Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
ef326c73
Commit
ef326c73
authored
Nov 19, 2024
by
Alan Turner
Browse files
Merge remote-tracking branch 'origin/develop' into migraphx-update
parents
b7775add
e4dfe4d8
Changes
511
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2912 additions
and
15 deletions
+2912
-15
example/49_maxpool2d_bwd/CMakeLists.txt
example/49_maxpool2d_bwd/CMakeLists.txt
+3
-9
example/49_maxpool2d_bwd/maxpool2d_bwd_common.hpp
example/49_maxpool2d_bwd/maxpool2d_bwd_common.hpp
+4
-3
example/50_put_element/CMakeLists.txt
example/50_put_element/CMakeLists.txt
+1
-3
example/51_avgpool3d_bwd/avgpool3d_bwd_common.hpp
example/51_avgpool3d_bwd/avgpool3d_bwd_common.hpp
+4
-0
example/52_im2col_col2im/CMakeLists.txt
example/52_im2col_col2im/CMakeLists.txt
+7
-0
example/52_im2col_col2im/column_to_image_f32.cpp
example/52_im2col_col2im/column_to_image_f32.cpp
+166
-0
example/52_im2col_col2im/common.hpp
example/52_im2col_col2im/common.hpp
+97
-0
example/52_im2col_col2im/image_to_column_f32.cpp
example/52_im2col_col2im/image_to_column_f32.cpp
+168
-0
example/53_layernorm2d_bwd/CMakeLists.txt
example/53_layernorm2d_bwd/CMakeLists.txt
+1
-0
example/53_layernorm2d_bwd/layernorm2d_bwd_fp32.cpp
example/53_layernorm2d_bwd/layernorm2d_bwd_fp32.cpp
+228
-0
example/54_groupnorm_bwd/CMakeLists.txt
example/54_groupnorm_bwd/CMakeLists.txt
+1
-0
example/54_groupnorm_bwd/groupnorm_bwd_fp32.cpp
example/54_groupnorm_bwd/groupnorm_bwd_fp32.cpp
+240
-0
example/59_grouped_gemm_multi_ABD/CMakeLists.txt
example/59_grouped_gemm_multi_ABD/CMakeLists.txt
+7
-0
example/59_grouped_gemm_multi_ABD/grouped_gemm_multi_abd_xdl_fixed_nk_bias_bf16_i8.cpp
..._ABD/grouped_gemm_multi_abd_xdl_fixed_nk_bias_bf16_i8.cpp
+401
-0
example/59_grouped_gemm_multi_ABD/grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16.cpp
...lti_ABD/grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16.cpp
+397
-0
example/60_gemm_multi_ABD/CMakeLists.txt
example/60_gemm_multi_ABD/CMakeLists.txt
+4
-0
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_bias_fastgelu_bf16_i8.cpp
...mm_multi_ABD/gemm_multi_ABD_xdl_bias_fastgelu_bf16_i8.cpp
+273
-0
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_fastgelu_bf16_i8.cpp
...60_gemm_multi_ABD/gemm_multi_ABD_xdl_fastgelu_bf16_i8.cpp
+273
-0
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_fp16.cpp
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_fp16.cpp
+363
-0
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_multiply_bias_fastgelu_bf16_i8.cpp
...ABD/gemm_multi_ABD_xdl_multiply_bias_fastgelu_bf16_i8.cpp
+274
-0
No files found.
Too many changes to show.
To preserve performance only
511 of 511+
files are displayed.
Plain diff
Email patch
example/49_maxpool2d_bwd/CMakeLists.txt
View file @
ef326c73
if
(
DTYPES MATCHES
"bf16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_maxpool2d_bwd_bf16 maxpool2d_bwd_bf16.cpp
)
add_example_executable
(
example_maxpool2d_bwd_bf16 maxpool2d_bwd_bf16.cpp
)
add_example_executable
(
example_maxpool2d_bwd_fp16 maxpool2d_bwd_fp16.cpp
)
endif
()
add_example_executable
(
example_maxpool2d_bwd_fp32 maxpool2d_bwd_fp32.cpp
)
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_maxpool2d_bwd_fp16 maxpool2d_bwd_fp16.cpp
)
endif
()
if
(
DTYPES MATCHES
"fp32"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_maxpool2d_bwd_fp32 maxpool2d_bwd_fp32.cpp
)
endif
()
example/49_maxpool2d_bwd/maxpool2d_bwd_common.hpp
View file @
ef326c73
...
@@ -8,7 +8,7 @@
...
@@ -8,7 +8,7 @@
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_
inde
x_pool_bwd_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_
ma
x_pool_bwd_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
...
@@ -60,7 +60,7 @@ bool maxpool_bwd_test(bool do_verification,
...
@@ -60,7 +60,7 @@ bool maxpool_bwd_test(bool do_verification,
1
>
;
// InSrcOutDstVectorSize
1
>
;
// InSrcOutDstVectorSize
using
DeviceMaxPoolBwdInstance
=
ck
::
tensor_operation
::
device
::
using
DeviceMaxPoolBwdInstance
=
ck
::
tensor_operation
::
device
::
Device
Inde
xPoolBwdImpl
<
DOutDataType
,
IndexDataType
,
DInDataType
,
4
>
;
Device
Ma
xPoolBwdImpl
<
DOutDataType
,
IndexDataType
,
DInDataType
,
4
>
;
const
ck
::
index_t
Ys
=
(
Y
-
1
)
*
window_dilation_h
+
1
;
const
ck
::
index_t
Ys
=
(
Y
-
1
)
*
window_dilation_h
+
1
;
const
ck
::
index_t
Xs
=
(
X
-
1
)
*
window_dilation_w
+
1
;
const
ck
::
index_t
Xs
=
(
X
-
1
)
*
window_dilation_w
+
1
;
...
@@ -155,7 +155,8 @@ bool maxpool_bwd_test(bool do_verification,
...
@@ -155,7 +155,8 @@ bool maxpool_bwd_test(bool do_verification,
dout_n_c_ho_wo
.
mDesc
.
GetElementSpaceSize
(),
dout_n_c_ho_wo
.
mDesc
.
GetElementSpaceSize
(),
din_n_c_hi_wi_device
.
mDesc
.
GetElementSpaceSize
(),
din_n_c_hi_wi_device
.
mDesc
.
GetElementSpaceSize
(),
window_spatial_lengths
,
window_spatial_lengths
,
window_strides
);
window_strides
,
window_dilations
);
if
(
!
pool_bwd
.
IsSupportedArgument
(
pool_bwd_argument_ptr
.
get
()))
if
(
!
pool_bwd
.
IsSupportedArgument
(
pool_bwd_argument_ptr
.
get
()))
{
{
...
...
example/50_put_element/CMakeLists.txt
View file @
ef326c73
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_put_element_fp16 put_element_fp16.cpp
)
add_example_executable
(
example_put_element_fp16 put_element_fp16.cpp
)
endif
()
example/51_avgpool3d_bwd/avgpool3d_bwd_common.hpp
View file @
ef326c73
...
@@ -26,6 +26,8 @@ std::vector<ck::index_t> f_tensor_strides_ncdhw(ck::index_t N_,
...
@@ -26,6 +26,8 @@ std::vector<ck::index_t> f_tensor_strides_ncdhw(ck::index_t N_,
return
{
C_
*
D
*
H
*
W
,
D
*
H
*
W
,
H
*
W
,
W
,
1
_uz
};
return
{
C_
*
D
*
H
*
W
,
D
*
H
*
W
,
H
*
W
,
W
,
1
_uz
};
else
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NDHWC
>::
value
)
else
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NDHWC
>::
value
)
return
{
D
*
C_
*
H
*
W
,
1
_uz
,
C_
*
H
*
W
,
W
*
C_
,
C_
};
return
{
D
*
C_
*
H
*
W
,
1
_uz
,
C_
*
H
*
W
,
W
*
C_
,
C_
};
throw
std
::
runtime_error
(
"Avgpool3d_bwd: problem with layout. "
);
return
{
0
,
0
,
0
,
0
,
0
};
};
};
template
<
typename
TensorLayout
>
template
<
typename
TensorLayout
>
...
@@ -47,6 +49,8 @@ HostTensorDescriptor f_host_tensor_descriptor(std::size_t N_,
...
@@ -47,6 +49,8 @@ HostTensorDescriptor f_host_tensor_descriptor(std::size_t N_,
return
HostTensorDescriptor
({
N_
,
C_
,
D
,
H
,
W
},
return
HostTensorDescriptor
({
N_
,
C_
,
D
,
H
,
W
},
{
D
*
C_
*
H
*
W
,
1
_uz
,
C_
*
H
*
W
,
W
*
C_
,
C_
});
{
D
*
C_
*
H
*
W
,
1
_uz
,
C_
*
H
*
W
,
W
*
C_
,
C_
});
}
}
throw
std
::
runtime_error
(
"Avgpool3d_bwd: problem with layout. "
);
return
HostTensorDescriptor
({
0
,
0
,
0
,
0
,
0
},
{
0
,
0
,
0
,
0
,
0
});
};
};
template
<
typename
DevicePoolBwdInstance
,
template
<
typename
DevicePoolBwdInstance
,
...
...
example/52_im2col_col2im/CMakeLists.txt
0 → 100644
View file @
ef326c73
add_custom_target
(
example_im2col_col2im
)
add_example_executable
(
example_image_to_column_f32 image_to_column_f32.cpp
)
add_example_dependencies
(
example_im2col_col2im example_image_to_column_f32
)
add_example_executable
(
example_column_to_image_f32 column_to_image_f32.cpp
)
add_example_dependencies
(
example_im2col_col2im example_column_to_image_f32
)
example/52_im2col_col2im/column_to_image_f32.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
InDataType
=
FP32
;
// ck::bhalf_t;//FP32;
using
OutDataType
=
FP32
;
// ck::bhalf_t;//FP32;
using
ImLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
ColumnToImageOp
=
ck
::
conv_tensor_rearrange_op
::
ColumnToImage
;
// clang-format off
using
DeviceColToImgInstance
=
ck
::
tensor_operation
::
device
::
DeviceColumnToImageImpl
//#####################| Num| ImLayout| InDataType| OutDataType| Block| MPer| KPer| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| | | | | | | | | |
<
NDimSpatial
,
ImLayout
,
InDataType
,
OutDataType
,
256
,
128
,
128
,
S
<
16
,
16
>
,
1
>
;
// clang-format on
bool
RunColumnToImage
(
const
ExecutionConfig
&
config
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_params
)
{
const
auto
G
=
conv_params
.
G_
;
const
auto
N
=
conv_params
.
N_
;
const
auto
C
=
conv_params
.
C_
;
const
ck
::
index_t
NDoHoWo
=
N
*
ck
::
accumulate_n
<
ck
::
index_t
>
(
conv_params
.
output_spatial_lengths_
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
const
ck
::
index_t
CZYX
=
C
*
ck
::
accumulate_n
<
ck
::
index_t
>
(
conv_params
.
filter_spatial_lengths_
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
const
auto
in_desc
=
HostTensorDescriptor
({
G
,
NDoHoWo
,
CZYX
});
const
auto
out_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
ImLayout
>
(
conv_params
);
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
image_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
3
>
gemm_g_m_k_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
std
::
copy
(
x
.
begin
(),
x
.
end
(),
y
.
begin
());
};
copy
(
conv_params
.
input_spatial_lengths_
,
input_spatial_lengths
);
copy
(
conv_params
.
filter_spatial_lengths_
,
filter_spatial_lengths
);
copy
(
conv_params
.
output_spatial_lengths_
,
output_spatial_lengths
);
copy
(
in_desc
.
GetStrides
(),
gemm_g_m_k_strides
);
copy
(
out_desc
.
GetStrides
(),
image_g_n_c_wis_strides
);
copy
(
conv_params
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_params
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_params
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_params
.
input_right_pads_
,
input_right_pads
);
Tensor
<
InDataType
>
in
(
in_desc
);
Tensor
<
OutDataType
>
out_device
(
out_desc
);
Tensor
<
OutDataType
>
out_host
(
out_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_device
.
mDesc
<<
std
::
endl
;
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
1
,
2
});
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
// reset input to zero
out_device_buf
.
SetZero
();
static_assert
(
std
::
is_default_constructible_v
<
DeviceColToImgInstance
>
);
// do conv
auto
col2img
=
DeviceColToImgInstance
{};
auto
invoker
=
col2img
.
MakeInvoker
();
auto
argument
=
col2img
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
out_device_buf
.
GetDeviceBuffer
(),
G
,
N
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
image_g_n_c_wis_strides
,
gemm_g_m_k_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
if
(
!
col2img
.
IsSupportedArgument
(
argument
))
{
std
::
cerr
<<
"wrong! device_col2img with the specified compilation parameters does "
"not support this col2img problem"
<<
std
::
endl
;
return
false
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
std
::
size_t
num_btype
=
G
*
NDoHoWo
*
CZYX
*
(
sizeof
(
OutDataType
)
+
sizeof
(
InDataType
));
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
config
.
do_verification
)
{
auto
ref_column_to_image
=
ck
::
tensor_operation
::
host
::
ReferenceColumnToImage
<
NDimSpatial
,
ImLayout
,
InDataType
,
OutDataType
>
();
auto
ref_invoker
=
ref_column_to_image
.
MakeInvoker
();
auto
ref_argument
=
ref_column_to_image
.
MakeArgument
(
in
,
out_host
,
conv_params
.
filter_spatial_lengths_
,
conv_params
.
conv_filter_strides_
,
conv_params
.
conv_filter_dilations_
,
conv_params
.
input_left_pads_
,
conv_params
.
input_right_pads_
);
if
(
!
ref_column_to_image
.
IsSupportedArgument
(
&
ref_argument
))
{
std
::
cerr
<<
"wrong! ref_col2img with the specified compilation parameters does "
"not support this col2img problem"
<<
std
::
endl
;
return
false
;
}
ref_invoker
.
Run
(
ref_argument
);
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
out_device
.
mData
,
out_host
.
mData
);
}
return
true
;
}
int
RunColumnToImageExample
(
int
argc
,
char
*
argv
[])
{
ExecutionConfig
config
;
ck
::
utils
::
conv
::
ConvParam
conv_params
=
DefaultConvParams
;
if
(
!
parse_cmd_args
(
argc
,
argv
,
config
,
conv_params
))
{
return
EXIT_FAILURE
;
}
if
(
conv_params
.
num_dim_spatial_
!=
NDimSpatial
)
{
std
::
cerr
<<
"unsupported # of spatial dimensions"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
return
!
RunColumnToImage
(
config
,
conv_params
);
}
int
main
(
int
argc
,
char
*
argv
[])
{
return
RunColumnToImageExample
(
argc
,
argv
);
}
example/52_im2col_col2im/common.hpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <initializer_list>
#include <iostream>
#include <numeric>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_image_to_column_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_column_to_image_impl.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_image_to_column.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_column_to_image.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
static
inline
constexpr
ck
::
index_t
NDimSpatial
=
2
;
using
FP32
=
float
;
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
};
#define DefaultConvParams \
ck::utils::conv::ConvParam \
{ \
NDimSpatial, 1, 32, 1, 1, {4, 4}, {64, 64}, {1, 1}, {1, 1}, {0, 0}, { 0, 0 } \
}
inline
void
print_help_msg
()
{
std
::
cerr
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
}
inline
bool
parse_cmd_args
(
int
argc
,
char
*
argv
[],
ExecutionConfig
&
config
,
ck
::
utils
::
conv
::
ConvParam
&
conv_params
)
{
constexpr
int
num_execution_config_args
=
3
;
// arguments for do_verification, init_method, time_kernel
constexpr
int
num_conv_param_leading_args
=
5
;
// arguments for num_dim_spatial_, G_, N_, K_, C_
constexpr
int
threshold_to_catch_partial_args
=
1
+
num_execution_config_args
;
constexpr
int
threshold_to_catch_all_args
=
threshold_to_catch_partial_args
+
num_conv_param_leading_args
;
if
(
argc
==
1
)
{
// use default
config
=
ExecutionConfig
{};
}
// catch only ExecutionConfig arguments
else
if
(
argc
==
threshold_to_catch_partial_args
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
// catch both ExecutionConfig & ConvParam arguments
else
if
(
threshold_to_catch_all_args
<
argc
&&
((
argc
-
threshold_to_catch_all_args
)
%
3
==
0
))
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
conv_params
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
threshold_to_catch_partial_args
,
argv
);
}
else
{
print_help_msg
();
return
false
;
}
return
true
;
}
example/52_im2col_col2im/image_to_column_f32.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
InDataType
=
FP32
;
using
OutDataType
=
FP32
;
using
ImLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
ImageToColumnOp
=
ck
::
conv_tensor_rearrange_op
::
ImageToColumn
;
// clang-format off
using
DeviceImgToColInstance
=
ck
::
tensor_operation
::
device
::
DeviceImageToColumnImpl
//#####################| Num| ImLayout| InDataType| OutDataType| Block| MPer| KPer| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| | | | | | | | | |
<
NDimSpatial
,
ImLayout
,
InDataType
,
OutDataType
,
256
,
128
,
128
,
S
<
16
,
16
>
,
1
>
;
// clang-format on
bool
RunImageToColumn
(
const
ExecutionConfig
&
config
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_params
)
{
const
auto
G
=
conv_params
.
G_
;
const
auto
N
=
conv_params
.
N_
;
const
auto
C
=
conv_params
.
C_
;
const
ck
::
index_t
NDoHoWo
=
N
*
ck
::
accumulate_n
<
ck
::
index_t
>
(
conv_params
.
output_spatial_lengths_
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
const
ck
::
index_t
CZYX
=
C
*
ck
::
accumulate_n
<
ck
::
index_t
>
(
conv_params
.
filter_spatial_lengths_
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
const
auto
in_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
ImLayout
>
(
conv_params
);
const
auto
out_desc
=
HostTensorDescriptor
({
G
,
NDoHoWo
,
CZYX
});
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
image_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
3
>
gemm_g_m_k_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
std
::
copy
(
x
.
begin
(),
x
.
end
(),
y
.
begin
());
};
copy
(
conv_params
.
input_spatial_lengths_
,
input_spatial_lengths
);
copy
(
conv_params
.
filter_spatial_lengths_
,
filter_spatial_lengths
);
copy
(
conv_params
.
output_spatial_lengths_
,
output_spatial_lengths
);
copy
(
in_desc
.
GetStrides
(),
image_g_n_c_wis_strides
);
copy
(
out_desc
.
GetStrides
(),
gemm_g_m_k_strides
);
copy
(
conv_params
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_params
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_params
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_params
.
input_right_pads_
,
input_right_pads
);
Tensor
<
InDataType
>
in
(
in_desc
);
Tensor
<
OutDataType
>
out_device
(
out_desc
);
Tensor
<
OutDataType
>
out_host
(
out_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_device
.
mDesc
<<
std
::
endl
;
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
// reset input to zero
out_device_buf
.
SetZero
();
static_assert
(
std
::
is_default_constructible_v
<
DeviceImgToColInstance
>
);
// do conv
auto
img2col
=
DeviceImgToColInstance
{};
auto
invoker
=
img2col
.
MakeInvoker
();
auto
argument
=
img2col
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
out_device_buf
.
GetDeviceBuffer
(),
G
,
N
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
image_g_n_c_wis_strides
,
gemm_g_m_k_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
if
(
!
img2col
.
IsSupportedArgument
(
argument
))
{
std
::
cerr
<<
"wrong! device_img2col with the specified compilation parameters does "
"not support this img2col problem"
<<
std
::
endl
;
return
false
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
std
::
size_t
num_btype
=
G
*
NDoHoWo
*
CZYX
*
(
sizeof
(
OutDataType
)
+
sizeof
(
InDataType
));
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
config
.
do_verification
)
{
auto
ref_image_to_column
=
ck
::
tensor_operation
::
host
::
ReferenceImageToColumn
<
NDimSpatial
,
ImLayout
,
InDataType
,
OutDataType
>
();
auto
ref_invoker
=
ref_image_to_column
.
MakeInvoker
();
auto
ref_argument
=
ref_image_to_column
.
MakeArgument
(
in
,
out_host
,
conv_params
.
filter_spatial_lengths_
,
conv_params
.
conv_filter_strides_
,
conv_params
.
conv_filter_dilations_
,
conv_params
.
input_left_pads_
,
conv_params
.
input_right_pads_
);
if
(
!
ref_image_to_column
.
IsSupportedArgument
(
&
ref_argument
))
{
std
::
cerr
<<
"wrong! ref_img2col with the specified compilation parameters does "
"not support this img2col problem"
<<
std
::
endl
;
return
false
;
}
ref_invoker
.
Run
(
ref_argument
);
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
out_device
.
mData
,
out_host
.
mData
);
}
return
true
;
}
int
RunImageToColumnExample
(
int
argc
,
char
*
argv
[])
{
ExecutionConfig
config
;
ck
::
utils
::
conv
::
ConvParam
conv_params
=
DefaultConvParams
;
if
(
!
parse_cmd_args
(
argc
,
argv
,
config
,
conv_params
))
{
return
EXIT_FAILURE
;
}
if
(
conv_params
.
num_dim_spatial_
!=
NDimSpatial
)
{
std
::
cerr
<<
"unsupported # of spatial dimensions"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
return
!
RunImageToColumn
(
config
,
conv_params
);
}
int
main
(
int
argc
,
char
*
argv
[])
{
return
RunImageToColumnExample
(
argc
,
argv
);
}
example/53_layernorm2d_bwd/CMakeLists.txt
0 → 100644
View file @
ef326c73
add_example_executable
(
example_layernorm2d_bwd_fp32 layernorm2d_bwd_fp32.cpp
)
example/53_layernorm2d_bwd/layernorm2d_bwd_fp32.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_data_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_gamma_beta_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm_bwd.hpp"
using
DYDataType
=
float
;
using
XDataType
=
float
;
using
GammaDataType
=
float
;
using
MeanInvStdDataType
=
float
;
using
DGammaDataType
=
float
;
using
DBetaDataType
=
float
;
using
DXDataType
=
float
;
using
ComputeDataType
=
float
;
constexpr
int
Rank
=
2
;
constexpr
int
NumReduceDim
=
1
;
// Layernorm:
// Input shape
// dy: [M, N]
// x: [M, N]
// mean: [M, 1]
// inv_std: [M, 1]
// Output shape
// dx: [M, N]
// dgamma: [1, N]
// dbeta: [1, N]
// dgamma = reduce_sum(dy * (x - mean) * inv_std, axis=0)
// dbeta = reduce_sum(dy, axis=0)
// [CAUSION]
// In DeviceNormalizationBwdDataImpl & DeviceNormalizationBwdGammaBetaImpl, M is Invariant
// dimension, K is reduced dimension Hence, M in this example and
// DeviceNormalizationBwdGammaBetaImpl is different
using
XDeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationBwdDataImpl
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
ComputeDataType
,
DXDataType
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// MThreadClusterSize
32
,
// KThreadClusterSize
1
,
// MThreadSliceSize
4
,
// KThreadSliceSize
true
,
// IsDYFastestDimReduced
4
,
// DYSrcVectorSize
true
,
// IsXFastestDimReduced
4
,
// XSrcVectorSize
true
,
// IsGammaFastestDimReduced
4
,
// GammaSrcVectorSize
false
,
// IsMeanInvStdFastestDimReduced
1
,
// MeanInvStdSrcVectorSize
true
,
// IsDXFastestDimReduced
4
>
;
// DXDstVectorSize
using
GammaBetaDeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationBwdGammaBetaImpl
<
DYDataType
,
XDataType
,
MeanInvStdDataType
,
ComputeDataType
,
DGammaDataType
,
DBetaDataType
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// MThreadClusterSize
32
,
// KThreadClusterSize
4
,
// MThreadSliceSize
1
,
// KThreadSliceSize
false
,
// IsDYFastestDimReduced
4
,
// DYSrcVectorSize
false
,
// IsXFastestDimReduced
4
,
// XSrcVectorSize
true
,
// IsMeanInvStdFastestDimReduced
1
,
// MeanInvStdSrcVectorSize
4
,
// DGammaDstVectorSize
4
>
;
// DBetaDstVectorSize
int
main
()
{
bool
time_kernel
=
false
;
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
512
;
Tensor
<
DYDataType
>
dy
({
M
,
N
});
Tensor
<
XDataType
>
x
({
M
,
N
});
Tensor
<
GammaDataType
>
gamma
({
N
});
Tensor
<
MeanInvStdDataType
>
mean
({
M
});
Tensor
<
MeanInvStdDataType
>
inv_std
({
M
});
Tensor
<
DGammaDataType
>
dgamma
({
N
});
Tensor
<
DBetaDataType
>
dbeta
({
N
});
Tensor
<
DXDataType
>
dx
({
M
,
N
});
dy
.
GenerateTensorValue
(
GeneratorTensor_3
<
DYDataType
>
{
0.0
,
1.0
});
x
.
GenerateTensorValue
(
GeneratorTensor_3
<
XDataType
>
{
0.0
,
1.0
});
gamma
.
GenerateTensorValue
(
GeneratorTensor_3
<
GammaDataType
>
{
0.0
,
1.0
});
mean
.
GenerateTensorValue
(
GeneratorTensor_3
<
MeanInvStdDataType
>
{
0.0
,
1.0
});
inv_std
.
GenerateTensorValue
(
GeneratorTensor_3
<
MeanInvStdDataType
>
{
0.0
,
1.0
});
DeviceMem
dy_dev
(
sizeof
(
DYDataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
x_dev
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
gamma_dev
(
sizeof
(
GammaDataType
)
*
gamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
mean_dev
(
sizeof
(
MeanInvStdDataType
)
*
mean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
inv_std_dev
(
sizeof
(
MeanInvStdDataType
)
*
inv_std
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dx_dev
(
sizeof
(
DXDataType
)
*
dx
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dgamma_dev
(
sizeof
(
DGammaDataType
)
*
dgamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dbeta_dev
(
sizeof
(
DBetaDataType
)
*
dbeta
.
mDesc
.
GetElementSpaceSize
());
dy_dev
.
ToDevice
(
dy
.
mData
.
data
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
gamma_dev
.
ToDevice
(
gamma
.
mData
.
data
());
mean_dev
.
ToDevice
(
mean
.
mData
.
data
());
inv_std_dev
.
ToDevice
(
inv_std
.
mData
.
data
());
// backward x
auto
x_device_instance
=
XDeviceInstance
{};
auto
x_argument_ptr
=
x_device_instance
.
MakeArgumentPointer
({
M
,
N
},
// lengths
{
N
,
1
},
// dyStrides
{
N
,
1
},
// xStrides
{
0
,
1
},
// gammaStrides
{
1
,
0
},
// meanStrides
{
1
,
0
},
// invStdStrides
{
N
,
1
},
// dxStrides
{
1
},
// reduceDims
dy_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
gamma_dev
.
GetDeviceBuffer
(),
mean_dev
.
GetDeviceBuffer
(),
inv_std_dev
.
GetDeviceBuffer
(),
dx_dev
.
GetDeviceBuffer
());
if
(
!
x_device_instance
.
IsSupportedArgument
(
x_argument_ptr
.
get
()))
{
std
::
cout
<<
"The runtime parameters are not supported."
<<
__FILE__
<<
":"
<<
__LINE__
<<
std
::
endl
;
return
1
;
};
auto
x_invoker_ptr
=
x_device_instance
.
MakeInvokerPointer
();
x_invoker_ptr
->
Run
(
x_argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
// backward gamma & beta
auto
gamma_beta_device_instance
=
GammaBetaDeviceInstance
{};
auto
gamma_beta_argument_ptr
=
gamma_beta_device_instance
.
MakeArgumentPointer
({
M
,
N
},
// inLengths
{
N
,
1
},
// dyStrides
{
N
,
1
},
// xStrides
{
1
,
0
},
// meanStrides
{
1
,
0
},
// invStdStrides
{
N
},
// outLengths
{
1
},
// dgammaStrides
{
1
},
// dbetaStrides
{
0
},
// reduceDims
dy_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
mean_dev
.
GetDeviceBuffer
(),
inv_std_dev
.
GetDeviceBuffer
(),
dgamma_dev
.
GetDeviceBuffer
(),
dbeta_dev
.
GetDeviceBuffer
());
if
(
!
gamma_beta_device_instance
.
IsSupportedArgument
(
gamma_beta_argument_ptr
.
get
()))
{
std
::
cout
<<
"The runtime parameters are not supported."
<<
__FILE__
<<
":"
<<
__LINE__
<<
std
::
endl
;
return
1
;
};
auto
gamma_beta_invoker_ptr
=
gamma_beta_device_instance
.
MakeInvokerPointer
();
gamma_beta_invoker_ptr
->
Run
(
gamma_beta_argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
bool
pass
=
true
;
{
Tensor
<
DGammaDataType
>
host_dgamma
({
N
});
Tensor
<
DBetaDataType
>
host_dbeta
({
N
});
Tensor
<
DXDataType
>
host_dx
({
M
,
N
});
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceLayernormBwd
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
DGammaDataType
,
DBetaDataType
,
DXDataType
,
ComputeDataType
>
;
ReferenceInstance
ref
;
auto
ref_argument
=
ref
.
MakeArgument
(
dy
,
x
,
gamma
,
mean
,
inv_std
,
host_dgamma
,
host_dbeta
,
host_dx
,
{
M
,
N
});
auto
ref_invoker
=
ref
.
MakeInvoker
();
ref_invoker
.
Run
(
ref_argument
);
dgamma_dev
.
FromDevice
(
dgamma
.
mData
.
data
());
dbeta_dev
.
FromDevice
(
dbeta
.
mData
.
data
());
dx_dev
.
FromDevice
(
dx
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
dgamma
,
host_dgamma
,
"Error: Incorrect dgamma"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dbeta
,
host_dbeta
,
"Error: Incorrect dbeta"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dx
,
host_dx
,
"Error: Incorrect dx"
,
1e-3
,
1e-3
);
}
return
(
pass
?
0
:
1
);
}
example/54_groupnorm_bwd/CMakeLists.txt
0 → 100644
View file @
ef326c73
add_example_executable
(
example_groupnorm_bwd_fp32 groupnorm_bwd_fp32.cpp
)
example/54_groupnorm_bwd/groupnorm_bwd_fp32.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_data_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_gamma_beta_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_groupnorm_bwd.hpp"
using
DYDataType
=
float
;
using
XDataType
=
float
;
using
GammaDataType
=
float
;
using
MeanInvStdDataType
=
float
;
using
DGammaDataType
=
float
;
using
DBetaDataType
=
float
;
using
DXDataType
=
float
;
using
ComputeDataType
=
float
;
constexpr
int
Rank
=
5
;
constexpr
int
NumReduceDim
=
3
;
// Grouprnorm
// kernel 1: M , K
// dy: N, H, W, G, C -> N * G, H * W * C
// x: N, H, W, G, C -> N * G, H * W * C
// gamma: 1, 1, 1, G, C -> 1 * G, 1 * 1 * C
// mean: N, 1, 1, G, 1 -> N * G, 1 * 1 * 1
// rstd: N, 1, 1, G, 1 -> N * G, 1 * 1 * 1
// dx: N, H, W, G, C -> N * G, H * W * C
using
XDeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationBwdDataImpl
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
ComputeDataType
,
DXDataType
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// MThreadClusterSize
32
,
// KThreadClusterSize
1
,
// MThreadSliceSize
4
,
// KThreadSliceSize
true
,
// IsDYFastestDimReduced
4
,
// DYSrcVectorSize
true
,
// IsXFastestDimReduced
4
,
// XSrcVectorSize
true
,
// IsGammaFastestDimReduced
4
,
// GammaSrcVectorSize
false
,
// IsMeanInvStdFastestDimReduced
1
,
// MeanInvStdSrcVectorSize
true
,
// IsDXFastestDimReduced
4
>
;
// DXDstVectorSize
// kernel 2: M , K
// dy: N, H, W, G, C -> G * C, N * H * W
// x: N, H, W, G, C -> G * C, N * H * W
// mean: N, 1, 1, G, 1 -> G * 1, N * 1 * 1
// rstd: N, 1, 1, G, 1 -> G * 1, N * 1 * 1
// dgamma: 1, 1, 1, G, C -> G * C
// dbeta: 1, 1, 1, G, C -> G * C
// reduced axis: 0, 1, 2
using
GammaBetaDeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationBwdGammaBetaImpl
<
DYDataType
,
XDataType
,
MeanInvStdDataType
,
ComputeDataType
,
DGammaDataType
,
DBetaDataType
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// ClusterInvariant
32
,
// ClusterReduce
4
,
// SliceInvariant
1
,
// SliceReduce
false
,
// IsDYFastestDimReduced
4
,
// DYSrcVectorSize
false
,
// IsXFastestDimReduced
4
,
// XSrcVectorSize
false
,
// IsMeanInvStdFastestDimReduced
1
,
// MeanInvStdSrcVectorSize
4
,
// DGammaDstVectorSize
4
>
;
// DBetaDstVectorSize
int
main
()
{
bool
time_kernel
=
false
;
ck
::
index_t
N
=
16
;
ck
::
index_t
H
=
16
;
ck
::
index_t
W
=
16
;
ck
::
index_t
G
=
32
;
ck
::
index_t
C
=
64
;
Tensor
<
DYDataType
>
dy
({
N
,
H
,
W
,
G
,
C
});
Tensor
<
XDataType
>
x
({
N
,
H
,
W
,
G
,
C
});
Tensor
<
GammaDataType
>
gamma
({
G
,
C
});
Tensor
<
MeanInvStdDataType
>
mean
({
N
,
G
});
Tensor
<
MeanInvStdDataType
>
inv_std
({
N
,
G
});
Tensor
<
DGammaDataType
>
dgamma
({
G
,
C
});
Tensor
<
DBetaDataType
>
dbeta
({
G
,
C
});
Tensor
<
DXDataType
>
dx
({
N
,
H
,
W
,
G
,
C
});
dy
.
GenerateTensorValue
(
GeneratorTensor_3
<
DYDataType
>
{
0.0
,
1.0
});
x
.
GenerateTensorValue
(
GeneratorTensor_3
<
XDataType
>
{
0.0
,
1.0
});
gamma
.
GenerateTensorValue
(
GeneratorTensor_3
<
GammaDataType
>
{
0.0
,
1.0
});
mean
.
GenerateTensorValue
(
GeneratorTensor_3
<
MeanInvStdDataType
>
{
0.0
,
1.0
});
inv_std
.
GenerateTensorValue
(
GeneratorTensor_3
<
MeanInvStdDataType
>
{
0.0
,
1.0
});
DeviceMem
dy_dev
(
sizeof
(
DYDataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
x_dev
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
gamma_dev
(
sizeof
(
GammaDataType
)
*
gamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
mean_dev
(
sizeof
(
MeanInvStdDataType
)
*
mean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
inv_std_dev
(
sizeof
(
MeanInvStdDataType
)
*
inv_std
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dx_dev
(
sizeof
(
DXDataType
)
*
dx
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dgamma_dev
(
sizeof
(
DGammaDataType
)
*
dgamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dbeta_dev
(
sizeof
(
DBetaDataType
)
*
dbeta
.
mDesc
.
GetElementSpaceSize
());
dy_dev
.
ToDevice
(
dy
.
mData
.
data
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
gamma_dev
.
ToDevice
(
gamma
.
mData
.
data
());
mean_dev
.
ToDevice
(
mean
.
mData
.
data
());
inv_std_dev
.
ToDevice
(
inv_std
.
mData
.
data
());
std
::
vector
<
ck
::
index_t
>
dyStrides
{
dy
.
mDesc
.
GetStrides
().
begin
(),
dy
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
ck
::
index_t
>
xStrides
{
x
.
mDesc
.
GetStrides
().
begin
(),
x
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
ck
::
index_t
>
gammaStrides
=
{
0
,
0
,
0
,
C
,
1
};
std
::
vector
<
ck
::
index_t
>
meanStrides
=
{
G
,
0
,
0
,
1
,
0
};
std
::
vector
<
ck
::
index_t
>
invStdStrides
=
{
G
,
0
,
0
,
1
,
0
};
std
::
vector
<
ck
::
index_t
>
dxStrides
{
dx
.
mDesc
.
GetStrides
().
begin
(),
dx
.
mDesc
.
GetStrides
().
end
()};
// backward x
auto
x_device_instance
=
XDeviceInstance
{};
auto
x_argument_ptr
=
x_device_instance
.
MakeArgumentPointer
({
N
,
H
,
W
,
G
,
C
},
// lengths
dyStrides
,
// dyStrides
xStrides
,
// xStrides
gammaStrides
,
// gammaStrides
meanStrides
,
// meanStrides
invStdStrides
,
// invStdStrides
dxStrides
,
// dxStrides
{
1
,
2
,
4
},
// reduceDims
dy_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
gamma_dev
.
GetDeviceBuffer
(),
mean_dev
.
GetDeviceBuffer
(),
inv_std_dev
.
GetDeviceBuffer
(),
dx_dev
.
GetDeviceBuffer
());
if
(
!
x_device_instance
.
IsSupportedArgument
(
x_argument_ptr
.
get
()))
{
std
::
cout
<<
"The runtime parameters are not supported."
<<
__FILE__
<<
":"
<<
__LINE__
<<
std
::
endl
;
return
1
;
};
auto
x_invoker_ptr
=
x_device_instance
.
MakeInvokerPointer
();
x_invoker_ptr
->
Run
(
x_argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
// backward gamma & beta
auto
gamma_beta_device_instance
=
GammaBetaDeviceInstance
{};
auto
gamma_beta_argument_ptr
=
gamma_beta_device_instance
.
MakeArgumentPointer
({
N
,
H
,
W
,
G
,
C
},
// inLengths
dyStrides
,
// dyStrides
xStrides
,
// xStrides
meanStrides
,
// meanStrides
invStdStrides
,
// invStdStrides
{
G
,
C
},
// outLengths
{
C
,
1
},
// dgammaStrides
{
C
,
1
},
// dbetaStrides
{
0
,
1
,
2
},
// reduceDims
dy_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
mean_dev
.
GetDeviceBuffer
(),
inv_std_dev
.
GetDeviceBuffer
(),
dgamma_dev
.
GetDeviceBuffer
(),
dbeta_dev
.
GetDeviceBuffer
());
if
(
!
gamma_beta_device_instance
.
IsSupportedArgument
(
gamma_beta_argument_ptr
.
get
()))
{
std
::
cout
<<
"The runtime parameters are not supported."
<<
__FILE__
<<
":"
<<
__LINE__
<<
std
::
endl
;
return
1
;
};
auto
gamma_beta_invoker_ptr
=
gamma_beta_device_instance
.
MakeInvokerPointer
();
gamma_beta_invoker_ptr
->
Run
(
gamma_beta_argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
bool
pass
=
true
;
{
Tensor
<
DGammaDataType
>
host_dgamma
({
G
,
C
});
Tensor
<
DBetaDataType
>
host_dbeta
({
G
,
C
});
Tensor
<
DXDataType
>
host_dx
({
N
,
H
,
W
,
G
,
C
});
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGroupnormBwd
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
DGammaDataType
,
DBetaDataType
,
DXDataType
,
ComputeDataType
>
;
ReferenceInstance
ref
;
auto
ref_argument
=
ref
.
MakeArgument
(
dy
,
x
,
gamma
,
mean
,
inv_std
,
host_dgamma
,
host_dbeta
,
host_dx
,
{
N
,
H
,
W
,
G
,
C
});
auto
ref_invoker
=
ref
.
MakeInvoker
();
ref_invoker
.
Run
(
ref_argument
);
dgamma_dev
.
FromDevice
(
dgamma
.
mData
.
data
());
dbeta_dev
.
FromDevice
(
dbeta
.
mData
.
data
());
dx_dev
.
FromDevice
(
dx
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
dgamma
,
host_dgamma
,
"Error: Incorrect dgamma"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dbeta
,
host_dbeta
,
"Error: Incorrect dbeta"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dx
,
host_dx
,
"Error: Incorrect dx"
,
1e-3
,
1e-3
);
}
return
(
pass
?
0
:
1
);
}
example/59_grouped_gemm_multi_ABD/CMakeLists.txt
0 → 100644
View file @
ef326c73
add_custom_target
(
example_grouped_gemm_xdl_multi_abd
)
add_example_executable
(
example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16 grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16.cpp
)
add_example_dependencies
(
example_grouped_gemm_xdl_multi_abd example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16
)
add_example_executable
(
example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_bf16_i8 grouped_gemm_multi_abd_xdl_fixed_nk_bias_bf16_i8.cpp
)
add_example_dependencies
(
example_grouped_gemm_xdl_multi_abd example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_bf16_i8
)
example/59_grouped_gemm_multi_ABD/grouped_gemm_multi_abd_xdl_fixed_nk_bias_bf16_i8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multi_abd_xdl_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
A0DataType
=
BF16
;
using
AsDataType
=
ck
::
Tuple
<
A0DataType
>
;
using
B0DataType
=
I8
;
using
B1DataType
=
BF16
;
using
BsDataType
=
ck
::
Tuple
<
B0DataType
,
B1DataType
>
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
D0DataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
>
;
using
EDataType
=
BF16
;
using
A0Layout
=
Row
;
using
AsLayout
=
ck
::
Tuple
<
A0Layout
>
;
using
B0Layout
=
Col
;
using
B1Layout
=
B0Layout
;
using
BsLayout
=
ck
::
Tuple
<
B0Layout
,
B1Layout
>
;
using
DsLayout
=
ck
::
Tuple
<
Row
>
;
using
ELayout
=
Row
;
using
Multiply
=
ck
::
tensor_operation
::
element_wise
::
Multiply
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
AddFastGelu
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
Multiply
;
using
CDEElementOp
=
AddFastGelu
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemm_Xdl_Multi_ABD_Fixed_NK
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
AsLayout
,
BsLayout
,
DsLayout
,
ELayout
,
AsDataType
,
BsDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
128
,
16
,
128
,
32
,
8
,
8
,
16
,
16
,
1
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
;
// clang-format on
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
k_batch
=
1
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
auto
group_count
=
problem_size
.
group_count
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmMultiABDDesc
>
gemm_descs
;
gemm_descs
.
reserve
(
group_count
);
int
sum_of_m
=
0
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
std
::
vector
<
Tensor
<
A0DataType
>>
a0_tensors
;
std
::
vector
<
Tensor
<
B1DataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
B0DataType
>>
b0_tensors
;
std
::
vector
<
Tensor
<
B1DataType
>>
b1_tensors
;
std
::
vector
<
Tensor
<
D0DataType
>>
d0_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_host_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_device_tensors
;
a0_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
b0_tensors
.
reserve
(
group_count
);
b1_tensors
.
reserve
(
group_count
);
d0_tensors
.
reserve
(
group_count
);
c_host_tensors
.
reserve
(
group_count
);
c_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a0_tensors_device
,
b0_tensors_device
,
b1_tensors_device
,
d0_tensors_device
,
c_tensors_device
;
a0_tensors_device
.
reserve
(
group_count
);
b0_tensors_device
.
reserve
(
group_count
);
b1_tensors_device
.
reserve
(
group_count
);
d0_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
sum_of_m
+=
problem_size
.
Ms
[
i
];
a0_tensors
.
push_back
(
Tensor
<
A0DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
A0Layout
{})));
b_tensors
.
push_back
(
Tensor
<
B1DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ks
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Bs
[
i
],
B0Layout
{})));
b0_tensors
.
push_back
(
Tensor
<
B0DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ks
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Bs
[
i
],
B0Layout
{})));
b1_tensors
.
push_back
(
Tensor
<
B1DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ks
[
i
],
problem_size
.
Ns
[
i
],
0
,
B1Layout
{})));
d0_tensors
.
push_back
(
Tensor
<
D0DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
0
,
ELayout
{})));
c_host_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
c_device_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a0_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b0_tensors
[
i
].
mDesc
<<
" d_m_n: "
<<
d0_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
c_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
problem_size
.
Ms
[
i
]
*
problem_size
.
Ks
[
i
]
*
problem_size
.
Ns
[
i
];
num_btype
+=
sizeof
(
A0DataType
)
*
a0_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
B0DataType
)
*
b0_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
B1DataType
)
*
b1_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
D0DataType
)
*
d0_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
EDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSize
();
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
a0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
5
,
5
});
b0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
b1_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
0
,
5
});
break
;
case
2
:
a0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
b0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
-
5
,
5
});
b1_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
break
;
default:
a0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
b1_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
d0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
-
0.5
,
0.5
});
}
constexpr
ck
::
index_t
NumATensor
=
1
;
constexpr
ck
::
index_t
NumBTensor
=
2
;
constexpr
ck
::
index_t
NumDTensor
=
1
;
using
GroupedGemmKernelArgument
=
ck
::
tensor_operation
::
device
::
GroupedGemmMultiABDKernelArgument
<
NumATensor
,
NumBTensor
,
NumDTensor
>
;
std
::
vector
<
GroupedGemmKernelArgument
>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a0_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
A0DataType
)
*
sum_of_m
*
problem_size
.
Ks
[
i
]));
b0_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
B0DataType
)
*
problem_size
.
Ns
[
i
]
*
problem_size
.
Ks
[
i
]));
b1_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
B1DataType
)
*
problem_size
.
Ns
[
i
]));
d0_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
D0DataType
)
*
problem_size
.
Ns
[
i
]));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
i
]));
a0_tensors_device
[
i
]
->
ToDevice
(
a0_tensors
[
i
].
mData
.
data
(),
a0_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
A0DataType
));
b0_tensors_device
[
i
]
->
ToDevice
(
b0_tensors
[
i
].
mData
.
data
(),
b0_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
B0DataType
));
b1_tensors_device
[
i
]
->
ToDevice
(
b1_tensors
[
i
].
mData
.
data
(),
b1_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
B1DataType
));
d0_tensors_device
[
i
]
->
ToDevice
(
d0_tensors
[
i
].
mData
.
data
());
c_tensors_device
[
i
]
->
SetZero
();
gemm_descs
.
push_back
(
{
sum_of_m
,
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
{
1
},
{
1
,
1
},
{
0
},
1
});
grouped_gemm_kernel_args_
.
push_back
(
{
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_tensors_device
[
i
]
->
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b0_tensors_device
[
i
]
->
GetDeviceBuffer
(),
b1_tensors_device
[
i
]
->
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{
d0_tensors_device
[
i
]
->
GetDeviceBuffer
()},
c_tensors_device
[
i
]
->
GetDeviceBuffer
(),
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
problem_size
.
stride_As
[
i
]},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
problem_size
.
stride_Bs
[
i
],
0
},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
0
},
problem_size
.
stride_Cs
[
i
]});
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
std
::
vector
<
std
::
array
<
const
void
*
,
NumATensor
>>
p_As
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
NumBTensor
>>
p_Bs
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>
p_Ds
=
{};
std
::
vector
<
void
*>
p_Cs
=
{};
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
DeviceMem
gemm_workspace_dev
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_workspace_dev
.
GetDeviceBuffer
());
DeviceMem
gemm_kernel_args_dev
(
gemm
.
GetDeviceKernelArgSize
(
&
argument
));
hip_check_error
(
hipMemcpy
(
gemm_kernel_args_dev
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
gemm
.
GetDeviceKernelArgSize
(
&
argument
),
hipMemcpyHostToDevice
));
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_kernel_args_dev
.
GetDeviceBuffer
());
gemm
.
SetKBatch
(
argument
,
config
.
k_batch
);
gemm
.
SetElementwiseOps
(
argument
,
a_element_op
,
b_element_op
,
cde_element_op
);
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
if
(
config
.
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
A0DataType
,
B1DataType
,
EDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
for
(
int
n
=
0
;
n
<
problem_size
.
Ns
[
i
];
++
n
)
{
for
(
int
k
=
0
;
k
<
problem_size
.
Ks
[
i
];
++
k
)
{
b_element_op
(
b_tensors
[
i
](
k
,
n
),
b0_tensors
[
i
](
k
,
n
),
b1_tensors
[
i
](
k
,
n
));
}
}
c_tensors_device
[
i
]
->
FromDevice
(
c_device_tensors
[
i
].
mData
.
data
(),
c_device_tensors
[
i
].
mDesc
.
GetElementSize
()
*
sizeof
(
EDataType
));
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a0_tensors
[
i
],
b_tensors
[
i
],
c_host_tensors
[
i
],
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
problem_size
.
Ms
[
i
];
++
m
)
{
for
(
int
n
=
0
;
n
<
problem_size
.
Ns
[
i
];
++
n
)
{
cde_element_op
(
c_host_tensors
[
i
](
m
,
n
),
c_host_tensors
[
i
](
m
,
n
),
d0_tensors
[
i
](
m
,
n
));
}
}
pass
&=
ck
::
utils
::
check_err
(
c_device_tensors
[
i
],
c_host_tensors
[
i
]);
}
}
return
pass
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
problem_size
.
group_count
=
16
;
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
problem_size
.
Ms
.
push_back
(
32
+
rand
()
%
32
);
problem_size
.
Ns
.
push_back
(
1024
);
problem_size
.
Ks
.
push_back
(
512
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Cs
.
push_back
(
problem_size
.
Ns
[
i
]);
}
if
(
argc
==
5
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
config
.
k_batch
=
std
::
stoi
(
argv
[
4
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4: k_batch (>0)
\n
"
);
exit
(
0
);
}
return
!
run_grouped_gemm
(
problem_size
,
config
);
}
example/59_grouped_gemm_multi_ABD/grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multi_abd_xdl_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp"
#include "ck/tensor_operation/gpu/element/combined_element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
AddScale
=
ck
::
tensor_operation
::
element_wise
::
BinaryWithUnaryCombinedOp
<
Add
,
Scale
,
Scale
>
;
using
A0DataType
=
F16
;
using
A1DataType
=
F32
;
using
AsDataType
=
ck
::
Tuple
<
A0DataType
,
A1DataType
>
;
using
B0DataType
=
F16
;
using
BsDataType
=
ck
::
Tuple
<
B0DataType
>
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
>
;
using
EDataType
=
F32
;
using
A0Layout
=
Row
;
using
A1Layout
=
Row
;
using
AsLayout
=
ck
::
Tuple
<
A0Layout
,
A1Layout
>
;
using
B0Layout
=
Col
;
using
BsLayout
=
ck
::
Tuple
<
B0Layout
>
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
>
;
using
ELayout
=
Row
;
using
AElementOp
=
AddScale
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Add
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemm_Xdl_Multi_ABD_Fixed_NK
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
AsLayout
,
BsLayout
,
DsLayout
,
ELayout
,
AsDataType
,
BsDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
128
,
16
,
128
,
32
,
8
,
8
,
16
,
16
,
1
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
,
ck
::
half_t
>
;
// clang-format on
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
k_batch
=
1
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
auto
group_count
=
problem_size
.
group_count
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmMultiABDDesc
>
gemm_descs
;
gemm_descs
.
reserve
(
group_count
);
int
sum_of_m
=
0
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
std
::
vector
<
Tensor
<
A0DataType
>>
a0_tensors
;
std
::
vector
<
Tensor
<
A1DataType
>>
a1_tensors
;
std
::
vector
<
Tensor
<
B0DataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
D0DataType
>>
d0_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
e_host_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
e_device_tensors
;
a0_tensors
.
reserve
(
group_count
);
a1_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
d0_tensors
.
reserve
(
group_count
);
e_host_tensors
.
reserve
(
group_count
);
e_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a0_tensors_device
,
a1_tensors_device
,
b_tensors_device
,
d0_tensors_device
,
c_tensors_device
;
a0_tensors_device
.
reserve
(
group_count
);
a1_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
d0_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
sum_of_m
+=
problem_size
.
Ms
[
i
];
a0_tensors
.
push_back
(
Tensor
<
A0DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
A0Layout
{})));
a1_tensors
.
push_back
(
Tensor
<
A1DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
A1Layout
{})));
b_tensors
.
push_back
(
Tensor
<
B0DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ks
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Bs
[
i
],
B0Layout
{})));
d0_tensors
.
push_back
(
Tensor
<
D0DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
0
,
ELayout
{})));
e_host_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
e_device_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a0_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" d_m_n: "
<<
d0_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
e_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
problem_size
.
Ms
[
i
]
*
problem_size
.
Ks
[
i
]
*
problem_size
.
Ns
[
i
];
num_btype
+=
sizeof
(
A0DataType
)
*
a0_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
A1DataType
)
*
a1_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
B0DataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
D0DataType
)
*
d0_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
EDataType
)
*
e_device_tensors
[
i
].
mDesc
.
GetElementSize
();
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
a0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
5
,
5
});
a1_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
A1DataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
break
;
case
2
:
a0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
a1_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
A1DataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
-
0.5
,
0.5
});
break
;
default:
a0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
a1_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
d0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
-
0.5
,
0.5
});
}
constexpr
ck
::
index_t
NumATensor
=
2
;
constexpr
ck
::
index_t
NumBTensor
=
1
;
constexpr
ck
::
index_t
NumDTensor
=
1
;
using
GroupedGemmKernelArgument
=
ck
::
tensor_operation
::
device
::
GroupedGemmMultiABDKernelArgument
<
NumATensor
,
NumBTensor
,
NumDTensor
>
;
std
::
vector
<
GroupedGemmKernelArgument
>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a0_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
A0DataType
)
*
sum_of_m
*
problem_size
.
Ks
[
i
]));
a1_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
A1DataType
)
*
sum_of_m
*
problem_size
.
Ks
[
i
]));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
B0DataType
)
*
problem_size
.
Ns
[
i
]
*
problem_size
.
Ks
[
i
]));
d0_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
D0DataType
)
*
problem_size
.
Ns
[
i
]));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
i
]));
a0_tensors_device
[
i
]
->
ToDevice
(
a0_tensors
[
i
].
mData
.
data
(),
a0_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
A0DataType
));
a1_tensors_device
[
i
]
->
ToDevice
(
a1_tensors
[
i
].
mData
.
data
(),
a1_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
A1DataType
));
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
(),
b_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
B0DataType
));
d0_tensors_device
[
i
]
->
ToDevice
(
d0_tensors
[
i
].
mData
.
data
());
c_tensors_device
[
i
]
->
SetZero
();
gemm_descs
.
push_back
({
sum_of_m
,
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
{
1
,
1
},
{
problem_size
.
stride_Bs
[
i
]},
{
0
},
1
});
grouped_gemm_kernel_args_
.
push_back
(
{
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_tensors_device
[
i
]
->
GetDeviceBuffer
(),
a1_tensors_device
[
i
]
->
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b_tensors_device
[
i
]
->
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{
d0_tensors_device
[
i
]
->
GetDeviceBuffer
()},
c_tensors_device
[
i
]
->
GetDeviceBuffer
(),
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
problem_size
.
stride_As
[
i
],
problem_size
.
stride_As
[
i
]},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
problem_size
.
stride_Bs
[
i
]},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
0
},
problem_size
.
stride_Cs
[
i
]});
}
constexpr
float
scale
=
1.
f
;
auto
a_element_op
=
AElementOp
{
Add
{},
Scale
{
scale
},
Scale
{
scale
}};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
std
::
vector
<
std
::
array
<
const
void
*
,
NumATensor
>>
p_As
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
NumBTensor
>>
p_Bs
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>
p_Ds
=
{};
std
::
vector
<
void
*>
p_Cs
=
{};
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
DeviceMem
gemm_workspace_dev
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_workspace_dev
.
GetDeviceBuffer
());
DeviceMem
gemm_kernel_args_dev
(
gemm
.
GetDeviceKernelArgSize
(
&
argument
));
hip_check_error
(
hipMemcpy
(
gemm_kernel_args_dev
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
gemm
.
GetDeviceKernelArgSize
(
&
argument
),
hipMemcpyHostToDevice
));
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_kernel_args_dev
.
GetDeviceBuffer
());
gemm
.
SetKBatch
(
argument
,
config
.
k_batch
);
gemm
.
SetElementwiseOps
(
argument
,
a_element_op
,
b_element_op
,
cde_element_op
);
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
if
(
config
.
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
A0DataType
,
B0DataType
,
EDataType
,
AccDataType
,
PassThrough
,
BElementOp
,
PassThrough
>
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
for
(
int
m
=
0
;
m
<
problem_size
.
Ms
[
i
];
++
m
)
{
for
(
int
k
=
0
;
k
<
problem_size
.
Ks
[
i
];
++
k
)
{
a_element_op
(
a0_tensors
[
i
](
m
,
k
),
a0_tensors
[
i
](
m
,
k
),
a1_tensors
[
i
](
m
,
k
));
}
}
c_tensors_device
[
i
]
->
FromDevice
(
e_device_tensors
[
i
].
mData
.
data
(),
e_device_tensors
[
i
].
mDesc
.
GetElementSize
()
*
sizeof
(
EDataType
));
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a0_tensors
[
i
],
b_tensors
[
i
],
e_host_tensors
[
i
],
PassThrough
{},
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
problem_size
.
Ms
[
i
];
++
m
)
{
for
(
int
n
=
0
;
n
<
problem_size
.
Ns
[
i
];
++
n
)
{
cde_element_op
(
e_host_tensors
[
i
](
m
,
n
),
e_host_tensors
[
i
](
m
,
n
),
d0_tensors
[
i
](
m
,
n
));
}
}
pass
&=
ck
::
utils
::
check_err
(
e_device_tensors
[
i
],
e_host_tensors
[
i
]);
}
}
return
pass
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
problem_size
.
group_count
=
16
;
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
problem_size
.
Ms
.
push_back
(
32
+
rand
()
%
32
);
problem_size
.
Ns
.
push_back
(
1024
);
problem_size
.
Ks
.
push_back
(
512
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Cs
.
push_back
(
problem_size
.
Ns
[
i
]);
}
if
(
argc
==
5
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
config
.
k_batch
=
std
::
stoi
(
argv
[
4
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4: k_batch (>0)
\n
"
);
exit
(
0
);
}
return
!
run_grouped_gemm
(
problem_size
,
config
);
}
example/60_gemm_multi_ABD/CMakeLists.txt
0 → 100644
View file @
ef326c73
add_example_executable
(
example_gemm_multi_ABD_xdl_fp16 gemm_multi_ABD_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_multi_ABD_xdl_bias_fastgelu_bf16_i8 gemm_multi_ABD_xdl_bias_fastgelu_bf16_i8.cpp
)
add_example_executable
(
example_gemm_multi_ABD_xdl_multiply_bias_fastgelu_bf16_i8 gemm_multi_ABD_xdl_multiply_bias_fastgelu_bf16_i8.cpp
)
add_example_executable
(
example_gemm_multi_ABD_xdl_fastgelu_bf16_i8 gemm_multi_ABD_xdl_fastgelu_bf16_i8.cpp
)
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_bias_fastgelu_bf16_i8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
BF16
;
using
AsDataType
=
ck
::
Tuple
<
A0DataType
>
;
using
B0DataType
=
I8
;
using
B1DataType
=
BF16
;
using
BsDataType
=
ck
::
Tuple
<
B0DataType
,
B1DataType
>
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
D0DataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
>
;
using
EDataType
=
BF16
;
using
A0Layout
=
Row
;
using
AsLayout
=
ck
::
Tuple
<
A0Layout
>
;
using
B0Layout
=
Row
;
using
B1Layout
=
B0Layout
;
using
BsLayout
=
ck
::
Tuple
<
B0Layout
,
B1Layout
>
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
>
;
using
ELayout
=
Row
;
using
Multiply
=
ck
::
tensor_operation
::
element_wise
::
Multiply
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
AddFastGelu
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
Multiply
;
using
CDEElementOp
=
AddFastGelu
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleABD_Xdl_CShuffle
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
AsLayout
,
BsLayout
,
DsLayout
,
ELayout
,
AsDataType
,
BsDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
8
,
4
,
32
,
32
,
2
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v4
>
;
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
4096
;
ck
::
index_t
N
=
768
;
ck
::
index_t
K
=
6144
;
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
N
;
ck
::
index_t
StrideD
=
0
;
ck
::
index_t
StrideE
=
N
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
11
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideD
=
std
::
stoi
(
argv
[
9
]);
StrideE
=
std
::
stoi
(
argv
[
10
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
A0DataType
>
a0_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
A0Layout
{}));
Tensor
<
B0DataType
>
b0_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
B0Layout
{}));
Tensor
<
B1DataType
>
b1_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
0
,
B1Layout
{}));
Tensor
<
D0DataType
>
d_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD
,
D0Layout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a0_m_k: "
<<
a0_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_k_n: "
<<
b0_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_k_n: "
<<
b1_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_m_n: "
<<
d_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
5
,
5
});
b0_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
b1_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
0
,
5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
5
,
5
});
break
;
default:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
b0_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
b1_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
0
,
5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
a0_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
b0_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
b1_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
D0DataType
)
*
d_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_device_buf
.
ToDevice
(
a0_m_k
.
mData
.
data
());
b0_device_buf
.
ToDevice
(
b0_k_n
.
mData
.
data
());
b1_device_buf
.
ToDevice
(
b1_k_n
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_m_n
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_m_n_device_result
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
constexpr
ck
::
index_t
NumATensor
=
1
;
constexpr
ck
::
index_t
NumBTensor
=
2
;
constexpr
ck
::
index_t
NumDTensor
=
1
;
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b0_device_buf
.
GetDeviceBuffer
(),
b1_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
StrideA
},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
StrideB
,
0
},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
StrideD
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_m_n
({
M
,
N
});
Tensor
<
A0DataType
>
a_m_k
({
M
,
K
});
Tensor
<
B1DataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
B0Layout
{}));
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
b_element_op
(
b_k_n
(
k
,
n
),
b0_k_n
(
k
,
n
),
b1_k_n
(
k
,
n
));
}
}
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
A0DataType
,
B1DataType
,
CShuffleDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a0_m_k
,
b_k_n
,
c_m_n
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d_m_n
(
m
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
)
?
0
:
1
;
}
return
0
;
}
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_fastgelu_bf16_i8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
BF16
;
using
AsDataType
=
ck
::
Tuple
<
A0DataType
>
;
using
B0DataType
=
I8
;
using
B1DataType
=
BF16
;
using
BsDataType
=
ck
::
Tuple
<
B0DataType
,
B1DataType
>
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
BF16
;
using
A0Layout
=
Row
;
using
AsLayout
=
ck
::
Tuple
<
A0Layout
>
;
using
B0Layout
=
Row
;
using
B1Layout
=
B0Layout
;
using
BsLayout
=
ck
::
Tuple
<
B0Layout
,
B1Layout
>
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
Multiply
=
ck
::
tensor_operation
::
element_wise
::
Multiply
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
FastGelu
=
ck
::
tensor_operation
::
element_wise
::
FastGelu
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
Multiply
;
using
CDEElementOp
=
FastGelu
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleABD_Xdl_CShuffle
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
AsLayout
,
BsLayout
,
DsLayout
,
ELayout
,
AsDataType
,
BsDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
8
,
4
,
32
,
32
,
2
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v4
>
;
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
4096
;
ck
::
index_t
N
=
768
;
ck
::
index_t
K
=
6144
;
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
N
;
ck
::
index_t
StrideD
=
0
;
ck
::
index_t
StrideE
=
N
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
11
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideD
=
std
::
stoi
(
argv
[
9
]);
StrideE
=
std
::
stoi
(
argv
[
10
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
A0DataType
>
a0_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
A0Layout
{}));
Tensor
<
B0DataType
>
b0_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
B0Layout
{}));
Tensor
<
B1DataType
>
b1_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
0
,
B1Layout
{}));
Tensor
<
D0DataType
>
d_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD
,
D0Layout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a0_m_k: "
<<
a0_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_k_n: "
<<
b0_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_k_n: "
<<
b1_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_m_n: "
<<
d_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
5
,
5
});
b0_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
b1_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
0
,
5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
5
,
5
});
break
;
default:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
b0_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
b1_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
0
,
5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
a0_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
b0_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
b1_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
D0DataType
)
*
d_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_device_buf
.
ToDevice
(
a0_m_k
.
mData
.
data
());
b0_device_buf
.
ToDevice
(
b0_k_n
.
mData
.
data
());
b1_device_buf
.
ToDevice
(
b1_k_n
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_m_n
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_m_n_device_result
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
constexpr
ck
::
index_t
NumATensor
=
1
;
constexpr
ck
::
index_t
NumBTensor
=
2
;
constexpr
ck
::
index_t
NumDTensor
=
0
;
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b0_device_buf
.
GetDeviceBuffer
(),
b1_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
StrideA
},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
StrideB
,
0
},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_m_n
({
M
,
N
});
Tensor
<
A0DataType
>
a_m_k
({
M
,
K
});
Tensor
<
B1DataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
B0Layout
{}));
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
b_element_op
(
b_k_n
(
k
,
n
),
b0_k_n
(
k
,
n
),
b1_k_n
(
k
,
n
));
}
}
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
A0DataType
,
B1DataType
,
CShuffleDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a0_m_k
,
b_k_n
,
c_m_n
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
)
?
0
:
1
;
}
return
0
;
}
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_fp16.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DDataType
=
F16
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Row
;
using
DLayout
=
Row
;
using
ELayout
=
Row
;
struct
AddScale
{
static
constexpr
auto
I0
=
ck
::
Number
<
0
>
{};
static
constexpr
auto
I1
=
ck
::
Number
<
1
>
{};
static
constexpr
auto
I2
=
ck
::
Number
<
2
>
{};
static
constexpr
auto
I3
=
ck
::
Number
<
3
>
{};
__host__
__device__
constexpr
void
operator
()(
ck
::
half4_t
&
a
,
const
ck
::
half4_t
&
a0
,
const
ck
::
half4_t
&
a1
)
const
{
const
auto
a0_v_t
=
ck
::
vector_type
<
ck
::
half_t
,
4
>
{
a0
};
const
auto
a1_v_t
=
ck
::
vector_type
<
ck
::
half_t
,
4
>
{
a1
};
auto
r_v_t
=
ck
::
vector_type
<
ck
::
half_t
,
4
>
{};
r_v_t
.
AsType
<
ck
::
half_t
>
()(
I0
)
=
scale
*
(
a0_v_t
.
AsType
<
ck
::
half_t
>
()[
I0
]
+
a1_v_t
.
AsType
<
ck
::
half_t
>
()[
I0
]);
r_v_t
.
AsType
<
ck
::
half_t
>
()(
I1
)
=
scale
*
(
a0_v_t
.
AsType
<
ck
::
half_t
>
()[
I1
]
+
a1_v_t
.
AsType
<
ck
::
half_t
>
()[
I1
]);
r_v_t
.
AsType
<
ck
::
half_t
>
()(
I2
)
=
scale
*
(
a0_v_t
.
AsType
<
ck
::
half_t
>
()[
I2
]
+
a1_v_t
.
AsType
<
ck
::
half_t
>
()[
I2
]);
r_v_t
.
AsType
<
ck
::
half_t
>
()(
I3
)
=
scale
*
(
a0_v_t
.
AsType
<
ck
::
half_t
>
()[
I3
]
+
a1_v_t
.
AsType
<
ck
::
half_t
>
()[
I3
]);
a
=
r_v_t
.
AsType
<
ck
::
half4_t
>
()[
I0
];
}
__host__
__device__
constexpr
void
operator
()(
ck
::
half_t
&
a
,
const
ck
::
half_t
&
a0
,
const
ck
::
half_t
&
a1
)
const
{
a
=
scale
*
(
a0
+
a1
);
}
// this attribute controls the copy_function applying element_wise_op with
// pack4_data
constexpr
const
static
bool
is_pack4_invocable
=
true
;
float
scale
=
1.0
;
};
struct
AlphaBetaAdd
{
AlphaBetaAdd
(
float
alpha
,
float
beta
)
:
alpha_
(
alpha
),
beta_
(
beta
){};
template
<
typename
E
,
typename
C
,
typename
D
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D
&
d
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
ck
::
half_t
,
float
,
ck
::
half_t
>
(
ck
::
half_t
&
e
,
const
float
&
c
,
const
ck
::
half_t
&
d
)
const
{
e
=
ck
::
type_convert
<
ck
::
half_t
>
(
alpha_
*
c
+
beta_
*
ck
::
type_convert
<
float
>
(
d
));
};
float
alpha_
;
float
beta_
;
};
using
AElementOp
=
AddScale
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AlphaBetaAdd
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleABD_Xdl_CShuffle
<
ck
::
Tuple
<
ALayout
,
ALayout
>
,
ck
::
Tuple
<
BLayout
>
,
ck
::
Tuple
<
DLayout
>
,
ELayout
,
ck
::
Tuple
<
ADataType
,
ADataType
>
,
ck
::
Tuple
<
BDataType
>
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
DDataType
>
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
N
;
ck
::
index_t
StrideD
=
N
;
ck
::
index_t
StrideE
=
N
;
float
alpha
=
1.0
f
;
float
beta
=
1.0
f
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
6
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
alpha
=
std
::
stof
(
argv
[
4
]);
beta
=
std
::
stof
(
argv
[
5
]);
}
else
if
(
argc
==
13
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideD
=
std
::
stoi
(
argv
[
9
]);
StrideE
=
std
::
stoi
(
argv
[
10
]);
alpha
=
std
::
stof
(
argv
[
11
]);
beta
=
std
::
stof
(
argv
[
12
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE, alpha, "
"beta
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a0_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
ADataType
>
a1_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
DDataType
>
d_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD
,
DLayout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a0_m_k: "
<<
a0_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a1_m_k: "
<<
a1_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_m_n: "
<<
d_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
a1_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
DDataType
>
{
-
5
,
5
});
break
;
default:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
a1_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
DDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
a0_device_buf
(
sizeof
(
ADataType
)
*
a0_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a1_device_buf
(
sizeof
(
ADataType
)
*
a1_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_device_buf
.
ToDevice
(
a0_m_k
.
mData
.
data
());
a1_device_buf
.
ToDevice
(
a1_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_m_n
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_m_n_device_result
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{
0.2
};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{
alpha
,
beta
};
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
std
::
array
<
const
void
*
,
2
>
{
a0_device_buf
.
GetDeviceBuffer
(),
a1_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
1
>
{
b_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
std
::
array
<
ck
::
index_t
,
2
>
{
StrideA
,
StrideA
},
std
::
array
<
ck
::
index_t
,
1
>
{
StrideB
},
std
::
array
<
ck
::
index_t
,
1
>
{
StrideD
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_m_n
({
M
,
N
});
Tensor
<
ADataType
>
a_m_k
({
M
,
K
});
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
a_element_op
(
a_m_k
(
m
,
k
),
a0_m_k
(
m
,
k
),
a1_m_k
(
m
,
k
));
}
}
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
PassThrough
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
PassThrough
{},
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d_m_n
(
m
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
)
?
0
:
1
;
}
return
0
;
}
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_multiply_bias_fastgelu_bf16_i8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
BF16
;
using
AsDataType
=
ck
::
Tuple
<
A0DataType
>
;
using
B0DataType
=
I8
;
using
B1DataType
=
BF16
;
using
BsDataType
=
ck
::
Tuple
<
B0DataType
>
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<
B1DataType
,
D0DataType
>
;
using
EDataType
=
BF16
;
using
A0Layout
=
Row
;
using
AsLayout
=
ck
::
Tuple
<
A0Layout
>
;
using
B0Layout
=
Row
;
using
B1Layout
=
B0Layout
;
using
BsLayout
=
ck
::
Tuple
<
B0Layout
>
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
B1Layout
,
D0Layout
>
;
using
ELayout
=
Row
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
MultiplyAddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
MultiplyAddFastGelu
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
MultiplyAddFastGelu
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleABD_Xdl_CShuffle
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
AsLayout
,
BsLayout
,
DsLayout
,
ELayout
,
AsDataType
,
BsDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
8
,
4
,
32
,
32
,
2
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v4
>
;
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
4096
;
ck
::
index_t
N
=
768
;
ck
::
index_t
K
=
6144
;
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
N
;
ck
::
index_t
StrideD
=
0
;
ck
::
index_t
StrideE
=
N
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
11
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideD
=
std
::
stoi
(
argv
[
9
]);
StrideE
=
std
::
stoi
(
argv
[
10
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
A0DataType
>
a0_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
A0Layout
{}));
Tensor
<
B0DataType
>
b0_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
B0Layout
{}));
Tensor
<
B1DataType
>
b1_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
0
,
B1Layout
{}));
Tensor
<
D0DataType
>
d_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD
,
D0Layout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a0_m_k: "
<<
a0_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_k_n: "
<<
b0_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_k_n: "
<<
b1_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_m_n: "
<<
d_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
5
,
5
});
b0_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
b1_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
0
,
5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
5
,
5
});
break
;
default:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
b0_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
b1_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
0
,
5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
a0_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
b0_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
b1_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
D0DataType
)
*
d_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_device_buf
.
ToDevice
(
a0_m_k
.
mData
.
data
());
b0_device_buf
.
ToDevice
(
b0_k_n
.
mData
.
data
());
b1_device_buf
.
ToDevice
(
b1_k_n
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_m_n
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_m_n_device_result
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
constexpr
ck
::
index_t
NumATensor
=
1
;
constexpr
ck
::
index_t
NumBTensor
=
1
;
constexpr
ck
::
index_t
NumDTensor
=
2
;
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b0_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{
b1_device_buf
.
GetDeviceBuffer
(),
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
StrideA
},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
StrideB
},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
0
,
StrideD
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_m_n
({
M
,
N
});
Tensor
<
A0DataType
>
a_m_k
({
M
,
K
});
Tensor
<
B1DataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
B0Layout
{}));
#if 0
for(int n = 0; n < N; ++n)
{
for(int k = 0; k < K; ++k)
{
b_element_op(b_k_n(k, n), b0_k_n(k, n), b1_k_n(k, n));
}
}
#endif
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
A0DataType
,
B0DataType
,
CShuffleDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a0_m_k
,
b0_k_n
,
c_m_n
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
b1_k_n
(
0
,
n
),
d_m_n
(
m
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
)
?
0
:
1
;
}
return
0
;
}
Prev
1
…
20
21
22
23
24
25
26
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment