Commit ef326c73 authored by Alan Turner's avatar Alan Turner
Browse files

Merge remote-tracking branch 'origin/develop' into migraphx-update

parents b7775add e4dfe4d8
if(DTYPES MATCHES "bf16" OR NOT DEFINED DTYPES) add_example_executable(example_maxpool2d_bwd_bf16 maxpool2d_bwd_bf16.cpp)
add_example_executable(example_maxpool2d_bwd_bf16 maxpool2d_bwd_bf16.cpp) add_example_executable(example_maxpool2d_bwd_fp16 maxpool2d_bwd_fp16.cpp)
endif() add_example_executable(example_maxpool2d_bwd_fp32 maxpool2d_bwd_fp32.cpp)
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
add_example_executable(example_maxpool2d_bwd_fp16 maxpool2d_bwd_fp16.cpp)
endif()
if(DTYPES MATCHES "fp32" OR NOT DEFINED DTYPES)
add_example_executable(example_maxpool2d_bwd_fp32 maxpool2d_bwd_fp32.cpp)
endif()
...@@ -8,7 +8,7 @@ ...@@ -8,7 +8,7 @@
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp" #include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp" #include "ck/tensor_operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_index_pool_bwd_impl.hpp" #include "ck/tensor_operation/gpu/device/impl/device_max_pool_bwd_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
...@@ -60,7 +60,7 @@ bool maxpool_bwd_test(bool do_verification, ...@@ -60,7 +60,7 @@ bool maxpool_bwd_test(bool do_verification,
1>; // InSrcOutDstVectorSize 1>; // InSrcOutDstVectorSize
using DeviceMaxPoolBwdInstance = ck::tensor_operation::device:: using DeviceMaxPoolBwdInstance = ck::tensor_operation::device::
DeviceIndexPoolBwdImpl<DOutDataType, IndexDataType, DInDataType, 4>; DeviceMaxPoolBwdImpl<DOutDataType, IndexDataType, DInDataType, 4>;
const ck::index_t Ys = (Y - 1) * window_dilation_h + 1; const ck::index_t Ys = (Y - 1) * window_dilation_h + 1;
const ck::index_t Xs = (X - 1) * window_dilation_w + 1; const ck::index_t Xs = (X - 1) * window_dilation_w + 1;
...@@ -155,7 +155,8 @@ bool maxpool_bwd_test(bool do_verification, ...@@ -155,7 +155,8 @@ bool maxpool_bwd_test(bool do_verification,
dout_n_c_ho_wo.mDesc.GetElementSpaceSize(), dout_n_c_ho_wo.mDesc.GetElementSpaceSize(),
din_n_c_hi_wi_device.mDesc.GetElementSpaceSize(), din_n_c_hi_wi_device.mDesc.GetElementSpaceSize(),
window_spatial_lengths, window_spatial_lengths,
window_strides); window_strides,
window_dilations);
if(!pool_bwd.IsSupportedArgument(pool_bwd_argument_ptr.get())) if(!pool_bwd.IsSupportedArgument(pool_bwd_argument_ptr.get()))
{ {
......
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES) add_example_executable(example_put_element_fp16 put_element_fp16.cpp)
add_example_executable(example_put_element_fp16 put_element_fp16.cpp)
endif()
...@@ -26,6 +26,8 @@ std::vector<ck::index_t> f_tensor_strides_ncdhw(ck::index_t N_, ...@@ -26,6 +26,8 @@ std::vector<ck::index_t> f_tensor_strides_ncdhw(ck::index_t N_,
return {C_ * D * H * W, D * H * W, H * W, W, 1_uz}; return {C_ * D * H * W, D * H * W, H * W, W, 1_uz};
else if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NDHWC>::value) else if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NDHWC>::value)
return {D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_}; return {D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_};
throw std::runtime_error("Avgpool3d_bwd: problem with layout. ");
return {0, 0, 0, 0, 0};
}; };
template <typename TensorLayout> template <typename TensorLayout>
...@@ -47,6 +49,8 @@ HostTensorDescriptor f_host_tensor_descriptor(std::size_t N_, ...@@ -47,6 +49,8 @@ HostTensorDescriptor f_host_tensor_descriptor(std::size_t N_,
return HostTensorDescriptor({N_, C_, D, H, W}, return HostTensorDescriptor({N_, C_, D, H, W},
{D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_}); {D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_});
} }
throw std::runtime_error("Avgpool3d_bwd: problem with layout. ");
return HostTensorDescriptor({0, 0, 0, 0, 0}, {0, 0, 0, 0, 0});
}; };
template <typename DevicePoolBwdInstance, template <typename DevicePoolBwdInstance,
......
add_custom_target(example_im2col_col2im)
add_example_executable(example_image_to_column_f32 image_to_column_f32.cpp)
add_example_dependencies(example_im2col_col2im example_image_to_column_f32)
add_example_executable(example_column_to_image_f32 column_to_image_f32.cpp)
add_example_dependencies(example_im2col_col2im example_column_to_image_f32)
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using InDataType = FP32; // ck::bhalf_t;//FP32;
using OutDataType = FP32; // ck::bhalf_t;//FP32;
using ImLayout = ck::tensor_layout::convolution::GNHWC;
using ColumnToImageOp = ck::conv_tensor_rearrange_op::ColumnToImage;
// clang-format off
using DeviceColToImgInstance = ck::tensor_operation::device::DeviceColumnToImageImpl
//#####################| Num| ImLayout| InDataType| OutDataType| Block| MPer| KPer| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| | | | | | | | | |
< NDimSpatial, ImLayout, InDataType, OutDataType, 256, 128, 128, S<16, 16>, 1>;
// clang-format on
bool RunColumnToImage(const ExecutionConfig& config, const ck::utils::conv::ConvParam& conv_params)
{
const auto G = conv_params.G_;
const auto N = conv_params.N_;
const auto C = conv_params.C_;
const ck::index_t NDoHoWo =
N * ck::accumulate_n<ck::index_t>(
conv_params.output_spatial_lengths_.begin(), NDimSpatial, 1, std::multiplies<>());
const ck::index_t CZYX =
C * ck::accumulate_n<ck::index_t>(
conv_params.filter_spatial_lengths_.begin(), NDimSpatial, 1, std::multiplies<>());
const auto in_desc = HostTensorDescriptor({G, NDoHoWo, CZYX});
const auto out_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<ImLayout>(conv_params);
std::array<ck::index_t, NDimSpatial> input_spatial_lengths{};
std::array<ck::index_t, NDimSpatial> filter_spatial_lengths{};
std::array<ck::index_t, NDimSpatial> output_spatial_lengths{};
std::array<ck::index_t, NDimSpatial + 3> image_g_n_c_wis_strides{};
std::array<ck::index_t, 3> gemm_g_m_k_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { std::copy(x.begin(), x.end(), y.begin()); };
copy(conv_params.input_spatial_lengths_, input_spatial_lengths);
copy(conv_params.filter_spatial_lengths_, filter_spatial_lengths);
copy(conv_params.output_spatial_lengths_, output_spatial_lengths);
copy(in_desc.GetStrides(), gemm_g_m_k_strides);
copy(out_desc.GetStrides(), image_g_n_c_wis_strides);
copy(conv_params.conv_filter_strides_, conv_filter_strides);
copy(conv_params.conv_filter_dilations_, conv_filter_dilations);
copy(conv_params.input_left_pads_, input_left_pads);
copy(conv_params.input_right_pads_, input_right_pads);
Tensor<InDataType> in(in_desc);
Tensor<OutDataType> out_device(out_desc);
Tensor<OutDataType> out_host(out_desc);
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "out: " << out_device.mDesc << std::endl;
switch(config.init_method)
{
case 0: break;
case 1: in.GenerateTensorValue(GeneratorTensor_2<InDataType>{1, 2}); break;
default: in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in.mData.data());
// reset input to zero
out_device_buf.SetZero();
static_assert(std::is_default_constructible_v<DeviceColToImgInstance>);
// do conv
auto col2img = DeviceColToImgInstance{};
auto invoker = col2img.MakeInvoker();
auto argument = col2img.MakeArgument(in_device_buf.GetDeviceBuffer(),
out_device_buf.GetDeviceBuffer(),
G,
N,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
image_g_n_c_wis_strides,
gemm_g_m_k_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
if(!col2img.IsSupportedArgument(argument))
{
std::cerr << "wrong! device_col2img with the specified compilation parameters does "
"not support this col2img problem"
<< std::endl;
return false;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
std::size_t num_btype = G * NDoHoWo * CZYX * (sizeof(OutDataType) + sizeof(InDataType));
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << gb_per_sec << " GB/s" << std::endl;
if(config.do_verification)
{
auto ref_column_to_image = ck::tensor_operation::host::
ReferenceColumnToImage<NDimSpatial, ImLayout, InDataType, OutDataType>();
auto ref_invoker = ref_column_to_image.MakeInvoker();
auto ref_argument = ref_column_to_image.MakeArgument(in,
out_host,
conv_params.filter_spatial_lengths_,
conv_params.conv_filter_strides_,
conv_params.conv_filter_dilations_,
conv_params.input_left_pads_,
conv_params.input_right_pads_);
if(!ref_column_to_image.IsSupportedArgument(&ref_argument))
{
std::cerr << "wrong! ref_col2img with the specified compilation parameters does "
"not support this col2img problem"
<< std::endl;
return false;
}
ref_invoker.Run(ref_argument);
out_device_buf.FromDevice(out_device.mData.data());
return ck::utils::check_err(out_device.mData, out_host.mData);
}
return true;
}
int RunColumnToImageExample(int argc, char* argv[])
{
ExecutionConfig config;
ck::utils::conv::ConvParam conv_params = DefaultConvParams;
if(!parse_cmd_args(argc, argv, config, conv_params))
{
return EXIT_FAILURE;
}
if(conv_params.num_dim_spatial_ != NDimSpatial)
{
std::cerr << "unsupported # of spatial dimensions" << std::endl;
return EXIT_FAILURE;
}
return !RunColumnToImage(config, conv_params);
}
int main(int argc, char* argv[]) { return RunColumnToImageExample(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <initializer_list>
#include <iostream>
#include <numeric>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_image_to_column_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_column_to_image_impl.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_image_to_column.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_column_to_image.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
static inline constexpr ck::index_t NDimSpatial = 2;
using FP32 = float;
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
};
#define DefaultConvParams \
ck::utils::conv::ConvParam \
{ \
NDimSpatial, 1, 32, 1, 1, {4, 4}, {64, 64}, {1, 1}, {1, 1}, {0, 0}, { 0, 0 } \
}
inline void print_help_msg()
{
std::cerr << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: time kernel (0=no, 1=yes)\n"
<< ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
}
inline bool parse_cmd_args(int argc,
char* argv[],
ExecutionConfig& config,
ck::utils::conv::ConvParam& conv_params)
{
constexpr int num_execution_config_args =
3; // arguments for do_verification, init_method, time_kernel
constexpr int num_conv_param_leading_args = 5; // arguments for num_dim_spatial_, G_, N_, K_, C_
constexpr int threshold_to_catch_partial_args = 1 + num_execution_config_args;
constexpr int threshold_to_catch_all_args =
threshold_to_catch_partial_args + num_conv_param_leading_args;
if(argc == 1)
{
// use default
config = ExecutionConfig{};
}
// catch only ExecutionConfig arguments
else if(argc == threshold_to_catch_partial_args)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
}
// catch both ExecutionConfig & ConvParam arguments
else if(threshold_to_catch_all_args < argc && ((argc - threshold_to_catch_all_args) % 3 == 0))
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
const ck::index_t num_dim_spatial = std::stoi(argv[4]);
conv_params = ck::utils::conv::parse_conv_param(
num_dim_spatial, threshold_to_catch_partial_args, argv);
}
else
{
print_help_msg();
return false;
}
return true;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using InDataType = FP32;
using OutDataType = FP32;
using ImLayout = ck::tensor_layout::convolution::GNHWC;
using ImageToColumnOp = ck::conv_tensor_rearrange_op::ImageToColumn;
// clang-format off
using DeviceImgToColInstance = ck::tensor_operation::device::DeviceImageToColumnImpl
//#####################| Num| ImLayout| InDataType| OutDataType| Block| MPer| KPer| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| | | | | | | | | |
< NDimSpatial, ImLayout, InDataType, OutDataType, 256, 128, 128, S<16, 16>, 1>;
// clang-format on
bool RunImageToColumn(const ExecutionConfig& config, const ck::utils::conv::ConvParam& conv_params)
{
const auto G = conv_params.G_;
const auto N = conv_params.N_;
const auto C = conv_params.C_;
const ck::index_t NDoHoWo =
N * ck::accumulate_n<ck::index_t>(
conv_params.output_spatial_lengths_.begin(), NDimSpatial, 1, std::multiplies<>());
const ck::index_t CZYX =
C * ck::accumulate_n<ck::index_t>(
conv_params.filter_spatial_lengths_.begin(), NDimSpatial, 1, std::multiplies<>());
const auto in_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<ImLayout>(conv_params);
const auto out_desc = HostTensorDescriptor({G, NDoHoWo, CZYX});
std::array<ck::index_t, NDimSpatial> input_spatial_lengths{};
std::array<ck::index_t, NDimSpatial> filter_spatial_lengths{};
std::array<ck::index_t, NDimSpatial> output_spatial_lengths{};
std::array<ck::index_t, NDimSpatial + 3> image_g_n_c_wis_strides{};
std::array<ck::index_t, 3> gemm_g_m_k_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { std::copy(x.begin(), x.end(), y.begin()); };
copy(conv_params.input_spatial_lengths_, input_spatial_lengths);
copy(conv_params.filter_spatial_lengths_, filter_spatial_lengths);
copy(conv_params.output_spatial_lengths_, output_spatial_lengths);
copy(in_desc.GetStrides(), image_g_n_c_wis_strides);
copy(out_desc.GetStrides(), gemm_g_m_k_strides);
copy(conv_params.conv_filter_strides_, conv_filter_strides);
copy(conv_params.conv_filter_dilations_, conv_filter_dilations);
copy(conv_params.input_left_pads_, input_left_pads);
copy(conv_params.input_right_pads_, input_right_pads);
Tensor<InDataType> in(in_desc);
Tensor<OutDataType> out_device(out_desc);
Tensor<OutDataType> out_host(out_desc);
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "out: " << out_device.mDesc << std::endl;
switch(config.init_method)
{
case 0: break;
case 1: in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}); break;
default: in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in.mData.data());
// reset input to zero
out_device_buf.SetZero();
static_assert(std::is_default_constructible_v<DeviceImgToColInstance>);
// do conv
auto img2col = DeviceImgToColInstance{};
auto invoker = img2col.MakeInvoker();
auto argument = img2col.MakeArgument(in_device_buf.GetDeviceBuffer(),
out_device_buf.GetDeviceBuffer(),
G,
N,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
image_g_n_c_wis_strides,
gemm_g_m_k_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
if(!img2col.IsSupportedArgument(argument))
{
std::cerr << "wrong! device_img2col with the specified compilation parameters does "
"not support this img2col problem"
<< std::endl;
return false;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
std::size_t num_btype = G * NDoHoWo * CZYX * (sizeof(OutDataType) + sizeof(InDataType));
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << gb_per_sec << " GB/s" << std::endl;
if(config.do_verification)
{
auto ref_image_to_column = ck::tensor_operation::host::
ReferenceImageToColumn<NDimSpatial, ImLayout, InDataType, OutDataType>();
auto ref_invoker = ref_image_to_column.MakeInvoker();
auto ref_argument = ref_image_to_column.MakeArgument(in,
out_host,
conv_params.filter_spatial_lengths_,
conv_params.conv_filter_strides_,
conv_params.conv_filter_dilations_,
conv_params.input_left_pads_,
conv_params.input_right_pads_);
if(!ref_image_to_column.IsSupportedArgument(&ref_argument))
{
std::cerr << "wrong! ref_img2col with the specified compilation parameters does "
"not support this img2col problem"
<< std::endl;
return false;
}
ref_invoker.Run(ref_argument);
out_device_buf.FromDevice(out_device.mData.data());
return ck::utils::check_err(out_device.mData, out_host.mData);
}
return true;
}
int RunImageToColumnExample(int argc, char* argv[])
{
ExecutionConfig config;
ck::utils::conv::ConvParam conv_params = DefaultConvParams;
if(!parse_cmd_args(argc, argv, config, conv_params))
{
return EXIT_FAILURE;
}
if(conv_params.num_dim_spatial_ != NDimSpatial)
{
std::cerr << "unsupported # of spatial dimensions" << std::endl;
return EXIT_FAILURE;
}
return !RunImageToColumn(config, conv_params);
}
int main(int argc, char* argv[]) { return RunImageToColumnExample(argc, argv); }
add_example_executable(example_layernorm2d_bwd_fp32 layernorm2d_bwd_fp32.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_data_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_gamma_beta_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm_bwd.hpp"
using DYDataType = float;
using XDataType = float;
using GammaDataType = float;
using MeanInvStdDataType = float;
using DGammaDataType = float;
using DBetaDataType = float;
using DXDataType = float;
using ComputeDataType = float;
constexpr int Rank = 2;
constexpr int NumReduceDim = 1;
// Layernorm:
// Input shape
// dy: [M, N]
// x: [M, N]
// mean: [M, 1]
// inv_std: [M, 1]
// Output shape
// dx: [M, N]
// dgamma: [1, N]
// dbeta: [1, N]
// dgamma = reduce_sum(dy * (x - mean) * inv_std, axis=0)
// dbeta = reduce_sum(dy, axis=0)
// [CAUSION]
// In DeviceNormalizationBwdDataImpl & DeviceNormalizationBwdGammaBetaImpl, M is Invariant
// dimension, K is reduced dimension Hence, M in this example and
// DeviceNormalizationBwdGammaBetaImpl is different
using XDeviceInstance = ck::tensor_operation::device::DeviceNormalizationBwdDataImpl<
DYDataType,
XDataType,
GammaDataType,
MeanInvStdDataType,
ComputeDataType,
DXDataType,
Rank,
NumReduceDim,
256, // BlockSize
8, // MThreadClusterSize
32, // KThreadClusterSize
1, // MThreadSliceSize
4, // KThreadSliceSize
true, // IsDYFastestDimReduced
4, // DYSrcVectorSize
true, // IsXFastestDimReduced
4, // XSrcVectorSize
true, // IsGammaFastestDimReduced
4, // GammaSrcVectorSize
false, // IsMeanInvStdFastestDimReduced
1, // MeanInvStdSrcVectorSize
true, // IsDXFastestDimReduced
4>; // DXDstVectorSize
using GammaBetaDeviceInstance = ck::tensor_operation::device::DeviceNormalizationBwdGammaBetaImpl<
DYDataType,
XDataType,
MeanInvStdDataType,
ComputeDataType,
DGammaDataType,
DBetaDataType,
Rank,
NumReduceDim,
256, // BlockSize
8, // MThreadClusterSize
32, // KThreadClusterSize
4, // MThreadSliceSize
1, // KThreadSliceSize
false, // IsDYFastestDimReduced
4, // DYSrcVectorSize
false, // IsXFastestDimReduced
4, // XSrcVectorSize
true, // IsMeanInvStdFastestDimReduced
1, // MeanInvStdSrcVectorSize
4, // DGammaDstVectorSize
4>; // DBetaDstVectorSize
int main()
{
bool time_kernel = false;
ck::index_t M = 1024;
ck::index_t N = 512;
Tensor<DYDataType> dy({M, N});
Tensor<XDataType> x({M, N});
Tensor<GammaDataType> gamma({N});
Tensor<MeanInvStdDataType> mean({M});
Tensor<MeanInvStdDataType> inv_std({M});
Tensor<DGammaDataType> dgamma({N});
Tensor<DBetaDataType> dbeta({N});
Tensor<DXDataType> dx({M, N});
dy.GenerateTensorValue(GeneratorTensor_3<DYDataType>{0.0, 1.0});
x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0.0, 1.0});
gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{0.0, 1.0});
mean.GenerateTensorValue(GeneratorTensor_3<MeanInvStdDataType>{0.0, 1.0});
inv_std.GenerateTensorValue(GeneratorTensor_3<MeanInvStdDataType>{0.0, 1.0});
DeviceMem dy_dev(sizeof(DYDataType) * dy.mDesc.GetElementSpaceSize());
DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
DeviceMem mean_dev(sizeof(MeanInvStdDataType) * mean.mDesc.GetElementSpaceSize());
DeviceMem inv_std_dev(sizeof(MeanInvStdDataType) * inv_std.mDesc.GetElementSpaceSize());
DeviceMem dx_dev(sizeof(DXDataType) * dx.mDesc.GetElementSpaceSize());
DeviceMem dgamma_dev(sizeof(DGammaDataType) * dgamma.mDesc.GetElementSpaceSize());
DeviceMem dbeta_dev(sizeof(DBetaDataType) * dbeta.mDesc.GetElementSpaceSize());
dy_dev.ToDevice(dy.mData.data());
x_dev.ToDevice(x.mData.data());
gamma_dev.ToDevice(gamma.mData.data());
mean_dev.ToDevice(mean.mData.data());
inv_std_dev.ToDevice(inv_std.mData.data());
// backward x
auto x_device_instance = XDeviceInstance{};
auto x_argument_ptr = x_device_instance.MakeArgumentPointer({M, N}, // lengths
{N, 1}, // dyStrides
{N, 1}, // xStrides
{0, 1}, // gammaStrides
{1, 0}, // meanStrides
{1, 0}, // invStdStrides
{N, 1}, // dxStrides
{1}, // reduceDims
dy_dev.GetDeviceBuffer(),
x_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
mean_dev.GetDeviceBuffer(),
inv_std_dev.GetDeviceBuffer(),
dx_dev.GetDeviceBuffer());
if(!x_device_instance.IsSupportedArgument(x_argument_ptr.get()))
{
std::cout << "The runtime parameters are not supported." << __FILE__ << ":" << __LINE__
<< std::endl;
return 1;
};
auto x_invoker_ptr = x_device_instance.MakeInvokerPointer();
x_invoker_ptr->Run(x_argument_ptr.get(), StreamConfig{nullptr, time_kernel});
// backward gamma & beta
auto gamma_beta_device_instance = GammaBetaDeviceInstance{};
auto gamma_beta_argument_ptr =
gamma_beta_device_instance.MakeArgumentPointer({M, N}, // inLengths
{N, 1}, // dyStrides
{N, 1}, // xStrides
{1, 0}, // meanStrides
{1, 0}, // invStdStrides
{N}, // outLengths
{1}, // dgammaStrides
{1}, // dbetaStrides
{0}, // reduceDims
dy_dev.GetDeviceBuffer(),
x_dev.GetDeviceBuffer(),
mean_dev.GetDeviceBuffer(),
inv_std_dev.GetDeviceBuffer(),
dgamma_dev.GetDeviceBuffer(),
dbeta_dev.GetDeviceBuffer());
if(!gamma_beta_device_instance.IsSupportedArgument(gamma_beta_argument_ptr.get()))
{
std::cout << "The runtime parameters are not supported." << __FILE__ << ":" << __LINE__
<< std::endl;
return 1;
};
auto gamma_beta_invoker_ptr = gamma_beta_device_instance.MakeInvokerPointer();
gamma_beta_invoker_ptr->Run(gamma_beta_argument_ptr.get(), StreamConfig{nullptr, time_kernel});
bool pass = true;
{
Tensor<DGammaDataType> host_dgamma({N});
Tensor<DBetaDataType> host_dbeta({N});
Tensor<DXDataType> host_dx({M, N});
using ReferenceInstance =
ck::tensor_operation::host::ReferenceLayernormBwd<DYDataType,
XDataType,
GammaDataType,
MeanInvStdDataType,
DGammaDataType,
DBetaDataType,
DXDataType,
ComputeDataType>;
ReferenceInstance ref;
auto ref_argument =
ref.MakeArgument(dy, x, gamma, mean, inv_std, host_dgamma, host_dbeta, host_dx, {M, N});
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
dgamma_dev.FromDevice(dgamma.mData.data());
dbeta_dev.FromDevice(dbeta.mData.data());
dx_dev.FromDevice(dx.mData.data());
pass &= ck::utils::check_err(dgamma, host_dgamma, "Error: Incorrect dgamma", 1e-3, 1e-3);
pass &= ck::utils::check_err(dbeta, host_dbeta, "Error: Incorrect dbeta", 1e-3, 1e-3);
pass &= ck::utils::check_err(dx, host_dx, "Error: Incorrect dx", 1e-3, 1e-3);
}
return (pass ? 0 : 1);
}
add_example_executable(example_groupnorm_bwd_fp32 groupnorm_bwd_fp32.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_data_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_gamma_beta_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_groupnorm_bwd.hpp"
using DYDataType = float;
using XDataType = float;
using GammaDataType = float;
using MeanInvStdDataType = float;
using DGammaDataType = float;
using DBetaDataType = float;
using DXDataType = float;
using ComputeDataType = float;
constexpr int Rank = 5;
constexpr int NumReduceDim = 3;
// Grouprnorm
// kernel 1: M , K
// dy: N, H, W, G, C -> N * G, H * W * C
// x: N, H, W, G, C -> N * G, H * W * C
// gamma: 1, 1, 1, G, C -> 1 * G, 1 * 1 * C
// mean: N, 1, 1, G, 1 -> N * G, 1 * 1 * 1
// rstd: N, 1, 1, G, 1 -> N * G, 1 * 1 * 1
// dx: N, H, W, G, C -> N * G, H * W * C
using XDeviceInstance = ck::tensor_operation::device::DeviceNormalizationBwdDataImpl<
DYDataType,
XDataType,
GammaDataType,
MeanInvStdDataType,
ComputeDataType,
DXDataType,
Rank,
NumReduceDim,
256, // BlockSize
8, // MThreadClusterSize
32, // KThreadClusterSize
1, // MThreadSliceSize
4, // KThreadSliceSize
true, // IsDYFastestDimReduced
4, // DYSrcVectorSize
true, // IsXFastestDimReduced
4, // XSrcVectorSize
true, // IsGammaFastestDimReduced
4, // GammaSrcVectorSize
false, // IsMeanInvStdFastestDimReduced
1, // MeanInvStdSrcVectorSize
true, // IsDXFastestDimReduced
4>; // DXDstVectorSize
// kernel 2: M , K
// dy: N, H, W, G, C -> G * C, N * H * W
// x: N, H, W, G, C -> G * C, N * H * W
// mean: N, 1, 1, G, 1 -> G * 1, N * 1 * 1
// rstd: N, 1, 1, G, 1 -> G * 1, N * 1 * 1
// dgamma: 1, 1, 1, G, C -> G * C
// dbeta: 1, 1, 1, G, C -> G * C
// reduced axis: 0, 1, 2
using GammaBetaDeviceInstance = ck::tensor_operation::device::DeviceNormalizationBwdGammaBetaImpl<
DYDataType,
XDataType,
MeanInvStdDataType,
ComputeDataType,
DGammaDataType,
DBetaDataType,
Rank,
NumReduceDim,
256, // BlockSize
8, // ClusterInvariant
32, // ClusterReduce
4, // SliceInvariant
1, // SliceReduce
false, // IsDYFastestDimReduced
4, // DYSrcVectorSize
false, // IsXFastestDimReduced
4, // XSrcVectorSize
false, // IsMeanInvStdFastestDimReduced
1, // MeanInvStdSrcVectorSize
4, // DGammaDstVectorSize
4>; // DBetaDstVectorSize
int main()
{
bool time_kernel = false;
ck::index_t N = 16;
ck::index_t H = 16;
ck::index_t W = 16;
ck::index_t G = 32;
ck::index_t C = 64;
Tensor<DYDataType> dy({N, H, W, G, C});
Tensor<XDataType> x({N, H, W, G, C});
Tensor<GammaDataType> gamma({G, C});
Tensor<MeanInvStdDataType> mean({N, G});
Tensor<MeanInvStdDataType> inv_std({N, G});
Tensor<DGammaDataType> dgamma({G, C});
Tensor<DBetaDataType> dbeta({G, C});
Tensor<DXDataType> dx({N, H, W, G, C});
dy.GenerateTensorValue(GeneratorTensor_3<DYDataType>{0.0, 1.0});
x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0.0, 1.0});
gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{0.0, 1.0});
mean.GenerateTensorValue(GeneratorTensor_3<MeanInvStdDataType>{0.0, 1.0});
inv_std.GenerateTensorValue(GeneratorTensor_3<MeanInvStdDataType>{0.0, 1.0});
DeviceMem dy_dev(sizeof(DYDataType) * dy.mDesc.GetElementSpaceSize());
DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
DeviceMem mean_dev(sizeof(MeanInvStdDataType) * mean.mDesc.GetElementSpaceSize());
DeviceMem inv_std_dev(sizeof(MeanInvStdDataType) * inv_std.mDesc.GetElementSpaceSize());
DeviceMem dx_dev(sizeof(DXDataType) * dx.mDesc.GetElementSpaceSize());
DeviceMem dgamma_dev(sizeof(DGammaDataType) * dgamma.mDesc.GetElementSpaceSize());
DeviceMem dbeta_dev(sizeof(DBetaDataType) * dbeta.mDesc.GetElementSpaceSize());
dy_dev.ToDevice(dy.mData.data());
x_dev.ToDevice(x.mData.data());
gamma_dev.ToDevice(gamma.mData.data());
mean_dev.ToDevice(mean.mData.data());
inv_std_dev.ToDevice(inv_std.mData.data());
std::vector<ck::index_t> dyStrides{dy.mDesc.GetStrides().begin(), dy.mDesc.GetStrides().end()};
std::vector<ck::index_t> xStrides{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()};
std::vector<ck::index_t> gammaStrides = {0, 0, 0, C, 1};
std::vector<ck::index_t> meanStrides = {G, 0, 0, 1, 0};
std::vector<ck::index_t> invStdStrides = {G, 0, 0, 1, 0};
std::vector<ck::index_t> dxStrides{dx.mDesc.GetStrides().begin(), dx.mDesc.GetStrides().end()};
// backward x
auto x_device_instance = XDeviceInstance{};
auto x_argument_ptr = x_device_instance.MakeArgumentPointer({N, H, W, G, C}, // lengths
dyStrides, // dyStrides
xStrides, // xStrides
gammaStrides, // gammaStrides
meanStrides, // meanStrides
invStdStrides, // invStdStrides
dxStrides, // dxStrides
{1, 2, 4}, // reduceDims
dy_dev.GetDeviceBuffer(),
x_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
mean_dev.GetDeviceBuffer(),
inv_std_dev.GetDeviceBuffer(),
dx_dev.GetDeviceBuffer());
if(!x_device_instance.IsSupportedArgument(x_argument_ptr.get()))
{
std::cout << "The runtime parameters are not supported." << __FILE__ << ":" << __LINE__
<< std::endl;
return 1;
};
auto x_invoker_ptr = x_device_instance.MakeInvokerPointer();
x_invoker_ptr->Run(x_argument_ptr.get(), StreamConfig{nullptr, time_kernel});
// backward gamma & beta
auto gamma_beta_device_instance = GammaBetaDeviceInstance{};
auto gamma_beta_argument_ptr =
gamma_beta_device_instance.MakeArgumentPointer({N, H, W, G, C}, // inLengths
dyStrides, // dyStrides
xStrides, // xStrides
meanStrides, // meanStrides
invStdStrides, // invStdStrides
{G, C}, // outLengths
{C, 1}, // dgammaStrides
{C, 1}, // dbetaStrides
{0, 1, 2}, // reduceDims
dy_dev.GetDeviceBuffer(),
x_dev.GetDeviceBuffer(),
mean_dev.GetDeviceBuffer(),
inv_std_dev.GetDeviceBuffer(),
dgamma_dev.GetDeviceBuffer(),
dbeta_dev.GetDeviceBuffer());
if(!gamma_beta_device_instance.IsSupportedArgument(gamma_beta_argument_ptr.get()))
{
std::cout << "The runtime parameters are not supported." << __FILE__ << ":" << __LINE__
<< std::endl;
return 1;
};
auto gamma_beta_invoker_ptr = gamma_beta_device_instance.MakeInvokerPointer();
gamma_beta_invoker_ptr->Run(gamma_beta_argument_ptr.get(), StreamConfig{nullptr, time_kernel});
bool pass = true;
{
Tensor<DGammaDataType> host_dgamma({G, C});
Tensor<DBetaDataType> host_dbeta({G, C});
Tensor<DXDataType> host_dx({N, H, W, G, C});
using ReferenceInstance =
ck::tensor_operation::host::ReferenceGroupnormBwd<DYDataType,
XDataType,
GammaDataType,
MeanInvStdDataType,
DGammaDataType,
DBetaDataType,
DXDataType,
ComputeDataType>;
ReferenceInstance ref;
auto ref_argument = ref.MakeArgument(
dy, x, gamma, mean, inv_std, host_dgamma, host_dbeta, host_dx, {N, H, W, G, C});
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
dgamma_dev.FromDevice(dgamma.mData.data());
dbeta_dev.FromDevice(dbeta.mData.data());
dx_dev.FromDevice(dx.mData.data());
pass &= ck::utils::check_err(dgamma, host_dgamma, "Error: Incorrect dgamma", 1e-3, 1e-3);
pass &= ck::utils::check_err(dbeta, host_dbeta, "Error: Incorrect dbeta", 1e-3, 1e-3);
pass &= ck::utils::check_err(dx, host_dx, "Error: Incorrect dx", 1e-3, 1e-3);
}
return (pass ? 0 : 1);
}
add_custom_target(example_grouped_gemm_xdl_multi_abd)
add_example_executable(example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16 grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16.cpp)
add_example_dependencies(example_grouped_gemm_xdl_multi_abd example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16)
add_example_executable(example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_bf16_i8 grouped_gemm_multi_abd_xdl_fixed_nk_bias_bf16_i8.cpp)
add_example_dependencies(example_grouped_gemm_xdl_multi_abd example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_bf16_i8)
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multi_abd_xdl_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
using A0DataType = BF16;
using AsDataType = ck::Tuple<A0DataType>;
using B0DataType = I8;
using B1DataType = BF16;
using BsDataType = ck::Tuple<B0DataType, B1DataType>;
using AccDataType = F32;
using CShuffleDataType = BF16;
using D0DataType = BF16;
using DsDataType = ck::Tuple<D0DataType>;
using EDataType = BF16;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Col;
using B1Layout = B0Layout;
using BsLayout = ck::Tuple<B0Layout, B1Layout>;
using DsLayout = ck::Tuple<Row>;
using ELayout = Row;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu;
using AElementOp = PassThrough;
using BElementOp = Multiply;
using CDEElementOp = AddFastGelu;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGroupedGemm_Xdl_Multi_ABD_Fixed_NK
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< AsLayout, BsLayout, DsLayout, ELayout, AsDataType, BsDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 128, 16, 128, 32, 8, 8, 16, 16, 1, 4, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 8>, 1>;
// clang-format on
struct ProblemSize final
{
std::vector<ck::index_t> Ms;
std::vector<ck::index_t> Ns;
std::vector<ck::index_t> Ks;
std::vector<ck::index_t> stride_As;
std::vector<ck::index_t> stride_Bs;
std::vector<ck::index_t> stride_Cs;
ck::index_t group_count;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
int k_batch = 1;
};
bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
auto group_count = problem_size.group_count;
// GEMM shape
std::vector<ck::tensor_operation::device::GemmMultiABDDesc> gemm_descs;
gemm_descs.reserve(group_count);
int sum_of_m = 0;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
std::vector<Tensor<A0DataType>> a0_tensors;
std::vector<Tensor<B1DataType>> b_tensors;
std::vector<Tensor<B0DataType>> b0_tensors;
std::vector<Tensor<B1DataType>> b1_tensors;
std::vector<Tensor<D0DataType>> d0_tensors;
std::vector<Tensor<EDataType>> c_host_tensors;
std::vector<Tensor<EDataType>> c_device_tensors;
a0_tensors.reserve(group_count);
b_tensors.reserve(group_count);
b0_tensors.reserve(group_count);
b1_tensors.reserve(group_count);
d0_tensors.reserve(group_count);
c_host_tensors.reserve(group_count);
c_device_tensors.reserve(group_count);
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
std::vector<DeviceMemPtr> a0_tensors_device, b0_tensors_device, b1_tensors_device,
d0_tensors_device, c_tensors_device;
a0_tensors_device.reserve(group_count);
b0_tensors_device.reserve(group_count);
b1_tensors_device.reserve(group_count);
d0_tensors_device.reserve(group_count);
c_tensors_device.reserve(group_count);
std::size_t flop = 0, num_btype = 0;
for(int i = 0; i < group_count; i++)
{
sum_of_m += problem_size.Ms[i];
a0_tensors.push_back(Tensor<A0DataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ks[i], problem_size.stride_As[i], A0Layout{})));
b_tensors.push_back(Tensor<B1DataType>(f_host_tensor_descriptor(
problem_size.Ks[i], problem_size.Ns[i], problem_size.stride_Bs[i], B0Layout{})));
b0_tensors.push_back(Tensor<B0DataType>(f_host_tensor_descriptor(
problem_size.Ks[i], problem_size.Ns[i], problem_size.stride_Bs[i], B0Layout{})));
b1_tensors.push_back(Tensor<B1DataType>(
f_host_tensor_descriptor(problem_size.Ks[i], problem_size.Ns[i], 0, B1Layout{})));
d0_tensors.push_back(Tensor<D0DataType>(
f_host_tensor_descriptor(problem_size.Ms[i], problem_size.Ns[i], 0, ELayout{})));
c_host_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], ELayout{})));
c_device_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], ELayout{})));
std::cout << "gemm[" << i << "] a_m_k: " << a0_tensors[i].mDesc
<< " b_k_n: " << b0_tensors[i].mDesc << " d_m_n: " << d0_tensors[i].mDesc
<< " c_m_n: " << c_device_tensors[i].mDesc << std::endl;
flop += std::size_t(2) * problem_size.Ms[i] * problem_size.Ks[i] * problem_size.Ns[i];
num_btype += sizeof(A0DataType) * a0_tensors[i].mDesc.GetElementSize() +
sizeof(B0DataType) * b0_tensors[i].mDesc.GetElementSize() +
sizeof(B1DataType) * b1_tensors[i].mDesc.GetElementSize() +
sizeof(D0DataType) * d0_tensors[i].mDesc.GetElementSize() +
sizeof(EDataType) * c_device_tensors[i].mDesc.GetElementSize();
switch(config.init_method)
{
case 0: break;
case 1:
a0_tensors[i].GenerateTensorValue(GeneratorTensor_2<A0DataType>{-5, 5});
b0_tensors[i].GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_tensors[i].GenerateTensorValue(GeneratorTensor_2<B1DataType>{0, 5});
break;
case 2:
a0_tensors[i].GenerateTensorValue(GeneratorTensor_3<A0DataType>{0.0, 1.0});
b0_tensors[i].GenerateTensorValue(GeneratorTensor_3<B0DataType>{-5, 5});
b1_tensors[i].GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
default:
a0_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b0_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b1_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
}
d0_tensors[i].GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5});
}
constexpr ck::index_t NumATensor = 1;
constexpr ck::index_t NumBTensor = 2;
constexpr ck::index_t NumDTensor = 1;
using GroupedGemmKernelArgument = ck::tensor_operation::device::
GroupedGemmMultiABDKernelArgument<NumATensor, NumBTensor, NumDTensor>;
std::vector<GroupedGemmKernelArgument> grouped_gemm_kernel_args_;
grouped_gemm_kernel_args_.reserve(group_count);
for(int i = 0; i < group_count; i++)
{
a0_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(A0DataType) * sum_of_m * problem_size.Ks[i]));
b0_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(B0DataType) * problem_size.Ns[i] * problem_size.Ks[i]));
b1_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(B1DataType) * problem_size.Ns[i]));
d0_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(D0DataType) * problem_size.Ns[i]));
c_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(EDataType) * sum_of_m * problem_size.Ns[i]));
a0_tensors_device[i]->ToDevice(a0_tensors[i].mData.data(),
a0_tensors[i].mDesc.GetElementSpaceSize() *
sizeof(A0DataType));
b0_tensors_device[i]->ToDevice(b0_tensors[i].mData.data(),
b0_tensors[i].mDesc.GetElementSpaceSize() *
sizeof(B0DataType));
b1_tensors_device[i]->ToDevice(b1_tensors[i].mData.data(),
b1_tensors[i].mDesc.GetElementSpaceSize() *
sizeof(B1DataType));
d0_tensors_device[i]->ToDevice(d0_tensors[i].mData.data());
c_tensors_device[i]->SetZero();
gemm_descs.push_back(
{sum_of_m, problem_size.Ns[i], problem_size.Ks[i], {1}, {1, 1}, {0}, 1});
grouped_gemm_kernel_args_.push_back(
{std::array<const void*, NumATensor>{a0_tensors_device[i]->GetDeviceBuffer()},
std::array<const void*, NumBTensor>{b0_tensors_device[i]->GetDeviceBuffer(),
b1_tensors_device[i]->GetDeviceBuffer()},
std::array<const void*, NumDTensor>{d0_tensors_device[i]->GetDeviceBuffer()},
c_tensors_device[i]->GetDeviceBuffer(),
problem_size.Ms[i],
problem_size.Ns[i],
problem_size.Ks[i],
std::array<ck::index_t, NumATensor>{problem_size.stride_As[i]},
std::array<ck::index_t, NumBTensor>{problem_size.stride_Bs[i], 0},
std::array<ck::index_t, NumDTensor>{0},
problem_size.stride_Cs[i]});
}
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
std::vector<std::array<const void*, NumATensor>> p_As = {};
std::vector<std::array<const void*, NumBTensor>> p_Bs = {};
std::vector<std::array<const void*, NumDTensor>> p_Ds = {};
std::vector<void*> p_Cs = {};
// do GEMM
auto argument = gemm.MakeArgument(p_As, p_Bs, p_Ds, p_Cs, gemm_descs);
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
DeviceMem gemm_workspace_dev(gemm.GetWorkSpaceSize(&argument));
gemm.SetWorkSpacePointer(&argument, gemm_workspace_dev.GetDeviceBuffer());
DeviceMem gemm_kernel_args_dev(gemm.GetDeviceKernelArgSize(&argument));
hip_check_error(hipMemcpy(gemm_kernel_args_dev.GetDeviceBuffer(),
grouped_gemm_kernel_args_.data(),
gemm.GetDeviceKernelArgSize(&argument),
hipMemcpyHostToDevice));
gemm.SetDeviceKernelArgs(argument, gemm_kernel_args_dev.GetDeviceBuffer());
gemm.SetKBatch(argument, config.k_batch);
gemm.SetElementwiseOps(argument, a_element_op, b_element_op, cde_element_op);
invoker.Run(argument, StreamConfig{nullptr, false});
if(config.time_kernel)
{
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
}
bool pass = true;
if(config.do_verification)
{
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<A0DataType,
B1DataType,
EDataType,
AccDataType,
PassThrough,
PassThrough,
PassThrough>;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
for(int n = 0; n < problem_size.Ns[i]; ++n)
{
for(int k = 0; k < problem_size.Ks[i]; ++k)
{
b_element_op(b_tensors[i](k, n), b0_tensors[i](k, n), b1_tensors[i](k, n));
}
}
c_tensors_device[i]->FromDevice(c_device_tensors[i].mData.data(),
c_device_tensors[i].mDesc.GetElementSize() *
sizeof(EDataType));
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a0_tensors[i],
b_tensors[i],
c_host_tensors[i],
PassThrough{},
PassThrough{},
PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < problem_size.Ms[i]; ++m)
{
for(int n = 0; n < problem_size.Ns[i]; ++n)
{
cde_element_op(
c_host_tensors[i](m, n), c_host_tensors[i](m, n), d0_tensors[i](m, n));
}
}
pass &= ck::utils::check_err(c_device_tensors[i], c_host_tensors[i]);
}
}
return pass;
}
int main(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
problem_size.group_count = 16;
for(int i = 0; i < problem_size.group_count; i++)
{
problem_size.Ms.push_back(32 + rand() % 32);
problem_size.Ns.push_back(1024);
problem_size.Ks.push_back(512);
problem_size.stride_As.push_back(problem_size.Ks[i]);
problem_size.stride_Bs.push_back(problem_size.Ks[i]);
problem_size.stride_Cs.push_back(problem_size.Ns[i]);
}
if(argc == 5)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
config.k_batch = std::stoi(argv[4]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
printf("arg4: k_batch (>0)\n");
exit(0);
}
return !run_grouped_gemm(problem_size, config);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multi_abd_xdl_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp"
#include "ck/tensor_operation/gpu/element/combined_element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
using Scale = ck::tensor_operation::element_wise::Scale;
using AddScale = ck::tensor_operation::element_wise::BinaryWithUnaryCombinedOp<Add, Scale, Scale>;
using A0DataType = F16;
using A1DataType = F32;
using AsDataType = ck::Tuple<A0DataType, A1DataType>;
using B0DataType = F16;
using BsDataType = ck::Tuple<B0DataType>;
using AccDataType = F32;
using CShuffleDataType = F32;
using D0DataType = F32;
using DsDataType = ck::Tuple<D0DataType>;
using EDataType = F32;
using A0Layout = Row;
using A1Layout = Row;
using AsLayout = ck::Tuple<A0Layout, A1Layout>;
using B0Layout = Col;
using BsLayout = ck::Tuple<B0Layout>;
using D0Layout = Row;
using DsLayout = ck::Tuple<D0Layout>;
using ELayout = Row;
using AElementOp = AddScale;
using BElementOp = PassThrough;
using CDEElementOp = Add;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGroupedGemm_Xdl_Multi_ABD_Fixed_NK
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< AsLayout, BsLayout, DsLayout, ELayout, AsDataType, BsDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 128, 16, 128, 32, 8, 8, 16, 16, 1, 4, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 8>, 1, ck::half_t>;
// clang-format on
struct ProblemSize final
{
std::vector<ck::index_t> Ms;
std::vector<ck::index_t> Ns;
std::vector<ck::index_t> Ks;
std::vector<ck::index_t> stride_As;
std::vector<ck::index_t> stride_Bs;
std::vector<ck::index_t> stride_Cs;
ck::index_t group_count;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
int k_batch = 1;
};
bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
auto group_count = problem_size.group_count;
// GEMM shape
std::vector<ck::tensor_operation::device::GemmMultiABDDesc> gemm_descs;
gemm_descs.reserve(group_count);
int sum_of_m = 0;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
std::vector<Tensor<A0DataType>> a0_tensors;
std::vector<Tensor<A1DataType>> a1_tensors;
std::vector<Tensor<B0DataType>> b_tensors;
std::vector<Tensor<D0DataType>> d0_tensors;
std::vector<Tensor<EDataType>> e_host_tensors;
std::vector<Tensor<EDataType>> e_device_tensors;
a0_tensors.reserve(group_count);
a1_tensors.reserve(group_count);
b_tensors.reserve(group_count);
d0_tensors.reserve(group_count);
e_host_tensors.reserve(group_count);
e_device_tensors.reserve(group_count);
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
std::vector<DeviceMemPtr> a0_tensors_device, a1_tensors_device, b_tensors_device,
d0_tensors_device, c_tensors_device;
a0_tensors_device.reserve(group_count);
a1_tensors_device.reserve(group_count);
b_tensors_device.reserve(group_count);
d0_tensors_device.reserve(group_count);
c_tensors_device.reserve(group_count);
std::size_t flop = 0, num_btype = 0;
for(int i = 0; i < group_count; i++)
{
sum_of_m += problem_size.Ms[i];
a0_tensors.push_back(Tensor<A0DataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ks[i], problem_size.stride_As[i], A0Layout{})));
a1_tensors.push_back(Tensor<A1DataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ks[i], problem_size.stride_As[i], A1Layout{})));
b_tensors.push_back(Tensor<B0DataType>(f_host_tensor_descriptor(
problem_size.Ks[i], problem_size.Ns[i], problem_size.stride_Bs[i], B0Layout{})));
d0_tensors.push_back(Tensor<D0DataType>(
f_host_tensor_descriptor(problem_size.Ms[i], problem_size.Ns[i], 0, ELayout{})));
e_host_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], ELayout{})));
e_device_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], ELayout{})));
std::cout << "gemm[" << i << "] a_m_k: " << a0_tensors[i].mDesc
<< " b_k_n: " << b_tensors[i].mDesc << " d_m_n: " << d0_tensors[i].mDesc
<< " c_m_n: " << e_device_tensors[i].mDesc << std::endl;
flop += std::size_t(2) * problem_size.Ms[i] * problem_size.Ks[i] * problem_size.Ns[i];
num_btype += sizeof(A0DataType) * a0_tensors[i].mDesc.GetElementSize() +
sizeof(A1DataType) * a1_tensors[i].mDesc.GetElementSize() +
sizeof(B0DataType) * b_tensors[i].mDesc.GetElementSize() +
sizeof(D0DataType) * d0_tensors[i].mDesc.GetElementSize() +
sizeof(EDataType) * e_device_tensors[i].mDesc.GetElementSize();
switch(config.init_method)
{
case 0: break;
case 1:
a0_tensors[i].GenerateTensorValue(GeneratorTensor_2<A0DataType>{-5, 5});
a1_tensors[i].GenerateTensorValue(GeneratorTensor_2<A1DataType>{-5, 5});
b_tensors[i].GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
break;
case 2:
a0_tensors[i].GenerateTensorValue(GeneratorTensor_3<A0DataType>{0.0, 1.0});
a1_tensors[i].GenerateTensorValue(GeneratorTensor_3<A1DataType>{0.0, 1.0});
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<B0DataType>{-0.5, 0.5});
break;
default:
a0_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
a1_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
}
d0_tensors[i].GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5});
}
constexpr ck::index_t NumATensor = 2;
constexpr ck::index_t NumBTensor = 1;
constexpr ck::index_t NumDTensor = 1;
using GroupedGemmKernelArgument = ck::tensor_operation::device::
GroupedGemmMultiABDKernelArgument<NumATensor, NumBTensor, NumDTensor>;
std::vector<GroupedGemmKernelArgument> grouped_gemm_kernel_args_;
grouped_gemm_kernel_args_.reserve(group_count);
for(int i = 0; i < group_count; i++)
{
a0_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(A0DataType) * sum_of_m * problem_size.Ks[i]));
a1_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(A1DataType) * sum_of_m * problem_size.Ks[i]));
b_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(B0DataType) * problem_size.Ns[i] * problem_size.Ks[i]));
d0_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(D0DataType) * problem_size.Ns[i]));
c_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(EDataType) * sum_of_m * problem_size.Ns[i]));
a0_tensors_device[i]->ToDevice(a0_tensors[i].mData.data(),
a0_tensors[i].mDesc.GetElementSpaceSize() *
sizeof(A0DataType));
a1_tensors_device[i]->ToDevice(a1_tensors[i].mData.data(),
a1_tensors[i].mDesc.GetElementSpaceSize() *
sizeof(A1DataType));
b_tensors_device[i]->ToDevice(b_tensors[i].mData.data(),
b_tensors[i].mDesc.GetElementSpaceSize() *
sizeof(B0DataType));
d0_tensors_device[i]->ToDevice(d0_tensors[i].mData.data());
c_tensors_device[i]->SetZero();
gemm_descs.push_back({sum_of_m,
problem_size.Ns[i],
problem_size.Ks[i],
{1, 1},
{problem_size.stride_Bs[i]},
{0},
1});
grouped_gemm_kernel_args_.push_back(
{std::array<const void*, NumATensor>{a0_tensors_device[i]->GetDeviceBuffer(),
a1_tensors_device[i]->GetDeviceBuffer()},
std::array<const void*, NumBTensor>{b_tensors_device[i]->GetDeviceBuffer()},
std::array<const void*, NumDTensor>{d0_tensors_device[i]->GetDeviceBuffer()},
c_tensors_device[i]->GetDeviceBuffer(),
problem_size.Ms[i],
problem_size.Ns[i],
problem_size.Ks[i],
std::array<ck::index_t, NumATensor>{problem_size.stride_As[i],
problem_size.stride_As[i]},
std::array<ck::index_t, NumBTensor>{problem_size.stride_Bs[i]},
std::array<ck::index_t, NumDTensor>{0},
problem_size.stride_Cs[i]});
}
constexpr float scale = 1.f;
auto a_element_op = AElementOp{Add{}, Scale{scale}, Scale{scale}};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
std::vector<std::array<const void*, NumATensor>> p_As = {};
std::vector<std::array<const void*, NumBTensor>> p_Bs = {};
std::vector<std::array<const void*, NumDTensor>> p_Ds = {};
std::vector<void*> p_Cs = {};
// do GEMM
auto argument = gemm.MakeArgument(p_As, p_Bs, p_Ds, p_Cs, gemm_descs);
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
DeviceMem gemm_workspace_dev(gemm.GetWorkSpaceSize(&argument));
gemm.SetWorkSpacePointer(&argument, gemm_workspace_dev.GetDeviceBuffer());
DeviceMem gemm_kernel_args_dev(gemm.GetDeviceKernelArgSize(&argument));
hip_check_error(hipMemcpy(gemm_kernel_args_dev.GetDeviceBuffer(),
grouped_gemm_kernel_args_.data(),
gemm.GetDeviceKernelArgSize(&argument),
hipMemcpyHostToDevice));
gemm.SetDeviceKernelArgs(argument, gemm_kernel_args_dev.GetDeviceBuffer());
gemm.SetKBatch(argument, config.k_batch);
gemm.SetElementwiseOps(argument, a_element_op, b_element_op, cde_element_op);
invoker.Run(argument, StreamConfig{nullptr, false});
if(config.time_kernel)
{
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
}
bool pass = true;
if(config.do_verification)
{
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<A0DataType,
B0DataType,
EDataType,
AccDataType,
PassThrough,
BElementOp,
PassThrough>;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
for(int m = 0; m < problem_size.Ms[i]; ++m)
{
for(int k = 0; k < problem_size.Ks[i]; ++k)
{
a_element_op(a0_tensors[i](m, k), a0_tensors[i](m, k), a1_tensors[i](m, k));
}
}
c_tensors_device[i]->FromDevice(e_device_tensors[i].mData.data(),
e_device_tensors[i].mDesc.GetElementSize() *
sizeof(EDataType));
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a0_tensors[i],
b_tensors[i],
e_host_tensors[i],
PassThrough{},
b_element_op,
PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < problem_size.Ms[i]; ++m)
{
for(int n = 0; n < problem_size.Ns[i]; ++n)
{
cde_element_op(
e_host_tensors[i](m, n), e_host_tensors[i](m, n), d0_tensors[i](m, n));
}
}
pass &= ck::utils::check_err(e_device_tensors[i], e_host_tensors[i]);
}
}
return pass;
}
int main(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
problem_size.group_count = 16;
for(int i = 0; i < problem_size.group_count; i++)
{
problem_size.Ms.push_back(32 + rand() % 32);
problem_size.Ns.push_back(1024);
problem_size.Ks.push_back(512);
problem_size.stride_As.push_back(problem_size.Ks[i]);
problem_size.stride_Bs.push_back(problem_size.Ks[i]);
problem_size.stride_Cs.push_back(problem_size.Ns[i]);
}
if(argc == 5)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
config.k_batch = std::stoi(argv[4]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
printf("arg4: k_batch (>0)\n");
exit(0);
}
return !run_grouped_gemm(problem_size, config);
}
add_example_executable(example_gemm_multi_ABD_xdl_fp16 gemm_multi_ABD_xdl_fp16.cpp)
add_example_executable(example_gemm_multi_ABD_xdl_bias_fastgelu_bf16_i8 gemm_multi_ABD_xdl_bias_fastgelu_bf16_i8.cpp)
add_example_executable(example_gemm_multi_ABD_xdl_multiply_bias_fastgelu_bf16_i8 gemm_multi_ABD_xdl_multiply_bias_fastgelu_bf16_i8.cpp)
add_example_executable(example_gemm_multi_ABD_xdl_fastgelu_bf16_i8 gemm_multi_ABD_xdl_fastgelu_bf16_i8.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using A0DataType = BF16;
using AsDataType = ck::Tuple<A0DataType>;
using B0DataType = I8;
using B1DataType = BF16;
using BsDataType = ck::Tuple<B0DataType, B1DataType>;
using AccDataType = F32;
using CShuffleDataType = BF16;
using D0DataType = BF16;
using DsDataType = ck::Tuple<D0DataType>;
using EDataType = BF16;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Row;
using B1Layout = B0Layout;
using BsLayout = ck::Tuple<B0Layout, B1Layout>;
using D0Layout = Row;
using DsLayout = ck::Tuple<D0Layout>;
using ELayout = Row;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu;
using AElementOp = PassThrough;
using BElementOp = Multiply;
using CDEElementOp = AddFastGelu;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleABD_Xdl_CShuffle
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< AsLayout, BsLayout, DsLayout, ELayout, AsDataType, BsDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v4>;
// clang-format on
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 4096;
ck::index_t N = 768;
ck::index_t K = 6144;
ck::index_t StrideA = K;
ck::index_t StrideB = N;
ck::index_t StrideD = 0;
ck::index_t StrideE = N;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 11)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideD = std::stoi(argv[9]);
StrideE = std::stoi(argv[10]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<A0DataType> a0_m_k(f_host_tensor_descriptor(M, K, StrideA, A0Layout{}));
Tensor<B0DataType> b0_k_n(f_host_tensor_descriptor(K, N, StrideB, B0Layout{}));
Tensor<B1DataType> b1_k_n(f_host_tensor_descriptor(K, N, 0, B1Layout{}));
Tensor<D0DataType> d_m_n(f_host_tensor_descriptor(M, N, StrideD, D0Layout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a0_m_k: " << a0_m_k.mDesc << std::endl;
std::cout << "b0_k_n: " << b0_k_n.mDesc << std::endl;
std::cout << "b1_k_n: " << b1_k_n.mDesc << std::endl;
std::cout << "d_m_n: " << d_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a0_m_k.GenerateTensorValue(GeneratorTensor_2<A0DataType>{-5, 5});
b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_k_n.GenerateTensorValue(GeneratorTensor_2<B1DataType>{0, 5});
d_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-5, 5});
break;
default:
a0_m_k.GenerateTensorValue(GeneratorTensor_3<A0DataType>{0.0, 1.0});
b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_k_n.GenerateTensorValue(GeneratorTensor_3<B1DataType>{0, 5});
d_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5});
}
DeviceMem a0_device_buf(sizeof(A0DataType) * a0_m_k.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_k_n.mDesc.GetElementSpaceSize());
DeviceMem b1_device_buf(sizeof(B1DataType) * b1_k_n.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(D0DataType) * d_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a0_device_buf.ToDevice(a0_m_k.mData.data());
b0_device_buf.ToDevice(b0_k_n.mData.data());
b1_device_buf.ToDevice(b1_k_n.mData.data());
d_device_buf.ToDevice(d_m_n.mData.data());
e_device_buf.ToDevice(e_m_n_device_result.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
constexpr ck::index_t NumATensor = 1;
constexpr ck::index_t NumBTensor = 2;
constexpr ck::index_t NumDTensor = 1;
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(std::array<const void*, NumATensor>{a0_device_buf.GetDeviceBuffer()},
std::array<const void*, NumBTensor>{b0_device_buf.GetDeviceBuffer(),
b1_device_buf.GetDeviceBuffer()},
std::array<const void*, NumDTensor>{d_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
std::array<ck::index_t, NumATensor>{StrideA},
std::array<ck::index_t, NumBTensor>{StrideB, 0},
std::array<ck::index_t, NumDTensor>{StrideD},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_m_n({M, N});
Tensor<A0DataType> a_m_k({M, K});
Tensor<B1DataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, B0Layout{}));
for(int n = 0; n < N; ++n)
{
for(int k = 0; k < K; ++k)
{
b_element_op(b_k_n(k, n), b0_k_n(k, n), b1_k_n(k, n));
}
}
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<A0DataType,
B1DataType,
CShuffleDataType,
AccDataType,
PassThrough,
PassThrough,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a0_m_k, b_k_n, c_m_n, PassThrough{}, PassThrough{}, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d_m_n(m, n));
}
}
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
return ck::utils::check_err(e_m_n_device_result, e_m_n_host_result) ? 0 : 1;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using A0DataType = BF16;
using AsDataType = ck::Tuple<A0DataType>;
using B0DataType = I8;
using B1DataType = BF16;
using BsDataType = ck::Tuple<B0DataType, B1DataType>;
using AccDataType = F32;
using CShuffleDataType = F32;
using D0DataType = BF16;
using DsDataType = ck::Tuple<>;
using EDataType = BF16;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Row;
using B1Layout = B0Layout;
using BsLayout = ck::Tuple<B0Layout, B1Layout>;
using D0Layout = Row;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using FastGelu = ck::tensor_operation::element_wise::FastGelu;
using AElementOp = PassThrough;
using BElementOp = Multiply;
using CDEElementOp = FastGelu;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleABD_Xdl_CShuffle
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< AsLayout, BsLayout, DsLayout, ELayout, AsDataType, BsDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v4>;
// clang-format on
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 4096;
ck::index_t N = 768;
ck::index_t K = 6144;
ck::index_t StrideA = K;
ck::index_t StrideB = N;
ck::index_t StrideD = 0;
ck::index_t StrideE = N;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 11)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideD = std::stoi(argv[9]);
StrideE = std::stoi(argv[10]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<A0DataType> a0_m_k(f_host_tensor_descriptor(M, K, StrideA, A0Layout{}));
Tensor<B0DataType> b0_k_n(f_host_tensor_descriptor(K, N, StrideB, B0Layout{}));
Tensor<B1DataType> b1_k_n(f_host_tensor_descriptor(K, N, 0, B1Layout{}));
Tensor<D0DataType> d_m_n(f_host_tensor_descriptor(M, N, StrideD, D0Layout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a0_m_k: " << a0_m_k.mDesc << std::endl;
std::cout << "b0_k_n: " << b0_k_n.mDesc << std::endl;
std::cout << "b1_k_n: " << b1_k_n.mDesc << std::endl;
std::cout << "d_m_n: " << d_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a0_m_k.GenerateTensorValue(GeneratorTensor_2<A0DataType>{-5, 5});
b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_k_n.GenerateTensorValue(GeneratorTensor_2<B1DataType>{0, 5});
d_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-5, 5});
break;
default:
a0_m_k.GenerateTensorValue(GeneratorTensor_3<A0DataType>{0.0, 1.0});
b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_k_n.GenerateTensorValue(GeneratorTensor_3<B1DataType>{0, 5});
d_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5});
}
DeviceMem a0_device_buf(sizeof(A0DataType) * a0_m_k.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_k_n.mDesc.GetElementSpaceSize());
DeviceMem b1_device_buf(sizeof(B1DataType) * b1_k_n.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(D0DataType) * d_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a0_device_buf.ToDevice(a0_m_k.mData.data());
b0_device_buf.ToDevice(b0_k_n.mData.data());
b1_device_buf.ToDevice(b1_k_n.mData.data());
d_device_buf.ToDevice(d_m_n.mData.data());
e_device_buf.ToDevice(e_m_n_device_result.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
constexpr ck::index_t NumATensor = 1;
constexpr ck::index_t NumBTensor = 2;
constexpr ck::index_t NumDTensor = 0;
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(std::array<const void*, NumATensor>{a0_device_buf.GetDeviceBuffer()},
std::array<const void*, NumBTensor>{b0_device_buf.GetDeviceBuffer(),
b1_device_buf.GetDeviceBuffer()},
std::array<const void*, NumDTensor>{},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
std::array<ck::index_t, NumATensor>{StrideA},
std::array<ck::index_t, NumBTensor>{StrideB, 0},
std::array<ck::index_t, NumDTensor>{},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_m_n({M, N});
Tensor<A0DataType> a_m_k({M, K});
Tensor<B1DataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, B0Layout{}));
for(int n = 0; n < N; ++n)
{
for(int k = 0; k < K; ++k)
{
b_element_op(b_k_n(k, n), b0_k_n(k, n), b1_k_n(k, n));
}
}
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<A0DataType,
B1DataType,
CShuffleDataType,
AccDataType,
PassThrough,
PassThrough,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a0_m_k, b_k_n, c_m_n, PassThrough{}, PassThrough{}, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n));
}
}
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
return ck::utils::check_err(e_m_n_device_result, e_m_n_host_result) ? 0 : 1;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using DDataType = F16;
using EDataType = F16;
using ALayout = Row;
using BLayout = Row;
using DLayout = Row;
using ELayout = Row;
struct AddScale
{
static constexpr auto I0 = ck::Number<0>{};
static constexpr auto I1 = ck::Number<1>{};
static constexpr auto I2 = ck::Number<2>{};
static constexpr auto I3 = ck::Number<3>{};
__host__ __device__ constexpr void
operator()(ck::half4_t& a, const ck::half4_t& a0, const ck::half4_t& a1) const
{
const auto a0_v_t = ck::vector_type<ck::half_t, 4>{a0};
const auto a1_v_t = ck::vector_type<ck::half_t, 4>{a1};
auto r_v_t = ck::vector_type<ck::half_t, 4>{};
r_v_t.AsType<ck::half_t>()(I0) =
scale * (a0_v_t.AsType<ck::half_t>()[I0] + a1_v_t.AsType<ck::half_t>()[I0]);
r_v_t.AsType<ck::half_t>()(I1) =
scale * (a0_v_t.AsType<ck::half_t>()[I1] + a1_v_t.AsType<ck::half_t>()[I1]);
r_v_t.AsType<ck::half_t>()(I2) =
scale * (a0_v_t.AsType<ck::half_t>()[I2] + a1_v_t.AsType<ck::half_t>()[I2]);
r_v_t.AsType<ck::half_t>()(I3) =
scale * (a0_v_t.AsType<ck::half_t>()[I3] + a1_v_t.AsType<ck::half_t>()[I3]);
a = r_v_t.AsType<ck::half4_t>()[I0];
}
__host__ __device__ constexpr void
operator()(ck::half_t& a, const ck::half_t& a0, const ck::half_t& a1) const
{
a = scale * (a0 + a1);
}
// this attribute controls the copy_function applying element_wise_op with
// pack4_data
constexpr const static bool is_pack4_invocable = true;
float scale = 1.0;
};
struct AlphaBetaAdd
{
AlphaBetaAdd(float alpha, float beta) : alpha_(alpha), beta_(beta){};
template <typename E, typename C, typename D>
__host__ __device__ constexpr void operator()(E& e, const C& c, const D& d) const;
template <>
__host__ __device__ constexpr void operator()<ck::half_t, float, ck::half_t>(
ck::half_t& e, const float& c, const ck::half_t& d) const
{
e = ck::type_convert<ck::half_t>(alpha_ * c + beta_ * ck::type_convert<float>(d));
};
float alpha_;
float beta_;
};
using AElementOp = AddScale;
using BElementOp = PassThrough;
using CDEElementOp = AlphaBetaAdd;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleABD_Xdl_CShuffle<
ck::Tuple<ALayout, ALayout>,
ck::Tuple<BLayout>,
ck::Tuple<DLayout>,
ELayout,
ck::Tuple<ADataType, ADataType>,
ck::Tuple<BDataType>,
AccDataType,
CShuffleDataType,
ck::Tuple<DDataType>,
EDataType,
AElementOp,
BElementOp,
CDEElementOp,
GemmSpec,
1,
256,
256,
128,
32,
8,
8,
32,
32,
4,
2,
S<4, 64, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
1,
S<4, 64, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
1,
2,
8,
1,
1,
1,
S<1, 32, 1, 8>,
8>;
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = K;
ck::index_t StrideB = N;
ck::index_t StrideD = N;
ck::index_t StrideE = N;
float alpha = 1.0f;
float beta = 1.0f;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 6)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
alpha = std::stof(argv[4]);
beta = std::stof(argv[5]);
}
else if(argc == 13)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideD = std::stoi(argv[9]);
StrideE = std::stoi(argv[10]);
alpha = std::stof(argv[11]);
beta = std::stof(argv[12]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE, alpha, "
"beta\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<ADataType> a0_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<ADataType> a1_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<DDataType> d_m_n(f_host_tensor_descriptor(M, N, StrideD, DLayout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a0_m_k: " << a0_m_k.mDesc << std::endl;
std::cout << "a1_m_k: " << a1_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "d_m_n: " << d_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a0_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
a1_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d_m_n.GenerateTensorValue(GeneratorTensor_2<DDataType>{-5, 5});
break;
default:
a0_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
a1_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d_m_n.GenerateTensorValue(GeneratorTensor_3<DDataType>{-0.5, 0.5});
}
DeviceMem a0_device_buf(sizeof(ADataType) * a0_m_k.mDesc.GetElementSpaceSize());
DeviceMem a1_device_buf(sizeof(ADataType) * a1_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(DDataType) * d_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a0_device_buf.ToDevice(a0_m_k.mData.data());
a1_device_buf.ToDevice(a1_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
d_device_buf.ToDevice(d_m_n.mData.data());
e_device_buf.ToDevice(e_m_n_device_result.mData.data());
auto a_element_op = AElementOp{0.2};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{alpha, beta};
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(std::array<const void*, 2>{a0_device_buf.GetDeviceBuffer(),
a1_device_buf.GetDeviceBuffer()},
std::array<const void*, 1>{b_device_buf.GetDeviceBuffer()},
std::array<const void*, 1>{d_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
std::array<ck::index_t, 2>{StrideA, StrideA},
std::array<ck::index_t, 1>{StrideB},
std::array<ck::index_t, 1>{StrideD},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_m_n({M, N});
Tensor<ADataType> a_m_k({M, K});
for(int m = 0; m < M; ++m)
{
for(int k = 0; k < K; ++k)
{
a_element_op(a_m_k(m, k), a0_m_k(m, k), a1_m_k(m, k));
}
}
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CShuffleDataType,
AccDataType,
PassThrough,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, PassThrough{}, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d_m_n(m, n));
}
}
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
return ck::utils::check_err(e_m_n_device_result, e_m_n_host_result) ? 0 : 1;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using A0DataType = BF16;
using AsDataType = ck::Tuple<A0DataType>;
using B0DataType = I8;
using B1DataType = BF16;
using BsDataType = ck::Tuple<B0DataType>;
using AccDataType = F32;
using CShuffleDataType = F32;
using D0DataType = BF16;
using DsDataType = ck::Tuple<B1DataType, D0DataType>;
using EDataType = BF16;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Row;
using B1Layout = B0Layout;
using BsLayout = ck::Tuple<B0Layout>;
using D0Layout = Row;
using DsLayout = ck::Tuple<B1Layout, D0Layout>;
using ELayout = Row;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using MultiplyAddFastGelu = ck::tensor_operation::element_wise::MultiplyAddFastGelu;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = MultiplyAddFastGelu;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleABD_Xdl_CShuffle
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< AsLayout, BsLayout, DsLayout, ELayout, AsDataType, BsDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v4>;
// clang-format on
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 4096;
ck::index_t N = 768;
ck::index_t K = 6144;
ck::index_t StrideA = K;
ck::index_t StrideB = N;
ck::index_t StrideD = 0;
ck::index_t StrideE = N;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 11)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideD = std::stoi(argv[9]);
StrideE = std::stoi(argv[10]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<A0DataType> a0_m_k(f_host_tensor_descriptor(M, K, StrideA, A0Layout{}));
Tensor<B0DataType> b0_k_n(f_host_tensor_descriptor(K, N, StrideB, B0Layout{}));
Tensor<B1DataType> b1_k_n(f_host_tensor_descriptor(K, N, 0, B1Layout{}));
Tensor<D0DataType> d_m_n(f_host_tensor_descriptor(M, N, StrideD, D0Layout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a0_m_k: " << a0_m_k.mDesc << std::endl;
std::cout << "b0_k_n: " << b0_k_n.mDesc << std::endl;
std::cout << "b1_k_n: " << b1_k_n.mDesc << std::endl;
std::cout << "d_m_n: " << d_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a0_m_k.GenerateTensorValue(GeneratorTensor_2<A0DataType>{-5, 5});
b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_k_n.GenerateTensorValue(GeneratorTensor_2<B1DataType>{0, 5});
d_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-5, 5});
break;
default:
a0_m_k.GenerateTensorValue(GeneratorTensor_3<A0DataType>{0.0, 1.0});
b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_k_n.GenerateTensorValue(GeneratorTensor_3<B1DataType>{0, 5});
d_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5});
}
DeviceMem a0_device_buf(sizeof(A0DataType) * a0_m_k.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_k_n.mDesc.GetElementSpaceSize());
DeviceMem b1_device_buf(sizeof(B1DataType) * b1_k_n.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(D0DataType) * d_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a0_device_buf.ToDevice(a0_m_k.mData.data());
b0_device_buf.ToDevice(b0_k_n.mData.data());
b1_device_buf.ToDevice(b1_k_n.mData.data());
d_device_buf.ToDevice(d_m_n.mData.data());
e_device_buf.ToDevice(e_m_n_device_result.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
constexpr ck::index_t NumATensor = 1;
constexpr ck::index_t NumBTensor = 1;
constexpr ck::index_t NumDTensor = 2;
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(std::array<const void*, NumATensor>{a0_device_buf.GetDeviceBuffer()},
std::array<const void*, NumBTensor>{b0_device_buf.GetDeviceBuffer()},
std::array<const void*, NumDTensor>{b1_device_buf.GetDeviceBuffer(),
d_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
std::array<ck::index_t, NumATensor>{StrideA},
std::array<ck::index_t, NumBTensor>{StrideB},
std::array<ck::index_t, NumDTensor>{0, StrideD},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_m_n({M, N});
Tensor<A0DataType> a_m_k({M, K});
Tensor<B1DataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, B0Layout{}));
#if 0
for(int n = 0; n < N; ++n)
{
for(int k = 0; k < K; ++k)
{
b_element_op(b_k_n(k, n), b0_k_n(k, n), b1_k_n(k, n));
}
}
#endif
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<A0DataType,
B0DataType,
CShuffleDataType,
AccDataType,
PassThrough,
PassThrough,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a0_m_k, b0_k_n, c_m_n, PassThrough{}, PassThrough{}, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), b1_k_n(0, n), d_m_n(m, n));
}
}
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
return ck::utils::check_err(e_m_n_device_result, e_m_n_host_result) ? 0 : 1;
}
return 0;
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment