
InDataType
,
InDataType
,
WeiDataType
,
WeiDataType
,
ck
::
Tuple
<
BiasDataType
>
,
ck
::
Tuple
<
BiasDataType
>
,
OutDataType
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
OutElementOp
>
;
OutElementOp
>
;
// get device op instances
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
DeviceOp
>::
GetInstances
();
...
...
client_example/09_quantization/conv2d_fwd_bias_tanh_perchannel_quantization.cpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iomanip>
#include <iostream>
#include <iostream>
...
@@ -83,7 +83,7 @@ int main(int argc, char* argv[])
...
@@ -83,7 +83,7 @@ int main(int argc, char* argv[])
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
G
*
K
);
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
G
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D
<
NumDimSpatial
,
NumDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
...
...
client_example/09_quantization/conv2d_fwd_bias_tanh_perlayer_quantization.cpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iomanip>
#include <iostream>
#include <iostream>
...
@@ -79,18 +79,18 @@ int main(int argc, char* argv[])
...
@@ -79,18 +79,18 @@ int main(int argc, char* argv[])
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
using
DeviceOp
=
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D
<
NumDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
ck
::
Tuple
<
BiasLayout
>
,
ck
::
Tuple
<
BiasLayout
>
,
OutLayout
,
OutLayout
,
InDataType
,
InDataType
,
WeiDataType
,
WeiDataType
,
ck
::
Tuple
<
BiasDataType
>
,
ck
::
Tuple
<
BiasDataType
>
,
OutDataType
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
OutElementOp
>
;
OutElementOp
>
;
// get device op instances
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
DeviceOp
>::
GetInstances
();
...
...
client_example/09_quantization/conv2d_fwd_perchannel_quantization.cpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iomanip>
#include <iostream>
#include <iostream>
...
@@ -76,19 +76,19 @@ int main(int argc, char* argv[])
...
@@ -76,19 +76,19 @@ int main(int argc, char* argv[])
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
G
*
K
);
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
G
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
using
DeviceOp
=
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
NumDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
ck
::
Tuple
<
RequantScaleLayout
>
,
ck
::
Tuple
<
RequantScaleLayout
>
,
OutLayout
,
OutLayout
,
InDataType
,
InDataType
,
WeiDataType
,
WeiDataType
,
ck
::
Tuple
<
RequantScaleDataType
>
,
ck
::
Tuple
<
RequantScaleDataType
>
,
OutDataType
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
OutElementOp
>
;
OutElementOp
>
;
// get device op instances
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
DeviceOp
>::
GetInstances
();
...
...
Prev
1
2
3
4
5
6
7
…
26
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment