Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
ef326c73
Commit
ef326c73
authored
Nov 19, 2024
by
Alan Turner
Browse files
Merge remote-tracking branch 'origin/develop' into migraphx-update
parents
b7775add
e4dfe4d8
Changes
511
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
613 additions
and
82 deletions
+613
-82
example/09_convnd_fwd/README.md
example/09_convnd_fwd/README.md
+0
-14
example/09_convnd_fwd/convnd_fwd_common.hpp
example/09_convnd_fwd/convnd_fwd_common.hpp
+88
-3
example/09_convnd_fwd/convnd_fwd_xdl_bf16.cpp
example/09_convnd_fwd/convnd_fwd_xdl_bf16.cpp
+2
-2
example/09_convnd_fwd/convnd_fwd_xdl_bf8.cpp
example/09_convnd_fwd/convnd_fwd_xdl_bf8.cpp
+81
-0
example/09_convnd_fwd/convnd_fwd_xdl_bf8_fp8.cpp
example/09_convnd_fwd/convnd_fwd_xdl_bf8_fp8.cpp
+83
-0
example/09_convnd_fwd/convnd_fwd_xdl_fp16.cpp
example/09_convnd_fwd/convnd_fwd_xdl_fp16.cpp
+2
-2
example/09_convnd_fwd/convnd_fwd_xdl_fp16_comp_fp8.cpp
example/09_convnd_fwd/convnd_fwd_xdl_fp16_comp_fp8.cpp
+81
-0
example/09_convnd_fwd/convnd_fwd_xdl_fp32.cpp
example/09_convnd_fwd/convnd_fwd_xdl_fp32.cpp
+2
-2
example/09_convnd_fwd/convnd_fwd_xdl_fp64.cpp
example/09_convnd_fwd/convnd_fwd_xdl_fp64.cpp
+2
-2
example/09_convnd_fwd/convnd_fwd_xdl_fp8.cpp
example/09_convnd_fwd/convnd_fwd_xdl_fp8.cpp
+81
-0
example/09_convnd_fwd/convnd_fwd_xdl_fp8_bf8.cpp
example/09_convnd_fwd/convnd_fwd_xdl_fp8_bf8.cpp
+83
-0
example/09_convnd_fwd/convnd_fwd_xdl_int8.cpp
example/09_convnd_fwd/convnd_fwd_xdl_int8.cpp
+2
-2
example/10_convnd_fwd_multiple_d_multiple_reduce/CMakeLists.txt
...e/10_convnd_fwd_multiple_d_multiple_reduce/CMakeLists.txt
+17
-28
example/10_convnd_fwd_multiple_d_multiple_reduce/common.hpp
example/10_convnd_fwd_multiple_d_multiple_reduce/common.hpp
+3
-3
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_int4.cpp
...wd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_int4.cpp
+2
-3
example/10_convnd_fwd_multiple_d_multiple_reduce/run_convnd_fwd_max_example.inc
...multiple_d_multiple_reduce/run_convnd_fwd_max_example.inc
+41
-16
example/12_reduce/CMakeLists.txt
example/12_reduce/CMakeLists.txt
+1
-0
example/12_reduce/README.md
example/12_reduce/README.md
+2
-2
example/12_reduce/reduce_blockwise.cpp
example/12_reduce/reduce_blockwise.cpp
+28
-1
example/12_reduce/reduce_blockwise_impl.hpp
example/12_reduce/reduce_blockwise_impl.hpp
+12
-2
No files found.
Too many changes to show.
To preserve performance only
511 of 511+
files are displayed.
Plain diff
Email patch
example/09_convnd_fwd/README.md
View file @
ef326c73
...
@@ -16,17 +16,3 @@
...
@@ -16,17 +16,3 @@
# <right padding>, (ie RightPy, RightPx for 2D)
# <right padding>, (ie RightPy, RightPx for 2D)
./bin/example_convnd_fwd_xdl 0 1 100
./bin/example_convnd_fwd_xdl 0 1 100
```
```
Result (MI100 @ 1087Mhz, 33.4TFlops peak FP32)
```
input: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
weights: dim 4, lengths {256, 192, 3, 3}, strides {1728, 1, 576, 192}
output: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
arg.a_grid_desc_k0_m_k1_{432, 165888, 4}
arg.b_grid_desc_k0_n_k1_{432, 256, 4}
arg.c_grid_desc_m_n_{ 165888, 256}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 100 times...
Perf: 4.43736 ms, 33.0753 TFlops, 150.357 GB/s
```
example/09_convnd_fwd/convnd_fwd_common.hpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <cstdlib>
#include <iostream>
#include <iostream>
...
@@ -27,6 +27,88 @@ void print_helper_msg()
...
@@ -27,6 +27,88 @@ void print_helper_msg()
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
}
}
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_rtol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1e-6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5e-2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
1e-1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
1.5e-1
;
// 57344 and 49152 are acceptable
}
else
{
return
1e-3
;
}
}
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_atol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1e-6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5e-2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
16.1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
8192.1
;
// 57344 and 49152 are acceptable
}
else
{
return
1e-3
;
}
}
template
<
ck
::
index_t
NDimSpatial
,
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
InDataType
,
typename
WeiDataType
,
typename
WeiDataType
,
...
@@ -164,8 +246,11 @@ bool run_grouped_conv_fwd(bool do_verification,
...
@@ -164,8 +246,11 @@ bool run_grouped_conv_fwd(bool do_verification,
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
return
ck
::
utils
::
check_err
(
out_device
,
out_device
,
out_host
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
);
out_host
,
"Error: incorrect results!"
,
get_rtol
<
OutDataType
>
(),
get_atol
<
OutDataType
>
());
}
}
return
true
;
return
true
;
...
...
example/09_convnd_fwd/convnd_fwd_xdl_bf16.cpp
View file @
ef326c73
...
@@ -3,7 +3,7 @@
...
@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp"
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
NDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
...
...
example/09_convnd_fwd/convnd_fwd_xdl_bf8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
ck
::
bf8_t
;
using
WeiDataType
=
ck
::
bf8_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
f8_t
;
using
OutDataType
=
ck
::
f8_t
;
using
ComputeType
=
ck
::
bf8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
ComputeType
>
;
#include "run_convnd_fwd_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_convnd_fwd_example
(
argc
,
argv
)
?
0
:
1
;
}
example/09_convnd_fwd/convnd_fwd_xdl_bf8_fp8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
ck
::
bf8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
f8_t
;
using
OutDataType
=
ck
::
f8_t
;
using
AComputeType
=
ck
::
bf8_t
;
using
BComputeType
=
ck
::
f8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
AComputeType
,
BComputeType
>
;
#include "run_convnd_fwd_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_convnd_fwd_example
(
argc
,
argv
)
?
0
:
1
;
}
example/09_convnd_fwd/convnd_fwd_xdl_fp16.cpp
View file @
ef326c73
...
@@ -3,7 +3,7 @@
...
@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp"
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
NDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
...
...
example/09_convnd_fwd/convnd_fwd_xdl_fp16_comp_fp8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
ComputeType
=
ck
::
f8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryConvert
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
ComputeType
>
;
#include "run_convnd_fwd_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_convnd_fwd_example
(
argc
,
argv
)
?
0
:
1
;
}
example/09_convnd_fwd/convnd_fwd_xdl_fp32.cpp
View file @
ef326c73
...
@@ -3,7 +3,7 @@
...
@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp"
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
NDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
...
...
example/09_convnd_fwd/convnd_fwd_xdl_fp64.cpp
View file @
ef326c73
...
@@ -3,7 +3,7 @@
...
@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp"
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
NDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
...
...
example/09_convnd_fwd/convnd_fwd_xdl_fp8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
f8_t
;
using
OutDataType
=
ck
::
f8_t
;
using
ComputeDataType
=
ck
::
f8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
ComputeDataType
>
;
#include "run_convnd_fwd_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_convnd_fwd_example
(
argc
,
argv
)
?
0
:
1
;
}
example/09_convnd_fwd/convnd_fwd_xdl_fp8_bf8.cpp
0 → 100644
View file @
ef326c73
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
bf8_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
f8_t
;
using
OutDataType
=
ck
::
f8_t
;
using
AComputeType
=
ck
::
f8_t
;
using
BComputeType
=
ck
::
bf8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
AComputeType
,
BComputeType
>
;
#include "run_convnd_fwd_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_convnd_fwd_example
(
argc
,
argv
)
?
0
:
1
;
}
example/09_convnd_fwd/convnd_fwd_xdl_int8.cpp
View file @
ef326c73
...
@@ -3,7 +3,7 @@
...
@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp"
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
NDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
...
...
example/10_convnd_fwd_multiple_d_multiple_reduce/CMakeLists.txt
View file @
ef326c73
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
add_custom_target
(
example_convnd_fwd_reduce_xdl
)
set
(
target 0
)
add_example_executable
(
example_convnd_fwd_max_xdl_int8 convnd_fwd_max_xdl_int8.cpp
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
add_example_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_int8
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_custom_target
(
example_convnd_fwd_reduce_xdl
)
add_example_executable_no_testing
(
example_convnd_fwd_max_xdl_bf16 convnd_fwd_max_xdl_bf16.cpp
)
if
(
DTYPES MATCHES
"int8"
OR NOT DEFINED DTYPES
)
add_example_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_bf16
)
add_example_executable
(
example_convnd_fwd_max_xdl_int8 convnd_fwd_max_xdl_int8.cpp
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_int8
)
add_example_executable_no_testing
(
example_convnd_fwd_max_xdl_fp16 convnd_fwd_max_xdl_fp16.cpp
)
endif
()
add_example_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp16
)
if
(
DTYPES MATCHES
"bf16"
OR NOT DEFINED DTYPES
)
add_example_executable_no_testing
(
example_convnd_fwd_max_xdl_bf16 convnd_fwd_max_xdl_bf16.cpp
)
add_example_executable
(
example_convnd_fwd_max_xdl_fp32 convnd_fwd_max_xdl_fp32.cpp
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_bf16
)
add_example_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp32
)
endif
()
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable_no_testing
(
example_convnd_fwd_max_xdl_fp16 convnd_fwd_max_xdl_fp16.cpp
)
add_example_executable
(
example_convnd_fwd_max_xdl_int4 convnd_fwd_max_xdl_int4.cpp
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp16
)
add_example_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_int4
)
endif
()
endif
(
USE_BITINT_EXTENSION_INT4
)
if
(
DTYPES MATCHES
"fp32"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_convnd_fwd_max_xdl_fp32 convnd_fwd_max_xdl_fp32.cpp
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp32
)
endif
()
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_convnd_fwd_max_xdl_int4 convnd_fwd_max_xdl_int4.cpp
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_int4
)
endif
(
USE_BITINT_EXTENSION_INT4
)
set
(
target 1
)
endif
()
endforeach
()
\ No newline at end of file
example/10_convnd_fwd_multiple_d_multiple_reduce/common.hpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <algorithm>
#include <algorithm>
#include <cassert>
#include <cassert>
...
@@ -80,7 +80,7 @@ using RLayout = typename LayoutSettingSelector<NDimSpatial>::RLayout;
...
@@ -80,7 +80,7 @@ using RLayout = typename LayoutSettingSelector<NDimSpatial>::RLayout;
struct
ExecutionConfig
final
struct
ExecutionConfig
final
{
{
bool
do_verification
=
true
;
bool
do_verification
=
true
;
int
init_method
=
1
;
int
init_method
=
2
;
bool
time_kernel
=
false
;
bool
time_kernel
=
false
;
};
};
...
@@ -139,7 +139,7 @@ inline bool parse_cmd_args(int argc,
...
@@ -139,7 +139,7 @@ inline bool parse_cmd_args(int argc,
inline
HostTensorDescriptor
inline
HostTensorDescriptor
make_r0_host_tensor_descriptor
(
const
ck
::
utils
::
conv
::
ConvParam
&
problem_size
)
make_r0_host_tensor_descriptor
(
const
ck
::
utils
::
conv
::
ConvParam
&
problem_size
)
{
{
std
::
vector
<
ck
::
index_t
>
dimensions
{
problem_size
.
G_
,
problem_size
.
N_
};
std
::
vector
<
ck
::
long_
index_t
>
dimensions
{
problem_size
.
G_
,
problem_size
.
N_
};
ck
::
ranges
::
copy
(
problem_size
.
output_spatial_lengths_
,
std
::
back_inserter
(
dimensions
));
ck
::
ranges
::
copy
(
problem_size
.
output_spatial_lengths_
,
std
::
back_inserter
(
dimensions
));
...
...
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_int4.cpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#error Should compile this file with ck::int4_t support
#endif
#define BUILD_INT4_EXAMPLE
#define BUILD_INT4_EXAMPLE
...
@@ -24,3 +22,4 @@ using RsDataType = ck::Tuple<R0DataType>;
...
@@ -24,3 +22,4 @@ using RsDataType = ck::Tuple<R0DataType>;
#include "run_convnd_fwd_max_example.inc"
#include "run_convnd_fwd_max_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_max_example
(
argc
,
argv
);
}
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_max_example
(
argc
,
argv
);
}
#endif
example/10_convnd_fwd_multiple_d_multiple_reduce/run_convnd_fwd_max_example.inc
View file @
ef326c73
...
@@ -73,16 +73,25 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
...
@@ -73,16 +73,25 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
Tensor
<
EDataType
>
conv_output_device
(
conv_output_g_n_k_wos_desc
);
Tensor
<
EDataType
>
conv_output_device
(
conv_output_g_n_k_wos_desc
);
Tensor
<
R0DataType
>
r0_device
(
r0_desc
);
Tensor
<
R0DataType
>
r0_device
(
r0_desc
);
std
::
cout
<<
"input: "
<<
conv_input
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"weight: "
<<
conv_weight
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
conv_output_device
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"reduction: "
<<
r0_device
.
mDesc
<<
std
::
endl
<<
std
::
endl
;
switch
(
config
.
init_method
)
switch
(
config
.
init_method
)
{
{
case
0
:
break
;
case
0
:
break
;
case
1
:
case
1
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
8
,
7
}(
conv_input
);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
8
,
7
}(
conv_input
);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
8
,
7
}(
conv_weight
);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
1
,
1
}(
conv_weight
);
break
;
case
2
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
8
,
7
}(
conv_input
);
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
1
,
1
}(
conv_weight
);
break
;
break
;
default
:
default
:
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
5
,
5
}(
conv_input
);
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
8
,
7
}(
conv_input
);
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
5
,
5
}(
conv_weight
);
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
1
,
1
}(
conv_weight
);
}
}
DeviceMem
conv_input_device_buf
(
sizeof
(
ADataType
)
*
conv_input
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
conv_input_device_buf
(
sizeof
(
ADataType
)
*
conv_input
.
mDesc
.
GetElementSpaceSize
());
...
@@ -161,15 +170,25 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
...
@@ -161,15 +170,25 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
return
false
;
return
false
;
}
}
// XXX: DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle will not initialize r0.
r0_device_buf
.
SetValue
(
ck
::
NumericLimits
<
R0DataType
>::
Lowest
());
const
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
const
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
const
std
::
size_t
flop
=
problem_size
.
GetFlops
();
if
(
config
.
time_kernel
)
const
std
::
size_t
num_btype
=
problem_size
.
GetByte
<
ADataType
,
BDataType
,
EDataType
>
();
{
const
std
::
size_t
flop
=
problem_size
.
GetFlops
();
const
std
::
size_t
num_btype
=
problem_size
.
GetByte
<
ADataType
,
BDataType
,
EDataType
>
();
const
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
const
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
const
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
const
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
}
else
{
std
::
cout
<<
"FINISHED: "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
}
if
(
config
.
do_verification
)
if
(
config
.
do_verification
)
{
{
...
@@ -189,6 +208,7 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
...
@@ -189,6 +208,7 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
BElementOp
{},
BElementOp
{},
PassThrough
{});
PassThrough
{});
std
::
cout
<<
"
\n
Running verification on CPU."
<<
std
::
endl
;
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
Tensor
<
R0DataType
>
r0_host
(
r0_device
.
mDesc
);
Tensor
<
R0DataType
>
r0_host
(
r0_device
.
mDesc
);
...
@@ -273,13 +293,18 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
...
@@ -273,13 +293,18 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
conv_output_device_buf
.
FromDevice
(
conv_output_device
.
mData
.
data
());
conv_output_device_buf
.
FromDevice
(
conv_output_device
.
mData
.
data
());
r0_device_buf
.
FromDevice
(
r0_device
.
mData
.
data
());
r0_device_buf
.
FromDevice
(
r0_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
conv_output_device
,
auto
pass
=
ck
::
utils
::
check_err
(
conv_output_device
,
conv_output_host
,
conv_output_host
,
"Error: incorrect results! (Matrix E)"
,
"Error: incorrect results! (Matrix E)"
,
1
e
-
5
f
,
1
e
-
3
f
,
1
e
-
4
f
)
&&
1
e
-
3
f
);
ck
::
utils
::
check_err
(
pass
=
r0_device
,
r0_host
,
"Error: incorrect results! (Matrix R0)"
,
1
e
-
5
f
,
1
e
-
4
f
);
pass
&&
ck
::
utils
::
check_err
(
r0_device
,
r0_host
,
"Error: incorrect results! (Matrix R0)"
,
1
e
-
3
f
,
1
e
-
3
f
);
if
(
pass
)
std
::
cout
<<
"Verification on CPU: PASS"
<<
std
::
endl
;
return
pass
;
}
}
return
true
;
return
true
;
...
...
example/12_reduce/CMakeLists.txt
View file @
ef326c73
add_example_executable
(
example_reduce_blockwise reduce_blockwise.cpp
)
add_example_executable
(
example_reduce_blockwise reduce_blockwise.cpp
)
add_example_executable
(
example_reduce_threadwise_multi_d reduce_threadwise_multi_d.cpp
)
add_example_executable
(
example_reduce_multiblock_atomic_add reduce_multiblock_atomic_add.cpp
)
add_example_executable
(
example_reduce_multiblock_atomic_add reduce_multiblock_atomic_add.cpp
)
add_example_executable
(
example_reduce_blockwise_two_call reduce_blockwise_two_call.cpp
)
add_example_executable
(
example_reduce_blockwise_two_call reduce_blockwise_two_call.cpp
)
example/12_reduce/README.md
View file @
ef326c73
...
@@ -2,7 +2,7 @@
...
@@ -2,7 +2,7 @@
## Run ```example_reduce_blockwise```
## Run ```example_reduce_blockwise```
```
bash
```
bash
# -D <xxx> : input 3
d
/4
d
/5
d
tensor lengths
# -D <xxx> : input 3
D
/4
D
/5
D
tensor lengths
# -R <xxx> : reduce dimension ids
# -R <xxx> : reduce dimension ids
# -v <x> : verification (0=no, 1=yes)
# -v <x> : verification (0=no, 1=yes)
#arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64, 7: int4)
#arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64, 7: int4)
...
@@ -22,7 +22,7 @@ Perf: 0.238063 ms, 264.285 GB/s, DeviceReduceBlockWise<256,M_C4_S1,K_C64_S1,InSr
...
@@ -22,7 +22,7 @@ Perf: 0.238063 ms, 264.285 GB/s, DeviceReduceBlockWise<256,M_C4_S1,K_C64_S1,InSr
## Run ```example_reduce_multiblock_atomic_add```
## Run ```example_reduce_multiblock_atomic_add```
```
bash
```
bash
# -D <xxx> : input 3
d
/4
d
/5
d
tensor lengths
# -D <xxx> : input 3
D
/4
D
/5
D
tensor lengths
# -R <xxx> : reduce dimension ids
# -R <xxx> : reduce dimension ids
# -v <x> : verification (0=no, 1=yes)
# -v <x> : verification (0=no, 1=yes)
#arg1: data type (0: fp32, 1: fp64)
#arg1: data type (0: fp32, 1: fp64)
...
...
example/12_reduce/reduce_blockwise.cpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <initializer_list>
#include <initializer_list>
...
@@ -255,34 +255,61 @@ int main(int argc, char* argv[])
...
@@ -255,34 +255,61 @@ int main(int argc, char* argv[])
else
else
{
{
// for testing half_t
// for testing half_t
pass
=
pass
&&
reduce_blockwise_test
<
ck
::
half_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
pass
=
pass
=
pass
&&
reduce_blockwise_test
<
ck
::
half_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
pass
&&
reduce_blockwise_test
<
ck
::
half_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing float
// for testing float
pass
=
pass
&&
reduce_blockwise_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
pass
=
pass
&&
reduce_blockwise_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
pass
=
pass
&&
reduce_blockwise_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing double
// for testing double
pass
=
pass
&&
reduce_blockwise_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
pass
=
pass
&&
reduce_blockwise_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
pass
=
pass
&&
reduce_blockwise_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing bhalf_t
// for testing bhalf_t
pass
=
pass
&&
reduce_blockwise_test
<
ck
::
bhalf_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
pass
=
pass
&&
pass
=
pass
&&
reduce_blockwise_test
<
ck
::
bhalf_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
reduce_blockwise_test
<
ck
::
bhalf_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing int8_t
// for testing int8_t
pass
=
pass
&&
reduce_blockwise_test
<
int8_t
,
int32_t
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
pass
=
pass
=
pass
&&
reduce_blockwise_test
<
int8_t
,
int32_t
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
pass
&&
reduce_blockwise_test
<
int8_t
,
int32_t
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
// for testing int4_t using AVG operation
// for testing int4_t using AVG operation
pass
=
pass
&&
reduce_blockwise_test
<
int4_t
,
int32_t
,
ReduceTensorOp
::
AVG
,
false
,
false
>
(
true
,
2
,
true
,
{
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
pass
=
pass
&&
reduce_blockwise_test
<
int4_t
,
int32_t
,
ReduceTensorOp
::
AVG
,
false
,
false
>
(
pass
=
pass
&&
reduce_blockwise_test
<
int4_t
,
int32_t
,
ReduceTensorOp
::
AVG
,
false
,
false
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing int4_t using MAX operation
// for testing int4_t using MAX operation
pass
=
pass
&&
reduce_blockwise_test
<
int4_t
,
int8_t
,
ReduceTensorOp
::
MAX
,
false
,
false
>
(
true
,
2
,
true
,
{
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
pass
=
pass
&&
reduce_blockwise_test
<
int4_t
,
int8_t
,
ReduceTensorOp
::
MAX
,
false
,
false
>
(
pass
=
pass
&&
reduce_blockwise_test
<
int4_t
,
int8_t
,
ReduceTensorOp
::
MAX
,
false
,
false
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
#endif
#endif
...
...
example/12_reduce/reduce_blockwise_impl.hpp
View file @
ef326c73
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#pragma once
...
@@ -316,7 +316,17 @@ int reduce_blockwise_impl(bool do_verification,
...
@@ -316,7 +316,17 @@ int reduce_blockwise_impl(bool do_verification,
auto
invoker_ptr
=
reduce
.
MakeInvokerPointer
();
auto
invoker_ptr
=
reduce
.
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
int
log_level
=
0
,
cold_niters
=
5
,
nrepeat
=
50
;
if
(
beta
!=
0.0
f
)
{
std
::
cerr
<<
"Warning: With beta != 0.0f there must be only one repeat for correct results "
"since out memory is being overwritten."
<<
std
::
endl
;
cold_niters
=
0
;
nrepeat
=
1
;
}
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
log_level
,
cold_niters
,
nrepeat
});
std
::
size_t
num_bytes
=
invariant_total_length
*
reduce_total_length
*
sizeof
(
InOutDataType
)
+
std
::
size_t
num_bytes
=
invariant_total_length
*
reduce_total_length
*
sizeof
(
InOutDataType
)
+
invariant_total_length
*
sizeof
(
InOutDataType
);
invariant_total_length
*
sizeof
(
InOutDataType
);
...
...
Prev
1
…
11
12
13
14
15
16
17
18
19
…
26
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment