Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
ec959387
Unverified
Commit
ec959387
authored
Feb 13, 2025
by
rocking
Committed by
GitHub
Feb 13, 2025
Browse files
Merge branch 'develop' into ck_tile/fmha_receipt_aiter
parents
c1e2fef7
0e5e29c4
Changes
393
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1064 additions
and
168 deletions
+1064
-168
library/src/tensor_operation_instance/gpu/gemm_universal_reduce/device_gemm_xdl_universal_f16_f16_f16/device_gemm_xdl_universal_f16_f16_f16_mk_kn_mn.hpp
...16_f16/device_gemm_xdl_universal_f16_f16_f16_mk_kn_mn.hpp
+6
-4
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp
...evice_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp
+11
-5
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn.hpp
...evice_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn.hpp
+7
-5
library/src/tensor_operation_instance/gpu/grouped_gemm/device_grouped_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_irregular_instance.cpp
...emm_xdl_splitk_f16_f8_f16_mk_kn_mn_irregular_instance.cpp
+3
-2
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp
...ped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp
+7
-2
library/src/utility/CMakeLists.txt
library/src/utility/CMakeLists.txt
+5
-1
profiler/include/profiler/profile_batched_gemm_b_scale_impl.hpp
...er/include/profiler/profile_batched_gemm_b_scale_impl.hpp
+488
-0
profiler/src/CMakeLists.txt
profiler/src/CMakeLists.txt
+2
-0
profiler/src/profile_batched_gemm_b_scale.cpp
profiler/src/profile_batched_gemm_b_scale.cpp
+200
-0
test/CMakeLists.txt
test/CMakeLists.txt
+18
-3
test/ck_tile/CMakeLists.txt
test/ck_tile/CMakeLists.txt
+1
-0
test/ck_tile/batched_gemm/test_batched_gemm.cpp
test/ck_tile/batched_gemm/test_batched_gemm.cpp
+1
-1
test/ck_tile/batched_gemm/test_batched_gemm_util.hpp
test/ck_tile/batched_gemm/test_batched_gemm_util.hpp
+18
-27
test/ck_tile/data_type/CMakeLists.txt
test/ck_tile/data_type/CMakeLists.txt
+4
-0
test/ck_tile/data_type/test_pk_int4.cpp
test/ck_tile/data_type/test_pk_int4.cpp
+65
-0
test/ck_tile/gemm/test_gemm_pipeline.cpp
test/ck_tile/gemm/test_gemm_pipeline.cpp
+11
-6
test/ck_tile/gemm/test_gemm_pipeline_ut_cases.inc
test/ck_tile/gemm/test_gemm_pipeline_ut_cases.inc
+26
-5
test/ck_tile/gemm/test_gemm_pipeline_util.hpp
test/ck_tile/gemm/test_gemm_pipeline_util.hpp
+169
-74
test/ck_tile/grouped_gemm/test_grouped_gemm.cpp
test/ck_tile/grouped_gemm/test_grouped_gemm.cpp
+1
-1
test/ck_tile/grouped_gemm/test_grouped_gemm_util.hpp
test/ck_tile/grouped_gemm/test_grouped_gemm_util.hpp
+21
-32
No files found.
library/src/tensor_operation_instance/gpu/gemm_universal_reduce/device_gemm_xdl_universal_f16_f16_f16/device_gemm_xdl_universal_f16_f16_f16_mk_kn_mn.hpp
View file @
ec959387
...
...
@@ -39,12 +39,13 @@ template <GemmSpecialization GemmSpec,
typename
DsLayout
=
ck
::
Tuple
<
>,
typename
DsDataType
=
ck
::
Tuple
<>>
using
device_gemm_xdl_universal_reduce_f16_f16_f16_mk_kn_mn_comp_instances
=
std
::
tuple
<
// clang-format off
// clang-format off
//#########################| ALayout| BLayout| DsLayout| CLayout|AData| BData| DsData| CData| AccData| Cshuffle| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1|MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Block-wiseGemm| Block-wiseGemm|
//#########################| | | | | Type| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//#########################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if defined(CK_USE_AMD_MFMA_GFX950)
#endif // defined(CK_USE_AMD_MFMA_GFX950)
DeviceGemm_Xdl_CShuffleV3R1
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F16
,
DsDataType
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
256
,
256
,
32
,
8
,
4
,
32
,
32
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v4
>
,
DeviceGemm_Xdl_CShuffleV3R1
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F16
,
DsDataType
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
128
,
128
,
64
,
8
,
4
,
32
,
32
,
2
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v4
>
,
DeviceGemm_Xdl_CShuffleV3R1
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F16
,
DsDataType
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
256
,
256
,
32
,
8
,
4
,
32
,
32
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v5
>
,
...
...
@@ -63,12 +64,13 @@ template <BlockGemmPipelineScheduler BlkGemmPipeSched,
typename
DsLayout
=
ck
::
Tuple
<
>,
typename
DsDataType
=
ck
::
Tuple
<>>
using
device_gemm_xdl_universal_reduce_f16_f16_f16_mk_kn_mn_mem_instances
=
std
::
tuple
<
// clang-format off
// clang-format off
//#########################| ALayout| BLayout| DsLayout| CLayout|AData| BData| DsData| CData| AccData| Cshuffle| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1|MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Block-wiseGemm| Block-wiseGemm|
//#########################| | | | | Type| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//#########################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if defined(CK_USE_AMD_MFMA_GFX950)
#endif // defined(CK_USE_AMD_MFMA_GFX950)
// Latency friendly
DeviceGemm_Xdl_CShuffleV3R1
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F16
,
DsDataType
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
128
,
32
,
16
,
64
,
8
,
4
,
16
,
16
,
1
,
1
,
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
2
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffleV3R1
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F16
,
DsDataType
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
64
,
16
,
16
,
128
,
8
,
4
,
16
,
16
,
1
,
1
,
S
<
16
,
4
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
4
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v1
>
,
...
...
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn.hpp
View file @
ec959387
...
...
@@ -34,12 +34,14 @@ static constexpr auto Interwave = BlockGemmPipelineScheduler::Interwave;
template
<
GemmSpecialization
GemmSpec
>
using
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_instances
=
std
::
tuple
<
// clang-format off
// clang-format off
//#########################| ALayout| BLayout| CLayout|AData| BData| CData| AccData| Cshuffle| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1|MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Block-wiseGemm| Block-wiseGemm|
//#########################| | | | Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//#########################| | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if defined(__gfx950__)
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
256
,
32
,
128
,
16
,
2
,
32
,
32
,
2
,
1
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
32
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v2
>
#else
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
256
,
256
,
32
,
8
,
4
,
32
,
32
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v4
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
256
,
256
,
32
,
4
,
4
,
32
,
32
,
4
,
4
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v4
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
256
,
256
,
32
,
2
,
2
,
32
,
32
,
4
,
4
,
S
<
16
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v4
>
,
...
...
@@ -52,20 +54,23 @@ using device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_comp_instances = st
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
128
,
256
,
32
,
8
,
4
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Interwave
,
BlockGemmPipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
256
,
128
,
32
,
8
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Interwave
,
BlockGemmPipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
128
,
128
,
64
,
8
,
4
,
32
,
32
,
2
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Interwave
,
BlockGemmPipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
128
,
128
,
64
,
8
,
4
,
32
,
32
,
2
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Interwave
,
BlockGemmPipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
128
,
128
,
64
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
16
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Interwave
,
BlockGemmPipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
128
,
128
,
64
,
2
,
2
,
32
,
32
,
2
,
2
,
S
<
32
,
8
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
0
,
S
<
32
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Interwave
,
BlockGemmPipelineVersion
::
v1
>
#endif // defined(__gfx950__)
// clang-format on
>
;
template
<
BlockGemmPipelineScheduler
BlkGemmPipeSched
,
GemmSpecialization
GemmSpec
>
using
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_instances
=
std
::
tuple
<
// clang-format off
// clang-format off
//#########################| ALayout| BLayout| CLayout|AData| BData| CData| AccData| Cshuffle| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1|MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Block-wiseGemm| Block-wiseGemm|
//#########################| | | | Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//#########################| | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// Latency friendly
#if defined(__gfx950__)
#else
// Latency friendly
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
128
,
32
,
16
,
64
,
8
,
4
,
16
,
16
,
1
,
1
,
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
2
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
128
,
32
,
16
,
64
,
4
,
4
,
16
,
16
,
1
,
1
,
S
<
16
,
8
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
0
,
S
<
16
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
2
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
128
,
32
,
16
,
64
,
2
,
2
,
16
,
16
,
1
,
1
,
S
<
32
,
4
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
0
,
S
<
32
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
2
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
2
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v1
>
,
...
...
@@ -95,6 +100,7 @@ using device_gemm_xdl_universal_streamk_f16_f16_f16_mk_kn_mn_mem_instances = std
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
16
,
256
,
64
,
8
,
4
,
16
,
16
,
1
,
4
,
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
16
,
256
,
64
,
4
,
4
,
16
,
16
,
1
,
4
,
S
<
16
,
8
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
32
,
256
,
64
,
8
,
4
,
32
,
32
,
1
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
8
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v2
>
#endif // defined(__gfx950__)
// clang-format on
>
;
}
// namespace instance
...
...
library/src/tensor_operation_instance/gpu/gemm_universal_streamk/device_gemm_xdl_universal_streamk_f16_f16_f16/device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn.hpp
View file @
ec959387
...
...
@@ -34,12 +34,13 @@ static constexpr auto Interwave = BlockGemmPipelineScheduler::Interwave;
template
<
GemmSpecialization
GemmSpec
>
using
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_instances
=
std
::
tuple
<
// clang-format off
// clang-format off
//#########################| ALayout| BLayout| CLayout|AData| BData| CData| AccData| Cshuffle| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1|MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Block-wiseGemm| Block-wiseGemm|
//#########################| | | | Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//#########################| | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if defined(CK_USE_AMD_MFMA_GFX950)
#endif // defined(CK_USE_AMD_MFMA_GFX950)
// Compute friendly
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
256
,
256
,
32
,
8
,
8
,
32
,
32
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v4
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
256
,
256
,
256
,
32
,
4
,
4
,
32
,
32
,
4
,
4
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
0
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v4
>
,
...
...
@@ -69,13 +70,14 @@ using device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_comp_instances = st
template
<
BlockGemmPipelineScheduler
BlkGemmPipeSched
,
GemmSpecialization
GemmSpec
>
using
device_gemm_xdl_universal_streamk_f16_f16_f16_mk_nk_mn_mem_instances
=
std
::
tuple
<
// clang-format off
// clang-format off
//#########################| ALayout| BLayout| CLayout|AData| BData| CData| AccData| Cshuffle| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1|MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Block-wiseGemm| Block-wiseGemm|
//#########################| | | | Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//#########################| | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//#########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// Latency friendly
#if defined(CK_USE_AMD_MFMA_GFX950)
#endif // defined(CK_USE_AMD_MFMA_GFX950)
// Latency friendly
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
128
,
32
,
16
,
64
,
8
,
8
,
16
,
16
,
1
,
1
,
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
2
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
128
,
32
,
16
,
64
,
4
,
4
,
16
,
16
,
1
,
1
,
S
<
16
,
8
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
0
,
S
<
16
,
8
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
2
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
128
,
32
,
16
,
64
,
2
,
2
,
16
,
16
,
1
,
1
,
S
<
32
,
4
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
0
,
S
<
32
,
4
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
2
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v1
>
,
...
...
library/src/tensor_operation_instance/gpu/grouped_gemm/device_grouped_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_irregular_instance.cpp
View file @
ec959387
...
...
@@ -29,13 +29,14 @@ using Empty_Tuple = ck::Tuple<>;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
device_grouped_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_irregular_tile_instances
=
std
::
tuple
<
// clang-format off
// clang-format off
//################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if defined(CK_USE_AMD_MFMA_GFX950)
#endif // defined(CK_USE_AMD_MFMA_GFX950)
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Row
,
Empty_Tuple
,
Row
,
F16
,
F8
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
PipelineVersion
::
v1
>
,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Row
,
Empty_Tuple
,
Row
,
F16
,
F8
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
PipelineVersion
::
v1
>
,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Row
,
Empty_Tuple
,
Row
,
F16
,
F8
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNKPadding
,
1
,
256
,
192
,
64
,
32
,
8
,
8
,
32
,
32
,
3
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
PipelineVersion
::
v1
>
,
...
...
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp
View file @
ec959387
...
...
@@ -44,11 +44,14 @@ template <typename DsLayout,
typename
CDEElementwiseOp
,
GemmSpecialization
GemmSpec
=
GemmMNKPadding
>
using
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances
=
std
::
tuple
<
// clang-format off
// clang-format off
//###########################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//###########################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//###########################################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//###########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | S<C,D0...,D_N|
#if defined(CK_USE_AMD_MFMA_GFX950)
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
<
Row
,
Row
,
DsLayout
,
Row
,
BF16
,
I8
,
F32
,
F32
,
DsDataType
,
BF16
,
PassThrough
,
PassThrough
,
CDEElementwiseOp
,
GemmSpec
,
1
,
256
,
128
,
128
,
128
,
16
,
4
,
32
,
32
,
2
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
S
<
8
,
8
,
8
>
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v1
>
,
#endif // defined(CK_USE_AMD_MFMA_GFX950)
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
...
...
@@ -67,11 +70,13 @@ template <typename DsLayout,
BlockGemmPipelineScheduler
BlkGemmPipeSched
=
BlockGemmPipelineScheduler
::
Intrawave
>
using
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
=
std
::
tuple
<
// clang-format off
// clang-format off
//###########################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//###########################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//###########################################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//###########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | S<C,D0...,D_N|
#if defined(CK_USE_AMD_MFMA_GFX950)
#endif // defined(CK_USE_AMD_MFMA_GFX950)
// Latency friendly
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 64, 16, 16, 256, 8, 4, 16, 16, 1, 1, S<32, 2, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 1, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 4>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v1>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 128, 16, 32, 256, 8, 4, 16, 16, 1, 1, S<32, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 2, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v1>,
...
...
library/src/utility/CMakeLists.txt
View file @
ec959387
add_library
(
utility
STATIC
add_library
(
utility
device_memory.cpp
host_tensor.cpp
convolution_parameter.cpp
...
...
@@ -6,6 +6,10 @@ add_library(utility STATIC
add_library
(
composable_kernel::utility ALIAS utility
)
set_target_properties
(
utility PROPERTIES POSITION_INDEPENDENT_CODE ON
)
set_target_properties
(
utility
PROPERTIES
VERSION
${
CMAKE_PROJECT_VERSION
}
SOVERSION
${
CMAKE_PROJECT_VERSION_MAJOR
}
)
target_compile_options
(
utility PRIVATE
${
CMAKE_COMPILER_WARNINGS
}
)
target_include_directories
(
utility PUBLIC
"$<INSTALL_INTERFACE:
${
CMAKE_INSTALL_INCLUDEDIR
}
/ck>"
...
...
profiler/include/profiler/profile_batched_gemm_b_scale_impl.hpp
0 → 100644
View file @
ec959387
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_xdl_fpAintB_b_scale.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm_b_scale.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
BScaleDataType
,
typename
ComputeDataType
,
typename
AccDataType
,
typename
CDataType
,
index_t
ScaleBlockK
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
>
bool
profile_batched_gemm_b_scale_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideC
,
int
BatchStrideA
,
int
BatchStrideB
,
int
BatchStrideC
,
int
BatchStrideScaleB
,
int
BatchSize
,
int
KBatch
,
int
n_warmup
,
int
n_iter
,
uint64_t
rotating
=
0
)
{
bool
pass
=
true
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
batch_count
,
row
,
col
},
{
batch_stride
,
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
batch_count
,
row
,
col
},
{
batch_stride
,
1
_uz
,
stride
});
}
};
ck
::
index_t
Scale_Stride_BN
=
ck
::
is_same_v
<
BLayout
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
>
?
((
K
+
ScaleBlockK
-
1
)
/
ScaleBlockK
)
:
N
;
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
BatchSize
,
M
,
K
,
StrideA
,
BatchStrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
BatchSize
,
K
,
N
,
StrideB
,
BatchStrideB
,
BLayout
{}));
Tensor
<
BDataType
>
b_g_k_n_permute
(
f_host_tensor_descriptor
(
BatchSize
,
K
,
N
,
StrideB
,
BatchStrideB
,
BLayout
{}));
Tensor
<
BScaleDataType
>
b1_g_k_n
(
f_host_tensor_descriptor
(
BatchSize
,
(
K
+
ScaleBlockK
-
1
)
/
ScaleBlockK
,
// K direction group size is ScaleBlockK
N
,
// N direction group size is 1
Scale_Stride_BN
,
BatchStrideScaleB
,
BLayout
{}));
Tensor
<
CDataType
>
c_g_m_n_host_result
(
f_host_tensor_descriptor
(
BatchSize
,
M
,
N
,
StrideC
,
BatchStrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_g_m_n_device_result
(
f_host_tensor_descriptor
(
BatchSize
,
M
,
N
,
StrideC
,
BatchStrideC
,
CLayout
{}));
int
total_gemm_needed
=
a_g_m_k
.
GetElementSpaceSizeInBytes
()
+
b_g_k_n
.
GetElementSpaceSizeInBytes
()
+
b1_g_k_n
.
GetElementSpaceSizeInBytes
();
int
rotating_count
=
std
::
max
(
1
,
std
::
min
(
n_iter
,
static_cast
<
int
>
(
std
::
ceil
(
static_cast
<
double
>
(
rotating
)
/
total_gemm_needed
))));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_g_k_n: "
<<
b1_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_g_m_n: "
<<
c_g_m_n_device_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"rotating count: "
<<
rotating_count
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
1
,
2
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
1
,
2
});
b1_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BScaleDataType
>
{
0
,
1.0
});
break
;
case
2
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
b1_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BScaleDataType
>
{
0
,
1.0
});
break
;
default:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
b1_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BScaleDataType
>
{
0
,
1.0
});
}
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_g_k_n_permute
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b1_device_buf
(
sizeof
(
BScaleDataType
)
*
b1_g_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_g_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b1_device_buf
.
ToDevice
(
b1_g_k_n
.
mData
.
data
());
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmV2BScale
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
BScaleDataType
,
CDataType
,
1
,
ScaleBlockK
,
AElementOp
,
BElementOp
,
CElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
// Run reference GEMM
if
(
do_verification
)
{
Tensor
<
float
>
b_g_k_n_dequant
({
K
,
N
});
float
v_b
=
0
;
for
(
int
bs
=
0
;
bs
<
BatchSize
;
bs
++
)
{
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
k
=
0
;
k
<
K
;
k
++
)
{
ck
::
pk_i4_t
i4x2
=
b_g_k_n
(
bs
,
k
,
n
).
data
;
int8_t
i4
=
0
;
if
(
k
%
2
==
1
)
i4
=
(
i4x2
.
data
>>
0
)
&
0xf
;
else
i4
=
(
i4x2
.
data
>>
4
)
&
0xf
;
i4
=
i4
-
8
;
v_b
=
ck
::
type_convert
<
float
>
(
i4
);
b_g_k_n_dequant
(
bs
,
k
,
n
)
=
ck
::
type_convert
<
float
>
(
v_b
)
*
ck
::
type_convert
<
float
>
(
b1_g_k_n
(
bs
,
k
/
ScaleBlockK
,
n
));
}
}
}
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
ComputeDataType
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_g_m_k
,
b_g_k_n_dequant
,
c_g_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
}
std
::
string
best_op_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
float
best_kbatch
=
0
;
// profile device GEMM instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
const
int
KPerBlock
=
op_ptr
->
GetKPerBlock
();
if
(
op_ptr
->
GetPermuteB
())
{
int
K1
=
KPerBlock
;
int
K0
=
K
/
KPerBlock
;
// int K0, N, K1
for
(
int
bs
=
0
;
bs
<
BatchSize
;
bs
++
)
{
for
(
int
j
=
0
;
j
<
K0
;
j
++
)
{
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
for
(
int
jj
=
0
;
jj
<
K1
;
jj
++
)
{
b_g_k_n_permute
(
bs
*
BatchStrideB
+
j
*
N
*
K1
+
i
*
K1
+
jj
)
=
b_g_k_n
(
bs
*
BatchStrideB
+
i
*
K
+
(
j
*
K1
+
jj
));
}
}
}
}
if
(
is_same_v
<
BDataType
,
pk_i4_t
>
&&
is_same_v
<
ADataType
,
half_t
>
)
{
// vector pk_i4x4 permute
for
(
int
bs
=
0
;
bs
<
BatchSize
;
bs
++
)
{
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
for
(
int
j
=
0
;
j
<
K
;
j
+=
8
)
{
int
input
[
8
];
for
(
int
k
=
0
;
k
<
4
;
k
++
)
{
int
i4x2
=
b_g_k_n_permute
(
bs
,
j
+
k
*
2
,
i
).
data
;
input
[
k
*
2
+
0
]
=
(
i4x2
>>
4
)
&
0xf
;
input
[
k
*
2
+
1
]
=
(
i4x2
>>
0
)
&
0xf
;
}
// permute 01234567->20643175
{
int
hi
=
input
[
2
];
int
lo
=
input
[
0
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_g_k_n_permute
(
bs
,
j
+
0
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
6
];
int
lo
=
input
[
4
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_g_k_n_permute
(
bs
,
j
+
2
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
3
];
int
lo
=
input
[
1
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_g_k_n_permute
(
bs
,
j
+
4
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
7
];
int
lo
=
input
[
5
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_g_k_n_permute
(
bs
,
j
+
6
,
i
)
=
i4x2
;
}
}
}
}
}
}
else
{
b_g_k_n_permute
=
b_g_k_n
;
}
b_device_buf
.
ToDevice
(
b_g_k_n_permute
.
mData
.
data
());
std
::
vector
<
int
>
kbatch_list
=
{
1
,
2
,
4
,
8
,
16
,
19
,
32
,
38
};
if
(
KBatch
>
0
)
{
kbatch_list
=
{
KBatch
};
}
for
(
std
::
size_t
i
=
0
;
i
<
kbatch_list
.
size
();
i
++
)
{
auto
kbatch_curr
=
kbatch_list
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
Scale_Stride_BN
,
BatchStrideA
,
BatchStrideB
,
BatchStrideC
,
BatchStrideScaleB
,
static_cast
<
BScaleDataType
*>
(
b1_device_buf
.
GetDeviceBuffer
()),
BatchSize
,
// Batch count
kbatch_curr
,
// Split K count
a_element_op
,
b_element_op
,
c_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init C to zero before profiling next kernel
c_device_buf
.
SetZero
();
// invoker_ptr->Run(argument_ptr.get(),
// StreamConfig{nullptr, false, 0, n_warmup, n_iter});
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
,
0
});
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_g_m_n_device_result
.
mData
.
data
());
#if defined CK_ENABLE_FP8
// set softer tolerances for fp8
if
constexpr
(
is_same_v
<
ADataType
,
f8_t
>
||
is_same_v
<
BDataType
,
f8_t
>
||
is_same_v
<
CDataType
,
f8_t
>
)
{
std
::
string
msg
=
"Error: Incorrect results!"
;
double
rtol
=
1e-1
;
double
atol
=
1e-1
;
pass
=
pass
&
ck
::
utils
::
check_err
(
c_g_m_n_device_result
,
c_g_m_n_host_result
,
msg
,
rtol
,
atol
);
}
else
{
#endif
pass
=
pass
&
ck
::
utils
::
check_err
(
c_g_m_n_device_result
,
c_g_m_n_host_result
);
#if defined CK_ENABLE_FP8
}
#endif
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_g_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_g_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
c_g_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_g_m_n_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
0
,
n_warmup
,
n_iter
,
rotating_count
>
1
,
rotating_count
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
*
BatchSize
;
static
constexpr
index_t
BPackedSize
=
[]()
{
if
constexpr
(
is_same_v
<
remove_cvref_t
<
BDataType
>
,
pk_i4_t
>
)
return
2
;
else
return
1
;
}();
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
/
BPackedSize
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
", KBatch "
<<
kbatch_curr
<<
std
::
endl
;
if
(
tflops
>
best_tflops
&&
ave_time
>
1e-10
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
best_kbatch
=
kbatch_curr
;
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
}
if
constexpr
(
is_same
<
CDataType
,
float
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f32"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
half_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
bhalf_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = bf16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
int8_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = int8"
;
}
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" ALayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" ALayout = ColumnMajor"
;
}
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" BLayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" BLayout = ColumnMajor"
;
}
std
::
cout
<<
" M = "
<<
M
<<
" N = "
<<
N
<<
" K = "
<<
K
<<
" StrideA = "
<<
StrideA
<<
" StrideB = "
<<
StrideB
<<
" StrideC = "
<<
StrideC
<<
" KBatch = "
<<
best_kbatch
<<
" : "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/src/CMakeLists.txt
View file @
ec959387
...
...
@@ -59,6 +59,7 @@ if(SUPPORTED_GPU_TARGETS MATCHES "gfx9")
list
(
APPEND PROFILER_SOURCES profile_gemm_splitk.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_universal.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_b_scale.cpp
)
list
(
APPEND PROFILER_SOURCES profile_batched_gemm_b_scale.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_universal_batched.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_universal_reduce.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_universal_streamk.cpp
)
...
...
@@ -143,6 +144,7 @@ if(SUPPORTED_GPU_TARGETS MATCHES "gfx9")
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_splitk_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_universal_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_b_scale_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_b_scale_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_universal_batched_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_universal_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_universal_streamk_instance
)
...
...
profiler/src/profile_batched_gemm_b_scale.cpp
0 → 100644
View file @
ec959387
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <initializer_list>
#include <iostream>
#include <numeric>
#include "profiler/profile_batched_gemm_b_scale_impl.hpp"
#include "profiler_operation_registry.hpp"
enum
struct
GemmMatrixLayout
{
MK_KN_MN
,
// 0
MK_NK_MN
,
// 1
KM_KN_MN
,
// 2
KM_NK_MN
,
// 3
};
enum
struct
GemmDataType
{
F32_F32_F32
,
// 0
F16_F16_F16
,
// 1
BF16_BF16_BF16
,
// 2
INT8_INT8_INT8
,
// 3
F8_F16_F16
,
// 4
F16_F8_F16
,
// 5
F16_F16_F16_F8
,
// 6
F8_F8_BF16
,
// 7
F16_I4_F16
,
// 8
};
enum
struct
BScaleBlockTile
{
K_64
,
// 0
K_128
,
// 1
};
#define OP_NAME "batched_gemm_b_scale"
#define OP_DESC "Int4-dequant batched GEMM"
int
profile_batched_gemm_b_scale
(
int
argc
,
char
*
argv
[])
{
if
(
argc
!=
17
&&
argc
!=
20
)
{
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f8@f16; 5: f16@f8; 6: "
"f16->f8; 7: f8->bf16, "
"comp f8; 8: f16@i4)
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
);
printf
(
" 2: A[k, m] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 3: A[k, m] * B[n, k] = C[m, n])
\n
"
);
printf
(
"arg4: B scale block tile (0: 64, 1: 128):
\n
"
);
printf
(
"arg5: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg6: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg7: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg8: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg9 to 15: M, N, K, StrideA, StrideB, StrideC, BatachCount
\n
"
);
printf
(
"arg16: split k into mulitiple batch
\n
"
);
printf
(
"optional:
\n
"
);
printf
(
"arg17: number of warm-up cycles (default 1)
\n
"
);
printf
(
"arg18: number of iterations (default 10)
\n
"
);
printf
(
"arg19: memory for rotating buffer (default 0, size in MB)
\n
"
);
exit
(
1
);
}
printf
(
"Start profiling
\n
"
);
const
auto
data_type
=
static_cast
<
GemmDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
GemmMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
auto
B_scale_block
=
static_cast
<
BScaleBlockTile
>
(
std
::
stoi
(
argv
[
4
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
5
]);
const
int
init_method
=
std
::
stoi
(
argv
[
6
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
7
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
8
]);
const
int
M
=
std
::
stoi
(
argv
[
9
]);
const
int
N
=
std
::
stoi
(
argv
[
10
]);
const
int
K
=
std
::
stoi
(
argv
[
11
]);
const
int
StrideA
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
13
]);
const
int
StrideC
=
std
::
stoi
(
argv
[
14
]);
const
int
BatchStrideA
=
M
*
N
;
const
int
BatchStrideB
=
N
*
K
;
const
int
BatchStrideC
=
M
*
N
;
const
int
BatchStrideScaleB
=
(
K
+
static_cast
<
int
>
(
B_scale_block
)
-
1
)
/
static_cast
<
int
>
(
B_scale_block
)
*
N
;
const
int
BatchSize
=
std
::
stoi
(
argv
[
15
]);
const
int
KBatch
=
std
::
stoi
(
argv
[
16
]);
printf
(
"M:%d, N:%d, K:%d, StrideA:%d, StrideB:%d, StrideC:%d, BatchStrideA:%d, "
"BatchStrideB:%d, BatchStrideC:%d, BatchStrideScaleB:%d, BatchSize:%d, KBatch:%d,
\n
"
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
BatchStrideA
,
BatchStrideB
,
BatchStrideC
,
BatchStrideScaleB
,
BatchSize
,
KBatch
);
int
n_warmup
=
1
;
int
n_iter
=
10
;
uint64_t
rotating
=
0
;
if
(
argc
==
20
)
{
n_warmup
=
std
::
stoi
(
argv
[
17
]);
n_iter
=
std
::
stoi
(
argv
[
18
]);
rotating
=
std
::
stoull
(
argv
[
19
])
*
1024
*
1024
;
printf
(
"n_warmup:%d, n_iter:%d, rotating:%lu
\n
"
,
n_warmup
,
n_iter
,
rotating
);
}
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
I4
=
ck
::
pk_i4_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
auto
profile
=
[
&
](
auto
a_type
,
auto
b_type
,
auto
b_scale_type
,
auto
comp_type
,
auto
acc_type
,
auto
c_type
,
auto
scale_block_k
,
auto
a_layout
,
auto
b_layout
,
auto
c_layout
)
{
using
ADataType
=
decltype
(
a_type
);
using
BDataType
=
decltype
(
b_type
);
using
BScaleDataType
=
decltype
(
b_scale_type
);
using
ComputeDataType
=
decltype
(
comp_type
);
using
AccDataType
=
decltype
(
acc_type
);
using
CDataType
=
decltype
(
c_type
);
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
CLayout
=
decltype
(
c_layout
);
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB
=
ck
::
is_same_v
<
BLayout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideC
=
ck
::
is_same_v
<
CLayout
,
Row
>
?
N
:
M
;
bool
pass
=
ck
::
profiler
::
profile_batched_gemm_b_scale_impl
<
ADataType
,
BDataType
,
BScaleDataType
,
ComputeDataType
,
AccDataType
,
CDataType
,
scale_block_k
,
ALayout
,
BLayout
,
CLayout
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
,
(
StrideB
<
0
)
?
DefaultStrideB
:
StrideB
,
(
StrideC
<
0
)
?
DefaultStrideC
:
StrideC
,
BatchStrideA
,
BatchStrideB
,
BatchStrideC
,
BatchStrideScaleB
,
BatchSize
,
KBatch
,
n_warmup
,
n_iter
,
rotating
);
return
pass
?
0
:
1
;
};
if
(
data_type
==
GemmDataType
::
F16_I4_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
&&
B_scale_block
==
BScaleBlockTile
::
K_128
)
{
printf
(
"F16_I4_F16 MK_NK_MN K_128
\n
"
);
return
profile
(
F16
{},
I4
{},
F16
{},
F16
{},
F32
{},
F16
{},
ck
::
Number
<
128
>
{},
Row
{},
Col
{},
Row
{});
}
else
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_batched_gemm_b_scale
);
test/CMakeLists.txt
View file @
ec959387
...
...
@@ -100,7 +100,7 @@ function(add_test_executable TEST_NAME)
if
(
ARGN MATCHES
"_xdl"
)
list
(
REMOVE_ITEM TEST_TARGETS gfx900 gfx906 gfx906:xnack- gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201 gfx10.3-generic gfx11-generic gfx12-generic
)
elseif
(
ARGN MATCHES
"_wmma"
)
list
(
REMOVE_ITEM TEST_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack+ gfx908:xnack- gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030
)
list
(
REMOVE_ITEM TEST_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack+ gfx908:xnack- gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030
gfx950
)
elseif
(
ARGN MATCHES
"_smfmac"
)
list
(
REMOVE_ITEM TEST_TARGETS gfx900 gfx906 gfx906:xnack- gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx908 gfx90a gfx1200 gfx1201 gfx10.3-generic gfx11-generic gfx12-generic
)
endif
()
...
...
@@ -169,26 +169,38 @@ function(add_gtest_executable TEST_NAME)
list
(
REMOVE_ITEM ARGN
"
${
source
}
"
)
endif
()
endforeach
()
foreach
(
source IN LISTS ARGN
)
if
(
NOT TEST_TARGETS MATCHES
"gfx9"
AND source MATCHES
"xdl"
)
message
(
"removing xdl test
${
source
}
"
)
list
(
REMOVE_ITEM ARGN
"
${
source
}
"
)
endif
()
endforeach
()
foreach
(
source IN LISTS ARGN
)
if
(
NOT TEST_TARGETS MATCHES
"gfx95"
AND source MATCHES
"mx_"
)
message
(
"removing microscaling test
${
source
}
"
)
list
(
REMOVE_ITEM ARGN
"
${
source
}
"
)
endif
()
endforeach
()
foreach
(
source IN LISTS ARGN
)
if
(
NOT TEST_TARGETS MATCHES
"gfx11"
AND NOT TEST_TARGETS MATCHES
"gfx12"
AND source MATCHES
"wmma"
)
message
(
"removing wmma test
${
source
}
"
)
list
(
REMOVE_ITEM ARGN
"
${
source
}
"
)
endif
()
endforeach
()
#only continue if there are some source files left on the list
if
(
ARGN
)
if
(
ARGN MATCHES
"_xdl"
)
list
(
REMOVE_ITEM TEST_TARGETS gfx900 gfx906 gfx906:xnack- gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201 gfx10.3-generic gfx11-generic gfx12-generic
)
elseif
(
ARGN MATCHES
"_wmma"
)
list
(
REMOVE_ITEM TEST_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack+ gfx908:xnack- gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030
)
list
(
REMOVE_ITEM TEST_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack+ gfx908:xnack- gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030
gfx950
)
elseif
(
ARGN MATCHES
"_smfmac"
)
list
(
REMOVE_ITEM TEST_TARGETS gfx900 gfx906 gfx906:xnack- gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx908 gfx90a gfx1200 gfx1201 gfx10.3-generic gfx11-generic gfx12-generic
)
elseif
(
ARGN MATCHES
"_mx"
)
#only build mx example for gfx950
list
(
REMOVE_ITEM TEST_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack+ gfx908:xnack- gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201 gfx10.3-generic gfx11-generic gfx12-generic
)
endif
()
set_source_files_properties
(
${
ARGN
}
PROPERTIES LANGUAGE HIP
)
add_executable
(
${
TEST_NAME
}
${
ARGN
}
)
...
...
@@ -258,8 +270,11 @@ add_subdirectory(wrapper)
if
(
SUPPORTED_GPU_TARGETS MATCHES
"gfx11"
)
add_subdirectory
(
wmma_op
)
endif
()
if
(
SUPPORTED_GPU_TARGETS MATCHES
"gfx942"
AND CK_HIP_VERSION_MAJOR GREATER_EQUAL 6 AND CK_HIP_VERSION_MINOR GREATER_EQUAL 2
)
# smfmac needs ROCm6.2
if
(
SUPPORTED_GPU_TARGETS MATCHES
"gfx942"
OR SUPPORTED_GPU_TARGETS MATCHES
"gfx950"
)
# smfmac needs ROCm6.2
add_subdirectory
(
smfmac_op
)
endif
()
if
(
SUPPORTED_GPU_TARGETS MATCHES
"gfx950"
)
add_subdirectory
(
mx_mfma_op
)
endif
()
add_subdirectory
(
position_embedding
)
add_subdirectory
(
scatter_gather
)
test/ck_tile/CMakeLists.txt
View file @
ec959387
...
...
@@ -2,3 +2,4 @@ add_subdirectory(image_to_column)
add_subdirectory
(
gemm
)
add_subdirectory
(
batched_gemm
)
add_subdirectory
(
grouped_gemm
)
add_subdirectory
(
data_type
)
test/ck_tile/batched_gemm/test_batched_gemm.cpp
View file @
ec959387
...
...
@@ -17,7 +17,7 @@ using Col = ck_tile::tensor_layout::gemm::ColumnMajor;
// clang-format off
using
KernelTypes
=
::
testing
::
Types
<
// ALayout, BLayout, CLayout, ADataType, BDataType, AccDataType, CDataType
std
::
tuple
<
Row
,
Row
,
Row
,
F16
,
F16
,
F32
,
F16
>
,
//
std::tuple< Row, Row, Row, F16, F16, F32, F16>,
//std::tuple< Col, Row, Row, F16, F16, F32, F16>,
std
::
tuple
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F16
>
//,
//std::tuple< Col, Col, Row, F16, F16, F32, F16>
...
...
test/ck_tile/batched_gemm/test_batched_gemm_util.hpp
View file @
ec959387
...
...
@@ -29,12 +29,9 @@ class TestCkTileBatchedGemm : public ::testing::Test
const
ck_tile
::
stream_config
&
s
)
{
// The kPadM, kPadN, kPadK & kBlockPerCu should also come from the Codegen part.
constexpr
bool
kPadM
=
false
;
constexpr
bool
kPadN
=
false
;
constexpr
bool
kPadK
=
false
;
constexpr
bool
kTilePermute
=
false
;
// The rank and permutation will also be generate out by the CodeGen part.
constexpr
ck_tile
::
index_t
kOutputRank
=
2
;
constexpr
bool
kPadM
=
false
;
constexpr
bool
kPadN
=
false
;
constexpr
bool
kPadK
=
false
;
constexpr
int
kBlockPerCu
=
1
;
...
...
@@ -51,32 +48,12 @@ class TestCkTileBatchedGemm : public ::testing::Test
constexpr
ck_tile
::
index_t
N_Warp_Tile
=
32
;
constexpr
ck_tile
::
index_t
K_Warp_Tile
=
8
;
// Whether doing the CShuffle (transpose before the global memory), depending on the output
// layout.
constexpr
bool
CShuffleEpilogue
=
std
::
is_same_v
<
CLayout
,
ck_tile
::
tensor_layout
::
gemm
::
ColumnMajor
>
;
using
CodegenGemmShape
=
ck_tile
::
TileGemmShape
<
ck_tile
::
sequence
<
M_Tile
,
N_Tile
,
K_Tile
>
,
ck_tile
::
sequence
<
M_Warp
,
N_Warp
,
K_Warp
>
,
ck_tile
::
sequence
<
M_Warp_Tile
,
N_Warp_Tile
,
K_Warp_Tile
>>
;
using
TilePartitioner
=
ck_tile
::
GemmTile2DPartitioner
<
CodegenGemmShape
>
;
using
GemmEpilogue
=
std
::
conditional_t
<
CShuffleEpilogue
,
ck_tile
::
CShuffleEpilogue
<
ck_tile
::
CShuffleEpilogueProblem
<
AccDataType
,
CDataType
,
kPadM
,
kPadN
,
kTilePermute
,
kOutputRank
,
1
,
0
,
TilePartitioner
::
MPerBlock
,
TilePartitioner
::
NPerBlock
>>
,
ck_tile
::
Default2DEpilogue
<
ck_tile
::
Default2DEpilogueProblem
<
AccDataType
,
CDataType
,
kPadM
,
kPadN
>>>
;
using
TilePartitioner
=
ck_tile
::
GemmTile1DPartitioner
<
CodegenGemmShape
>
;
using
CodegenGemmTraits
=
ck_tile
::
TileGemmTraits
<
kPadM
,
kPadN
,
kPadK
,
ALayout
,
BLayout
,
CLayout
>
;
...
...
@@ -88,6 +65,20 @@ class TestCkTileBatchedGemm : public ::testing::Test
CodegenGemmTraits
>
;
using
CodegenGemmPipeline
=
ck_tile
::
GemmPipelineAGmemBGmemCRegV1
<
CodegenPipelineProblem
>
;
using
GemmEpilogue
=
ck_tile
::
CShuffleEpilogue
<
ck_tile
::
CShuffleEpilogueProblem
<
AccDataType
,
CDataType
,
CLayout
,
CodegenGemmPipeline
::
BlockSize
,
TilePartitioner
::
MPerBlock
,
TilePartitioner
::
NPerBlock
,
M_Warp
,
N_Warp
,
M_Warp_Tile
,
N_Warp_Tile
,
K_Warp_Tile
,
CodegenPipelineProblem
::
TransposeC
>>
;
using
Kernel
=
ck_tile
::
BatchedGemmKernel
<
TilePartitioner
,
CodegenGemmPipeline
,
GemmEpilogue
>
;
...
...
test/ck_tile/data_type/CMakeLists.txt
0 → 100644
View file @
ec959387
# Currently ck_tile is only built on gfx9
if
(
GPU_TARGETS MATCHES
"gfx9"
)
add_gtest_executable
(
test_ck_tile_pk_int4 test_pk_int4.cpp
)
endif
()
test/ck_tile/data_type/test_pk_int4.cpp
0 → 100644
View file @
ec959387
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include <hip/hip_runtime.h>
#include "ck_tile/core.hpp"
using
ck_tile
::
bf16_t
;
using
ck_tile
::
bf16x2_t
;
using
ck_tile
::
fp16x2_t
;
using
ck_tile
::
fp32x2_t
;
using
ck_tile
::
half_t
;
using
ck_tile
::
pk_int4_t
;
TEST
(
PackedInt4
,
ConvertToFloat
)
{
#ifdef CK_TILE_USE_PK4_LAYOUT_SHUFFLE
constexpr
float
first_input_val
=
7.
f
;
constexpr
float
second_input_val
=
-
1.
f
;
#else
constexpr
float
first_input_val
=
-
1.
f
;
constexpr
float
second_input_val
=
7.
f
;
#endif
uint8_t
data
=
0b11110111
;
// {-1, 7}
pk_int4_t
in
=
ck_tile
::
bit_cast
<
int8_t
>
(
data
);
fp32x2_t
out
=
ck_tile
::
pk_int4_t_to_fp32x2_t
(
in
);
EXPECT_EQ
(
out
.
x
,
first_input_val
);
EXPECT_EQ
(
out
.
y
,
second_input_val
);
}
TEST
(
PackedInt4
,
ConvertToHalf
)
{
#ifdef CK_TILE_USE_PK4_LAYOUT_SHUFFLE
const
half_t
first_input_val
=
ck_tile
::
type_convert
<
half_t
>
(
7.
f
);
const
half_t
second_input_val
=
ck_tile
::
type_convert
<
half_t
>
(
-
1.
f
);
#else
const
half_t
first_input_val
=
ck_tile
::
type_convert
<
half_t
>
(
-
1.
f
);
const
half_t
second_input_val
=
ck_tile
::
type_convert
<
half_t
>
(
7.
f
);
#endif
uint8_t
data
=
0b11110111
;
// {-1, 7}
pk_int4_t
in
=
ck_tile
::
bit_cast
<
int8_t
>
(
data
);
fp16x2_t
out
=
ck_tile
::
pk_int4_t_to_halfx2_t
(
in
);
EXPECT_EQ
(
out
.
x
,
first_input_val
);
EXPECT_EQ
(
out
.
y
,
second_input_val
);
}
TEST
(
PackedInt4
,
ConvertToBHalf
)
{
#ifdef CK_TILE_USE_PK4_LAYOUT_SHUFFLE
const
bf16_t
first_input_val
=
ck_tile
::
type_convert
<
bf16_t
>
(
7.
f
);
const
bf16_t
second_input_val
=
ck_tile
::
type_convert
<
bf16_t
>
(
-
1.
f
);
#else
const
bf16_t
first_input_val
=
ck_tile
::
type_convert
<
bf16_t
>
(
-
1.
f
);
const
bf16_t
second_input_val
=
ck_tile
::
type_convert
<
bf16_t
>
(
7.
f
);
#endif
uint8_t
data
=
0b11110111
;
// {-1, 7}
pk_int4_t
in
=
ck_tile
::
bit_cast
<
int8_t
>
(
data
);
bf16x2_t
out
=
ck_tile
::
pk_int4_t_to_bfloat16x2_t
(
in
);
EXPECT_EQ
(
out
.
x
,
first_input_val
);
EXPECT_EQ
(
out
.
y
,
second_input_val
);
}
test/ck_tile/gemm/test_gemm_pipeline.cpp
View file @
ec959387
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2024
-2025
, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
...
...
@@ -17,22 +17,27 @@ using Intrawave = ck_tile::integral_constant<ck_tile::GemmPipelineScheduler,
using
Interwave
=
ck_tile
::
integral_constant
<
ck_tile
::
GemmPipelineScheduler
,
ck_tile
::
GemmPipelineScheduler
::
Interwave
>
;
using
Mem
=
ck_tile
::
integral_constant
<
GemmPipelineType
,
GemmPipelineType
::
Mem
>
;
using
Comp
=
ck_tile
::
integral_constant
<
GemmPipelineType
,
GemmPipelineType
::
Comp
>
;
using
CompV3
=
ck_tile
::
integral_constant
<
GemmPipelineType
,
GemmPipelineType
::
CompV3
>
;
using
CompV4
=
ck_tile
::
integral_constant
<
GemmPipelineType
,
GemmPipelineType
::
CompV4
>
;
// clang-format off
using
KernelTypes
=
::
testing
::
Types
<
// ALayout, BLayout, CLayout, ADataType, BDataType, AccDataType, CDataType, GemmPipelineScheduler, PipelineType
std
::
tuple
<
Row
,
Row
,
Row
,
F16
,
F16
,
F32
,
F16
,
Intrawave
,
Mem
>
,
std
::
tuple
<
Row
,
Row
,
Row
,
F16
,
F16
,
F32
,
F16
,
Intrawave
,
Comp
>
,
std
::
tuple
<
Row
,
Row
,
Row
,
F16
,
F16
,
F32
,
F16
,
Intrawave
,
CompV3
>
,
std
::
tuple
<
Row
,
Row
,
Row
,
F16
,
F16
,
F32
,
F16
,
Intrawave
,
CompV4
>
,
std
::
tuple
<
Row
,
Row
,
Row
,
F16
,
F16
,
F32
,
F16
,
Interwave
,
Mem
>
,
std
::
tuple
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F16
,
Intrawave
,
Mem
>
,
std
::
tuple
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F16
,
Intrawave
,
Comp
>
,
std
::
tuple
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F16
,
Intrawave
,
CompV3
>
,
std
::
tuple
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F16
,
Intrawave
,
CompV4
>
,
std
::
tuple
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F16
,
Interwave
,
Mem
>
,
std
::
tuple
<
Col
,
Row
,
Row
,
F16
,
F16
,
F32
,
F16
,
Intrawave
,
Mem
>
,
std
::
tuple
<
Col
,
Row
,
Row
,
F16
,
F16
,
F32
,
F16
,
Intrawave
,
Comp
>
,
std
::
tuple
<
Col
,
Row
,
Row
,
F16
,
F16
,
F32
,
F16
,
Intrawave
,
CompV3
>
,
std
::
tuple
<
Col
,
Row
,
Row
,
F16
,
F16
,
F32
,
F16
,
Intrawave
,
CompV4
>
,
std
::
tuple
<
Col
,
Row
,
Row
,
F16
,
F16
,
F32
,
F16
,
Interwave
,
Mem
>
,
std
::
tuple
<
Col
,
Col
,
Row
,
F16
,
F16
,
F32
,
F16
,
Intrawave
,
Mem
>
,
std
::
tuple
<
Col
,
Col
,
Row
,
F16
,
F16
,
F32
,
F16
,
Intrawave
,
Comp
>
,
std
::
tuple
<
Col
,
Col
,
Row
,
F16
,
F16
,
F32
,
F16
,
Intrawave
,
CompV3
>
,
std
::
tuple
<
Col
,
Col
,
Row
,
F16
,
F16
,
F32
,
F16
,
Intrawave
,
CompV4
>
,
std
::
tuple
<
Col
,
Col
,
Row
,
F16
,
F16
,
F32
,
F16
,
Interwave
,
Mem
>
>
;
// clang-format on
...
...
test/ck_tile/gemm/test_gemm_pipeline_ut_cases.inc
View file @
ec959387
...
...
@@ -10,22 +10,43 @@ TYPED_TEST(TestCkTileGemmPipeline, SmallM)
constexpr
int
K
=
320
;
for
(
int
M
:
Ms
)
this
->
Run
(
M
,
N
,
K
);
{
if
constexpr
(
std
::
is_same_v
<
typename
TestFixture
::
ALayout
,
ck_tile
::
tensor_layout
::
gemm
::
ColumnMajor
>
)
EXPECT_THROW
((
this
->
Run
(
M
,
N
,
K
)),
std
::
runtime_error
);
else
this
->
Run
(
M
,
N
,
K
);
}
}
TYPED_TEST
(
TestCkTileGemmPipeline
,
MidLargeM
)
{
std
::
vector
<
int
>
Ms
{
127
,
255
,
312
,
799
,
1573
};
constexpr
int
N
=
1024
;
constexpr
int
K
=
320
;
constexpr
int
N
=
1024
;
constexpr
int
K
=
320
;
constexpr
int
VecLoadSize
=
8
;
for
(
int
M
:
Ms
)
this
->
Run
(
M
,
N
,
K
);
{
if
constexpr
(
std
::
is_same_v
<
typename
TestFixture
::
ALayout
,
ck_tile
::
tensor_layout
::
gemm
::
ColumnMajor
>
)
{
// TODO: Can we anyhow deduce used vector load size?
if
(
M
%
VecLoadSize
==
0
)
this
->
Run
(
M
,
N
,
K
);
else
EXPECT_THROW
((
this
->
Run
(
M
,
N
,
K
)),
std
::
runtime_error
);
}
else
{
this
->
Run
(
M
,
N
,
K
);
}
}
}
TYPED_TEST
(
TestCkTileGemmPipeline
,
PaddK
)
{
std
::
vector
<
int
>
Ms
{
12
7
};
std
::
vector
<
int
>
Ms
{
12
8
};
constexpr
int
N
=
1024
;
constexpr
int
K
=
432
;
...
...
test/ck_tile/gemm/test_gemm_pipeline_util.hpp
View file @
ec959387
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2024
-2025
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <sstream>
...
...
@@ -14,8 +14,34 @@
enum
struct
GemmPipelineType
{
Mem
,
Comp
CompV3
,
CompV4
};
template
<
GemmPipelineType
PT
,
typename
Problem
>
struct
GemmPipelineTypeSelector
;
template
<
typename
Problem
>
struct
GemmPipelineTypeSelector
<
GemmPipelineType
::
Mem
,
Problem
>
{
using
base_pipeline
=
ck_tile
::
BaseGemmPipelineAgBgCrMem
<
Problem
>
;
using
pipeline
=
ck_tile
::
GemmPipelineAgBgCrMem
<
Problem
>
;
};
template
<
typename
Problem
>
struct
GemmPipelineTypeSelector
<
GemmPipelineType
::
CompV3
,
Problem
>
{
using
base_pipeline
=
ck_tile
::
BaseGemmPipelineAgBgCrCompV3
<
Problem
>
;
using
pipeline
=
ck_tile
::
GemmPipelineAgBgCrCompV3
<
Problem
>
;
};
template
<
typename
Problem
>
struct
GemmPipelineTypeSelector
<
GemmPipelineType
::
CompV4
,
Problem
>
{
using
base_pipeline
=
ck_tile
::
BaseGemmPipelineAgBgCrCompV4
<
Problem
>
;
using
pipeline
=
ck_tile
::
GemmPipelineAgBgCrCompV4
<
Problem
>
;
};
template
<
typename
Tuple
>
class
TestCkTileGemmPipeline
:
public
::
testing
::
Test
{
...
...
@@ -35,8 +61,8 @@ class TestCkTileGemmPipeline : public ::testing::Test
void
invoke_gemm
(
const
ck_tile
::
GemmHostArgs
&
args
,
const
ck_tile
::
stream_config
&
s
)
{
// TODO: This should be parameterized in tests
constexpr
ck_tile
::
index_t
M_Tile
=
128
;
constexpr
ck_tile
::
index_t
N_Tile
=
128
;
constexpr
ck_tile
::
index_t
M_Tile
=
256
;
constexpr
ck_tile
::
index_t
N_Tile
=
256
;
constexpr
ck_tile
::
index_t
K_Tile
=
32
;
constexpr
ck_tile
::
index_t
M_Warp
=
2
;
...
...
@@ -51,7 +77,14 @@ class TestCkTileGemmPipeline : public ::testing::Test
constexpr
bool
kPadN
=
PadN
;
constexpr
bool
kPadK
=
PadK
;
constexpr
int
kBlockPerCu
=
1
;
constexpr
bool
DoubleSmemBuffer
=
(
PipelineType
==
GemmPipelineType
::
CompV4
)
?
true
:
false
;
// TODO: For now - but this should also be a test parameter
constexpr
bool
TransposeC
=
false
;
constexpr
int
kBlockPerCu
=
1
;
constexpr
ck_tile
::
index_t
TileParitionerGroupNum
=
8
;
constexpr
ck_tile
::
index_t
TileParitionerM01
=
4
;
// ===============================================
...
...
@@ -59,20 +92,24 @@ class TestCkTileGemmPipeline : public ::testing::Test
ck_tile
::
TileGemmShape
<
ck_tile
::
sequence
<
M_Tile
,
N_Tile
,
K_Tile
>
,
ck_tile
::
sequence
<
M_Warp
,
N_Warp
,
K_Warp
>
,
ck_tile
::
sequence
<
M_Warp_Tile
,
N_Warp_Tile
,
K_Warp_Tile
>>
;
using
TilePartitioner
=
ck_tile
::
GemmTile2DPartitioner
<
GemmShape
>
;
using
GemmEpilogue
=
ck_tile
::
Default2DEpilogue
<
ck_tile
::
Default2DEpilogueProblem
<
AccDataType
,
CDataType
,
kPadM
,
kPadN
>>
;
using
TilePartitioner
=
ck_tile
::
GemmSpatiallyLocalTilePartitioner
<
GemmShape
,
TileParitionerGroupNum
,
TileParitionerM01
>
;
using
Traits
=
ck_tile
::
TileGemmTraits
<
kPadM
,
kPadN
,
kPadK
,
ALayout
,
BLayout
,
CLayout
>
;
using
GemmUniversalTraits
=
ck_tile
::
TileGemmUniversalTraits
<
kPadM
,
kPadN
,
kPadK
,
DoubleSmemBuffer
,
ALayout
,
BLayout
,
CLayout
,
TransposeC
>
;
using
GemmPipelineProblem
=
ck_tile
::
GemmPipelineProblem
<
ADataType
,
BDataType
,
AccDataType
,
GemmShape
,
Traits
>
;
using
BaseGemmPipeline
=
std
::
conditional_t
<
PipelineType
==
GemmPipelineType
::
Mem
,
ck_tile
::
BaseGemmPipelineAgBgCrMem
<
ck_tile
::
GemmPipelineProblem
<
ADataType
,
BDataType
,
AccDataType
,
GemmShape
,
Traits
>>
,
ck_tile
::
BaseGemmPipelineAgBgCrCompV3
<
ck_tile
::
GemmPipelineProblem
<
ADataType
,
BDataType
,
AccDataType
,
GemmShape
,
Traits
>>>
;
using
BaseGemmPipeline
=
typename
GemmPipelineTypeSelector
<
PipelineType
,
GemmPipelineProblem
>::
base_pipeline
;
const
ck_tile
::
index_t
k_grain
=
args
.
k_batch
*
K_Tile
;
const
ck_tile
::
index_t
K_split
=
(
args
.
K
+
k_grain
-
1
)
/
k_grain
*
K_Tile
;
...
...
@@ -84,26 +121,32 @@ class TestCkTileGemmPipeline : public ::testing::Test
constexpr
bool
has_hot_loop_v
=
has_hot_loop_
.
value
;
constexpr
auto
tail_number_v
=
tail_number_
.
value
;
using
UniversalGemmProblem
=
ck_tile
::
UniversalGemmPipelineProblem
<
ADataType
,
BDataType
,
AccDataType
,
GemmShape
,
GemmUniversalTraits
,
Scheduler
,
has_hot_loop_v
,
tail_number_v
>
;
using
GemmPipeline
=
std
::
conditional_t
<
PipelineType
==
GemmPipelineType
::
Mem
,
ck_tile
::
GemmPipelineAgBgCrMem
<
ck_tile
::
UniversalGemmPipelineProblem
<
ADataType
,
BDataType
,
AccDataType
,
GemmShape
,
Traits
,
Scheduler
,
has_hot_loop_v
,
tail_number_v
>>
,
ck_tile
::
GemmPipelineAgBgCrCompV3
<
ck_tile
::
UniversalGemmPipelineProblem
<
ADataType
,
BDataType
,
AccDataType
,
GemmShape
,
Traits
,
Scheduler
,
has_hot_loop_v
,
tail_number_v
>>>
;
typename
GemmPipelineTypeSelector
<
PipelineType
,
UniversalGemmProblem
>::
pipeline
;
using
GemmEpilogue
=
ck_tile
::
CShuffleEpilogue
<
ck_tile
::
CShuffleEpilogueProblem
<
AccDataType
,
CDataType
,
CLayout
,
GemmPipeline
::
BlockSize
,
TilePartitioner
::
MPerBlock
,
TilePartitioner
::
NPerBlock
,
M_Warp
,
N_Warp
,
M_Warp_Tile
,
N_Warp_Tile
,
K_Warp_Tile
,
UniversalGemmProblem
::
TransposeC
>>
;
using
Kernel
=
ck_tile
::
GemmKernel
<
TilePartitioner
,
GemmPipeline
,
GemmEpilogue
>
;
auto
kargs
=
Kernel
::
MakeKernelArgs
(
args
);
...
...
@@ -129,70 +172,110 @@ class TestCkTileGemmPipeline : public ::testing::Test
if
(
has_hot_loop
)
{
// Tail pipeline One to Seven
if
(
tail_num
==
ck_tile
::
TailNumber
::
One
)
{
Run
(
ck_tile
::
bool_constant
<
true
>
{},
ck_tile
::
integral_constant
<
ck_tile
::
TailNumber
,
ck_tile
::
TailNumber
::
One
>
{});
}
else
if
(
tail_num
==
ck_tile
::
TailNumber
::
Full
)
if
constexpr
(
PipelineType
==
GemmPipelineType
::
CompV3
)
{
Run
(
ck_tile
::
bool_constant
<
true
>
{},
ck_tile
::
integral_constant
<
ck_tile
::
TailNumber
,
ck_tile
::
TailNumber
::
Full
>
{});
}
if
constexpr
(
BaseGemmPipeline
::
PrefetchStages
>
2
)
{
if
(
tail_num
==
ck_tile
::
TailNumber
::
Two
)
if
(
tail_num
==
ck_tile
::
TailNumber
::
Full
)
{
Run
(
ck_tile
::
bool_constant
<
true
>
{},
ck_tile
::
integral_constant
<
ck_tile
::
TailNumber
,
ck_tile
::
TailNumber
::
Two
>
{});
ck_tile
::
TailNumber
::
Full
>
{});
}
}
if
constexpr
(
BaseGemmPipeline
::
PrefetchStages
>
3
)
{
if
(
tail_num
==
ck_tile
::
TailNumber
::
Three
)
else
{
Run
(
ck_tile
::
bool_constant
<
true
>
{},
ck_tile
::
integral_constant
<
ck_tile
::
TailNumber
,
ck_tile
::
TailNumber
::
Three
>
{});
std
::
ostringstream
err
;
err
<<
"For compute pipeline tail number should always be Full, but have
\"
"
<<
tail_num
<<
"
\"
which is not supported! PrefetchStages: "
<<
BaseGemmPipeline
::
PrefetchStages
<<
"
\n
File: "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
;
throw
std
::
runtime_error
(
err
.
str
());
}
}
if
constexpr
(
BaseGemmPipeline
::
PrefetchStages
>
4
)
if
constexpr
(
PipelineType
==
GemmPipelineType
::
Mem
)
{
if
(
tail_num
==
ck_tile
::
TailNumber
::
Four
)
// Tail pipeline One to Seven
if
(
tail_num
==
ck_tile
::
TailNumber
::
One
)
{
Run
(
ck_tile
::
bool_constant
<
true
>
{},
ck_tile
::
integral_constant
<
ck_tile
::
TailNumber
,
ck_tile
::
TailNumber
::
Four
>
{});
ck_tile
::
TailNumber
::
One
>
{});
}
}
if
constexpr
(
BaseGemmPipeline
::
PrefetchStages
>
5
)
{
if
(
tail_num
==
ck_tile
::
TailNumber
::
Five
)
else
if
(
tail_num
==
ck_tile
::
TailNumber
::
Full
)
{
Run
(
ck_tile
::
bool_constant
<
true
>
{},
ck_tile
::
integral_constant
<
ck_tile
::
TailNumber
,
ck_tile
::
TailNumber
::
Five
>
{});
ck_tile
::
TailNumber
::
Full
>
{});
}
if
constexpr
(
BaseGemmPipeline
::
PrefetchStages
>
2
)
{
if
(
tail_num
==
ck_tile
::
TailNumber
::
Two
)
{
Run
(
ck_tile
::
bool_constant
<
true
>
{},
ck_tile
::
integral_constant
<
ck_tile
::
TailNumber
,
ck_tile
::
TailNumber
::
Two
>
{});
}
}
if
constexpr
(
BaseGemmPipeline
::
PrefetchStages
>
3
)
{
if
(
tail_num
==
ck_tile
::
TailNumber
::
Three
)
{
Run
(
ck_tile
::
bool_constant
<
true
>
{},
ck_tile
::
integral_constant
<
ck_tile
::
TailNumber
,
ck_tile
::
TailNumber
::
Three
>
{});
}
}
if
constexpr
(
BaseGemmPipeline
::
PrefetchStages
>
4
)
{
if
(
tail_num
==
ck_tile
::
TailNumber
::
Four
)
{
Run
(
ck_tile
::
bool_constant
<
true
>
{},
ck_tile
::
integral_constant
<
ck_tile
::
TailNumber
,
ck_tile
::
TailNumber
::
Four
>
{});
}
}
if
constexpr
(
BaseGemmPipeline
::
PrefetchStages
>
5
)
{
if
(
tail_num
==
ck_tile
::
TailNumber
::
Five
)
{
Run
(
ck_tile
::
bool_constant
<
true
>
{},
ck_tile
::
integral_constant
<
ck_tile
::
TailNumber
,
ck_tile
::
TailNumber
::
Five
>
{});
}
}
if
constexpr
(
BaseGemmPipeline
::
PrefetchStages
>
6
)
{
if
(
tail_num
==
ck_tile
::
TailNumber
::
Six
)
{
Run
(
ck_tile
::
bool_constant
<
true
>
{},
ck_tile
::
integral_constant
<
ck_tile
::
TailNumber
,
ck_tile
::
TailNumber
::
Six
>
{});
}
}
if
constexpr
(
BaseGemmPipeline
::
PrefetchStages
>
7
)
{
if
(
tail_num
==
ck_tile
::
TailNumber
::
Seven
)
{
Run
(
ck_tile
::
bool_constant
<
true
>
{},
ck_tile
::
integral_constant
<
ck_tile
::
TailNumber
,
ck_tile
::
TailNumber
::
Seven
>
{});
}
}
}
if
constexpr
(
BaseGemmPipeline
::
PrefetchStages
>
6
)
if
constexpr
(
PipelineType
==
GemmPipelineType
::
CompV4
)
{
if
(
tail_num
==
ck_tile
::
TailNumber
::
Six
)
if
(
tail_num
==
ck_tile
::
TailNumber
::
Three
)
{
Run
(
ck_tile
::
bool_constant
<
true
>
{},
ck_tile
::
integral_constant
<
ck_tile
::
TailNumber
,
ck_tile
::
TailNumber
::
Six
>
{});
ck_tile
::
TailNumber
::
Three
>
{});
}
}
if
constexpr
(
BaseGemmPipeline
::
PrefetchStages
>
7
)
{
if
(
tail_num
==
ck_tile
::
TailNumber
::
Seven
)
else
{
Run
(
ck_tile
::
bool_constant
<
true
>
{},
ck_tile
::
integral_constant
<
ck_tile
::
TailNumber
,
ck_tile
::
TailNumber
::
Seven
>
{});
ck_tile
::
TailNumber
::
Two
>
{});
}
}
}
...
...
@@ -218,7 +301,19 @@ class TestCkTileGemmPipeline : public ::testing::Test
public:
std
::
vector
<
int
>
k_batches_
;
void
SetUp
()
override
{
k_batches_
=
{
1
};
}
void
SetUp
()
override
{
if
constexpr
(
PipelineType
==
GemmPipelineType
::
CompV4
)
{
// Only do k_batch = 1 when pipeline is CompV4
k_batches_
=
{
1
};
}
else
{
// Otherwise, use k_batch = 1 and 2
k_batches_
=
{
1
,
2
};
}
}
template
<
bool
PadM
=
true
,
bool
PadN
=
true
,
bool
PadK
=
true
>
void
Run
(
const
int
M
,
...
...
test/ck_tile/grouped_gemm/test_grouped_gemm.cpp
View file @
ec959387
...
...
@@ -17,7 +17,7 @@ using Col = ck_tile::tensor_layout::gemm::ColumnMajor;
// clang-format off
using
KernelTypes
=
::
testing
::
Types
<
// ALayout, BLayout, CLayout, ADataType, BDataType, AccDataType, CDataType
std
::
tuple
<
Row
,
Row
,
Row
,
F16
,
F16
,
F32
,
F16
>
,
//
std::tuple< Row, Row, Row, F16, F16, F32, F16>,
//std::tuple< Col, Row, Row, F16, F16, F32, F16>,
std
::
tuple
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F16
>
//,
//std::tuple< Col, Col, Row, F16, F16, F32, F16>
...
...
test/ck_tile/grouped_gemm/test_grouped_gemm_util.hpp
View file @
ec959387
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2024
-2025
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <sstream>
...
...
@@ -26,12 +26,9 @@ class TestCkTileGroupedGemm : public ::testing::Test
struct
GroupedGemKernelParam
{
static
const
bool
kPadM
=
false
;
static
const
bool
kPadN
=
false
;
static
const
bool
kPadK
=
false
;
static
const
bool
kTilePermute
=
false
;
static
const
ck_tile
::
index_t
kOutputRank
=
2
;
static
const
bool
kPadM
=
false
;
static
const
bool
kPadN
=
false
;
static
const
bool
kPadK
=
false
;
static
const
int
kBlockPerCu
=
1
;
static
const
ck_tile
::
index_t
M_Tile
=
128
;
...
...
@@ -60,26 +57,6 @@ class TestCkTileGroupedGemm : public ::testing::Test
using
TilePartitioner
=
ck_tile
::
GemmTile1DPartitioner
<
CodegenGemmShape
>
;
template
<
typename
CLayout
>
using
GemmEpilogue
=
std
::
conditional_t
<
std
::
is_same_v
<
CLayout
,
ck_tile
::
tensor_layout
::
gemm
::
ColumnMajor
>
,
ck_tile
::
CShuffleEpilogue
<
ck_tile
::
CShuffleEpilogueProblem
<
AccDataType
,
CDataType
,
GroupedGemKernelParam
::
kPadM
,
GroupedGemKernelParam
::
kPadN
,
GroupedGemKernelParam
::
kTilePermute
,
GroupedGemKernelParam
::
kOutputRank
,
1
,
0
,
TilePartitioner
::
MPerBlock
,
TilePartitioner
::
NPerBlock
>>
,
ck_tile
::
Default2DEpilogue
<
ck_tile
::
Default2DEpilogueProblem
<
AccDataType
,
CDataType
,
GroupedGemKernelParam
::
kPadM
,
GroupedGemKernelParam
::
kPadN
>>>
;
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
>
using
CodegenGemmTraits
=
ck_tile
::
TileGemmTraits
<
GroupedGemKernelParam
::
kPadM
,
GroupedGemKernelParam
::
kPadN
,
...
...
@@ -96,17 +73,29 @@ class TestCkTileGroupedGemm : public ::testing::Test
CodegenGemmShape
,
CodegenGemmTraits
<
ALayout
,
BLayout
,
CLayout
>>
;
using
CodegenGemmPolicy
=
ck_tile
::
UniversalGemmPipelineAgBgCrPolicy
;
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
>
using
CodegenGemmPipeline
=
ck_tile
::
GemmPipelineAGmemBGmemCRegV1
<
CodegenPipelineProblem
<
ALayout
,
BLayout
,
CLayout
>
,
CodegenGemmPolicy
>
;
ck_tile
::
GemmPipelineAGmemBGmemCRegV1
<
CodegenPipelineProblem
<
ALayout
,
BLayout
,
CLayout
>>
;
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
>
using
GemmEpilogue
=
ck_tile
::
CShuffleEpilogue
<
ck_tile
::
CShuffleEpilogueProblem
<
AccDataType
,
CDataType
,
CLayout
,
CodegenGemmPipeline
<
ALayout
,
BLayout
,
CLayout
>::
BlockSize
,
TilePartitioner
::
MPerBlock
,
TilePartitioner
::
NPerBlock
,
GroupedGemKernelParam
::
M_Warp
,
GroupedGemKernelParam
::
N_Warp
,
GroupedGemKernelParam
::
M_Warp_Tile
,
GroupedGemKernelParam
::
N_Warp_Tile
,
GroupedGemKernelParam
::
K_Warp_Tile
,
CodegenPipelineProblem
<
ALayout
,
BLayout
,
CLayout
>::
TransposeC
>>
;
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
>
using
Kernel
=
ck_tile
::
GroupedGemmKernel
<
TilePartitioner
,
CodegenGemmPipeline
<
ALayout
,
BLayout
,
CLayout
>
,
GemmEpilogue
<
CLayout
>>
;
GemmEpilogue
<
ALayout
,
BLayout
,
CLayout
>>
;
using
grouped_gemm_kargs
=
ck_tile
::
GroupedGemmHostArgs
;
std
::
size_t
GetWorkspaceSize
(
const
std
::
vector
<
grouped_gemm_kargs
>&
gemm_descs
)
...
...
Prev
1
…
15
16
17
18
19
20
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment