Commit eca84f93 authored by root's avatar root
Browse files

Merge branch 'gemm_bf16_sk_muozturk' of...

Merge branch 'gemm_bf16_sk_muozturk' of https://github.com/ROCm/composable_kernel into gemm_bf16_sk_muozturk
parents 6f210155 c256f018
find_package(hip)
file(GLOB RTC_SOURCES CONFIGURE_DEPENDS src/*.cpp)
add_library(ck_rtc ${RTC_SOURCES})
target_include_directories(ck_rtc PUBLIC include)
target_link_libraries(ck_rtc PUBLIC hip::host)
target_link_libraries(ck_rtc PUBLIC -lstdc++fs)
......@@ -2,14 +2,14 @@
#define GUARD_HOST_TEST_RTC_INCLUDE_RTC_COMPILE_KERNEL
#include <rtc/kernel.hpp>
#include <ck/filesystem.hpp>
#include <rtc/filesystem.hpp>
#include <string>
namespace rtc {
struct src_file
{
CK::fs::path path;
fs::path path;
std::string_view content;
};
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#ifndef GUARD_TEST_HOST_RTC_FILESYSTEM_HPP
#define GUARD_TEST_HOST_RTC_FILESYSTEM_HPP
#include <string>
#include <string_view>
// clang-format off
#if defined(CPPCHECK)
#define RTC_HAS_FILESYSTEM 1
#define RTC_HAS_FILESYSTEM_TS 1
#elif defined(_WIN32)
#if _MSC_VER >= 1920
#define RTC_HAS_FILESYSTEM 1
#define RTC_HAS_FILESYSTEM_TS 0
#elif _MSC_VER >= 1900
#define RTC_HAS_FILESYSTEM 0
#define RTC_HAS_FILESYSTEM_TS 1
#else
#define RTC_HAS_FILESYSTEM 0
#define RTC_HAS_FILESYSTEM_TS 0
#endif
#elif defined(__has_include)
#if __has_include(<filesystem>) && __cplusplus >= 201703L
#define RTC_HAS_FILESYSTEM 1
#else
#define RTC_HAS_FILESYSTEM 0
#endif
#if __has_include(<experimental/filesystem>) && __cplusplus >= 201103L
#define RTC_HAS_FILESYSTEM_TS 1
#else
#define RTC_HAS_FILESYSTEM_TS 0
#endif
#else
#define RTC_HAS_FILESYSTEM 0
#define RTC_HAS_FILESYSTEM_TS 0
#endif
// clang-format on
#if RTC_HAS_FILESYSTEM
#include <filesystem>
#elif RTC_HAS_FILESYSTEM_TS
#include <experimental/filesystem>
#else
#error "No filesystem include available"
#endif
namespace rtc {
#if RTC_HAS_FILESYSTEM
namespace fs = ::std::filesystem;
#elif RTC_HAS_FILESYSTEM_TS
namespace fs = ::std::experimental::filesystem;
#endif
} // namespace rtc
#endif // GUARD_RTC_FILESYSTEM_HPP_
......@@ -4,6 +4,7 @@
#include <hip/hip_runtime_api.h>
#include <memory>
#include <string>
#include <stdexcept>
namespace rtc {
......
......@@ -2,13 +2,13 @@
#define GUARD_HOST_TEST_RTC_INCLUDE_RTC_TMP_DIR
#include <string>
#include <ck/filesystem.hpp>
#include <rtc/filesystem.hpp>
namespace rtc {
struct tmp_dir
{
CK::fs::path path;
fs::path path;
tmp_dir(const std::string& prefix = "");
void execute(const std::string& cmd) const;
......
#include "rtc/hip.hpp"
#include <rtc/hip.hpp>
#include <rtc/compile_kernel.hpp>
#include <rtc/tmp_dir.hpp>
#include <stdexcept>
......@@ -70,9 +70,9 @@ kernel compile_kernel(const std::vector<src_file>& srcs, compile_options options
for(const auto& src : srcs)
{
CK::fs::path full_path = td.path / src.path;
CK::fs::path parent_path = full_path.parent_path();
CK::fs::create_directories(parent_path);
fs::path full_path = td.path / src.path;
fs::path parent_path = full_path.parent_path();
fs::create_directories(parent_path);
write_string(full_path.string(), src.content);
if(src.path.extension().string() == ".cpp")
{
......@@ -86,7 +86,7 @@ kernel compile_kernel(const std::vector<src_file>& srcs, compile_options options
td.execute(compiler() + options.flags);
auto out_path = td.path / out;
if(not CK::fs::exists(out_path))
if(not fs::exists(out_path))
throw std::runtime_error("Output file missing: " + out);
auto obj = read_buffer(out_path.string());
......
......@@ -31,10 +31,10 @@ std::string unique_string(const std::string& prefix)
}
tmp_dir::tmp_dir(const std::string& prefix)
: path(CK::fs::temp_directory_path() /
: path(fs::temp_directory_path() /
unique_string(prefix.empty() ? "ck-rtc" : "ck-rtc-" + prefix))
{
CK::fs::create_directories(this->path);
fs::create_directories(this->path);
}
void tmp_dir::execute(const std::string& cmd) const
......@@ -43,6 +43,6 @@ void tmp_dir::execute(const std::string& cmd) const
std::system(s.c_str());
}
tmp_dir::~tmp_dir() { CK::fs::remove_all(this->path); }
tmp_dir::~tmp_dir() { fs::remove_all(this->path); }
} // namespace rtc
rocm-docs-core==1.8.2
rocm-docs-core==1.12.0
sphinxcontrib-bibtex==2.6.3
......@@ -103,7 +103,7 @@ requests==2.32.3
# via
# pygithub
# sphinx
rocm-docs-core==1.8.2
rocm-docs-core==1.12.0
# via -r requirements.in
six==1.16.0
# via pybtex
......
......@@ -80,9 +80,16 @@ add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp8)
add_example_executable(example_gemm_xdl_fp8_bf8 gemm_xdl_fp8_bf8.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp8_bf8)
add_example_executable(example_gemm_xdl_fp8_streamk_v3 gemm_xdl_fp8_streamk_v3.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp8_streamk_v3)
add_example_executable(example_gemm_xdl_fp16_fp8 gemm_xdl_fp16_fp8.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp16_fp8)
add_custom_target(example_gemm_wmma)
add_example_executable(example_gemm_wmma_fp16 gemm_wmma_fp16.cpp)
add_example_dependencies(example_gemm_wmma example_gemm_wmma_fp16)
add_example_executable(example_gemm_wmma_bf16 gemm_wmma_bf16.cpp)
add_example_dependencies(example_gemm_wmma example_gemm_wmma_bf16)
add_example_executable(example_gemm_wmma_int8 gemm_wmma_int8.cpp)
add_example_dependencies(example_gemm_wmma example_gemm_wmma_int8)
......@@ -29,9 +29,9 @@ struct ProblemSize final
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 0;
ck::index_t StrideB = 0;
ck::index_t StrideC = 0;
ck::index_t StrideA = -1;
ck::index_t StrideB = -1;
ck::index_t StrideC = -1;
};
struct ProblemSizeStreamK final
......@@ -40,11 +40,11 @@ struct ProblemSizeStreamK final
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 0;
ck::index_t StrideB = 0;
ck::index_t StrideC = 0;
ck::index_t StrideA = -1;
ck::index_t StrideB = -1;
ck::index_t StrideC = -1;
ck::index_t NumSKBlocks = -1;
ck::index_t NumSKBlocks = -1; // number of stream-k blocks
};
struct ProblemSizeStreamK_universal final
{
......@@ -52,9 +52,9 @@ struct ProblemSizeStreamK_universal final
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 0;
ck::index_t StrideB = 0;
ck::index_t StrideC = 0;
ck::index_t StrideA = -1;
ck::index_t StrideB = -1;
ck::index_t StrideC = -1;
ck::index_t Grid_size = -1; // defaults to max occupancy
ck::index_t Streamk_sel = 1; // defaults to 1-tile SK
......@@ -66,18 +66,19 @@ struct ProblemSizeSplitK final
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 0;
ck::index_t StrideB = 0;
ck::index_t StrideC = 0;
ck::index_t StrideA = -1;
ck::index_t StrideB = -1;
ck::index_t StrideC = -1;
ck::index_t KBatch = 1;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 2;
bool time_kernel = false;
// 0 - no verification, 1 - CPU, 2 - GPU, 3 - CPU + GPU
int do_verification = 1;
int init_method = 2;
bool time_kernel = false;
};
template <ck::index_t... Is>
......@@ -126,7 +127,7 @@ bool parse_cmd_args<ProblemSize>(int argc,
}
else
{
std::cerr << "arg1: verification (0=no, 1=CPU and GPU)" << std::endl
std::cerr << "arg1: verification (0=no, 1=CPU, 2=GPU, 3=CPU and GPU)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<< std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl
......@@ -176,7 +177,7 @@ bool parse_cmd_args<ProblemSizeStreamK_universal>(int argc,
else
{
std::cerr
<< "arg1: verification (0=no, 1=CPU and GPU)" << std::endl
<< "arg1: verification (0=no, 1=CPU, 2=GPU, 3=CPU and GPU)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)" << std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl
<< "arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC" << std::endl
......@@ -225,7 +226,7 @@ bool parse_cmd_args<ProblemSizeStreamK>(int argc,
}
else
{
std::cerr << "arg1: verification (0=no, 1=CPU and GPU)" << std::endl
std::cerr << "arg1: verification (0=no, 1=CPU, 2=GPU, 3=CPU and GPU)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<< std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl
......@@ -275,7 +276,7 @@ bool parse_cmd_args<ProblemSizeSplitK>(int argc,
}
else
{
std::cerr << "arg1: verification (0=no, 1=CPU and GPU)" << std::endl
std::cerr << "arg1: verification (0=no, 1=CPU, 2=GPU, 3=CPU and GPU)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<< std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp"
using ADataType = ck::bhalf_t;
using BDataType = ck::bhalf_t;
using AccDataType = float;
using CShuffleDataType = float;
using CDataType = ck::bhalf_t;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmWmma_CShuffle
< ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
CShuffleDataType,
AElementOp,
BElementOp,
CElementOp,
GemmDefault,
1, // Prefetch stage
128, // BlockSize
64, // MPerBlock
128, // NPerBlock
64, // KPerBlock
2, // K1
16, // MPerWmma
16, // NPerWmma
2, // M-Repeat // M-PerWmma / M-Repeat = M-Wave
4, // N-Repeat // N-PerWmma / N-Repeat = N-Wave
S<4, 32, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
2,
2,
true,
S<4, 32, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
2,
2,
true,
1, // C shuffle (M Repeat) Per store
1, // C shuffle (N Repeat) Per store
S<1, 32, 1, 4>,
8>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
using ReferenceGemmInstanceGPU = ck::tensor_operation::device::ReferenceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
#include "run_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp"
using ADataType = int8_t;
using BDataType = int8_t;
using AccDataType = int32_t;
using CShuffleDataType = int32_t;
using CDataType = int8_t;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmWmma_CShuffle
< ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
CShuffleDataType,
AElementOp,
BElementOp,
CElementOp,
GemmDefault,
1, // Prefetch stage
128, // BlockSize
64, // MPerBlock
128, // NPerBlock
64, // KPerBlock
2, // K1
16, // MPerWmma
16, // NPerWmma
2, // M-Repeat // M-PerWmma / M-Repeat = M-Wave
4, // N-Repeat // N-PerWmma / N-Repeat = N-Wave
S<4, 32, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
2,
2,
true,
S<4, 32, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
2,
2,
true,
1, // C shuffle (M Repeat) Per store
1, // C shuffle (N Repeat) Per store
S<1, 32, 1, 4>,
8>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
using ReferenceGemmInstanceGPU = ck::tensor_operation::device::ReferenceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
#include "run_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
......@@ -23,14 +23,36 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
// // clang-format off
// using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
// // ######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// // ######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// // ######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// // ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// < ALayout, BLayout, CLayout, ADataType, BDataType, CDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>;
// // ######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A|
// B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl|
// NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer|
// ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer|
// BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle|
// CBlockTransferClusterLengths| CBlockTransfer|
// // ######| | | | Type| Type| Type| Type| DataType|
// Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| |
// | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim|
// SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder|
// SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|
// _MBlock_MWaveMPerXdl| ScalarPerVector|
// // ######| | | | | | | | | Operation|
// Operation| Operation| | Stage| | | | | | | | |
// Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector|
// PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | |
// PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl|
// _NWaveNPerXdl|
// // ######| | | | | | | | | | | | | |
// | | | | | | | | | | | | | | |
// | | | | | | | | |
// | | | |
// < ALayout, BLayout, CLayout, ADataType, BDataType, CDataType, AccDataType,
// CShuffleDataType, AElementOp, BElementOp, CElementOp, GemmDefault, 1, 256,
// 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>,
// S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>,
// S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1,
// 1, S<1, 32, 1, 8>, 8>;
// // clang-format on
// clang-format off
using DeviceGemmV2_Streamk_Instance =
ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle_Streamk_V3<
......@@ -50,10 +72,20 @@ using DeviceGemmV2_Streamk_Instance =
ck::BlockGemmPipelineScheduler::Intrawave,ck::BlockGemmPipelineVersion::v3>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
using ReferenceGemmInstanceGPU = ck::tensor_operation::device::ReferenceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
#include "run_gemm_example_streamk_v2.inc"
int main(int argc, char* argv[]) { return !run_gemm_universal_streamk_example(argc, argv); }
......@@ -8,7 +8,7 @@
using ADataType = ck::half_t;
using BDataType = ck::half_t;
using AccDataType = float;
using CShuffleDataType = ck::half_t;
using CShuffleDataType = float;
using CDataType = ck::half_t;
using ALayout = Row;
......@@ -43,6 +43,17 @@ using DeviceGemmV2_Streamk_Instance =
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
using ReferenceGemmInstanceGPU = ck::tensor_operation::device::ReferenceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
#include "run_gemm_example_streamk_v2.inc"
int main(int argc, char* argv[]) { return !run_gemm_universal_streamk_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp"
using ADataType = ck::f8_t;
using BDataType = ck::f8_t;
using AccDataType = float;
using CShuffleDataType = ck::half_t;
using CDataType = ck::half_t;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmV2_Streamk_Instance =
ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle_Streamk_V3<
ALayout, BLayout, CLayout,
ADataType, BDataType, CDataType, AccDataType, CShuffleDataType,
PassThrough, PassThrough, PassThrough, GemmDefault,
256,
128, 256,
128, 16, 16,
16, 16,
4, 8,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 16, 16, 1,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 16, 16, 1,
1, 2, S<1, 32, 1, 8>, 8,
ck::BlockGemmPipelineScheduler::Intrawave,ck::BlockGemmPipelineVersion::v3, ck::f8_t>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
using ReferenceGemmInstanceGPU = ck::tensor_operation::device::ReferenceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
#include "run_gemm_example_streamk_v2.inc"
int main(int argc, char* argv[]) { return !run_gemm_universal_streamk_example(argc, argv); }
......@@ -116,21 +116,21 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
};
auto f_get_default_stride =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(stride == 0)
[](std::size_t row, std::size_t col, ck::index_t stride, auto layout) {
if(stride == -1)
{
// give a chance if stride is zero, return a default packed stride
// give a chance if stride is -1, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return col;
return static_cast<std::size_t>(col);
}
else
{
return row;
return static_cast<std::size_t>(row);
}
}
else
return stride;
return static_cast<std::size_t>(stride);
};
StrideA = f_get_default_stride(M, K, StrideA, ALayout{});
......@@ -143,8 +143,8 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
switch(config.init_method)
{
case 0:
ck::utils::FillConstant<ADataType>{static_cast<ADataType>(1.f)}(a_m_k);
ck::utils::FillConstant<BDataType>{static_cast<BDataType>(1.f)}(b_k_n);
ck::utils::FillConstant<ADataType>{ck::type_convert<ADataType>(1.f)}(a_m_k);
ck::utils::FillConstant<BDataType>{ck::type_convert<BDataType>(1.f)}(b_k_n);
break;
case 1:
ck::utils::FillUniformDistributionIntegerValue<ADataType>{-5.f, 5.f}(a_m_k);
......@@ -330,7 +330,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
bool pass = true;
if(config.do_verification)
if((config.do_verification == 1) || (config.do_verification == 3))
{
// CPU verification
auto ref_gemm = ReferenceGemmInstance{};
......@@ -353,13 +353,16 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
#else
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass &= !ck::utils::check_err(c_m_n_device_result,
c_m_n_host_result,
"Error: Incorrect results!",
get_rtol<CDataType>(),
get_atol<CDataType>());
pass &= ck::utils::check_err(c_m_n_device_result,
c_m_n_host_result,
"Error: Incorrect results!",
get_rtol<CDataType>(),
get_atol<CDataType>());
#endif
}
if((config.do_verification == 2) || (config.do_verification == 3))
{
// GPU verification
auto ref_gemm_gpu = ReferenceGemmInstanceGPU{};
auto ref_invoker_gpu = ref_gemm_gpu.MakeInvoker();
......@@ -381,14 +384,14 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
c_m_n_device_ref_buf.FromDevice(c_m_n_device_ref_result.mData.data());
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass &= !ck::utils::check_err(c_m_n_device_result,
c_m_n_device_ref_result,
"Error: Incorrect results!",
get_rtol<CDataType>(),
get_atol<CDataType>());
pass &= ck::utils::check_err(c_m_n_device_result,
c_m_n_device_ref_result,
"Error: Incorrect results!",
get_rtol<CDataType>(),
get_atol<CDataType>());
}
return !pass;
return pass == true;
}
bool run_gemm_example(int argc, char* argv[])
......
......@@ -117,9 +117,9 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
auto f_get_default_stride =
[](std::size_t row, std::size_t col, ck::index_t stride, auto layout) {
if(stride == 0)
if(stride == -1)
{
// give a chance if stride is 0, return a default packed stride
// give a chance if stride is -1, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return static_cast<std::size_t>(col);
......@@ -176,13 +176,13 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_ref_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
//Added By Emin
// Added By Emin
// Added By Emin
......@@ -201,6 +201,8 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
DeviceMem c_m_n_device_ref_buf(sizeof(CDataType) *
c_m_n_device_ref_result.mDesc.GetElementSpaceSize());
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
......@@ -245,8 +247,15 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
return true;
}
std::size_t workspace_size = gemm.GetWorkSpaceSize(&argument);
if(workspace_size != 0)
{
workspace.Realloc(workspace_size);
gemm.SetWorkSpacePointer(&argument, workspace.GetDeviceBuffer());
}
bool pass = true;
if(config.do_verification)
if((config.do_verification == 1) || (config.do_verification == 3))
{
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
......@@ -276,6 +285,36 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
#endif
}
if((config.do_verification == 2) || (config.do_verification == 3))
{
// GPU verification
auto ref_gemm_gpu = ReferenceGemmInstanceGPU{};
auto ref_invoker_gpu = ref_gemm_gpu.MakeInvoker();
auto ref_argument_gpu = ref_gemm_gpu.MakeArgument(
static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_device_ref_buf.GetDeviceBuffer()),
M,
N,
K,
a_element_op,
b_element_op,
c_element_op);
std::cout << "Running verification on GPU." << std::endl;
ref_invoker_gpu.Run(ref_argument_gpu, StreamConfig{});
c_m_n_device_ref_buf.FromDevice(c_m_n_device_ref_result.mData.data());
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass &= ck::utils::check_err(c_m_n_device_result,
c_m_n_device_ref_result,
"Error: Incorrect results!",
get_rtol<CDataType>(),
get_atol<CDataType>());
}
if(config.time_kernel)
{
ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
......
......@@ -115,21 +115,21 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
};
auto f_get_default_stride =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(stride == 0)
[](std::size_t row, std::size_t col, ck::index_t stride, auto layout) {
if(stride == -1)
{
// give a chance if stride is zero, return a default packed stride
// give a chance if stride is -1, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return col;
return static_cast<std::size_t>(col);
}
else
{
return row;
return static_cast<std::size_t>(row);
}
}
else
return stride;
return static_cast<std::size_t>(stride);
};
StrideA = f_get_default_stride(M, K, StrideA, ALayout{});
......@@ -228,7 +228,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
}
bool pass = true;
if(config.do_verification)
if((config.do_verification == 1) || (config.do_verification == 3))
{
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
......@@ -261,7 +261,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
if(config.time_kernel)
{
ave_time =
invoker.Run(argument, StreamConfig{nullptr, config.time_kernel, 0, 5, 10, true, 4});
invoker.Run(argument, StreamConfig{nullptr, config.time_kernel, 0, 50, 100, true, 4});
std::size_t flop = 2_uz * M * N * K;
std::size_t num_btype =
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment