"test/vscode:/vscode.git/clone" did not exist on "8378a3971964ab43098b22288afebabdcb25e45d"
Commit ef326c73 authored by Alan Turner's avatar Alan Turner
Browse files

Merge remote-tracking branch 'origin/develop' into migraphx-update

parents b7775add e4dfe4d8
add_example_executable(example_contraction_multi_ABD_xdl_fp16 contraction_multi_ABD_xdl_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_contraction.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/numeric.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using A0DataType = F16;
using A1DataType = F32;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using DDataType = F16;
using EDataType = F16;
using ComputeDataType = F16;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
struct AlphaBetaAdd
{
AlphaBetaAdd(float alpha, float beta) : alpha_(alpha), beta_(beta){};
template <typename E, typename C, typename D>
__host__ __device__ constexpr void operator()(E& e, const C& c, const D& d) const;
template <>
__host__ __device__ constexpr void operator()<ck::half_t, float, ck::half_t>(
ck::half_t& e, const float& c, const ck::half_t& d) const
{
e = ck::type_convert<ck::half_t>(alpha_ * c + beta_ * ck::type_convert<float>(d));
};
float alpha_;
float beta_;
};
struct Multiply
{
__host__ __device__ constexpr void
operator()(ck::half_t& a, const ck::half_t& a0, const float& a1) const
{
a = ck::type_convert<ck::half_t>(ck::type_convert<float>(a0) * a1);
}
};
using AElementOp = Multiply;
using BElementOp = PassThrough;
using CDEElementOp = AlphaBetaAdd;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using DeviceOpInstance = ck::tensor_operation::device::DeviceContractionMultipleABD_Xdl_CShuffle<
NumDimM,
NumDimN,
NumDimK,
ck::Tuple<A0DataType, A1DataType>,
ck::Tuple<BDataType>,
AccDataType,
CShuffleDataType,
ck::Tuple<DDataType>,
EDataType,
AElementOp,
BElementOp,
CDEElementOp,
GemmSpec,
1,
256,
256,
128,
32,
8,
8,
32,
32,
4,
2,
S<4, 64, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
1,
8,
1,
S<4, 64, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
1,
1,
1,
S<1, 32, 1, 8>,
8>;
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
float alpha = 1.0f;
float beta = 1.0f;
// A0[M0, M1, K0, K1]
std::vector<ck::index_t> a0_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a0_ms_ks_strides{128 * 32 * 64, 32 * 64, 64, 1};
// A1[M1, K1] -> A1[M0, M1, K0, K1]
std::vector<ck::index_t> a1_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a1_ms_ks_strides{0, 64, 1, 0};
// B[N0, N1, K0, K1]
std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
std::vector<ck::index_t> b_ns_ks_strides{64 * 32 * 64, 32 * 64, 64, 1};
// D[M0, M1, N0, N1]
std::vector<ck::index_t> d_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> d_ms_ns_strides{128 * 32 * 64, 32 * 64, 64, 1};
// E[M0, M1, N0, N1]
std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> e_ms_ns_strides{128 * 32 * 64, 32 * 64, 64, 1};
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
exit(0);
}
Tensor<A0DataType> a0_ms_ks(a0_ms_ks_lengths, a0_ms_ks_strides);
Tensor<A1DataType> a1_ms_ks(a1_ms_ks_lengths, a1_ms_ks_strides);
Tensor<BDataType> b_ns_ks(b_ns_ks_lengths, b_ns_ks_strides);
Tensor<EDataType> d_ms_ns(d_ms_ns_lengths, d_ms_ns_strides);
Tensor<EDataType> e_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
Tensor<EDataType> e_ms_ns_device_result(e_ms_ns_lengths, e_ms_ns_strides);
std::cout << "a0_ms_ks: " << a0_ms_ks.mDesc << std::endl;
std::cout << "a1_ms_ks: " << a1_ms_ks.mDesc << std::endl;
std::cout << "b_ns_ks: " << b_ns_ks.mDesc << std::endl;
std::cout << "d_ms_ns: " << d_ms_ns.mDesc << std::endl;
std::cout << "e_ms_ns: " << e_ms_ns_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a0_ms_ks.GenerateTensorValue(GeneratorTensor_2<A0DataType>{-5, 5});
a1_ms_ks.GenerateTensorValue(GeneratorTensor_2<A1DataType>{-5, 5});
b_ns_ks.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d_ms_ns.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a0_ms_ks.GenerateTensorValue(GeneratorTensor_3<A0DataType>{0.0, 1.0});
a1_ms_ks.GenerateTensorValue(GeneratorTensor_3<A1DataType>{0.0, 1.0});
b_ns_ks.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d_ms_ns.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
}
DeviceMem a0_device_buf(sizeof(A0DataType) * a0_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem a1_device_buf(sizeof(A1DataType) * a1_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(DDataType) * d_ms_ns.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_ms_ns_device_result.mDesc.GetElementSpaceSize());
a0_device_buf.ToDevice(a0_ms_ks.mData.data());
a1_device_buf.ToDevice(a1_ms_ks.mData.data());
b_device_buf.ToDevice(b_ns_ks.mData.data());
d_device_buf.ToDevice(d_ms_ns.mData.data());
// set zero
e_device_buf.SetZero();
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{alpha, beta};
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument = device_op.MakeArgument(
std::array<const void*, 2>{a0_device_buf.GetDeviceBuffer(),
a1_device_buf.GetDeviceBuffer()},
std::array<const void*, 1>{b_device_buf.GetDeviceBuffer()},
std::array<const void*, 1>{d_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
std::array<std::vector<ck::index_t>, 2>{a0_ms_ks_lengths, a1_ms_ks_lengths},
std::array<std::vector<ck::index_t>, 2>{a0_ms_ks_strides, a1_ms_ks_strides},
std::array<std::vector<ck::index_t>, 1>{b_ns_ks_lengths},
std::array<std::vector<ck::index_t>, 1>{b_ns_ks_strides},
std::array<std::vector<ck::index_t>, 1>{d_ms_ns_lengths},
std::array<std::vector<ck::index_t>, 1>{d_ms_ns_strides},
e_ms_ns_lengths,
e_ms_ns_strides,
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_contraction with the specified compilation parameters does "
"not support this problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
if(time_kernel)
{
ck::index_t M =
ck::accumulate_n<ck::index_t>(e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t N = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t K = ck::accumulate_n<ck::index_t>(
a0_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(A0DataType) * M * K + sizeof(BDataType) * K * N + +sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s" << std::endl;
}
if(do_verification)
{
Tensor<CShuffleDataType> c_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
Tensor<A0DataType> a_ms_ks(a0_ms_ks_lengths, a0_ms_ks_strides);
for(size_t m0 = 0; m0 < a_ms_ks.mDesc.GetLengths()[0]; ++m0)
{
for(size_t m1 = 0; m1 < a_ms_ks.mDesc.GetLengths()[1]; ++m1)
{
for(size_t k0 = 0; k0 < a_ms_ks.mDesc.GetLengths()[2]; ++k0)
{
for(size_t k1 = 0; k1 < a_ms_ks.mDesc.GetLengths()[3]; ++k1)
{
a_element_op(a_ms_ks(m0, m1, k0, k1),
a0_ms_ks(m0, m1, k0, k1),
a1_ms_ks(m0, m1, k0, k1));
}
}
}
}
using ReferenceOpInstance =
ck::tensor_operation::host::ReferenceContraction_M2_N2_K2<NumDimM,
NumDimN,
NumDimK,
A0DataType,
BDataType,
CShuffleDataType,
AccDataType,
ComputeDataType,
PassThrough,
BElementOp>;
auto ref_op = ReferenceOpInstance{};
auto ref_invoker = ref_op.MakeInvoker();
Tensor<float> empty_tensor(std::vector<ck::index_t>{}, std::vector<ck::index_t>{});
auto ref_argument =
ref_op.MakeArgument(a_ms_ks, b_ns_ks, c_ms_ns_host_result, PassThrough{}, b_element_op);
ref_invoker.Run(ref_argument);
for(size_t m0 = 0; m0 < e_ms_ns_host_result.mDesc.GetLengths()[0]; ++m0)
{
for(size_t m1 = 0; m1 < e_ms_ns_host_result.mDesc.GetLengths()[1]; ++m1)
{
for(size_t n0 = 0; n0 < e_ms_ns_host_result.mDesc.GetLengths()[2]; ++n0)
{
for(size_t n1 = 0; n1 < e_ms_ns_host_result.mDesc.GetLengths()[3]; ++n1)
{
cde_element_op(e_ms_ns_host_result(m0, m1, n0, n1),
c_ms_ns_host_result(m0, m1, n0, n1),
d_ms_ns(m0, m1, n0, n1));
}
}
}
}
e_device_buf.FromDevice(e_ms_ns_device_result.mData.data());
return ck::utils::check_err(e_ms_ns_device_result, e_ms_ns_host_result) ? 0 : 1;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_contraction.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/numeric.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F8 = ck::f8_t;
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using A0DataType = F8;
using A1DataType = F32;
using B0DataType = F8;
using B1DataType = F32;
using AccDataType = F32;
using CShuffleDataType = F32;
using EDataType = F16;
using ComputeDataType = F8;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
struct Multiply
{
__host__ __device__ constexpr void
operator()(ck::f8_t& a, const ck::f8_t& a0, const float& a1) const
{
a = ck::type_convert<ck::half_t>(ck::type_convert<float>(a0) * a1);
}
};
using AElementOp = Multiply;
using BElementOp = Multiply;
using CDEElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using DeviceOpInstance = ck::tensor_operation::device::DeviceContractionMultipleABD_Xdl_CShuffle<
NumDimM,
NumDimN,
NumDimK,
ck::Tuple<A0DataType, A1DataType>,
ck::Tuple<B0DataType, B1DataType>,
AccDataType,
CShuffleDataType,
ck::Tuple<>,
EDataType,
AElementOp,
BElementOp,
CDEElementOp,
GemmSpec,
1,
256,
256,
128,
32,
8,
8,
32,
32,
4,
2,
S<4, 64, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
1,
8,
1,
S<4, 64, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
1,
1,
1,
S<1, 32, 1, 8>,
8>;
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// A0[M0, M1, K0, K1]
std::vector<ck::index_t> a0_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a0_ms_ks_strides{128 * 32 * 64, 32 * 64, 64, 1};
// A1[M1, K1] -> A1[M0, M1, K0, K1]
std::vector<ck::index_t> a1_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a1_ms_ks_strides{0, 64, 1, 0};
// B0[N0, N1, K0, K1]
std::vector<ck::index_t> b0_ns_ks_lengths{32, 64, 32, 64};
std::vector<ck::index_t> b0_ns_ks_strides{64 * 32 * 64, 32 * 64, 64, 1};
// B1[N0, N1, K0, K1]
std::vector<ck::index_t> b1_ns_ks_lengths{32, 64, 32, 64};
std::vector<ck::index_t> b1_ns_ks_strides{64 * 32 * 64, 32 * 64, 64, 1};
// E[M0, M1, N0, N1]
std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> e_ms_ns_strides{128 * 32 * 64, 32 * 64, 64, 1};
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
exit(0);
}
Tensor<A0DataType> a0_ms_ks(a0_ms_ks_lengths, a0_ms_ks_strides);
Tensor<A1DataType> a1_ms_ks(a1_ms_ks_lengths, a1_ms_ks_strides);
Tensor<B0DataType> b0_ns_ks(b0_ns_ks_lengths, b0_ns_ks_strides);
Tensor<B1DataType> b1_ns_ks(b1_ns_ks_lengths, b1_ns_ks_strides);
Tensor<EDataType> e_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
Tensor<EDataType> e_ms_ns_device_result(e_ms_ns_lengths, e_ms_ns_strides);
std::cout << "a0_ms_ks: " << a0_ms_ks.mDesc << std::endl;
std::cout << "a1_ms_ks: " << a1_ms_ks.mDesc << std::endl;
std::cout << "b0_ns_ks: " << b0_ns_ks.mDesc << std::endl;
std::cout << "b1_ns_ks: " << b1_ns_ks.mDesc << std::endl;
std::cout << "e_ms_ns: " << e_ms_ns_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a0_ms_ks.GenerateTensorValue(GeneratorTensor_2<A0DataType>{-5, 5});
a1_ms_ks.GenerateTensorValue(GeneratorTensor_2<A1DataType>{-5, 5});
b0_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_ns_ks.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-5, 5});
break;
default:
a0_ms_ks.GenerateTensorValue(GeneratorTensor_3<A0DataType>{0.0, 1.0});
a1_ms_ks.GenerateTensorValue(GeneratorTensor_3<A1DataType>{0.0, 1.0});
b0_ns_ks.GenerateTensorValue(GeneratorTensor_3<B0DataType>{-0.5, 0.5});
b1_ns_ks.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
}
DeviceMem a0_device_buf(sizeof(A0DataType) * a0_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem a1_device_buf(sizeof(A1DataType) * a1_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem b1_device_buf(sizeof(B1DataType) * b1_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_ms_ns_device_result.mDesc.GetElementSpaceSize());
a0_device_buf.ToDevice(a0_ms_ks.mData.data());
a1_device_buf.ToDevice(a1_ms_ks.mData.data());
b0_device_buf.ToDevice(b0_ns_ks.mData.data());
b1_device_buf.ToDevice(b1_ns_ks.mData.data());
// set zero
e_device_buf.SetZero();
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument = device_op.MakeArgument(
std::array<const void*, 2>{a0_device_buf.GetDeviceBuffer(),
a1_device_buf.GetDeviceBuffer()},
std::array<const void*, 2>{b0_device_buf.GetDeviceBuffer(),
b1_device_buf.GetDeviceBuffer()},
std::array<const void*, 0>{},
e_device_buf.GetDeviceBuffer(),
std::array<std::vector<ck::index_t>, 2>{a0_ms_ks_lengths, a1_ms_ks_lengths},
std::array<std::vector<ck::index_t>, 2>{a0_ms_ks_strides, a1_ms_ks_strides},
std::array<std::vector<ck::index_t>, 2>{b0_ns_ks_lengths, b1_ns_ks_lengths},
std::array<std::vector<ck::index_t>, 2>{b0_ns_ks_strides, b1_ns_ks_strides},
std::array<std::vector<ck::index_t>, 0>{},
std::array<std::vector<ck::index_t>, 0>{},
e_ms_ns_lengths,
e_ms_ns_strides,
a_element_op,
b_element_op,
PassThrough{});
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_contraction with the specified compilation parameters does "
"not support this problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
if(time_kernel)
{
ck::index_t M =
ck::accumulate_n<ck::index_t>(e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t N = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t K = ck::accumulate_n<ck::index_t>(
a0_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + +sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s" << std::endl;
}
if(do_verification)
{
Tensor<CShuffleDataType> c_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
Tensor<A0DataType> a_ms_ks(a0_ms_ks_lengths, a0_ms_ks_strides);
for(size_t m0 = 0; m0 < a_ms_ks.mDesc.GetLengths()[0]; ++m0)
{
for(size_t m1 = 0; m1 < a_ms_ks.mDesc.GetLengths()[1]; ++m1)
{
for(size_t k0 = 0; k0 < a_ms_ks.mDesc.GetLengths()[2]; ++k0)
{
for(size_t k1 = 0; k1 < a_ms_ks.mDesc.GetLengths()[3]; ++k1)
{
a_element_op(a_ms_ks(m0, m1, k0, k1),
a0_ms_ks(m0, m1, k0, k1),
a1_ms_ks(m0, m1, k0, k1));
}
}
}
}
Tensor<B0DataType> b_ns_ks(b0_ns_ks_lengths, b0_ns_ks_strides);
for(size_t n0 = 0; n0 < b_ns_ks.mDesc.GetLengths()[0]; ++n0)
{
for(size_t n1 = 0; n1 < b_ns_ks.mDesc.GetLengths()[1]; ++n1)
{
for(size_t k0 = 0; k0 < b_ns_ks.mDesc.GetLengths()[2]; ++k0)
{
for(size_t k1 = 0; k1 < b_ns_ks.mDesc.GetLengths()[3]; ++k1)
{
b_element_op(b_ns_ks(n0, n1, k0, k1),
b0_ns_ks(n0, n1, k0, k1),
b1_ns_ks(n0, n1, k0, k1));
}
}
}
}
using ReferenceOpInstance =
ck::tensor_operation::host::ReferenceContraction_M2_N2_K2<NumDimM,
NumDimN,
NumDimK,
A0DataType,
B0DataType,
CShuffleDataType,
AccDataType,
ComputeDataType,
PassThrough,
PassThrough>;
auto ref_op = ReferenceOpInstance{};
auto ref_invoker = ref_op.MakeInvoker();
Tensor<float> empty_tensor(std::vector<ck::index_t>{}, std::vector<ck::index_t>{});
auto ref_argument = ref_op.MakeArgument(
a_ms_ks, b_ns_ks, c_ms_ns_host_result, PassThrough{}, PassThrough{});
ref_invoker.Run(ref_argument);
e_device_buf.FromDevice(e_ms_ns_device_result.mData.data());
return ck::utils::check_err(e_ms_ns_device_result, e_ms_ns_host_result) ? 0 : 1;
}
return 0;
}
add_subdirectory(binary)
add_subdirectory(convinvscale)
add_subdirectory(convscale)
add_subdirectory(convscale_relu)
add_subdirectory(convscale_add)
add_subdirectory(convscale_reduce)
add_subdirectory(multi_AB)
add_subdirectory(unary)
add_subdirectory(dynamic_unary)
add_custom_target(example_convnd_activ_xdl)
# ScaleAdd ScaleAdd Relu
add_example_executable(example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16 convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16.cpp)
add_example_dependencies(example_convnd_activ_xdl example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16)
add_example_executable(example_convnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16 convnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16.cpp)
add_example_dependencies(example_convnd_activ_xdl example_convnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16)
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_custom_target(example_convnd_activ_binary_xdl)
# Bilinear residual
add_example_executable(example_convnd_fwd_xdl_bilinear_residual_fp16 convnd_fwd_xdl_bilinear_residual_fp16.cpp)
add_example_dependencies(example_convnd_activ_binary_xdl example_convnd_fwd_xdl_bilinear_residual_fp16)
add_example_executable(example_convnd_bwd_data_xdl_bilinear_residual_fp16 convnd_bwd_data_xdl_bilinear_residual_fp16.cpp)
add_example_dependencies(example_convnd_activ_binary_xdl example_convnd_bwd_data_xdl_bilinear_residual_fp16)
add_example_executable(example_convnd_bwd_weight_xdl_bilinear_residual_fp16 convnd_bwd_weight_xdl_bilinear_residual_fp16.cpp)
add_example_dependencies(example_convnd_activ_binary_xdl example_convnd_bwd_weight_xdl_bilinear_residual_fp16)
set(target 1)
endif()
endforeach()
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_data_specialization.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
constexpr ck::index_t NDimSpatial = 3;
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using AccDataType = float;
using CShuffleDataType = ck::half_t;
using OutDataType = ck::half_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InLayout = ck::tensor_layout::convolution::GNDHWC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::GNDHWK;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using InElementOp = ck::tensor_operation::element_wise::Bilinear;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization::Default;
template <typename OutElementOp>
using DeviceGroupedConvNDBwdDataInstance =
ck::tensor_operation::device::DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1<
NDimSpatial,
OutLayout,
WeiLayout,
ck::Tuple<InLayout>,
InLayout,
OutDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<InDataType>,
InDataType,
OutElementOp,
WeiElementOp,
InElementOp,
ConvSpec, // ConvForwardSpecialization
true,
true,
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
2, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<0, 2, 1>, // BBlockTransferThreadClusterArrangeOrder
S<0, 2, 1>, // BBlockTransferSrcAccessOrder
1, // BBlockTransferSrcVectorDim
4, // BBlockTransferSrcScalarPerVector
2, // BBlockTransferDstScalarPerVector_BK1
0, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8>;
using DeviceGroupedConvNDActivInstance = DeviceGroupedConvNDBwdDataInstance<OutElementOp>;
namespace {
// Use custom implementation to pass two more tensors for post op
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp,
typename DeviceConvNDInstance>
bool run_grouped_conv(bool do_verification,
int init_method,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
{
constexpr ck::index_t NumDs = 1;
Tensor<OutDataType> out(out_g_n_k_wos_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
Tensor<InDataType> in_host(in_g_n_c_wis_desc);
std::cout << "out: " << out.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "in: " << in_host.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
out.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
in_host.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
break;
default:
out.GenerateTensorValue(GeneratorTensor_3<OutDataType>{0.0, 1.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
in_host.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
}
// Initialize based on out_host
Tensor<InDataType> in_device(in_host);
DeviceMem out_device_buf(sizeof(OutDataType) * out.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem in_device_buf(sizeof(InDataType) * in_device.mDesc.GetElementSpaceSize());
out_device_buf.ToDevice(out.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
in_device_buf.ToDevice(in_device.mData.data());
std::array<ck::index_t, NDimSpatial + 3> a_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(out_g_n_k_wos_desc.GetLengths(), a_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), a_g_n_k_wos_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(in_g_n_c_wis_desc.GetLengths(), e_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), e_g_n_c_wis_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
// Use output as D
const std::array<const void*, NumDs> ds = {in_device_buf.GetDeviceBuffer()};
auto conv = DeviceConvNDInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(
out_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
ds,
in_device_buf.GetDeviceBuffer(),
a_g_n_k_wos_lengths,
a_g_n_k_wos_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
std::array<std::array<ck::index_t, NDimSpatial + 3>, NumDs>{e_g_n_c_wis_lengths},
std::array<std::array<ck::index_t, NDimSpatial + 3>, NumDs>{e_g_n_c_wis_strides},
e_g_n_c_wis_lengths,
e_g_n_c_wis_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
out_element_op,
wei_element_op,
in_element_op);
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error("The device op with the specified compilation parameters does "
"not support this convolution problem.");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop =
conv_param.GetFlops() + 3 * conv_param.GetInputByte<InDataType>() / sizeof(InDataType);
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>() +
conv_param.GetOutputByte<InDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
if(do_verification)
{
std::array<Tensor<OutDataType>, NumDs> d_tensors = {in_host};
auto ref_conv =
ck::tensor_operation::host::ReferenceConvBwdData<NDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
0, /*Num A Elementwise Tensors*/
0, /*Num B Elementwise Tensors*/
NumDs>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in_host,
wei,
out,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
in_element_op,
wei_element_op,
out_element_op,
{},
{},
d_tensors);
ref_invoker.Run(ref_argument);
in_device_buf.FromDevice(in_device.mData.data());
return ck::utils::check_err(in_device.mData, in_host.mData);
}
return true;
}
} // namespace
#include "../run_convnd_activ_example.inc"
int main(int argc, char* argv[]) { return !run_convnd_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_multiple_d_xdl_cshuffle.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_weight.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
constexpr ck::index_t NDimSpatial = 3;
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using AccDataType = float;
using OutDataType = ck::half_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InLayout = ck::tensor_layout::convolution::GNDHWC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::GNDHWK;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::Bilinear;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvBwdWeightDefault =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Default;
template <typename WeiElementOp>
using DeviceGroupedConvNDBwdWeightInstance =
ck::tensor_operation::device::DeviceGroupedConvBwdWeightMultipleD_Xdl_CShuffle<
NDimSpatial,
InLayout, // InLayout
WeiLayout, // WeiLayout
OutLayout, // OutLayout
ck::Tuple<WeiLayout>, // DsLayout
InDataType, // InDataType
WeiDataType, // WeiDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
ck::Tuple<WeiDataType>, // DsLayout
InElementOp, // InElementwiseOperation
WeiElementOp, // WeiElementwiseOperation
OutElementOp, // OutElementwiseOperation
ConvBwdWeightDefault, // ConvolutionBackwardWeightSpecialization
256, // BlockSize
128, // MPerBlock
128, // NPerBlock
4, // K0PerBlock
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
2, // NXdlPerWave
S<1, 4, 16, 4>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<0, 3, 1, 2>, // ABlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
2, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<1, 4, 16, 4>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<0, 3, 1, 2>, // BBlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
2, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 4>, // CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
128 / (sizeof(WeiDataType) * CHAR_BIT)>; // CBlockTransferScalarPerVector_NWaveNPerXdl
using DeviceGroupedConvNDActivInstance = DeviceGroupedConvNDBwdWeightInstance<WeiElementOp>;
namespace {
// Use custom implementation to pass two more tensors for post op
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp,
typename DeviceConvNDFwdInstance>
bool run_grouped_conv(bool do_verification,
int init_method,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
{
constexpr ck::index_t split_k = 1;
constexpr ck::index_t NumDs = 1;
Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei_host(wei_g_k_c_xs_desc);
Tensor<OutDataType> out(out_g_n_k_wos_desc);
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei_host.mDesc << std::endl;
std::cout << "out: " << out.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
out.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
wei_host.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
out.GenerateTensorValue(GeneratorTensor_3<OutDataType>{0.0, 1.0});
wei_host.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
}
// Initialize based on wei_host
Tensor<WeiDataType> wei_device(wei_host);
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_device.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei_device.mData.data());
out_device_buf.ToDevice(out.mData.data());
std::array<ck::index_t, NDimSpatial + 3> b_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), b_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), b_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), e_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), e_g_k_c_xs_strides);
copy(out_g_n_k_wos_desc.GetLengths(), a_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), a_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
// Use weight as D
const std::array<const void*, NumDs> ds = {wei_device_buf.GetDeviceBuffer()};
auto conv = DeviceConvNDFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
ds,
b_g_n_c_wis_lengths,
b_g_n_c_wis_strides,
e_g_k_c_xs_lengths,
e_g_k_c_xs_strides,
a_g_n_k_wos_lengths,
a_g_n_k_wos_strides,
std::array<std::array<ck::index_t, NDimSpatial + 3>, NumDs>{e_g_k_c_xs_lengths},
std::array<std::array<ck::index_t, NDimSpatial + 3>, NumDs>{e_g_k_c_xs_strides},
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op,
split_k);
DeviceMem workspace_buf(argument.GetWorkspaceSizeBytes());
conv.SetWorkSpacePointer(&argument, workspace_buf.GetDeviceBuffer());
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error("The device op with the specified compilation parameters does "
"not support this convolution problem.");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop =
conv_param.GetFlops() + 3 * conv_param.GetOutputByte<WeiDataType>() / sizeof(WeiDataType);
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>() +
conv_param.GetOutputByte<WeiDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
if(do_verification)
{
std::array<Tensor<OutDataType>, NumDs> d_tensors = {wei_host};
auto ref_conv =
ck::tensor_operation::host::ReferenceConvBwdWeight<NDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
0, /*Num A Elementwise Tensors*/
0, /*Num B Elementwise Tensors*/
NumDs>{};
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in,
wei_host,
out,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
in_element_op,
wei_element_op,
out_element_op,
{},
{},
d_tensors);
ref_invoker.Run(ref_argument);
wei_device_buf.FromDevice(wei_device.mData.data());
return ck::utils::check_err(wei_device, wei_host, "Error: incorrect results!");
}
return true;
}
} // namespace
#include "../run_convnd_activ_example.inc"
int main(int argc, char* argv[]) { return !run_convnd_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
constexpr ck::index_t NDimSpatial = 3;
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using AccDataType = float;
using CShuffleDataType = ck::half_t;
using OutDataType = ck::half_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InLayout = ck::tensor_layout::convolution::GNDHWC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::GNDHWK;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::Bilinear;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <typename OutElementOp>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<OutLayout>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<OutDataType>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8>;
using DeviceGroupedConvNDActivInstance = DeviceGroupedConvNDFwdInstance<OutElementOp>;
namespace {
// Use custom implementation to pass two more tensors for post op
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp,
typename DeviceConvNDFwdInstance>
bool run_grouped_conv(bool do_verification,
int init_method,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
{
constexpr ck::index_t NumDs = 1;
Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
Tensor<OutDataType> out_host(out_g_n_k_wos_desc);
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "out: " << out_host.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-2, 2});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-2, 2});
out_host.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-2, 2});
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-1.0, 1.0});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-2, 2});
out_host.GenerateTensorValue(GeneratorTensor_3<OutDataType>{-0.05, 0.05});
}
// Initialize based on out_host
Tensor<OutDataType> out_device(out_host);
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
out_device_buf.ToDevice(out_device.mData.data());
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
// Use output as D
const std::array<const void*, NumDs> ds = {out_device_buf.GetDeviceBuffer()};
auto conv = DeviceConvNDFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(
in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
ds,
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
std::array<std::array<ck::index_t, NDimSpatial + 3>, NumDs>{e_g_n_k_wos_lengths},
std::array<std::array<ck::index_t, NDimSpatial + 3>, NumDs>{e_g_n_k_wos_strides},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error("The device op with the specified compilation parameters does "
"not support this convolution problem.");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop =
conv_param.GetFlops() + 3 * conv_param.GetOutputByte<OutDataType>() / sizeof(OutDataType);
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>() +
conv_param.GetOutputByte<OutDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
if(do_verification)
{
std::array<Tensor<OutDataType>, NumDs> d_tensors = {out_host};
auto ref_conv =
ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
0, /*Num A Elementwise Tensors*/
0, /*Num B Elementwise Tensors*/
NumDs>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in,
wei,
out_host,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
in_element_op,
wei_element_op,
out_element_op,
{},
{},
d_tensors);
ref_invoker.Run(ref_argument);
out_device_buf.FromDevice(out_device.mData.data());
return ck::utils::check_err(out_device, out_host, "Error: incorrect results!");
}
return true;
}
} // namespace
#include "../run_convnd_activ_example.inc"
int main(int argc, char* argv[]) { return !run_convnd_example(argc, argv); }
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_custom_target(example_convnd_activ_xdl_convinvscale)
add_example_executable(example_convnd_fwd_xdl_convinvscale_fp8 convnd_fwd_xdl_convinvscale_fp8.cpp)
add_example_dependencies(example_convnd_activ_xdl_convinvscale example_convnd_fwd_xdl_convinvscale_fp8)
set(target 1)
endif()
endforeach()
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ConvInvscale = ck::tensor_operation::element_wise::ConvInvscale;
void print_helper_msg()
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: time kernel (0=no, 1=yes)\n"
<< ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
}
template <typename DataType>
inline __host__ __device__ constexpr double get_rtol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 1e-1; // 240 and 224 are acceptable
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 1.5e-1; // 57344 and 49152 are acceptable
}
else
{
return 1e-3;
}
}
template <typename DataType>
inline __host__ __device__ constexpr double get_atol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 16.1; // 240 and 224 are acceptable
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 8192.1; // 57344 and 49152 are acceptable
}
else
{
return 1e-3;
}
}
template <ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetFlops(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& output_lengths,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& weights_lengths,
const std::size_t& ds_size)
{
// G * N * C * <output spatial lengths product> * (2 * K * <filter spatial lengths product> +
// <number of scale factors>)
ck::index_t G = weights_lengths[0];
ck::index_t N = output_lengths[1];
ck::index_t K = weights_lengths[1];
ck::index_t C = weights_lengths[2];
return G * N * C *
std::accumulate(std::next(std::begin(output_lengths), NumNonSpatialDim),
std::end(output_lengths),
static_cast<std::size_t>(1),
std::multiplies<>()) *
(static_cast<std::size_t>(2) * K *
std::accumulate(std::next(std::begin(weights_lengths), NumNonSpatialDim),
std::end(weights_lengths),
static_cast<std::size_t>(1),
std::multiplies<>()) +
ds_size);
}
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename CShuffleDataType,
typename DsDataType,
typename OutDataType,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp,
typename DeviceConvNDFwdInstance>
bool run_grouped_conv_fwd(bool do_verification,
int init_method,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op)
{
Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
Tensor<CShuffleDataType> c(out_g_n_k_wos_desc);
Tensor<OutDataType> out_host(out_g_n_k_wos_desc);
Tensor<OutDataType> out_device(out_g_n_k_wos_desc);
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "out: " << out_host.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
// random scale values
float scale_in = float(std::rand()) / float(RAND_MAX);
float scale_wei = float(std::rand()) / float(RAND_MAX);
float scale_out = float(std::rand()) / float(RAND_MAX);
// initialize out_element_op for each iteration
const auto out_element_op = OutElementOp{scale_in, scale_wei, scale_out};
// do Conv
auto conv = DeviceConvNDFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
std::array<const void*, 0>{},
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
std::array<std::array<ck::index_t, NDimSpatial + 3>, 0>{},
std::array<std::array<ck::index_t, NDimSpatial + 3>, 0>{},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t ds_size = 3; // 3 element-wise scale multipliers
std::size_t flop = GetFlops<NDimSpatial>(e_g_n_k_wos_lengths, b_g_k_c_xs_lengths, ds_size);
std::size_t num_btype = conv_param.GetInputByte<InDataType>() +
conv_param.GetWeightByte<WeiDataType>() + sizeof(float) +
sizeof(float) + sizeof(float) + conv_param.GetOutputByte<OutDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
if(do_verification)
{
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType,
WeiDataType,
CShuffleDataType,
InElementOp,
WeiElementOp,
PassThrough>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in,
wei,
c,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
in_element_op,
wei_element_op,
PassThrough{});
ref_invoker.Run(ref_argument);
out_host.ForEach([&](auto&, auto idx) { out_element_op(out_host(idx), c(idx)); });
out_device_buf.FromDevice(out_device.mData.data());
return ck::utils::check_err(out_device,
out_host,
"Error: incorrect results!",
get_rtol<OutDataType>(),
get_atol<OutDataType>());
}
return true;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_convinvscale_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using InDataType = ck::f8_t;
using WeiDataType = ck::f8_t;
using AccDataType = float;
using CShuffleDataType = float;
using DsDataType = ck::Tuple<>;
using OutDataType = ck::f8_t;
using AComputeDataType = ck::f8_t;
using BComputeDataType = ck::f8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = ConvInvscale;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename DsLayout,
typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
DsLayout,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
DsDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8,
AComputeDataType,
BComputeDataType>;
#include "run_convnd_fwd_convinvscale_example.inc"
int main(int argc, char* argv[]) { return run_convnd_fwd_example(argc, argv) ? 0 : 1; }
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
bool run_convnd_fwd_example(int argc, char* argv[])
{
print_helper_msg();
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
ck::utils::conv::ConvParam conv_param{
2, 1, 128, 256, 192, {3, 3}, {71, 71}, {2, 2}, {1, 1}, {1, 1}, {1, 1}};
if(argc == 1)
{
// use default
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t num_dim_spatial = std::stoi(argv[4]);
conv_param = ck::utils::conv::parse_conv_param(num_dim_spatial, 5, argv);
}
// instantiate in and wei element ops, will
// instantiate out_element_op below for every iteration
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto run =
[&](auto ndim_spatial, auto in_layout, auto wei_layout, auto ds_layout, auto out_layout) {
constexpr ck::index_t ndim_spatial_value = ndim_spatial.value;
using InLayout = decltype(in_layout);
using WeiLayout = decltype(wei_layout);
using DsLayout = decltype(ds_layout);
using OutLayout = decltype(out_layout);
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
return run_grouped_conv_fwd<ndim_spatial_value,
InDataType,
WeiDataType,
CShuffleDataType,
DsDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceGroupedConvNDFwdInstance<ndim_spatial_value,
InLayout,
WeiLayout,
DsLayout,
OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op);
};
namespace ctc = ck::tensor_layout::convolution;
if(conv_param.num_dim_spatial_ == 1)
{
return run(ck::Number<1>{}, ctc::GNWC{}, ctc::GKXC{}, ck::Tuple<>{}, ctc::GNWK{});
}
else if(conv_param.num_dim_spatial_ == 2)
{
return run(ck::Number<2>{}, ctc::GNHWC{}, ctc::GKYXC{}, ck::Tuple<>{}, ctc::GNHWK{});
}
else if(conv_param.num_dim_spatial_ == 3)
{
return run(ck::Number<3>{}, ctc::GNDHWC{}, ctc::GKZYXC{}, ck::Tuple<>{}, ctc::GNDHWK{});
}
return true;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
constexpr ck::index_t NDimSpatial = 3;
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using AccDataType = float;
using CShuffleDataType = ck::half_t;
using OutDataType = ck::half_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InLayout = ck::tensor_layout::convolution::NDHWGC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::NDHWGK;
using BiasLayout = ck::tensor_layout::convolution::G_K;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::ScaleAddScaleAddRelu;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <typename OutElementOp>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<OutLayout, BiasLayout>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<OutDataType, OutDataType>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8>;
using DeviceGroupedConvNDActivInstance = DeviceGroupedConvNDFwdInstance<OutElementOp>;
namespace {
// Use custom implementation to pass two more tensors for post op
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp,
typename DeviceConvNDFwdInstance>
bool run_grouped_conv(bool do_verification,
int init_method,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
{
constexpr ck::index_t NumDs = 2;
const ck::index_t G = out_g_n_k_wos_desc.GetLengths()[0];
const ck::index_t K = out_g_n_k_wos_desc.GetLengths()[2];
// Logical broadcast bias (we have to pass bias lengths in the same format as output - GNKDHW)
std::array<ck::index_t, NDimSpatial + 3> bias_g_k_lengths;
std::array<ck::index_t, NDimSpatial + 3> bias_g_k_strides;
// Fill other lenghts than G,K with 1 and strides with 0
bias_g_k_lengths.fill(1);
bias_g_k_strides.fill(0);
bias_g_k_lengths[0] = G;
bias_g_k_lengths[2] = K;
bias_g_k_strides[0] = K; // stride to G
bias_g_k_strides[2] = 1; // stride to K
const auto broadcasted_bias_desc = HostTensorDescriptor(bias_g_k_lengths, bias_g_k_strides);
// y = relu ( alpha1 * conv(x) + alpha2 * z + bias )
Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
Tensor<OutDataType> out_host(out_g_n_k_wos_desc);
Tensor<OutDataType> out_device(out_g_n_k_wos_desc);
std::array<Tensor<OutDataType>, NumDs> d_tensors = {Tensor<OutDataType>(out_g_n_k_wos_desc),
Tensor<OutDataType>(broadcasted_bias_desc)};
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "out: " << out_host.mDesc << std::endl;
std::cout << "z_tensor: " << d_tensors[0].mDesc << std::endl;
std::cout << "bias_tensor: " << d_tensors[1].mDesc << std::endl;
// Make sure that we allocated only G * K values for bias
assert(static_cast<ck::index_t>(d_tensors[1].mData.size()) == G * K);
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-2, 2});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-2, 2});
d_tensors[0].GenerateTensorValue(GeneratorTensor_2<OutDataType>{-2, 2});
d_tensors[1].GenerateTensorValue(GeneratorTensor_2<OutDataType>{-2, 2});
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-1.0, 1.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.05, 0.05});
d_tensors[0].GenerateTensorValue(GeneratorTensor_3<OutDataType>{-0.05, 0.05});
d_tensors[1].GenerateTensorValue(GeneratorTensor_3<OutDataType>{-0.05, 0.05});
}
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem z_buf(sizeof(OutDataType) * d_tensors[0].mDesc.GetElementSpaceSize());
DeviceMem bias_buf(sizeof(OutDataType) * d_tensors[1].mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
z_buf.ToDevice(d_tensors[0].mData.data());
bias_buf.ToDevice(d_tensors[1].mData.data());
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
const std::array<const void*, NumDs> ds = {z_buf.GetDeviceBuffer(), bias_buf.GetDeviceBuffer()};
auto conv = DeviceConvNDFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
ds,
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
std::array<std::array<ck::index_t, NDimSpatial + 3>, NumDs>{
e_g_n_k_wos_lengths, bias_g_k_lengths},
std::array<std::array<ck::index_t, NDimSpatial + 3>, NumDs>{
e_g_n_k_wos_strides, bias_g_k_strides},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error("The device op with the specified compilation parameters does "
"not support this convolution problem.");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = conv_param.GetFlops() + G * K +
conv_param.GetOutputByte<OutDataType>() / sizeof(OutDataType);
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>() +
G * K * sizeof(OutDataType) + conv_param.GetOutputByte<OutDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
if(do_verification)
{
auto ref_conv =
ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
0, /*Num A Elementwise Tensors*/
0, /*Num B Elementwise Tensors*/
NumDs>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in,
wei,
out_host,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
in_element_op,
wei_element_op,
out_element_op,
{},
{},
d_tensors);
ref_invoker.Run(ref_argument);
out_device_buf.FromDevice(out_device.mData.data());
return ck::utils::check_err(out_device, out_host, "Error: incorrect results!");
}
return true;
}
} // namespace
#include "run_convnd_activ_example.inc"
int main(int argc, char* argv[]) { return !run_convnd_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
constexpr ck::index_t NDimSpatial = 3;
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using AccDataType = float;
using CShuffleDataType = ck::half_t;
using OutDataType = ck::half_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InLayout = ck::tensor_layout::convolution::GNDHWC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::GNDHWK;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::ScaleAddScaleAddRelu;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <typename OutElementOp>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<OutLayout, OutLayout>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<OutDataType, OutDataType>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8>;
using DeviceGroupedConvNDActivInstance = DeviceGroupedConvNDFwdInstance<OutElementOp>;
namespace {
// Use custom implementation to pass two more tensors for post op
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp,
typename DeviceConvNDFwdInstance>
bool run_grouped_conv(bool do_verification,
int init_method,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
{
constexpr ck::index_t NumDs = 2;
Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
Tensor<OutDataType> out_host(out_g_n_k_wos_desc);
Tensor<OutDataType> out_device(out_g_n_k_wos_desc);
std::array<Tensor<OutDataType>, NumDs> d_tensors = {Tensor<OutDataType>(out_g_n_k_wos_desc),
Tensor<OutDataType>(out_g_n_k_wos_desc)};
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "out: " << out_host.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-2, 2});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-2, 2});
d_tensors[0].GenerateTensorValue(GeneratorTensor_2<OutDataType>{-2, 2});
d_tensors[1].GenerateTensorValue(GeneratorTensor_2<OutDataType>{-2, 2});
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-1.0, 1.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.05, 0.05});
d_tensors[0].GenerateTensorValue(GeneratorTensor_3<OutDataType>{-0.05, 0.05});
d_tensors[1].GenerateTensorValue(GeneratorTensor_3<OutDataType>{-0.05, 0.05});
}
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem d0_buf(sizeof(OutDataType) * d_tensors[0].mDesc.GetElementSpaceSize());
DeviceMem d1_buf(sizeof(OutDataType) * d_tensors[1].mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
d0_buf.ToDevice(d_tensors[0].mData.data());
d1_buf.ToDevice(d_tensors[1].mData.data());
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
const std::array<const void*, NumDs> ds = {d0_buf.GetDeviceBuffer(), d1_buf.GetDeviceBuffer()};
auto conv = DeviceConvNDFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
ds,
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
std::array<std::array<ck::index_t, NDimSpatial + 3>, NumDs>{
e_g_n_k_wos_lengths, e_g_n_k_wos_lengths},
std::array<std::array<ck::index_t, NDimSpatial + 3>, NumDs>{
e_g_n_k_wos_strides, e_g_n_k_wos_strides},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error("The device op with the specified compilation parameters does "
"not support this convolution problem.");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop =
conv_param.GetFlops() + 2 * conv_param.GetOutputByte<OutDataType>() / sizeof(OutDataType);
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>() +
2 * conv_param.GetOutputByte<OutDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
if(do_verification)
{
auto ref_conv =
ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
0, /*Num A Elementwise Tensors*/
0, /*Num B Elementwise Tensors*/
NumDs>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in,
wei,
out_host,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
in_element_op,
wei_element_op,
out_element_op,
{},
{},
d_tensors);
ref_invoker.Run(ref_argument);
out_device_buf.FromDevice(out_device.mData.data());
return ck::utils::check_err(out_device, out_host, "Error: incorrect results!");
}
return true;
}
} // namespace
#include "run_convnd_activ_example.inc"
int main(int argc, char* argv[]) { return !run_convnd_example(argc, argv); }
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_custom_target(example_convnd_activ_xdl_convscale)
add_example_executable(example_convnd_fwd_xdl_convscale_fp8 convnd_fwd_xdl_convscale_fp8.cpp)
add_example_dependencies(example_convnd_activ_xdl_convscale example_convnd_fwd_xdl_convscale_fp8 )
add_example_executable(example_convnd_fwd_xdl_convscale_bf8 convnd_fwd_xdl_convscale_bf8.cpp)
add_example_dependencies(example_convnd_activ_xdl_convscale example_convnd_fwd_xdl_convscale_bf8)
add_example_executable(example_convnd_fwd_xdl_convscale_fp8_bf8 convnd_fwd_xdl_convscale_fp8_bf8.cpp)
add_example_dependencies(example_convnd_activ_xdl_convscale example_convnd_fwd_xdl_convscale_fp8_bf8)
add_example_executable(example_convnd_fwd_xdl_convscale_bf8_fp8 convnd_fwd_xdl_convscale_bf8_fp8.cpp)
add_example_dependencies(example_convnd_activ_xdl_convscale example_convnd_fwd_xdl_convscale_bf8_fp8)
set(target 1)
endif()
endforeach()
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ConvScale = ck::tensor_operation::element_wise::ConvScale;
void print_helper_msg()
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: time kernel (0=no, 1=yes)\n"
<< ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
}
template <typename DataType>
inline __host__ __device__ constexpr double get_rtol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 1e-1; // 240 and 224 are acceptable
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 1.5e-1; // 57344 and 49152 are acceptable
}
else
{
return 1e-3;
}
}
template <typename DataType>
inline __host__ __device__ constexpr double get_atol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 16.1; // 240 and 224 are acceptable
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 8192.1; // 57344 and 49152 are acceptable
}
else
{
return 1e-3;
}
}
template <ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetFlops(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& output_lengths,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& weights_lengths,
const std::size_t& ds_size)
{
// G * N * C * <output spatial lengths product> * (2 * K * <filter spatial lengths product> +
// <number of scale factors>)
ck::index_t G = weights_lengths[0];
ck::index_t N = output_lengths[1];
ck::index_t K = weights_lengths[1];
ck::index_t C = weights_lengths[2];
return G * N * C *
std::accumulate(std::next(std::begin(output_lengths), NumNonSpatialDim),
std::end(output_lengths),
static_cast<std::size_t>(1),
std::multiplies<>()) *
(static_cast<std::size_t>(2) * K *
std::accumulate(std::next(std::begin(weights_lengths), NumNonSpatialDim),
std::end(weights_lengths),
static_cast<std::size_t>(1),
std::multiplies<>()) +
ds_size);
}
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename CShuffleDataType,
typename DsDataType,
typename OutDataType,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp,
typename DeviceConvNDFwdInstance>
bool run_grouped_conv_fwd(bool do_verification,
int init_method,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op)
{
Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
Tensor<CShuffleDataType> c(out_g_n_k_wos_desc);
Tensor<OutDataType> out_host(out_g_n_k_wos_desc);
Tensor<OutDataType> out_device(out_g_n_k_wos_desc);
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "out: " << out_host.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
// random scale values
float scale_in = float(std::rand()) / float(RAND_MAX);
float scale_wei = float(std::rand()) / float(RAND_MAX);
float scale_out = float(std::rand()) / float(RAND_MAX);
// initialize out_element_op for each iteration
const auto out_element_op = OutElementOp{scale_in, scale_wei, scale_out};
// do Conv
auto conv = DeviceConvNDFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
std::array<const void*, 0>{},
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
std::array<std::array<ck::index_t, NDimSpatial + 3>, 0>{},
std::array<std::array<ck::index_t, NDimSpatial + 3>, 0>{},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t ds_size = 3; // 3 element-wise scale multipliers
std::size_t flop = GetFlops<NDimSpatial>(e_g_n_k_wos_lengths, b_g_k_c_xs_lengths, ds_size);
std::size_t num_btype = conv_param.GetInputByte<InDataType>() +
conv_param.GetWeightByte<WeiDataType>() + sizeof(float) +
sizeof(float) + sizeof(float) + conv_param.GetOutputByte<OutDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
if(do_verification)
{
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType,
WeiDataType,
CShuffleDataType,
InElementOp,
WeiElementOp,
PassThrough>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in,
wei,
c,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
in_element_op,
wei_element_op,
PassThrough{});
ref_invoker.Run(ref_argument);
out_host.ForEach([&](auto&, auto idx) { out_element_op(out_host(idx), c(idx)); });
out_device_buf.FromDevice(out_device.mData.data());
return ck::utils::check_err(out_device,
out_host,
"Error: incorrect results!",
get_rtol<OutDataType>(),
get_atol<OutDataType>());
}
return true;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_convscale_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using InDataType = ck::bf8_t;
using WeiDataType = ck::bf8_t;
using AccDataType = float;
using CShuffleDataType = float;
using DsDataType = ck::Tuple<>;
using OutDataType = ck::f8_t;
using AComputeDataType = InDataType;
using BComputeDataType = AComputeDataType;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = ConvScale;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename DsLayout,
typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
DsLayout,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
DsDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8,
AComputeDataType,
BComputeDataType>;
#include "run_convnd_fwd_convscale_example.inc"
int main(int argc, char* argv[]) { return run_convnd_fwd_example(argc, argv) ? 0 : 1; }
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_convscale_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using InDataType = ck::bf8_t;
using WeiDataType = ck::f8_t;
using AccDataType = float;
using CShuffleDataType = float;
using DsDataType = ck::Tuple<>;
using OutDataType = ck::f8_t;
using AComputeDataType = ck::bf8_t;
using BComputeDataType = ck::f8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = ConvScale;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename DsLayout,
typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
DsLayout,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
DsDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8,
AComputeDataType,
BComputeDataType>;
#include "run_convnd_fwd_convscale_example.inc"
int main(int argc, char* argv[]) { return run_convnd_fwd_example(argc, argv) ? 0 : 1; }
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_convscale_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using InDataType = ck::f8_t;
using WeiDataType = ck::f8_t;
using AccDataType = float;
using CShuffleDataType = float;
using DsDataType = ck::Tuple<>;
using OutDataType = ck::f8_t;
using AComputeDataType = ck::f8_t;
using BComputeDataType = ck::f8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = ConvScale;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename DsLayout,
typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
DsLayout,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
DsDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8,
AComputeDataType,
BComputeDataType>;
#include "run_convnd_fwd_convscale_example.inc"
int main(int argc, char* argv[]) { return run_convnd_fwd_example(argc, argv) ? 0 : 1; }
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_convscale_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using InDataType = ck::f8_t;
using WeiDataType = ck::bf8_t;
using AccDataType = float;
using CShuffleDataType = float;
using DsDataType = ck::Tuple<>;
using OutDataType = ck::f8_t;
using AComputeDataType = ck::f8_t;
using BComputeDataType = ck::bf8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = ConvScale;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename DsLayout,
typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
DsLayout,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
DsDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8,
AComputeDataType,
BComputeDataType>;
#include "run_convnd_fwd_convscale_example.inc"
int main(int argc, char* argv[]) { return run_convnd_fwd_example(argc, argv) ? 0 : 1; }
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment