Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
ef326c73
Commit
ef326c73
authored
Nov 19, 2024
by
Alan Turner
Browse files
Merge remote-tracking branch 'origin/develop' into migraphx-update
parents
b7775add
e4dfe4d8
Changes
511
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1355 additions
and
216 deletions
+1355
-216
example/42_groupnorm_fwd/groupnorm_fwd_swish_fp16.cpp
example/42_groupnorm_fwd/groupnorm_fwd_swish_fp16.cpp
+45
-0
example/42_groupnorm_fwd/run_groupnorm_fwd_example.inc
example/42_groupnorm_fwd/run_groupnorm_fwd_example.inc
+148
-0
example/43_splitk_gemm_bias_e_permute/CMakeLists.txt
example/43_splitk_gemm_bias_e_permute/CMakeLists.txt
+2
-6
example/44_elementwise_permute/CMakeLists.txt
example/44_elementwise_permute/CMakeLists.txt
+8
-4
example/44_elementwise_permute/elementwise_binary_4D_fp16.cpp
...ple/44_elementwise_permute/elementwise_binary_4D_fp16.cpp
+140
-0
example/44_elementwise_permute/elementwise_permute_4D_fp16.cpp
...le/44_elementwise_permute/elementwise_permute_4D_fp16.cpp
+43
-40
example/44_elementwise_permute/elementwise_permute_4D_fp16_2d.cpp
...44_elementwise_permute/elementwise_permute_4D_fp16_2d.cpp
+0
-130
example/44_elementwise_permute/elementwise_permute_4D_fp16_col.cpp
...4_elementwise_permute/elementwise_permute_4D_fp16_col.cpp
+140
-0
example/44_elementwise_permute/elementwise_permute_4D_fp16_row.cpp
...4_elementwise_permute/elementwise_permute_4D_fp16_row.cpp
+131
-0
example/44_elementwise_permute/elementwise_permute_4D_fp32_col.cpp
...4_elementwise_permute/elementwise_permute_4D_fp32_col.cpp
+142
-0
example/44_elementwise_permute/elementwise_permute_4D_fp32_row.cpp
...4_elementwise_permute/elementwise_permute_4D_fp32_row.cpp
+130
-0
example/44_elementwise_permute/elementwise_scale_permute_amax_2D_fp16_fp8.cpp
...se_permute/elementwise_scale_permute_amax_2D_fp16_fp8.cpp
+248
-0
example/44_elementwise_permute/elementwise_trinary_4D_fp16.cpp
...le/44_elementwise_permute/elementwise_trinary_4D_fp16.cpp
+156
-0
example/45_elementwise_normalization/elementwise_layernorm_blockwise.cpp
...entwise_normalization/elementwise_layernorm_blockwise.cpp
+14
-3
example/46_gemm_add_multiply/CMakeLists.txt
example/46_gemm_add_multiply/CMakeLists.txt
+2
-6
example/46_gemm_add_multiply/README.md
example/46_gemm_add_multiply/README.md
+0
-16
example/47_gemm_bias_softmax_gemm_permute/CMakeLists.txt
example/47_gemm_bias_softmax_gemm_permute/CMakeLists.txt
+1
-8
example/47_gemm_bias_softmax_gemm_permute/gemm_bias_softmax_gemm_permute_xdl.cpp
...ftmax_gemm_permute/gemm_bias_softmax_gemm_permute_xdl.cpp
+0
-0
example/48_pool3d_fwd/CMakeLists.txt
example/48_pool3d_fwd/CMakeLists.txt
+1
-3
example/48_pool3d_fwd/pool3d_fwd_common.hpp
example/48_pool3d_fwd/pool3d_fwd_common.hpp
+4
-0
No files found.
Too many changes to show.
To preserve performance only
511 of 511+
files are displayed.
Plain diff
Email patch
example/42_groupnorm_fwd/groupnorm_fwd_swish_fp16.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
constexpr
int
Rank
=
5
;
constexpr
int
NumReduceDim
=
3
;
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
SaveMeanInvStdDataType
=
float
;
using
ComputeDataType
=
float
;
using
YElementOp
=
ck
::
tensor_operation
::
element_wise
::
Swish
;
#define SAVE_MEAN_INV_STD
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationFwdImpl
<
XDataType
,
GammaDataType
,
BetaDataType
,
ComputeDataType
,
YDataType
,
SaveMeanInvStdDataType
,
YElementOp
,
Rank
,
NumReduceDim
,
1024
,
// BlockSize
1
,
// ClusterM
1024
,
// ClusterK
1
,
// SliceM
32
,
// SliceK
1
,
// SrcVecDim (0=M, 1=K)
2
,
// SrcScalarPerVector
1
,
// GammaVecDim (0=M, 1=K)
2
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
2
,
// BetaScalarPerVector
2
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
#include "run_groupnorm_fwd_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
run_groupnorm_fwd_example
(
argc
,
argv
);
}
example/42_groupnorm_fwd/run_groupnorm_fwd_example.inc
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
int
run_groupnorm_fwd_example
(
int
argc
,
char
*
argv
[])
{
ck
::
index_t
N
=
32
;
ck
::
index_t
H
=
16
;
ck
::
index_t
W
=
16
;
ck
::
index_t
G
=
64
;
ck
::
index_t
C
=
128
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
6
)
{
N
=
std
::
stoi
(
argv
[
1
]);
H
=
std
::
stoi
(
argv
[
2
]);
W
=
std
::
stoi
(
argv
[
3
]);
G
=
std
::
stoi
(
argv
[
4
]);
C
=
std
::
stoi
(
argv
[
5
]);
}
else
{
std
::
cerr
<<
"arg1 to 5: N, H, W, G, C"
<<
std
::
endl
;
return
1
;
}
Tensor
<
XDataType
>
x
({
N
,
H
,
W
,
G
,
C
});
Tensor
<
YDataType
>
y
({
N
,
H
,
W
,
G
,
C
});
Tensor
<
GammaDataType
>
gamma
({
G
,
C
});
Tensor
<
BetaDataType
>
beta
({
G
,
C
});
Tensor
<
SaveMeanInvStdDataType
>
save_mean
({
N
,
G
});
Tensor
<
SaveMeanInvStdDataType
>
save_inv_std
({
N
,
G
});
ck
::
utils
::
FillUniformDistribution
<
XDataType
>
{
0.
f
,
1.
f
}(
x
);
ck
::
utils
::
FillUniformDistribution
<
GammaDataType
>
{
0.
f
,
1.
f
}(
gamma
);
ck
::
utils
::
FillUniformDistribution
<
BetaDataType
>
{
0.
f
,
1.
f
}(
beta
);
DeviceMem
x_dev
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
gamma_dev
(
sizeof
(
GammaDataType
)
*
gamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
beta_dev
(
sizeof
(
BetaDataType
)
*
beta
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
y_dev
(
sizeof
(
YDataType
)
*
y
.
mDesc
.
GetElementSpaceSize
());
#ifdef SAVE_MEAN_INV_STD
DeviceMem
save_mean_dev
(
sizeof
(
SaveMeanInvStdDataType
)
*
save_mean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
save_inv_std_dev
(
sizeof
(
SaveMeanInvStdDataType
)
*
save_inv_std
.
mDesc
.
GetElementSpaceSize
());
#endif
x_dev
.
ToDevice
(
x
.
mData
.
data
());
gamma_dev
.
ToDevice
(
gamma
.
mData
.
data
());
beta_dev
.
ToDevice
(
beta
.
mData
.
data
());
const
auto
y_element_op
=
YElementOp
{};
auto
device_instance
=
DeviceInstance
{};
auto
argument_ptr
=
device_instance
.
MakeArgumentPointer
(
{
N
,
H
,
W
,
G
,
C
},
std
::
vector
<
ck
::
index_t
>
{
x
.
mDesc
.
GetStrides
()
.
begin
(),
x
.
mDesc
.
GetStrides
()
.
end
()},
{
0
,
0
,
0
,
C
,
1
},
{
0
,
0
,
0
,
C
,
1
},
std
::
vector
<
ck
::
index_t
>
{
y
.
mDesc
.
GetStrides
()
.
begin
(),
y
.
mDesc
.
GetStrides
()
.
end
()},
std
::
vector
<
ck
::
index_t
>
{
save_mean
.
mDesc
.
GetStrides
()
.
begin
(),
save_mean
.
mDesc
.
GetStrides
()
.
end
()},
std
::
vector
<
ck
::
index_t
>
{
save_mean
.
mDesc
.
GetStrides
()
.
begin
(),
save_mean
.
mDesc
.
GetStrides
()
.
end
()},
{
1
,
2
,
4
},
// reduction dimension: [H, W, C]
1
e
-
6
,
x_dev
.
GetDeviceBuffer
(),
gamma_dev
.
GetDeviceBuffer
(),
beta_dev
.
GetDeviceBuffer
(),
y_dev
.
GetDeviceBuffer
(),
#ifdef SAVE_MEAN_INV_STD
save_mean_dev
.
GetDeviceBuffer
(),
save_inv_std_dev
.
GetDeviceBuffer
(),
#else
nullptr
,
nullptr
,
#endif
y_element_op
);
if
(
!
device_instance
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
cout
<<
"The runtime parameters are not supported"
<<
std
::
endl
;
return
1
;
};
size_t
workspace_sz
=
device_instance
.
GetWorkSpaceSize
(
argument_ptr
.
get
());
DeviceMem
workspace_dev
(
workspace_sz
);
device_instance
.
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace_dev
.
GetDeviceBuffer
());
auto
invoker_ptr
=
device_instance
.
MakeInvokerPointer
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
,
true
});
std
::
size_t
num_btype
=
sizeof
(
XDataType
)
*
N
*
H
*
W
*
G
*
C
+
sizeof
(
YDataType
)
*
N
*
H
*
W
*
G
*
C
+
sizeof
(
GammaDataType
)
*
G
*
C
+
sizeof
(
BetaDataType
)
*
G
*
C
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
device_instance
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
{
Tensor
<
YDataType
>
host_y
({
N
,
H
,
W
,
G
,
C
});
Tensor
<
SaveMeanInvStdDataType
>
host_save_mean
(
HostTensorDescriptor
{
N
,
G
});
Tensor
<
SaveMeanInvStdDataType
>
host_save_inv_std
(
HostTensorDescriptor
{
N
,
G
});
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGroupnorm
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
ComputeDataType
,
YElementOp
>
;
ReferenceInstance
ref
;
auto
ref_argument
=
ref
.
MakeArgument
(
x
,
gamma
,
beta
,
host_y
,
host_save_mean
,
host_save_inv_std
,
y_element_op
,
{
N
,
H
,
W
,
G
,
C
},
1
e
-
6
);
auto
ref_invoker
=
ref
.
MakeInvoker
();
ref_invoker
.
Run
(
ref_argument
);
y_dev
.
FromDevice
(
y
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
y
,
host_y
,
"Error: Incorrect results"
,
1
e
-
3
,
1
e
-
3
);
#ifdef SAVE_MEAN_INV_STD
save_mean_dev
.
FromDevice
(
save_mean
.
mData
.
data
());
save_inv_std_dev
.
FromDevice
(
save_inv_std
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
save_mean
,
host_save_mean
,
"Error: Incorrect results (mean)"
,
1
e
-
3
,
1
e
-
3
);
pass
&=
ck
::
utils
::
check_err
(
save_inv_std
,
host_save_inv_std
,
"Error: Incorrect results (inv_std)"
,
1
e
-
3
,
1
e
-
3
);
#endif
}
return
(
pass
?
0
:
1
);
}
example/43_splitk_gemm_bias_e_permute/CMakeLists.txt
View file @
ef326c73
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_splitk_gemm_bias_e_permute_xdl_fp16 splitk_gemm_bias_e_permute_xdl_fp16.cpp
)
endif
()
if
(
DTYPES MATCHES
"fp32"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_splitk_gemm_bias_e_permute_xdl_fp32 splitk_gemm_bias_e_permute_xdl_fp32.cpp
)
endif
()
add_example_executable
(
example_splitk_gemm_bias_e_permute_xdl_fp16 splitk_gemm_bias_e_permute_xdl_fp16.cpp
)
add_example_executable
(
example_splitk_gemm_bias_e_permute_xdl_fp32 splitk_gemm_bias_e_permute_xdl_fp32.cpp
)
example/44_elementwise_permute/CMakeLists.txt
View file @
ef326c73
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_elementwise_permute_4D_fp16 elementwise_permute_4D_fp16.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_2d elementwise_permute_4D_fp16_2d.cpp
)
endif
()
add_example_executable
(
example_elementwise_permute_4D_fp16 elementwise_permute_4D_fp16.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp32_row elementwise_permute_4D_fp32_row.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_row elementwise_permute_4D_fp16_row.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp32_col elementwise_permute_4D_fp32_col.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_col elementwise_permute_4D_fp16_col.cpp
)
add_example_executable
(
example_elementwise_binary_4D_fp16 elementwise_binary_4D_fp16.cpp
)
add_example_executable
(
example_elementwise_trinary_4D_fp16 elementwise_trinary_4D_fp16.cpp
)
add_example_executable
(
elementwise_scale_permute_amax_2D_fp16_fp8 elementwise_scale_permute_amax_2D_fp16_fp8.cpp
)
example/44_elementwise_permute/elementwise_binary_4D_fp16.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/combined_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_dynamic_vector_dims_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
UnaryScale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
UnarySquare
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
UnaryScaleSquare
=
ck
::
tensor_operation
::
element_wise
::
UnaryCombinedOp
<
UnarySquare
,
UnaryScale
>
;
using
BinaryAdd
=
ck
::
tensor_operation
::
element_wise
::
Add
;
// B = alpha * A0 * A0 + beta * A1 * A1
using
BinaryAddUnaryScaleSquare
=
ck
::
tensor_operation
::
element_wise
::
BinaryWithUnaryCombinedOp
<
BinaryAdd
,
UnaryScaleSquare
,
UnaryScaleSquare
>
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwiseImpl
<
ck
::
Tuple
<
ADataType
,
ADataType
>
,
// InDataTypeTuple
ck
::
Tuple
<
BDataType
>
,
// OutDataTypeTuple
BinaryAddUnaryScaleSquare
,
// ElementwiseOp
4
,
// NumDim
256
,
// BlockSize
128
,
// M0PerBlock
128
,
// M1PerBlock
8
,
// M0PerThread
8
,
// M1PerThread
ck
::
Sequence
<
1
,
0
>
,
// ThreadClusterArrangeOrder
ck
::
Sequence
<
8
,
8
>
,
// InScalarPerVectorSeq
ck
::
Sequence
<
8
>>
;
// OutScalarPerVectorSeq
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
std
::
vector
<
std
::
size_t
>
nchw
=
{
16
,
128
,
32
,
64
};
std
::
array
<
ck
::
index_t
,
4
>
ab_lengths
;
std
::
array
<
ck
::
index_t
,
4
>
ab_strides
=
{
static_cast
<
int
>
(
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]),
static_cast
<
int
>
(
nchw
[
2
]
*
nchw
[
3
]),
static_cast
<
int
>
(
nchw
[
3
]),
1
};
ck
::
ranges
::
copy
(
nchw
,
ab_lengths
.
begin
());
std
::
array
<
Tensor
<
ADataType
>
,
2
>
as
=
{
Tensor
<
ADataType
>
(
ab_lengths
,
ab_strides
),
Tensor
<
ADataType
>
(
ab_lengths
,
ab_strides
)};
Tensor
<
ADataType
>&
a0
=
as
[
0
];
Tensor
<
ADataType
>&
a1
=
as
[
1
];
Tensor
<
BDataType
>
b
(
ab_lengths
,
ab_strides
);
float
alpha
=
3.
f
;
float
beta
=
2.
f
;
a0
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
a1
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
DeviceMem
a0_device_buf
(
sizeof
(
ADataType
)
*
a0
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a1_device_buf
(
sizeof
(
ADataType
)
*
a1
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
a0_device_buf
.
ToDevice
(
a0
.
mData
.
data
());
a1_device_buf
.
ToDevice
(
a1
.
mData
.
data
());
std
::
array
<
const
void
*
,
2
>
inputs
=
{
a0_device_buf
.
GetDeviceBuffer
(),
a1_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
auto
broadcastPermute
=
DeviceElementwisePermuteInstance
{};
auto
unary_scale_op_a0
=
UnaryScaleSquare
{
UnarySquare
{},
UnaryScale
{
alpha
}};
auto
unary_scale_op_a1
=
UnaryScaleSquare
{
UnarySquare
{},
UnaryScale
{
beta
}};
auto
argument
=
broadcastPermute
.
MakeArgumentPointer
(
ab_lengths
,
{
ab_strides
,
ab_strides
},
{
ab_strides
},
inputs
,
output
,
BinaryAddUnaryScaleSquare
{
BinaryAdd
{},
unary_scale_op_a0
,
unary_scale_op_a1
});
if
(
!
broadcastPermute
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
std
::
cout
<<
"A0 (nchw): "
<<
a0
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"A1 (nchw): "
<<
a1
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"B (nchw): "
<<
b
.
mDesc
<<
std
::
endl
;
auto
broadcastPermute_invoker_ptr
=
broadcastPermute
.
MakeInvokerPointer
();
float
ave_time
=
broadcastPermute_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
5
)
*
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
];
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
sizeof
(
BDataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
Tensor
<
BDataType
>
host_b
(
ab_lengths
,
ab_strides
);
using
ReferenceElementwiseInstance
=
ck
::
tensor_operation
::
host
::
ReferenceElementwise
<
2
,
ADataType
,
BDataType
,
BinaryAddUnaryScaleSquare
>
;
auto
ref_elementwise
=
ReferenceElementwiseInstance
{};
auto
ref_invoker
=
ref_elementwise
.
MakeInvoker
();
auto
ref_argument
=
ref_elementwise
.
MakeArgument
(
as
,
host_b
,
BinaryAddUnaryScaleSquare
{
BinaryAdd
{},
unary_scale_op_a0
,
unary_scale_op_a1
});
ref_invoker
.
Run
(
ref_argument
);
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/44_elementwise_permute/elementwise_permute_4D_fp16.cpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_dynamic_vector_dims_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
...
...
@@ -17,28 +22,20 @@ using F32 = float;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwiseImpl
<
ck
::
Tuple
<
ADataType
>
,
ck
::
Tuple
<
BDataType
>
,
PassThrough
,
4
,
8
,
ck
::
Sequence
<
8
>
,
ck
::
Sequence
<
1
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
Functor
>
void
host_elementwise4D
(
HostTensorB
&
B_nhwc
,
const
HostTensorA
&
A_nchw
,
Functor
functor
)
{
for
(
std
::
size_t
n
=
0
;
n
<
A_nchw
.
mDesc
.
GetLengths
()[
0
];
++
n
)
for
(
std
::
size_t
c
=
0
;
c
<
A_nchw
.
mDesc
.
GetLengths
()[
1
];
++
c
)
for
(
std
::
size_t
h
=
0
;
h
<
A_nchw
.
mDesc
.
GetLengths
()[
2
];
++
h
)
for
(
std
::
size_t
w
=
0
;
w
<
A_nchw
.
mDesc
.
GetLengths
()[
3
];
++
w
)
{
auto
a_val
=
A_nchw
(
n
,
c
,
h
,
w
);
functor
(
B_nhwc
(
n
,
h
,
w
,
c
),
a_val
);
}
}
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwiseImpl
<
ck
::
Tuple
<
ADataType
>
,
// InDataTypeTuple
ck
::
Tuple
<
BDataType
>
,
// OutDataTypeTuple
PassThrough
,
// Elementwise
4
,
// NumDim
256
,
// BlockSize
128
,
// M0PerBlock
128
,
// M1PerBlock
8
,
// M0PerThread
8
,
// M1PerThread
ck
::
Sequence
<
1
,
0
>
,
// ThreadClusterArrangeOrder
ck
::
Sequence
<
8
>
,
// InScalarPerVectorSeq
ck
::
Sequence
<
8
>>
;
// OutScalarPerVectorSeq
int
main
()
{
...
...
@@ -47,18 +44,6 @@ int main()
std
::
vector
<
std
::
size_t
>
nchw
=
{
16
,
128
,
32
,
64
};
std
::
vector
<
std
::
size_t
>
nhwc
=
{
16
,
32
,
64
,
128
};
Tensor
<
ADataType
>
a
(
nchw
);
Tensor
<
BDataType
>
b
(
nhwc
);
a
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
std
::
array
<
const
void
*
,
1
>
input
=
{
a_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
ck
::
index_t
,
4
>
ab_lengths
;
std
::
array
<
ck
::
index_t
,
4
>
a_strides
=
{
static_cast
<
int
>
(
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]),
...
...
@@ -69,9 +54,22 @@ int main()
1
,
static_cast
<
int
>
(
nhwc
[
2
]
*
nhwc
[
3
]),
static_cast
<
int
>
(
nhwc
[
3
])};
ck
::
ranges
::
copy
(
nchw
,
ab_lengths
.
begin
());
std
::
array
<
Tensor
<
ADataType
>
,
1
>
as
=
{
Tensor
<
ADataType
>
(
ab_lengths
,
a_strides
)};
Tensor
<
ADataType
>&
a
=
as
[
0
];
Tensor
<
BDataType
>
b
(
ab_lengths
,
b_strides
);
a
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
std
::
array
<
const
void
*
,
1
>
input
=
{
a_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
auto
broadcastPermute
=
DeviceElementwisePermuteInstance
{};
auto
argument
=
broadcastPermute
.
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
PassThrough
{});
...
...
@@ -99,15 +97,20 @@ int main()
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
Tensor
<
BDataType
>
host_b
(
nhwc
);
host_elementwise4D
(
host_b
,
a
,
PassThrough
{});
Tensor
<
BDataType
>
host_b
(
ab_lengths
,
b_strides
);
using
ReferenceElementwiseInstance
=
ck
::
tensor_operation
::
host
::
ReferenceElementwise
<
1
,
ADataType
,
BDataType
,
PassThrough
>
;
auto
ref_elementwise
=
ReferenceElementwiseInstance
{};
auto
ref_invoker
=
ref_elementwise
.
MakeInvoker
();
auto
ref_argument
=
ref_elementwise
.
MakeArgument
(
as
,
host_b
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
1e-3
,
1e-3
);
}
...
...
example/44_elementwise_permute/elementwise_permute_4D_fp16_2d.cpp
deleted
100644 → 0
View file @
b7775add
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_2d_impl.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise2dImpl
<
ck
::
Tuple
<
ADataType
>
,
ck
::
Tuple
<
BDataType
>
,
PassThrough
,
3
,
// NumDim_M
1
,
// NumDim_N
8
,
8
,
ck
::
Sequence
<
8
>
,
ck
::
Sequence
<
8
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
Functor
>
void
host_elementwise4D
(
HostTensorB
&
B_nhwc
,
const
HostTensorA
&
A_nchw
,
const
std
::
vector
<
std
::
size_t
>&
shape_nchw
,
Functor
functor
)
{
for
(
std
::
size_t
n
=
0
;
n
<
shape_nchw
[
0
];
++
n
)
for
(
std
::
size_t
c
=
0
;
c
<
shape_nchw
[
1
];
++
c
)
for
(
std
::
size_t
h
=
0
;
h
<
shape_nchw
[
2
];
++
h
)
for
(
std
::
size_t
w
=
0
;
w
<
shape_nchw
[
3
];
++
w
)
{
auto
a_val
=
A_nchw
(
n
,
c
,
h
,
w
);
functor
(
B_nhwc
(
n
,
h
,
w
,
c
),
a_val
);
}
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
const
int
N
=
120
;
const
int
C
=
128
;
const
int
H
=
32
;
const
int
W
=
1024
;
/**const int N = 120;
const int H = 32;
const int W = 64;
const int C = 128;**/
std
::
vector
<
std
::
size_t
>
nchw
=
{
N
,
C
,
H
,
W
};
std
::
vector
<
std
::
size_t
>
nhwc
=
{
N
,
H
,
W
,
C
};
Tensor
<
ADataType
>
a
(
nchw
);
Tensor
<
BDataType
>
b
(
nhwc
);
a
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
// LogRangeAsType<float>(std::cout << "Tensor a : ", a.mData, ",") << std::endl;
std
::
array
<
const
void
*
,
1
>
input
=
{
a_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
ck
::
index_t
,
4
>
ab_lengths
{
N
,
H
,
W
,
C
};
std
::
array
<
ck
::
index_t
,
4
>
a_strides
=
{
C
*
H
*
W
,
W
,
1
,
H
*
W
};
std
::
array
<
ck
::
index_t
,
4
>
b_strides
=
{
H
*
W
*
C
,
W
*
C
,
C
,
1
};
auto
broadcastPermute
=
DeviceElementwisePermuteInstance
{};
auto
argument
=
broadcastPermute
.
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
PassThrough
{});
if
(
!
broadcastPermute
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
std
::
cout
<<
"A (nchw): "
<<
a
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"B (nhwc): "
<<
b
.
mDesc
<<
std
::
endl
;
auto
broadcastPermute_invoker_ptr
=
broadcastPermute
.
MakeInvokerPointer
();
float
ave_time
=
broadcastPermute_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
];
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
sizeof
(
BDataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
// LogRangeAsType<float>(std::cout << "Tensor b : ", b.mData, ",") << std::endl;
Tensor
<
BDataType
>
host_b
(
nhwc
);
host_elementwise4D
<
Tensor
<
ADataType
>
,
Tensor
<
BDataType
>
,
PassThrough
>
(
host_b
,
a
,
nchw
,
PassThrough
{});
// LogRangeAsType<float>(std::cout << "Host b : ", host_b.mData, ",") << std::endl;
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/44_elementwise_permute/elementwise_permute_4D_fp16_col.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include <random>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/combined_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_dynamic_vector_dims_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
UnaryScale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
UnarySquare
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
UnaryScaleSquare
=
ck
::
tensor_operation
::
element_wise
::
UnaryCombinedOp
<
UnarySquare
,
UnaryScale
>
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwiseImpl
<
ck
::
Tuple
<
ADataType
>
,
// InDataTypeTuple
ck
::
Tuple
<
BDataType
>
,
// OutDataTypeTuple
UnaryScaleSquare
,
// UnaryScaleSquare
4
,
// NumDim
256
,
// BlockSize
128
,
// M0PerBlock
128
,
// M1PerBlock
8
,
// M0PerThread
8
,
// M1PerThread
ck
::
Sequence
<
1
,
0
>
,
// ThreadClusterArrangeOrder
ck
::
Sequence
<
8
>
,
// InScalarPerVectorSeq
ck
::
Sequence
<
8
>>
;
// OutScalarPerVectorSeq
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
std
::
vector
<
std
::
size_t
>
nchw
=
{
16
,
8
,
32
,
64
};
std
::
vector
<
std
::
size_t
>
nhwc
=
{
16
,
32
,
64
,
8
};
std
::
array
<
ck
::
index_t
,
4
>
ab_lengths
;
std
::
array
<
ck
::
index_t
,
4
>
a_strides
=
{
1
,
static_cast
<
int
>
(
nchw
[
0
]),
static_cast
<
int
>
(
nchw
[
0
]
*
nchw
[
1
]),
static_cast
<
int
>
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
])};
std
::
array
<
ck
::
index_t
,
4
>
b_strides
=
{
1
,
static_cast
<
int
>
(
nhwc
[
0
]
*
nhwc
[
1
]
*
nhwc
[
2
]),
static_cast
<
int
>
(
nhwc
[
0
]),
static_cast
<
int
>
(
nhwc
[
0
]
*
nhwc
[
1
])};
ck
::
ranges
::
copy
(
nchw
,
ab_lengths
.
begin
());
std
::
array
<
Tensor
<
ADataType
>
,
1
>
as
=
{
Tensor
<
ADataType
>
(
ab_lengths
,
a_strides
)};
Tensor
<
ADataType
>&
a
=
as
[
0
];
Tensor
<
BDataType
>
b
(
ab_lengths
,
b_strides
);
float
scale
=
1.
f
;
auto
i
=
0
;
std
::
mt19937
gen
(
11939
);
std
::
uniform_int_distribution
<
int
>
dis
(
0
,
1
);
for
(
std
::
size_t
w
=
0
;
w
<
a
.
mDesc
.
GetLengths
()[
3
];
++
w
)
for
(
std
::
size_t
h
=
0
;
h
<
a
.
mDesc
.
GetLengths
()[
2
];
++
h
)
for
(
std
::
size_t
c
=
0
;
c
<
a
.
mDesc
.
GetLengths
()[
1
];
++
c
)
for
(
std
::
size_t
n
=
0
;
n
<
a
.
mDesc
.
GetLengths
()[
0
];
++
n
)
{
a
.
mData
[(
n
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
(
c
*
nchw
[
2
]
*
nchw
[
3
])
+
(
h
*
nchw
[
3
])
+
w
]
=
i
;
i
=
dis
(
gen
);
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
std
::
array
<
const
void
*
,
1
>
input
=
{
a_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
auto
broadcastPermute
=
DeviceElementwisePermuteInstance
{};
auto
argument
=
broadcastPermute
.
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
UnaryScaleSquare
{
UnarySquare
{},
UnaryScale
{
scale
}});
if
(
!
broadcastPermute
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
std
::
cout
<<
"A (nchw): "
<<
a
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"B (nhwc): "
<<
b
.
mDesc
<<
std
::
endl
;
auto
broadcastPermute_invoker_ptr
=
broadcastPermute
.
MakeInvokerPointer
();
float
ave_time
=
broadcastPermute_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
5
)
*
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
];
std
::
size_t
num_btype
=
(
2
*
sizeof
(
ADataType
)
+
sizeof
(
BDataType
))
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
Tensor
<
BDataType
>
host_b
(
ab_lengths
,
b_strides
);
using
ReferenceElementwiseInstance
=
ck
::
tensor_operation
::
host
::
ReferenceElementwise
<
1
,
ADataType
,
BDataType
,
UnaryScaleSquare
>
;
auto
ref_elementwise
=
ReferenceElementwiseInstance
{};
auto
ref_invoker
=
ref_elementwise
.
MakeInvoker
();
auto
ref_argument
=
ref_elementwise
.
MakeArgument
(
as
,
host_b
,
UnaryScaleSquare
{
UnarySquare
{},
UnaryScale
{
scale
}});
ref_invoker
.
Run
(
ref_argument
);
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/44_elementwise_permute/elementwise_permute_4D_fp16_row.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/combined_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_dynamic_vector_dims_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
UnaryScale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
UnarySquare
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
UnaryScaleSquare
=
ck
::
tensor_operation
::
element_wise
::
UnaryCombinedOp
<
UnarySquare
,
UnaryScale
>
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwiseImpl
<
ck
::
Tuple
<
ADataType
>
,
// InDataTypeTuple
ck
::
Tuple
<
BDataType
>
,
// OutDataTypeTuple
UnaryScaleSquare
,
// UnaryScaleSquare
4
,
// NumDim
256
,
// BlockSize
128
,
// M0PerBlock
128
,
// M1PerBlock
8
,
// M0PerThread
8
,
// M1PerThread
ck
::
Sequence
<
1
,
0
>
,
// ThreadClusterArrangeOrder
ck
::
Sequence
<
8
>
,
// InScalarPerVectorSeq
ck
::
Sequence
<
8
>>
;
// OutScalarPerVectorSeq
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
std
::
vector
<
std
::
size_t
>
nchw
=
{
16
,
128
,
32
,
64
};
std
::
vector
<
std
::
size_t
>
nhwc
=
{
16
,
32
,
64
,
128
};
std
::
array
<
ck
::
index_t
,
4
>
ab_lengths
;
std
::
array
<
ck
::
index_t
,
4
>
a_strides
=
{
static_cast
<
int
>
(
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]),
static_cast
<
int
>
(
nchw
[
2
]
*
nchw
[
3
]),
static_cast
<
int
>
(
nchw
[
3
]),
1
};
std
::
array
<
ck
::
index_t
,
4
>
b_strides
=
{
static_cast
<
int
>
(
nhwc
[
1
]
*
nhwc
[
2
]
*
nhwc
[
3
]),
1
,
static_cast
<
int
>
(
nhwc
[
2
]
*
nhwc
[
3
]),
static_cast
<
int
>
(
nhwc
[
3
])};
ck
::
ranges
::
copy
(
nchw
,
ab_lengths
.
begin
());
std
::
array
<
Tensor
<
ADataType
>
,
1
>
as
=
{
Tensor
<
ADataType
>
(
ab_lengths
,
a_strides
)};
Tensor
<
ADataType
>&
a
=
as
[
0
];
Tensor
<
BDataType
>
b
(
ab_lengths
,
b_strides
);
float
scale
=
2.
f
;
a
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
std
::
array
<
const
void
*
,
1
>
input
=
{
a_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
auto
broadcastPermute
=
DeviceElementwisePermuteInstance
{};
auto
argument
=
broadcastPermute
.
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
UnaryScaleSquare
{
UnarySquare
{},
UnaryScale
{
scale
}});
if
(
!
broadcastPermute
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
std
::
cout
<<
"A (nchw): "
<<
a
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"B (nhwc): "
<<
b
.
mDesc
<<
std
::
endl
;
auto
broadcastPermute_invoker_ptr
=
broadcastPermute
.
MakeInvokerPointer
();
float
ave_time
=
broadcastPermute_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
];
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
sizeof
(
BDataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
Tensor
<
BDataType
>
host_b
(
ab_lengths
,
b_strides
);
using
ReferenceElementwiseInstance
=
ck
::
tensor_operation
::
host
::
ReferenceElementwise
<
1
,
ADataType
,
BDataType
,
UnaryScaleSquare
>
;
auto
ref_elementwise
=
ReferenceElementwiseInstance
{};
auto
ref_invoker
=
ref_elementwise
.
MakeInvoker
();
auto
ref_argument
=
ref_elementwise
.
MakeArgument
(
as
,
host_b
,
UnaryScaleSquare
{
UnarySquare
{},
UnaryScale
{
scale
}});
ref_invoker
.
Run
(
ref_argument
);
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/44_elementwise_permute/elementwise_permute_4D_fp32_col.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/combined_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_dynamic_vector_dims_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
UnaryScale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
UnarySquare
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
UnaryScaleSquare
=
ck
::
tensor_operation
::
element_wise
::
UnaryCombinedOp
<
UnarySquare
,
UnaryScale
>
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwiseImpl
<
ck
::
Tuple
<
ADataType
>
,
// InDataTypeTuple
ck
::
Tuple
<
BDataType
>
,
// OutDataTypeTuple
UnaryScaleSquare
,
// UnaryScaleSquare
4
,
// NumDim
256
,
// BlockSize
128
,
// M0PerBlock
128
,
// M1PerBlock
8
,
// M0PerThread
8
,
// M1PerThread
ck
::
Sequence
<
1
,
0
>
,
// ThreadClusterArrangeOrder
ck
::
Sequence
<
1
>
,
// InScalarPerVectorSeq
ck
::
Sequence
<
1
>>
;
// OutScalarPerVectorSeq
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
std
::
vector
<
std
::
size_t
>
nchw
=
{
16
,
8
,
32
,
64
};
std
::
vector
<
std
::
size_t
>
nhwc
=
{
16
,
32
,
64
,
8
};
std
::
array
<
ck
::
index_t
,
4
>
ab_lengths
;
std
::
array
<
ck
::
index_t
,
4
>
a_strides
=
{
1
,
static_cast
<
int
>
(
nchw
[
0
]),
static_cast
<
int
>
(
nchw
[
0
]
*
nchw
[
1
]),
static_cast
<
int
>
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
])};
std
::
array
<
ck
::
index_t
,
4
>
b_strides
=
{
1
,
static_cast
<
int
>
(
nhwc
[
0
]
*
nhwc
[
1
]
*
nhwc
[
2
]),
static_cast
<
int
>
(
nhwc
[
0
]),
static_cast
<
int
>
(
nhwc
[
0
]
*
nhwc
[
1
])};
ck
::
ranges
::
copy
(
nchw
,
ab_lengths
.
begin
());
std
::
array
<
Tensor
<
ADataType
>
,
1
>
as
=
{
Tensor
<
ADataType
>
(
ab_lengths
,
a_strides
)};
Tensor
<
ADataType
>&
a
=
as
[
0
];
Tensor
<
BDataType
>
b
(
ab_lengths
,
b_strides
);
float
scale
=
1.
f
;
auto
i
=
0
;
std
::
mt19937
gen
(
11939
);
std
::
uniform_int_distribution
<
int
>
dis
(
0
,
1
);
for
(
std
::
size_t
w
=
0
;
w
<
a
.
mDesc
.
GetLengths
()[
3
];
++
w
)
for
(
std
::
size_t
h
=
0
;
h
<
a
.
mDesc
.
GetLengths
()[
2
];
++
h
)
for
(
std
::
size_t
c
=
0
;
c
<
a
.
mDesc
.
GetLengths
()[
1
];
++
c
)
for
(
std
::
size_t
n
=
0
;
n
<
a
.
mDesc
.
GetLengths
()[
0
];
++
n
)
{
a
.
mData
[(
n
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
(
c
*
nchw
[
2
]
*
nchw
[
3
])
+
(
h
*
nchw
[
3
])
+
w
]
=
i
;
i
=
dis
(
gen
);
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
std
::
array
<
const
void
*
,
1
>
input
=
{
a_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
auto
broadcastPermute
=
DeviceElementwisePermuteInstance
{};
auto
argument
=
broadcastPermute
.
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
UnaryScaleSquare
{
UnarySquare
{},
UnaryScale
{
scale
}});
if
(
!
broadcastPermute
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
std
::
cout
<<
"A (nchw): "
<<
a
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"B (nhwc): "
<<
b
.
mDesc
<<
std
::
endl
;
auto
broadcastPermute_invoker_ptr
=
broadcastPermute
.
MakeInvokerPointer
();
float
ave_time
=
broadcastPermute_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
];
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
sizeof
(
BDataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
Tensor
<
BDataType
>
host_b
(
ab_lengths
,
b_strides
);
using
ReferenceElementwiseInstance
=
ck
::
tensor_operation
::
host
::
ReferenceElementwise
<
1
,
ADataType
,
BDataType
,
UnaryScaleSquare
>
;
auto
ref_elementwise
=
ReferenceElementwiseInstance
{};
auto
ref_invoker
=
ref_elementwise
.
MakeInvoker
();
auto
ref_argument
=
ref_elementwise
.
MakeArgument
(
as
,
host_b
,
UnaryScaleSquare
{
UnarySquare
{},
UnaryScale
{
scale
}});
ref_invoker
.
Run
(
ref_argument
);
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/44_elementwise_permute/elementwise_permute_4D_fp32_row.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/combined_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_dynamic_vector_dims_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
UnaryScale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
UnarySquare
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
UnaryScaleSquare
=
ck
::
tensor_operation
::
element_wise
::
UnaryCombinedOp
<
UnarySquare
,
UnaryScale
>
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwiseImpl
<
ck
::
Tuple
<
ADataType
>
,
// InDataTypeTuple
ck
::
Tuple
<
BDataType
>
,
// OutDataTypeTuple
UnaryScaleSquare
,
// UnaryScaleSquare
4
,
// NumDim
256
,
// BlockSize
128
,
// M0PerBlock
128
,
// M1PerBlock
8
,
// M0PerThread
8
,
// M1PerThread
ck
::
Sequence
<
1
,
0
>
,
// ThreadClusterArrangeOrder
ck
::
Sequence
<
8
>
,
// InScalarPerVectorSeq
ck
::
Sequence
<
8
>>
;
// OutScalarPerVectorSeq
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
std
::
vector
<
std
::
size_t
>
nchw
=
{
16
,
128
,
32
,
64
};
std
::
vector
<
std
::
size_t
>
nhwc
=
{
16
,
32
,
64
,
128
};
std
::
array
<
ck
::
index_t
,
4
>
ab_lengths
;
std
::
array
<
ck
::
index_t
,
4
>
a_strides
=
{
static_cast
<
int
>
(
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]),
static_cast
<
int
>
(
nchw
[
2
]
*
nchw
[
3
]),
static_cast
<
int
>
(
nchw
[
3
]),
1
};
std
::
array
<
ck
::
index_t
,
4
>
b_strides
=
{
static_cast
<
int
>
(
nhwc
[
1
]
*
nhwc
[
2
]
*
nhwc
[
3
]),
1
,
static_cast
<
int
>
(
nhwc
[
2
]
*
nhwc
[
3
]),
static_cast
<
int
>
(
nhwc
[
3
])};
ck
::
ranges
::
copy
(
nchw
,
ab_lengths
.
begin
());
std
::
array
<
Tensor
<
ADataType
>
,
1
>
as
=
{
Tensor
<
ADataType
>
(
ab_lengths
,
a_strides
)};
Tensor
<
ADataType
>&
a
=
as
[
0
];
Tensor
<
BDataType
>
b
(
ab_lengths
,
b_strides
);
float
scale
=
2.
f
;
a
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
std
::
array
<
const
void
*
,
1
>
input
=
{
a_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
auto
broadcastPermute
=
DeviceElementwisePermuteInstance
{};
auto
argument
=
broadcastPermute
.
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
UnaryScaleSquare
{
UnarySquare
{},
UnaryScale
{
scale
}});
if
(
!
broadcastPermute
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
std
::
cout
<<
"A (nchw): "
<<
a
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"B (nhwc): "
<<
b
.
mDesc
<<
std
::
endl
;
auto
broadcastPermute_invoker_ptr
=
broadcastPermute
.
MakeInvokerPointer
();
float
ave_time
=
broadcastPermute_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
];
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
sizeof
(
BDataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
Tensor
<
BDataType
>
host_b
(
ab_lengths
,
b_strides
);
using
ReferenceElementwiseInstance
=
ck
::
tensor_operation
::
host
::
ReferenceElementwise
<
1
,
ADataType
,
BDataType
,
UnaryScaleSquare
>
;
auto
ref_elementwise
=
ReferenceElementwiseInstance
{};
auto
ref_invoker
=
ref_elementwise
.
MakeInvoker
();
auto
ref_argument
=
ref_elementwise
.
MakeArgument
(
as
,
host_b
,
UnaryScaleSquare
{
UnarySquare
{},
UnaryScale
{
scale
}});
ref_invoker
.
Run
(
ref_argument
);
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/44_elementwise_permute/elementwise_scale_permute_amax_2D_fp16_fp8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_dynamic_vector_dims_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_multiblock.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/utility/reduction_enums.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F8
=
ck
::
f8_t
;
using
InputDataType
=
F16
;
using
ScaleDataType
=
F32
;
using
OutputDataType
=
F8
;
static
constexpr
ck
::
index_t
NumDim
=
2
;
constexpr
ck
::
ReduceTensorOp
ReduceOpId
=
ck
::
ReduceTensorOp
::
MAX
;
constexpr
bool
PropagateNan
=
true
;
constexpr
bool
OutputIndex
=
false
;
using
ReduceOperation
=
typename
ck
::
reduce_binary_operator
<
ReduceOpId
>::
opType
;
struct
ScalePassThrough
{
ScalePassThrough
(
const
float
alpha
=
1.
f
)
:
alpha_
(
alpha
)
{}
__host__
__device__
constexpr
void
operator
()(
OutputDataType
&
y0
,
OutputDataType
&
y1
,
const
InputDataType
&
x0
)
const
{
y0
=
ck
::
type_convert
<
OutputDataType
>
(
ck
::
type_convert
<
ScaleDataType
>
(
x0
)
*
alpha_
);
y1
=
y0
;
}
const
ScaleDataType
alpha_
;
};
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnaryAbs
=
ck
::
tensor_operation
::
element_wise
::
UnaryAbs
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwiseImpl
<
ck
::
Tuple
<
InputDataType
>
,
// InDataTypeTuple
ck
::
Tuple
<
OutputDataType
,
OutputDataType
>
,
// OutDataTypeTuple
ScalePassThrough
,
// Elementwise
NumDim
,
// NumDim
256
,
// BlockSize
128
,
// M0PerBlock
128
,
// M1PerBlock
8
,
// M0PerThread
8
,
// M1PerThread
ck
::
Sequence
<
1
,
0
>
,
// ThreadClusterArrangeOrder
ck
::
Sequence
<
8
>
,
// InScalarPerVectorSeq
ck
::
Sequence
<
8
,
1
>>
;
// OutScalarPerVectorSeq
using
DeviceReduceInstance
=
ck
::
tensor_operation
::
device
::
DeviceReduceMultiBlock
<
OutputDataType
,
ScaleDataType
,
OutputDataType
,
NumDim
,
NumDim
,
ReduceOperation
,
UnaryAbs
,
PassThrough
,
ck
::
InMemoryDataOperationEnum
::
Set
,
PropagateNan
,
OutputIndex
,
false
,
// HaveIndexInputIfOutputIndex
1024
,
// BlockSize
1
,
// MThreadClusterSize
1024
,
// KThreadClusterSize
1
,
// MThreadSliceSize
16
,
// KThreadSliceSize
1
,
// InSrcVectorDim
16
,
// InSrceVectorSize
1
>
;
// OutDstVectorSize
void
reference_scale_permute_amax
(
Tensor
<
InputDataType
>&
input
,
Tensor
<
OutputDataType
>&
host_output_scaled_casted_transposed
,
Tensor
<
OutputDataType
>&
host_output_scaled_casted
,
Tensor
<
OutputDataType
>&
host_output_amax
,
const
float
scale
)
{
ScalePassThrough
out_element_op
(
scale
);
const
ck
::
index_t
M
=
input
.
GetLengths
()[
0
];
const
ck
::
index_t
K
=
input
.
GetLengths
()[
1
];
for
(
ck
::
index_t
m
=
0
;
m
<
M
;
m
++
)
{
for
(
ck
::
index_t
k
=
0
;
k
<
K
;
k
++
)
{
OutputDataType
y0
,
y1
;
out_element_op
(
y0
,
y1
,
input
(
m
,
k
));
host_output_scaled_casted
(
m
,
k
)
=
y0
;
host_output_scaled_casted_transposed
(
m
,
k
)
=
y1
;
const
OutputDataType
y_fabs
=
ck
::
type_convert
<
OutputDataType
>
(
ck
::
math
::
abs
(
ck
::
type_convert
<
float
>
(
y0
)));
host_output_amax
(
0
)
=
ck
::
type_convert
<
OutputDataType
>
(
ck
::
math
::
max
(
ck
::
type_convert
<
float
>
(
y_fabs
),
ck
::
type_convert
<
float
>
(
host_output_amax
(
0
))));
}
}
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
const
float
scale
=
2.
f
;
ck
::
index_t
M
=
1024
;
ck
::
index_t
K
=
1024
;
if
(
argc
==
3
)
{
M
=
std
::
stoi
(
argv
[
1
]);
K
=
std
::
stoi
(
argv
[
2
]);
}
std
::
array
<
ck
::
index_t
,
2
>
dims
=
{
M
,
K
};
std
::
array
<
ck
::
index_t
,
2
>
in_strides
=
{
K
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
out_strides
=
{
1
,
M
};
Tensor
<
InputDataType
>
input
(
dims
,
in_strides
);
Tensor
<
OutputDataType
>
output_scaled_casted_transposed
(
dims
,
out_strides
);
Tensor
<
OutputDataType
>
output_scaled_casted
(
dims
,
in_strides
);
Tensor
<
OutputDataType
>
output_amax
({
1
});
input
.
GenerateTensorValue
(
GeneratorTensor_3
<
InputDataType
>
{
0.0
,
1.0
});
DeviceMem
input_dev_buf
(
sizeof
(
InputDataType
)
*
input
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
output_scaled_casted_transposed_dev_buf
(
sizeof
(
OutputDataType
)
*
output_scaled_casted_transposed
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
output_scaled_casted_dev_buf
(
sizeof
(
OutputDataType
)
*
output_scaled_casted
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
output_amax_dev_buf
(
sizeof
(
OutputDataType
)
*
output_amax
.
mDesc
.
GetElementSpaceSize
());
input_dev_buf
.
ToDevice
(
input
.
mData
.
data
());
std
::
array
<
const
void
*
,
1
>
inputs
=
{
input_dev_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
2
>
outputs
=
{
output_scaled_casted_transposed_dev_buf
.
GetDeviceBuffer
(),
output_scaled_casted_dev_buf
.
GetDeviceBuffer
()};
std
::
cout
<<
"Input: "
<<
input
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"Scale: "
<<
scale
<<
std
::
endl
;
std
::
cout
<<
"Output scaled casted transposed: "
<<
output_scaled_casted_transposed
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"Output scaled casted: "
<<
output_scaled_casted
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"Output amax: "
<<
output_amax
.
mDesc
<<
std
::
endl
;
auto
launch_transpose_scale
=
[
&
]()
{
auto
transposeScale
=
DeviceElementwisePermuteInstance
{};
auto
argument
=
transposeScale
.
MakeArgumentPointer
(
dims
,
{
in_strides
},
{
out_strides
,
in_strides
},
inputs
,
outputs
,
ScalePassThrough
{
scale
});
if
(
!
transposeScale
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
auto
transposeScale_invoker_ptr
=
transposeScale
.
MakeInvokerPointer
();
return
transposeScale_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
};
auto
launch_reduce
=
[
&
]()
{
auto
reduce
=
DeviceReduceInstance
{};
auto
reduce_argument_ptr
=
reduce
.
MakeArgumentPointer
(
dims
,
in_strides
,
{
1
},
// Output Lengths
{
1
},
// Output Strides
{
0
,
1
},
// Reduce Dims
static_cast
<
double
>
(
1.
f
),
static_cast
<
double
>
(
0.
f
),
output_scaled_casted_dev_buf
.
GetDeviceBuffer
(),
nullptr
,
output_amax_dev_buf
.
GetDeviceBuffer
(),
nullptr
,
UnaryAbs
{},
PassThrough
{});
if
(
!
reduce
.
IsSupportedArgument
(
reduce_argument_ptr
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
auto
invoker_ptr
=
reduce
.
MakeInvokerPointer
();
return
invoker_ptr
->
Run
(
reduce_argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
};
float
ave_time
=
launch_transpose_scale
();
ave_time
+=
launch_reduce
();
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
Tensor
<
OutputDataType
>
host_output_scaled_casted_transposed
(
dims
,
out_strides
);
Tensor
<
OutputDataType
>
host_output_scaled_casted
(
dims
,
in_strides
);
Tensor
<
OutputDataType
>
host_output_amax
({
1
});
reference_scale_permute_amax
(
input
,
host_output_scaled_casted_transposed
,
host_output_scaled_casted
,
host_output_amax
,
scale
);
output_scaled_casted_transposed_dev_buf
.
FromDevice
(
output_scaled_casted_transposed
.
mData
.
data
());
output_scaled_casted_dev_buf
.
FromDevice
(
output_scaled_casted
.
mData
.
data
());
output_amax_dev_buf
.
FromDevice
(
output_amax
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
output_scaled_casted_transposed
.
mData
,
host_output_scaled_casted_transposed
.
mData
,
"Error: Incorrect results scaled transposed"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
output_scaled_casted
.
mData
,
host_output_scaled_casted
.
mData
,
"Error: Incorrect results scaled"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
output_amax
.
mData
,
host_output_amax
.
mData
,
"Error: Incorrect results amax"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/44_elementwise_permute/elementwise_trinary_4D_fp16.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/combined_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_dynamic_vector_dims_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
UnaryScale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
UnarySquare
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
UnaryScaleSquare
=
ck
::
tensor_operation
::
element_wise
::
UnaryCombinedOp
<
UnarySquare
,
UnaryScale
>
;
using
BinaryAdd
=
ck
::
tensor_operation
::
element_wise
::
Add
;
// B = alpha * A0 * A0 + beta * A1 * A1 + gamma * A2 * A2
using
TrinaryAddUnaryScaleSquare
=
ck
::
tensor_operation
::
element_wise
::
TrinaryWithUnaryCombinedOp
<
BinaryAdd
,
BinaryAdd
,
UnaryScaleSquare
,
UnaryScaleSquare
,
UnaryScaleSquare
>
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwiseImpl
<
ck
::
Tuple
<
ADataType
,
ADataType
,
ADataType
>
,
// InDataTypeTuple
ck
::
Tuple
<
BDataType
>
,
// OutDataTypeTuple
TrinaryAddUnaryScaleSquare
,
// ElementwiseOp
4
,
// NumDim
256
,
// BlockSize
128
,
// M0PerBlock
128
,
// M1PerBlock
8
,
// M0PerThread
8
,
// M1PerThread
ck
::
Sequence
<
1
,
0
>
,
// ThreadClusterArrangeOrder
ck
::
Sequence
<
8
,
8
,
8
>
,
// InScalarPerVectorSeq
ck
::
Sequence
<
8
>>
;
// OutScalarPerVectorSeq
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
std
::
vector
<
std
::
size_t
>
nchw
=
{
16
,
128
,
32
,
64
};
std
::
array
<
ck
::
index_t
,
4
>
ab_lengths
;
std
::
array
<
ck
::
index_t
,
4
>
ab_strides
=
{
static_cast
<
int
>
(
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]),
static_cast
<
int
>
(
nchw
[
2
]
*
nchw
[
3
]),
static_cast
<
int
>
(
nchw
[
3
]),
1
};
ck
::
ranges
::
copy
(
nchw
,
ab_lengths
.
begin
());
std
::
array
<
Tensor
<
ADataType
>
,
3
>
as
=
{
Tensor
<
ADataType
>
(
ab_lengths
,
ab_strides
),
Tensor
<
ADataType
>
(
ab_lengths
,
ab_strides
),
Tensor
<
ADataType
>
(
ab_lengths
,
ab_strides
)};
Tensor
<
ADataType
>&
a0
=
as
[
0
];
Tensor
<
ADataType
>&
a1
=
as
[
1
];
Tensor
<
ADataType
>&
a2
=
as
[
2
];
Tensor
<
BDataType
>
b
(
ab_lengths
,
ab_strides
);
float
alpha
=
3.
f
;
float
beta
=
2.
f
;
float
gamma
=
4.
f
;
a0
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
a1
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
a2
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
DeviceMem
a0_device_buf
(
sizeof
(
ADataType
)
*
a0
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a1_device_buf
(
sizeof
(
ADataType
)
*
a1
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a2_device_buf
(
sizeof
(
ADataType
)
*
a2
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
a0_device_buf
.
ToDevice
(
a0
.
mData
.
data
());
a1_device_buf
.
ToDevice
(
a1
.
mData
.
data
());
a2_device_buf
.
ToDevice
(
a2
.
mData
.
data
());
std
::
array
<
const
void
*
,
3
>
inputs
=
{
a0_device_buf
.
GetDeviceBuffer
(),
a1_device_buf
.
GetDeviceBuffer
(),
a2_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
auto
broadcastPermute
=
DeviceElementwisePermuteInstance
{};
auto
unary_scale_op_a0
=
UnaryScaleSquare
{
UnarySquare
{},
UnaryScale
{
alpha
}};
auto
unary_scale_op_a1
=
UnaryScaleSquare
{
UnarySquare
{},
UnaryScale
{
beta
}};
auto
unary_scale_op_a2
=
UnaryScaleSquare
{
UnarySquare
{},
UnaryScale
{
gamma
}};
auto
argument
=
broadcastPermute
.
MakeArgumentPointer
(
ab_lengths
,
{
ab_strides
,
ab_strides
,
ab_strides
},
{
ab_strides
},
inputs
,
output
,
TrinaryAddUnaryScaleSquare
{
BinaryAdd
{},
BinaryAdd
{},
unary_scale_op_a0
,
unary_scale_op_a1
,
unary_scale_op_a2
});
if
(
!
broadcastPermute
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
std
::
cout
<<
"A0 (nchw): "
<<
a0
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"A1 (nchw): "
<<
a1
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"A2 (nchw): "
<<
a2
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"B (nchw): "
<<
b
.
mDesc
<<
std
::
endl
;
auto
broadcastPermute_invoker_ptr
=
broadcastPermute
.
MakeInvokerPointer
();
float
ave_time
=
broadcastPermute_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
5
)
*
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
];
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
sizeof
(
BDataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
Tensor
<
BDataType
>
host_b
(
ab_lengths
,
ab_strides
);
using
ReferenceElementwiseInstance
=
ck
::
tensor_operation
::
host
::
ReferenceElementwise
<
3
,
ADataType
,
BDataType
,
TrinaryAddUnaryScaleSquare
>
;
auto
ref_elementwise
=
ReferenceElementwiseInstance
{};
auto
ref_invoker
=
ref_elementwise
.
MakeInvoker
();
auto
ref_argument
=
ref_elementwise
.
MakeArgument
(
as
,
host_b
,
TrinaryAddUnaryScaleSquare
{
BinaryAdd
{},
BinaryAdd
{},
unary_scale_op_a0
,
unary_scale_op_a1
,
unary_scale_op_a2
});
ref_invoker
.
Run
(
ref_argument
);
const
double
threshold
=
std
::
pow
(
2
,
-
10
)
*
2
;
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
threshold
,
threshold
);
}
return
pass
?
0
:
1
;
}
example/45_elementwise_normalization/elementwise_layernorm_blockwise.cpp
View file @
ef326c73
...
...
@@ -167,20 +167,31 @@ int main()
XElementwiseOperation
>
(
x
,
a
,
b
,
mn
,
XElementwiseOperation
{});
Tensor
<
YDataType
>
host_y
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
Tensor
<
AccDataType
>
host_save_mean
({
M
});
Tensor
<
AccDataType
>
host_save_inv_std
({
M
});
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceLayernorm
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
AccDataType
,
AccDataType
,
YElementwiseOperation
,
Rank
,
NumReduceDim
>
;
ReferenceInstance
ref
;
auto
ref_argument
=
ref
.
MakeArgument
(
x
,
gamma
,
beta
,
host_y
,
YElementwiseOperation
{},
{
M
,
N
},
{
1
},
1e-4
);
auto
ref_invoker
=
ref
.
MakeInvoker
();
auto
ref_argument
=
ref
.
MakeArgument
(
x
,
gamma
,
beta
,
host_y
,
host_save_mean
,
host_save_inv_std
,
YElementwiseOperation
{},
{
M
,
N
},
{
1
},
1e-4
);
auto
ref_invoker
=
ref
.
MakeInvoker
();
ref_invoker
.
Run
(
ref_argument
);
y_dev
.
FromDevice
(
y
.
mData
.
data
());
...
...
example/46_gemm_add_multiply/CMakeLists.txt
View file @
ef326c73
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
if
(
DL_KERNELS
)
add_example_executable
(
example_gemm_add_multiply_dl_fp16 gemm_add_multiply_dl_fp16.cpp
)
endif
()
add_example_executable
(
example_gemm_add_multiply_xdl_fp16 gemm_add_multiply_xdl_fp16.cpp
)
endif
()
add_example_executable
(
example_gemm_add_multiply_dl_fp16 gemm_add_multiply_dl_fp16.cpp
)
add_example_executable
(
example_gemm_add_multiply_xdl_fp16 gemm_add_multiply_xdl_fp16.cpp
)
example/46_gemm_add_multiply/README.md
View file @
ef326c73
...
...
@@ -8,19 +8,3 @@
#arg4 to 11: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD0, StrideD1, StrideE"
./bin/example_gemm_add_multiply_dl_fp16 1 1 1
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
a_m_k: dim 2, lengths {3840, 4096}, strides {4096, 1}
b_k_n: dim 2, lengths {4096, 4096}, strides {4096, 1}
d0_m_n: dim 2, lengths {3840, 4096}, strides {0, 1}
d1_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
e_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
arg.a_grid_desc_k0_m0_m1_k1_{2048, 3840, 2}
arg.b_grid_desc_k0_n0_n1_k1_{2048, 4096, 2}
arg.e_grid_desc_m_n_{ 3840, 4096}
launch_and_time_kernel: grid_dim {960, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 3.99904 ms, 32.22 TFlops, 31.9913 GB/s, DeviceGemmMultipleD_Dl<256, 128, 128, 16, 2, 4, 4, 1>
```
example/47_gemm_bias_softmax_gemm_permute/CMakeLists.txt
View file @
ef326c73
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_example_executable
(
example_gemm_bias_softmax_gemm_permute gemm_bias_softmax_gemm_permute.cpp
)
set
(
target 1
)
endif
()
endforeach
()
add_example_executable
(
example_gemm_bias_softmax_gemm_permute gemm_bias_softmax_gemm_permute_xdl.cpp
)
example/47_gemm_bias_softmax_gemm_permute/gemm_bias_softmax_gemm_permute.cpp
→
example/47_gemm_bias_softmax_gemm_permute/gemm_bias_softmax_gemm_permute
_xdl
.cpp
View file @
ef326c73
File moved
example/48_pool3d_fwd/CMakeLists.txt
View file @
ef326c73
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_pool3d_fwd_fp16 pool3d_fwd_fp16.cpp
)
endif
()
add_example_executable
(
example_pool3d_fwd_fp16 pool3d_fwd_fp16.cpp
)
example/48_pool3d_fwd/pool3d_fwd_common.hpp
View file @
ef326c73
...
...
@@ -32,6 +32,8 @@ std::vector<ck::index_t> f_tensor_strides_ncdhw(ck::index_t N_,
return
{
C_
*
D
*
H
*
W
,
D
*
H
*
W
,
H
*
W
,
W
,
1
_uz
};
else
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NDHWC
>::
value
)
return
{
D
*
C_
*
H
*
W
,
1
_uz
,
C_
*
H
*
W
,
W
*
C_
,
C_
};
throw
std
::
runtime_error
(
"Pool3d_fwd: problem with layout. "
);
return
{
0
,
0
,
0
,
0
,
0
};
};
template
<
typename
TensorLayout
>
...
...
@@ -53,6 +55,8 @@ HostTensorDescriptor f_host_tensor_descriptor(std::size_t N_,
return
HostTensorDescriptor
({
N_
,
C_
,
D
,
H
,
W
},
{
D
*
C_
*
H
*
W
,
1
_uz
,
C_
*
H
*
W
,
W
*
C_
,
C_
});
}
throw
std
::
runtime_error
(
"Pool3d_fwd: problem with layout. "
);
return
HostTensorDescriptor
({
0
,
0
,
0
,
0
,
0
},
{
0
,
0
,
0
,
0
,
0
});
};
template
<
typename
DevicePoolFwdInstance
,
...
...
Prev
1
…
19
20
21
22
23
24
25
26
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment