Commit ebb5522c authored by Mateusz Ozga's avatar Mateusz Ozga Committed by root
Browse files

Apply cshuffle to bwd_weight_cshuffle operator

parent fdfe2102
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp" #include "common.hpp"
...@@ -39,33 +39,33 @@ using DeviceConvBwdWeightInstance = ...@@ -39,33 +39,33 @@ using DeviceConvBwdWeightInstance =
WeiElementOp, // WeiElementwiseOperation WeiElementOp, // WeiElementwiseOperation
OutElementOp, // OutElementwiseOperation OutElementOp, // OutElementwiseOperation
ConvBwdWeightDefault, // ConvolutionBackwardWeightSpecialization ConvBwdWeightDefault, // ConvolutionBackwardWeightSpecialization
256, // BlockSize 64, // BlockSize
128, // MPerBlock 16, // MPerBlock
128, // NPerBlock 16, // NPerBlock
4, // K0PerBlock 32, // K0PerBlock
8, // K1 8, // K1
32, // MPerXdl 16, // MPerXdl
32, // NPerXdl 16, // NPerXdl
2, // MXdlPerWave 1, // MXdlPerWave
2, // NXdlPerWave 1, // NXdlPerWave
S<1, 4, 16, 4>, // ABlockTransferThreadClusterLengths_K0_M_K1 S<4, 16, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<0, 3, 1, 2>, // ABlockTransferThreadClusterArrangeOrder S<2, 0, 1>, // ABlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // ABlockTransferSrcAccessOrder S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim 1, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector 1, // ABlockTransferSrcScalarPerVector
2, // ABlockTransferDstScalarPerVector_K1 4, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM false, // ABlockLdsAddExtraM
S<1, 4, 16, 4>, // BBlockTransferThreadClusterLengths_K0_N_K1 S<4, 16, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<0, 3, 1, 2>, // BBlockTransferThreadClusterArrangeOrder S<2, 0, 1>, // BBlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // BBlockTransferSrcAccessOrder S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim 1, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector 1, // BBlockTransferSrcScalarPerVector
2, // BBlockTransferDstScalarPerVector_K1 4, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN false, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle 1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle 1, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 4>, // CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock S<1, 8, 1, 8>, // CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
128 / (sizeof(WeiDataType) * CHAR_BIT)>; // CBlockTransferScalarPerVector_NWaveNPerXdl 1>; // CBlockTransferScalarPerVector_NWaveNPerXdl
template <ck::index_t NDimSpatial> template <ck::index_t NDimSpatial>
using HostConvBwdWeightInstance = ck::tensor_operation::host::ReferenceConvBwdWeight<NDimSpatial, using HostConvBwdWeightInstance = ck::tensor_operation::host::ReferenceConvBwdWeight<NDimSpatial,
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp" #include "common.hpp"
...@@ -41,26 +41,26 @@ using DeviceConvBwdWeightInstance = ...@@ -41,26 +41,26 @@ using DeviceConvBwdWeightInstance =
256, // BlockSize 256, // BlockSize
128, // MPerBlock 128, // MPerBlock
128, // NPerBlock 128, // NPerBlock
4, // K0PerBlock 32, // K0PerBlock
8, // K1 8, // K1
32, // MPerXdl 32, // MPerXdl
32, // NPerXdl 32, // NPerXdl
2, // MXdlPerWave 2, // MXdlPerWave
2, // NXdlPerWave 2, // NXdlPerWave
S<1, 4, 16, 4>, // ABlockTransferThreadClusterLengths_K0_M_K1 S<4, 16, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<0, 3, 1, 2>, // ABlockTransferThreadClusterArrangeOrder S<2, 0, 1>, // ABlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // ABlockTransferSrcAccessOrder S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim 2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector 8, // ABlockTransferSrcScalarPerVector
2, // ABlockTransferDstScalarPerVector_K1 2, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM false, // ABlockLdsAddExtraM
S<1, 4, 16, 4>, // BBlockTransferThreadClusterLengths_K0_N_K1 S<4, 16, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<0, 3, 1, 2>, // BBlockTransferThreadClusterArrangeOrder S<2, 0, 1>, // ABlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // BBlockTransferSrcAccessOrder S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim 2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector 8, // BBlockTransferSrcScalarPerVector
2, // BBlockTransferDstScalarPerVector_K1 2, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN false, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle 1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle 1, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 4>, // CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock S<1, 32, 1, 4>, // CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
......
...@@ -40,33 +40,36 @@ using DeviceConvBwdWeightInstance = ...@@ -40,33 +40,36 @@ using DeviceConvBwdWeightInstance =
WeiElementOp, // WeiElementwiseOperation WeiElementOp, // WeiElementwiseOperation
OutElementOp, // OutElementwiseOperation OutElementOp, // OutElementwiseOperation
ConvBwdWeightDefault, // ConvolutionBackwardWeightSpecialization ConvBwdWeightDefault, // ConvolutionBackwardWeightSpecialization
256, // BlockSize 64, // BlockSize
128, // MPerBlock 16, // MPerBlock
128, // NPerBlock 16, // NPerBlock
4, // K0PerBlock 32, // K0PerBlock
8, // K1 8, // K1
32, // MPerXdl 16, // MPerXdl
32, // NPerXdl 16, // NPerXdl
2, // MXdlPerWave 1, // MXdlPerWave
2, // NXdlPerWave 1, // NXdlPerWave
S<1, 4, 16, 4>, // ABlockTransferThreadClusterLengths_K0_M_K1 S<4, 16, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<0, 3, 1, 2>, // ABlockTransferThreadClusterArrangeOrder S<2, 0, 1>, // ABlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // ABlockTransferSrcAccessOrder S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim 1, // ABlockTransferSrcVectorDim
1, // ABlockTransferSrcScalarPerVector 1, // ABlockTransferSrcScalarPerVector
1, // ABlockTransferDstScalarPerVector_K1 4, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM false, // ABlockLdsAddExtraM
S<1, 4, 16, 4>, // BBlockTransferThreadClusterLengths_K0_N_K1 S<4, 16, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<0, 3, 1, 2>, // BBlockTransferThreadClusterArrangeOrder S<2, 0, 1>, // BBlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // BBlockTransferSrcAccessOrder S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim 1, // BBlockTransferSrcVectorDim
1, // BBlockTransferSrcScalarPerVector 1, // BBlockTransferSrcScalarPerVector
1, // BBlockTransferDstScalarPerVector_K1 4, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN false, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle 1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle 1, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 4>, // CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock S<1, 8, 1, 8>, // CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
2, // CBlockTransferScalarPerVector_NWaveNPerXdl 2, // CBlockTransferScalarPerVector_NWaveNPerXdl
ck::BlockGemmPipelineScheduler::Intrawave, // BlkGemmPipeSched
ck::BlockGemmPipelineVersion::v1, // BlkGemmPipelineVer
1, // NumGroupsToMerge
ComputeTypeA, // ComputeTypeA ComputeTypeA, // ComputeTypeA
ComputeTypeB>; // ComputeTypeB ComputeTypeB>; // ComputeTypeB
......
...@@ -8,93 +8,143 @@ ...@@ -8,93 +8,143 @@
#include <sstream> #include <sstream>
#include "ck/utility/common_header.hpp" #include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp" #include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp" #include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_weight.hpp" #include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_weight.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_bwd_weight_to_gemm.hpp" #include "ck/tensor_operation/operator_transform/transform_conv_bwd_weight_to_gemm.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_bwd_weight_to_gemm_v2.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp" #include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_bwd_weight.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_elementwise_2d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_bwd_weight_v3.hpp"
#include <ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp>
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp" #include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/host_utility/device_prop.hpp" #include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp" #include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/flush_cache.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
template <typename GridwiseGemm, template <typename GridwiseGemm,
typename FloatA, typename AGridDesc_AK0_M_K1,
typename FloatB, typename BGridDesc_BK0_N_K1,
typename FloatC,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename AGridDesc_B_K0_M_K1,
typename BGridDesc_B_K0_N_K1,
typename CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock, typename CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename Block2CTileMap,
typename ComputePtrOffsetOfBatch, typename ComputePtrOffsetOfBatch,
bool HasMainKBlockLoop> index_t NumGroupsToMerge,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
index_t MinimumOccupancy = 1,
TailNumber TailNum = TailNumber::Full>
__global__ void __global__ void
#if CK_USE_LAUNCH_BOUNDS #if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU) __launch_bounds__(CK_MAX_THREAD_PER_BLOCK, MinimumOccupancy)
#endif #endif
kernel_batched_gemm_xdlops_bwd_weight( kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3(
const FloatA* __restrict__ p_a_grid, typename GridwiseGemm::Argument karg,
const FloatB* __restrict__ p_b_grid, const AGridDesc_AK0_M_K1 a_grid_desc_ak0_m_ak1,
FloatC* __restrict__ p_c_grid, const BGridDesc_BK0_N_K1 b_grid_desc_bk0_n_bk1,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CElementwiseOperation c_element_op,
const index_t batch_count,
const AGridDesc_B_K0_M_K1 a_b_k0_m_k1_grid_desc,
const BGridDesc_B_K0_N_K1 b_b_k0_n_k1_grid_desc,
const CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock const CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock, c_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2CTileMap block_2_ctile_map, const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch) const index_t num_k_per_block)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \ #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__)) defined(__gfx94__))
const index_t num_blocks_per_batch = const index_t g_idx = __builtin_amdgcn_readfirstlane(blockIdx.z * NumGroupsToMerge);
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count); const index_t k_idx = __builtin_amdgcn_readfirstlane(blockIdx.y * num_k_per_block);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset =
const long_index_t a_batch_offset = compute_ptr_offset_of_batch.GetAPtrOffset(g_idx); amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset = compute_ptr_offset_of_batch.GetBPtrOffset(g_idx); const long_index_t b_batch_offset =
const long_index_t c_batch_offset = compute_ptr_offset_of_batch.GetCPtrOffset(g_idx); amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
__shared__ FloatA p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(FloatA)]; amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid + a_batch_offset, __shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
p_b_grid + b_batch_offset, GridwiseGemm::template Run<AGridDesc_AK0_M_K1,
p_c_grid + c_batch_offset, BGridDesc_BK0_N_K1,
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
HasMainKBlockLoop,
CGlobalMemoryDataOperation,
TailNum>(karg.p_a_grid + a_batch_offset,
karg.p_b_grid + b_batch_offset,
karg.p_c_grid + e_batch_offset,
p_shared, p_shared,
a_b_k0_m_k1_grid_desc, karg,
b_b_k0_n_k1_grid_desc, a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock, c_grid_desc_mblock_mperblock_nblock_nperblock,
a_element_op, k_idx);
b_element_op,
c_element_op,
block_2_ctile_map);
#else #else
ignore = p_a_grid; ignore = karg;
ignore = p_b_grid; #endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
ignore = p_c_grid; }
ignore = a_b_k0_m_k1_grid_desc;
ignore = b_b_k0_n_k1_grid_desc; template <typename GridwiseGemm,
ignore = c_grid_desc_mblock_mperblock_nblock_nperblock; typename AGridDesc_AK0_M_K1,
ignore = a_element_op; typename BGridDesc_BK0_N_K1,
ignore = b_element_op; typename CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
ignore = c_element_op; typename ComputePtrOffsetOfBatch,
ignore = batch_count; index_t NumGroupsToMerge,
ignore = block_2_ctile_map; bool HasMainKBlockLoop,
ignore = compute_ptr_offset_of_batch; InMemoryDataOperationEnum CGlobalMemoryDataOperation,
index_t MinimumOccupancy = 1,
compute_ptr_offset_of_batch.GetAPtrOffset(0); TailNumber TailNum = TailNumber::Full>
compute_ptr_offset_of_batch.GetBPtrOffset(0); __global__ void
compute_ptr_offset_of_batch.GetCPtrOffset(0); #if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, MinimumOccupancy)
#endif
kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3_2lds(
typename GridwiseGemm::Argument karg,
const AGridDesc_AK0_M_K1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_K1 b_grid_desc_bk0_n_bk1,
const CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch,
const index_t num_k_per_block)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
// offset base pointer for each work-group
const index_t g_idx = __builtin_amdgcn_readfirstlane(blockIdx.z * NumGroupsToMerge);
const index_t k_idx = __builtin_amdgcn_readfirstlane(blockIdx.y * num_k_per_block);
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
// Pass two lds pointer is the key to tell compiler that ds_read/write
// operate on different lds chunk at same time without order dependecy
__shared__ char p_shared_0[GridwiseGemm::GetSharedMemoryNumberOfByte()];
__shared__ char p_shared_1[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run_2Lds<AGridDesc_AK0_M_K1,
BGridDesc_BK0_N_K1,
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
HasMainKBlockLoop,
CGlobalMemoryDataOperation,
TailNum>(karg.p_a_grid + a_batch_offset,
karg.p_b_grid + b_batch_offset,
karg.p_c_grid + e_batch_offset,
p_shared_0,
p_shared_1,
karg,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock,
k_idx);
#else
ignore = karg;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__)) #endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
} }
...@@ -138,6 +188,9 @@ template <ck::index_t NDimSpatial, ...@@ -138,6 +188,9 @@ template <ck::index_t NDimSpatial,
index_t CShuffleNXdlPerWavePerShuffle, index_t CShuffleNXdlPerWavePerShuffle,
typename CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock, typename CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CBlockTransferScalarPerVector_NWaveNPerXdl, index_t CBlockTransferScalarPerVector_NWaveNPerXdl,
BlockGemmPipelineScheduler BlkGemmPipeSched = BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion BlkGemmPipelineVer = BlockGemmPipelineVersion::v1,
index_t NumGroupsToMerge = 1,
typename ComputeTypeA = InDataType, typename ComputeTypeA = InDataType,
typename ComputeTypeB = ComputeTypeA> typename ComputeTypeB = ComputeTypeA>
struct DeviceGroupedConvBwdWeight_Xdl_CShuffle struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
...@@ -154,6 +207,10 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle ...@@ -154,6 +207,10 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
ComputeTypeA, ComputeTypeA,
ComputeTypeB> ComputeTypeB>
{ {
static_assert(is_same_v<InElementwiseOperation, element_wise::PassThrough>);
static_assert(is_same_v<WeiElementwiseOperation, element_wise::PassThrough>);
static_assert(is_same_v<OutElementwiseOperation, element_wise::PassThrough>);
using DeviceOp = DeviceGroupedConvBwdWeight_Xdl_CShuffle; using DeviceOp = DeviceGroupedConvBwdWeight_Xdl_CShuffle;
using ADataType = OutDataType; using ADataType = OutDataType;
...@@ -174,30 +231,18 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle ...@@ -174,30 +231,18 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
static constexpr auto I4 = Number<4>{}; static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{}; static constexpr auto I5 = Number<5>{};
static constexpr GemmSpecialization GemmSpec = GemmSpecialization::Default;
static constexpr auto K1Number = Number<K1>{}; static constexpr auto K1Number = Number<K1>{};
static constexpr auto conv_to_gemm_transformer = static constexpr auto conv_to_gemm_transformer =
TransformConvBwdWeightToGemm<NDimSpatial, TransformConvBwdWeightToGemmV2<NDimSpatial,
MPerBlock, MPerBlock,
NPerBlock, NPerBlock,
K1Number, K1Number,
K0PerBlock, K0PerBlock / K1Number,
NumGroupsToMerge,
ConvBackwardWeightSpecialization>{}; ConvBackwardWeightSpecialization>{};
// Bytes per 32 lds bank: 32 * 4 bytes
static constexpr auto BankLength = 128;
static constexpr auto ElePerBank = BankLength / sizeof(ADataType);
// M1 & M0
static constexpr auto ABlockLdsM1PerBlock = ElePerBank / K1;
static constexpr auto ABlockLdsM0PerBlock = MPerBlock / ABlockLdsM1PerBlock;
static constexpr auto ABlockLdsM1Padding = 4;
// N1 & N0
static constexpr auto BBlockLdsN1PerBlock = ElePerBank / K1;
static constexpr auto BBlockLdsN0PerBlock = NPerBlock / BBlockLdsN1PerBlock;
static constexpr auto BBlockLdsN1Padding = 4;
template <ck::index_t NDim, typename ck::enable_if<NDim == 1, bool>::type = false> template <ck::index_t NDim, typename ck::enable_if<NDim == 1, bool>::type = false>
static auto GetABCGridDesc() static auto GetABCGridDesc()
{ {
...@@ -279,25 +324,27 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle ...@@ -279,25 +324,27 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I1])>; using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I1])>;
using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>; using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>;
using GridwiseGemm = GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight< using GridwiseGemm =
BlockSize, GridwiseGemm_xdl_cshuffle_v3<tensor_layout::gemm::RowMajor,
tensor_layout::gemm::ColumnMajor,
tensor_layout::gemm::RowMajor,
ADataType, ADataType,
BDataType, BDataType,
AccDataType, AccDataType,
CDataType, CDataType,
InMemoryDataOperationEnum::AtomicAdd, CDataType,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
AElementwiseOperation, AElementwiseOperation,
BElementwiseOperation, BElementwiseOperation,
CElementwiseOperation, CElementwiseOperation,
GemmSpec,
BlockSize,
MPerBlock, MPerBlock,
NPerBlock, NPerBlock,
K0PerBlock, K0PerBlock,
K1,
K1,
MPerXdl, MPerXdl,
NPerXdl, NPerXdl,
K1,
MXdlPerWave, MXdlPerWave,
NXdlPerWave, NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1, ABlockTransferThreadClusterLengths_K0_M_K1,
...@@ -306,39 +353,29 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle ...@@ -306,39 +353,29 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
ABlockTransferSrcVectorDim, ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector, ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1, ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun, false,
ABlockLdsAddExtraM, ABlockLdsAddExtraM,
ABlockLdsM1PerBlock,
ABlockLdsM0PerBlock,
ABlockLdsM1Padding,
BBlockTransferThreadClusterLengths_K0_N_K1, BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder, BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder, BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim, BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector, BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1, BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun, false,
BBlockLdsAddExtraN, BBlockLdsAddExtraN,
BBlockLdsN1PerBlock,
BBlockLdsN0PerBlock,
BBlockLdsN1Padding,
CShuffleMXdlPerWavePerShuffle, CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle, CShuffleNXdlPerWavePerShuffle,
CBlockTransferScalarPerVector_NWaveNPerXdl,
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock, CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
true, CBlockTransferScalarPerVector_NWaveNPerXdl,
true, BlkGemmPipeSched,
1, BlkGemmPipelineVer,
PipelineVersion::v1,
ComputeTypeA, ComputeTypeA,
ComputeTypeB>; ComputeTypeB>;
// Argument // Argument
using CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock = using CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
decltype(GridwiseGemm::MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(CGridDesc_M_N{})); decltype(GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
CGridDesc_M_N{}, 1, 1));
using Block2CTileMap =
decltype(GridwiseGemm::MakeCBlockClusterAdaptor(CGridDesc_M_N{}, 1, 1, 1));
struct Argument : public BaseArgument struct Argument : public BaseArgument
{ {
...@@ -368,7 +405,6 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle ...@@ -368,7 +405,6 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
b_grid_desc_kbatch_k0_n_k1_{}, b_grid_desc_kbatch_k0_n_k1_{},
c_grid_desc_m_n_{}, c_grid_desc_m_n_{},
c_grid_desc_mblock_mperblock_nblock_nperblock_{}, c_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_ctile_map_{},
compute_ptr_offset_of_batch_{}, compute_ptr_offset_of_batch_{},
M01_{M01}, M01_{M01},
N01_{N01}, N01_{N01},
...@@ -420,9 +456,6 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle ...@@ -420,9 +456,6 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
b_grid_desc_kbatch_k0_n_k1_ = descs[I1]; b_grid_desc_kbatch_k0_n_k1_ = descs[I1];
c_grid_desc_m_n_ = descs[I2]; c_grid_desc_m_n_ = descs[I2];
block_2_ctile_map_ =
GridwiseGemm::MakeCBlockClusterAdaptor(c_grid_desc_m_n_, M01, N01, k_batch_);
// A/B/C Batch Stride // A/B/C Batch Stride
compute_ptr_offset_of_batch_.BatchStrideA_ = a_g_n_k_wos_strides[0]; compute_ptr_offset_of_batch_.BatchStrideA_ = a_g_n_k_wos_strides[0];
compute_ptr_offset_of_batch_.BatchStrideB_ = b_g_n_c_wis_strides[0]; compute_ptr_offset_of_batch_.BatchStrideB_ = b_g_n_c_wis_strides[0];
...@@ -432,15 +465,14 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle ...@@ -432,15 +465,14 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
end(filter_spatial_lengths_), end(filter_spatial_lengths_),
index_t{1}, index_t{1},
std::multiplies<>{}); std::multiplies<>{});
const index_t GemmM = a_grid_desc_kbatch_k0_m_k1_.GetLength(I1);
const index_t GemmN = b_grid_desc_kbatch_k0_n_k1_.GetLength(I1);
if(GridwiseGemm::CheckValidity(a_grid_desc_kbatch_k0_m_k1_,
b_grid_desc_kbatch_k0_n_k1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{
c_grid_desc_mblock_mperblock_nblock_nperblock_ = c_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(c_grid_desc_m_n_); GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
} c_grid_desc_m_n_,
GridwiseGemm::CalculateMBlock(GemmM),
GridwiseGemm::CalculateNBlock(GemmN));
} }
const ADataType* p_a_grid_; const ADataType* p_a_grid_;
...@@ -451,10 +483,8 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle ...@@ -451,10 +483,8 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
CGridDesc_M_N c_grid_desc_m_n_; CGridDesc_M_N c_grid_desc_m_n_;
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock c_grid_desc_mblock_mperblock_nblock_nperblock_; CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock c_grid_desc_mblock_mperblock_nblock_nperblock_;
Block2CTileMap block_2_ctile_map_;
// for computing batch offset // for computing batch offset
ComputePtrOffsetOfStridedBatch<> compute_ptr_offset_of_batch_; ComputePtrOffsetOfStridedBatch<I1, I1, I0> compute_ptr_offset_of_batch_;
index_t M01_; index_t M01_;
index_t N01_; index_t N01_;
...@@ -502,68 +532,629 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle ...@@ -502,68 +532,629 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{}) float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{ {
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_, const index_t GemmM = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1);
arg.b_grid_desc_kbatch_k0_n_k1_, const index_t GemmN = arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I1);
arg.c_grid_desc_m_n_, const index_t GemmK = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I0) *
arg.block_2_ctile_map_)) arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I2);
{
throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v3r1 has invalid setting");
}
const index_t grid_size = const ADataType* p_a_grid = arg.p_a_grid_;
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_) * arg.Conv_G_; const BDataType* p_b_grid = arg.p_b_grid_;
typename GridwiseGemm::Argument gemm_arg{
p_a_grid, p_b_grid, arg.p_c_grid_, GemmM, GemmN, GemmK, I0, I0, I0, arg.k_batch_};
const auto K0 = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1); index_t gdx, gdy, gdz;
std::tie(gdx, gdy, gdz) = GridwiseGemm::CalculateGridSize(
gemm_arg.M, gemm_arg.N, gemm_arg.KBatch, arg.Conv_G_ / NumGroupsToMerge);
const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0); float ave_time = 0;
auto launch_kernel = [&](auto has_main_k_block_loop) { index_t k_grain = gemm_arg.KBatch * K0PerBlock;
constexpr bool has_main_loop = has_main_k_block_loop.value; index_t K_split = (gemm_arg.K + k_grain - 1) / k_grain * K0PerBlock;
const bool has_main_k_block_loop = GridwiseGemm::CalculateHasMainKBlockLoop(K_split);
const auto kernel = kernel_batched_gemm_xdlops_bwd_weight< const auto num_k_per_block =
GridwiseGemm, arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(Number<0>{}) / gemm_arg.KBatch;
ADataType,
BDataType,
CDataType,
OutElementwiseOperation,
InElementwiseOperation,
WeiElementwiseOperation,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
remove_reference_t<DeviceOp::Block2CTileMap>,
ComputePtrOffsetOfStridedBatch<>,
has_main_loop>;
return launch_and_time_kernel(stream_config, const auto Run = [&](const auto& kernel) {
if(stream_config.flush_cache)
{
typename GridwiseGemm::Argument gemm_arg_ = gemm_arg;
ck::utility::RotatingMemWrapper<typename GridwiseGemm::Argument> rotating_mem(
gemm_arg_,
stream_config.rotating_count,
gemm_arg_.M * gemm_arg_.K * sizeof(ADataType),
gemm_arg_.K * gemm_arg_.N * sizeof(BDataType));
rotating_mem.Print();
auto run_flush_cache = [&]() {
// flush icache
ck::utility::flush_icache();
// rotating mem
rotating_mem.Next();
};
ave_time += ck::utility::launch_and_time_kernel_with_preprocess<false>(
stream_config,
run_flush_cache,
kernel,
dim3(gdx, gdy, gdz),
dim3(BlockSize),
0,
gemm_arg_,
arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.compute_ptr_offset_of_batch_,
num_k_per_block);
}
else
{
ave_time +=
launch_and_time_kernel(stream_config,
kernel, kernel,
dim3(grid_size), dim3(gdx, gdy, gdz),
dim3(BlockSize), dim3(BlockSize),
0, 0,
arg.p_a_grid_, gemm_arg,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.Conv_G_,
arg.a_grid_desc_kbatch_k0_m_k1_, arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_, arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_, arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_ctile_map_, arg.compute_ptr_offset_of_batch_,
arg.compute_ptr_offset_of_batch_); num_k_per_block);
}
}; };
if(has_main_k0_block_loop) constexpr index_t minimum_occupancy =
BlkGemmPipeSched == BlockGemmPipelineScheduler::Intrawave ? 1 : 2;
if(has_main_k_block_loop)
{
// Tail number always full
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1 ||
BlkGemmPipelineVer == BlockGemmPipelineVersion::v3)
{
if(gemm_arg.KBatch > 1)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
}
else
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
}
// Tail number could be One to Seven
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2)
{
if(gemm_arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::One)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::One>;
Run(kernel);
}
else if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Full)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Full>;
Run(kernel);
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Two)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Two>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 3)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Three)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Three>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Four)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Four>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 5)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Five)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Five>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 6)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Six)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Six>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 7)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Seven)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Seven>;
Run(kernel);
}
}
}
else
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::One)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::One>;
Run(kernel);
}
else if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Full)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Full>;
Run(kernel);
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 2)
{ {
return launch_kernel(integral_constant<bool, true>{}); if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Two)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Two>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 3)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Three)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Three>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Four)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Four>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 5)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Five)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Five>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 6)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Six)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Six>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 7)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Seven)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Seven>;
Run(kernel);
}
}
}
}
// Tail number could be Odd or Even
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v4)
{
if(gemm_arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3_2lds<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
} }
else else
{ {
return launch_kernel(integral_constant<bool, false>{}); const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3_2lds<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
} }
} }
else
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3_2lds<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3_2lds<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
else
{
if(gemm_arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
else
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
}
else
{
// Tail number always 1
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1)
{
if(gemm_arg.KBatch > 1)
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
false,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
}
else
{
const auto kernel = kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3<
GridwiseGemm,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
NumGroupsToMerge,
false,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
}
}
return ave_time;
}
float Run(const BaseArgument* p_arg, float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override const StreamConfig& stream_config = StreamConfig{}) override
...@@ -580,10 +1171,28 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle ...@@ -580,10 +1171,28 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
static bool IsSupportedArgument(const Argument& arg) static bool IsSupportedArgument(const Argument& arg)
{ {
const index_t GemmM = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1);
const index_t GemmN = arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I1);
const index_t GemmK = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I0) *
arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I2);
typename GridwiseGemm::Argument gemm_arg{
nullptr, nullptr, nullptr, GemmM, GemmN, GemmK, I0, I0, I0, arg.k_batch_};
const auto num_k_loop = gemm_arg.AK0 / (K0PerBlock / K1);
if constexpr(BlkGemmPipelineVer != BlockGemmPipelineVersion::v1)
{
if(num_k_loop <= GridwiseGemm::BlockwiseGemmPipe::PrefetchStages)
{
return false;
}
}
if(!ck::is_xdl_supported()) if(!ck::is_xdl_supported())
{ {
return false; return false;
} }
if constexpr(NDimSpatial == 1) if constexpr(NDimSpatial == 1)
{ {
if constexpr(!is_GNWC_GKXC_GNWK<InLayout, WeiLayout, OutLayout>()) if constexpr(!is_GNWC_GKXC_GNWK<InLayout, WeiLayout, OutLayout>())
...@@ -626,10 +1235,38 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle ...@@ -626,10 +1235,38 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
} }
} }
if constexpr(NumGroupsToMerge > 1)
{
// support only if whole M and N can be proccessed on one block
if(!(GemmM <= MPerBlock && GemmN <= NPerBlock))
{
return false;
}
if(!(arg.Conv_C_ == 1 && arg.Conv_K_ == 1))
{
return false;
}
if(arg.Conv_G_ % NumGroupsToMerge != 0)
{
return false;
}
}
if(!(arg.Conv_C_ % BBlockTransferSrcScalarPerVector == 0 &&
arg.Conv_K_ % ABlockTransferSrcScalarPerVector == 0))
{
if(!(arg.Conv_K_ == 1 && arg.compute_ptr_offset_of_batch_.BatchStrideA_ == 1))
{
return false;
}
if(!(arg.Conv_C_ == 1 && arg.compute_ptr_offset_of_batch_.BatchStrideB_ == 1))
{
return false;
}
}
// vector load A/B matrix from global memory // vector load A/B matrix from global memory
if(!(ABlockTransferSrcVectorDim == 2 && BBlockTransferSrcVectorDim == 2 && if(!(ABlockTransferSrcVectorDim == 1 && BBlockTransferSrcVectorDim == 1))
arg.Conv_K_ % ABlockTransferSrcScalarPerVector == 0 &&
arg.Conv_C_ % BBlockTransferSrcScalarPerVector == 0))
{ {
return false; return false;
} }
...@@ -641,10 +1278,7 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle ...@@ -641,10 +1278,7 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
} }
// Gridwise GEMM size // Gridwise GEMM size
return GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_, return true;
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_);
} }
bool IsSupportedArgument(const BaseArgument* p_arg) override bool IsSupportedArgument(const BaseArgument* p_arg) override
...@@ -766,6 +1400,21 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle ...@@ -766,6 +1400,21 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
return str.str(); return str.str();
} }
void SetWorkSpacePointer(BaseArgument* p_arg,
void* p_workspace,
const StreamConfig& = StreamConfig{}) const override
{
auto p_arg_ = dynamic_cast<Argument*>(p_arg);
if(p_arg_)
{
p_arg_->p_workspace_ = p_workspace;
}
else
throw std::runtime_error(
"The argument pointer is not an object of "
"DeviceGroupedConvBwdWeightTwoStage_Xdl_CShuffle::Argument structure!");
}
}; };
} // namespace device } // namespace device
......
...@@ -34,6 +34,94 @@ struct TransformConvBwdWeightToGemmV2 ...@@ -34,6 +34,94 @@ struct TransformConvBwdWeightToGemmV2
static constexpr auto I0 = Number<0>{}; static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{}; static constexpr auto I1 = Number<1>{};
template <index_t NDim, typename enable_if<NDim == 1, bool>::type = false>
constexpr static auto
make_out_grid_desc(const index_t N,
const index_t Wo,
const index_t K,
const std::array<index_t, NDimSpatial + 3>& output_strides)
{
const index_t BatchStride = output_strides[0];
const index_t WoStride = output_strides[3];
const auto KStride = Number<1>{};
return make_naive_tensor_descriptor(make_tuple(N * Wo, NumGroupsToMerge, K),
make_tuple(WoStride, BatchStride, KStride));
}
template <index_t NDim, typename enable_if<NDim == 1, bool>::type = false>
constexpr static auto
make_in_grid_desc(const index_t N,
const index_t Wi,
const index_t C,
const std::array<index_t, NDimSpatial + 3>& input_strides)
{
const index_t BatchStride = input_strides[0];
const index_t NStride = input_strides[1];
const index_t WiStride = input_strides[3];
const auto CStride = input_strides[2];
if constexpr(ConvBackwardWeightSpecialization ==
device::ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
return make_naive_tensor_descriptor(make_tuple(N * Wi, NumGroupsToMerge, C),
make_tuple(WiStride, BatchStride, CStride));
}
else
{
return make_naive_tensor_descriptor(
make_tuple(N, Wi, NumGroupsToMerge, C),
make_tuple(NStride, WiStride, BatchStride, CStride));
}
}
template <index_t NDim, typename enable_if<NDim == 1, bool>::type = false>
constexpr static auto
make_wei_grid_desc(const index_t K,
const index_t X,
const index_t C,
const std::array<index_t, NDimSpatial + 3>& weights_strides)
{
const auto CStride = Number<1>{};
const auto KStride = weights_strides[1];
const auto XStride = weights_strides[3];
const auto BatchStride = weights_strides[0];
// Add NumGroupsToMerge for Batch+M dimension and, 1 as a placehorder
// for Batch+N dimension
const auto desc = make_naive_tensor_descriptor(
make_tuple(NumGroupsToMerge, K, X, 1, C),
make_tuple(BatchStride, KStride, XStride, BatchStride, CStride));
// Padd 1 to NumGroupsToMerge
const auto padded_desc = transform_tensor_descriptor(
desc,
make_tuple(make_pass_through_transform(NumGroupsToMerge),
make_pass_through_transform(K),
make_pass_through_transform(X),
make_pad_transform(1, 0, NumGroupsToMerge - 1),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
// We need only matrices from diagonal. Xor returns 0 for the same
// values. So if matrices is not on diagonal then it will be stored in padding.
// To avoid use of modulo after xor we assume that NumBatch to merge is power of 2.
static_assert(NumGroupsToMerge == 1 || NumGroupsToMerge == 2 || NumGroupsToMerge == 4 ||
NumGroupsToMerge == 8 || NumGroupsToMerge == 16 || NumGroupsToMerge == 32 ||
NumGroupsToMerge == 64);
const auto unmerged_padded_desc = transform_tensor_descriptor(
padded_desc,
make_tuple(make_xor_transform(make_tuple(NumGroupsToMerge, NumGroupsToMerge)),
make_pass_through_transform(K),
make_pass_through_transform(X),
make_pass_through_transform(C)),
make_tuple(Sequence<0, 3>{}, Sequence<1>{}, Sequence<2>{}, Sequence<4>{}),
make_tuple(Sequence<0, 3>{}, Sequence<1>{}, Sequence<2>{}, Sequence<4>{}));
// Merge To M, N
return transform_tensor_descriptor(
unmerged_padded_desc,
make_tuple(make_merge_transform(make_tuple(NumGroupsToMerge, K)),
make_merge_transform(make_tuple(X, NumGroupsToMerge, C))),
make_tuple(Sequence<0, 1>{}, Sequence<2, 3, 4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
template <index_t NDim, typename enable_if<NDim == 2, bool>::type = false> template <index_t NDim, typename enable_if<NDim == 2, bool>::type = false>
constexpr static auto constexpr static auto
make_out_grid_desc(const index_t N, make_out_grid_desc(const index_t N,
...@@ -221,6 +309,187 @@ struct TransformConvBwdWeightToGemmV2 ...@@ -221,6 +309,187 @@ struct TransformConvBwdWeightToGemmV2
make_tuple(Sequence<0>{}, Sequence<1>{})); make_tuple(Sequence<0>{}, Sequence<1>{}));
} }
template <index_t NDim, typename enable_if<NDim == 1, bool>::type = false>
static auto MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
const index_t N,
const index_t K,
const index_t C,
const std::array<index_t, NDimSpatial>& input_spatial_lengths,
const std::array<index_t, NDimSpatial>& filter_spatial_lengths,
const std::array<index_t, NDimSpatial>& output_spatial_lengths,
const std::array<index_t, NDimSpatial + 3>& input_strides,
const std::array<index_t, NDimSpatial + 3>& weights_strides,
const std::array<index_t, NDimSpatial + 3>& output_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const index_t batch_k)
{
using namespace ck;
const index_t Wi = input_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[0];
const index_t X = filter_spatial_lengths[0];
const index_t ConvStrideW = conv_filter_strides[0];
const index_t ConvDilationW = conv_filter_dilations[0];
const index_t InLeftPadW = input_left_pads[0];
const index_t InRightPadW = input_right_pads[0];
const index_t GemmKTotal = N * Wo;
const index_t GemmM = K * NumGroupsToMerge;
const index_t GemmN = C * X * NumGroupsToMerge;
const auto PadGemmM = MPerBlock - GemmM % MPerBlock;
const auto PadGemmN = NPerBlock - GemmN % NPerBlock;
const index_t GemmKBatch = batch_k;
const index_t GemmK0 =
math::integer_divide_ceil(GemmKTotal, GemmK1Number * K0PerBlock * GemmKBatch) *
K0PerBlock;
const index_t GemmKPad = GemmKBatch * GemmK0 * GemmK1Number;
const auto out_grid_desc = make_out_grid_desc<NDim>(N, Wo, K, output_strides);
const auto in_grid_desc = make_in_grid_desc<NDim>(N, Wi, C, input_strides);
const auto wei_grid_desc = make_wei_grid_desc<NDim>(K, X, C, weights_strides);
if constexpr(ConvBackwardWeightSpecialization ==
device::ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
// A: output tensor
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_grid_desc,
make_tuple(
make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_merge_transform(make_tuple(NumGroupsToMerge, GemmM / NumGroupsToMerge))),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch * GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// B: input tensor
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_grid_desc,
make_tuple(
make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_merge_transform(make_tuple(NumGroupsToMerge, GemmN / NumGroupsToMerge))),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch * GemmK0, GemmK1Number)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_grid_desc);
}
else
{
// A: output tensor
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_grid_desc,
make_tuple(
make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_merge_transform(make_tuple(NumGroupsToMerge, GemmM / NumGroupsToMerge))),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch * GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// B: input tensor
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(NumGroupsToMerge),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(NumGroupsToMerge),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_gemmktotal_gemmn_grid_desc = transform_tensor_descriptor(
in_n_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(X, NumGroupsToMerge, C)),
make_merge_transform(make_tuple(N, Wo))),
make_tuple(Sequence<1, 3, 4>{}, Sequence<0, 2>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch * GemmK0, GemmK1Number)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// Padd
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_pad_grid_desc =
transform_tensor_descriptor(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(GemmKBatch * GemmK0),
make_right_pad_transform(GemmM, PadGemmM),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_pad_grid_desc =
transform_tensor_descriptor(
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(GemmKBatch * GemmK0),
make_right_pad_transform(GemmN, PadGemmN),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto wei_gemmm_gemmn_pad_grid_desc =
transform_tensor_descriptor(wei_grid_desc,
make_tuple(make_right_pad_transform(GemmM, PadGemmM),
make_right_pad_transform(GemmN, PadGemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_pad_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_pad_grid_desc,
wei_gemmm_gemmn_pad_grid_desc);
}
} // function end
template <index_t NDim, typename enable_if<NDim == 2, bool>::type = false> template <index_t NDim, typename enable_if<NDim == 2, bool>::type = false>
static auto MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N( static auto MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
const index_t N, const index_t N,
......
...@@ -44,32 +44,24 @@ template <ck::index_t NDimSpatial, ...@@ -44,32 +44,24 @@ template <ck::index_t NDimSpatial,
typename ALayout, typename ALayout,
typename BLayout, typename BLayout,
typename ELayout, typename ELayout,
ConvolutionBackwardWeightSpecialization ConvSpec> ConvolutionBackwardWeightSpecialization ConvSpec,
BlockGemmPipelineScheduler Scheduler,
BlockGemmPipelineVersion PipelineVersion>
using device_grouped_conv_bwd_weight_xdl_c_shuffle_f32_instances = std::tuple< using device_grouped_conv_bwd_weight_xdl_c_shuffle_f32_instances = std::tuple<
// clang-format off // clang-format off
//#########################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| //################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| BlockGemm| BlockGemm| NumGroups|
//#########################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| //################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| Pipeline| Pipeline| ToMerge|
//#########################################| Spatial| | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl| //################################| Spatial| | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl| Scheduler| Version| |
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| | //################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| | | | |
// generic instance DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 16, 16, 32, 8, 16, 16, 1, 1, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 1>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 64, 4, 4, 32, 32, 2, 2, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 1, 4, true, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 1, 4, true, 1, 1, S<1, 16, 1, 4>, 1>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 32, 32, 8, 32, 32, 1, 1, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 2>,
// instances for small conv.K and conv.C DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 32, 8, 32, 32, 1, 2, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 32, 4, 4, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 1, 1, true, 1, 1, S<1, 32, 1, 4>, 1>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 128, 32, 8, 32, 32, 1, 4, S<4, 4, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 4, 4, 32, 32, 1, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 1, 2, true, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 16, 16, 32, 8, 16, 16, 1, 1, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 1>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 32, 1, 8>, 4>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 32, 32, 8, 32, 32, 1, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 2>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 64, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 32, 1, 8>, 4>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 32, 32, 8, 32, 32, 2, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 32, 1, 4>, 4>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 128, 32, 32, 8, 32, 32, 4, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, S<4, 4, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 8>
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 64, 4, 4, 32, 32, 2, 2, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 1, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 1, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 32, 4, 4, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 1, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 32, 128, 4, 4, 32, 32, 1, 2, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 1, true, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 32, 4, 4, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 4, 4, 32, 32, 1, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 16, 1, 4>, 4>
// clang-format on // clang-format on
>; >;
...@@ -77,34 +69,32 @@ template <ck::index_t NDimSpatial, ...@@ -77,34 +69,32 @@ template <ck::index_t NDimSpatial,
typename ALayout, typename ALayout,
typename BLayout, typename BLayout,
typename ELayout, typename ELayout,
ConvolutionBackwardWeightSpecialization ConvSpec> ConvolutionBackwardWeightSpecialization ConvSpec,
BlockGemmPipelineScheduler Scheduler,
BlockGemmPipelineVersion PipelineVersion>
using device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_instances = std::tuple< using device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_instances = std::tuple<
// clang-format off // clang-format off
//#########################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| //################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| BlockGemm| BlockGemm| NumGroups|
//#########################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| //################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| Pipeline| Pipeline| ToMerge|
//#########################################| Spatial| | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl| //################################| Spatial| | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl| Scheduler| Version| |
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| | //################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| | | | |
// generic instance DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 16, 16, 32, 8, 16, 16, 1, 1, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 1, F16, F16>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 2, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 2, 4, true, 1, 1, S<1, 16, 1, 4>, 2>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 32, 32, 8, 32, 32, 1, 1, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, 1, 1, S<1, 8, 1, 8>, 4, Scheduler, PipelineVersion, 2, F16, F16>,
// instance for small conv.K DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 32, 8, 32, 32, 1, 2, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 4, F16, F16>,
// for fp16 conv.K and conv.C must be divisible by 2 DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 128, 32, 8, 32, 32, 1, 4, S<4, 4, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, 1, 1, S<1, 4, 1, 8>, 2, Scheduler, PipelineVersion, 8, F16, F16>,
// since half_t atomic_add require scalar_per_x_vector % 2 == 0 DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 32, 32, 8, 32, 32, 1, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, 1, 1, S<1, 8, 1, 8>, 4, Scheduler, PipelineVersion, 2, F16, F16>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 2, 1, true, 1, 1, S<1, 32, 1, 4>, 2>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 32, 32, 8, 32, 32, 2, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 4, F16, F16>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 2, 2, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 128, 32, 32, 8, 32, 32, 4, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, S<4, 4, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, 1, 1, S<1, 8, 1, 4>, 8, Scheduler, PipelineVersion, 8, F16, F16>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 32, 32, 8, 32, 32, 1, 1, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, 1, 1, S<1, 8, 1, 8>, 4, Scheduler, PipelineVersion, 2, F16, F16>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 8>, 8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 32, 8, 32, 32, 1, 2, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 4, F16, F16>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 8>, 8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 128, 32, 8, 32, 32, 1, 4, S<4, 4, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, 1, 1, S<1, 4, 1, 8>, 2, Scheduler, PipelineVersion, 8, F16, F16>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 32, 32, 8, 32, 32, 2, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 4, F16, F16>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 128, 32, 32, 8, 32, 32, 4, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, S<4, 4, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, 1, 1, S<1, 8, 1, 4>, 2, Scheduler, PipelineVersion, 8, F16, F16>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 32, 32, 8, 32, 32, 1, 1, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, 1, 1, S<1, 8, 1, 8>, 4, Scheduler, PipelineVersion, 2, F16, F16>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 32, 8, 32, 32, 1, 2, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 4, F16, F16>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 128, 32, 8, 32, 32, 1, 4, S<4, 4, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, 1, 1, S<1, 4, 1, 8>, 2, Scheduler, PipelineVersion, 8, F16, F16>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 32, 32, 8, 32, 32, 2, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 4, F16, F16>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 128, 32, 32, 8, 32, 32, 4, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, S<4, 4, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, 1, 1, S<1, 8, 1, 4>, 2, Scheduler, PipelineVersion, 8, F16, F16>
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8>
// clang-format on // clang-format on
>; >;
...@@ -112,32 +102,31 @@ template <ck::index_t NDimSpatial, ...@@ -112,32 +102,31 @@ template <ck::index_t NDimSpatial,
typename ALayout, typename ALayout,
typename BLayout, typename BLayout,
typename ELayout, typename ELayout,
ConvolutionBackwardWeightSpecialization ConvSpec> ConvolutionBackwardWeightSpecialization ConvSpec,
BlockGemmPipelineScheduler Scheduler,
BlockGemmPipelineVersion PipelineVersion>
using device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_f32_bf16_instances = std::tuple< using device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_f32_bf16_instances = std::tuple<
// clang-format off // clang-format off
//#########################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| //################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| BlockGemm| BlockGemm| NumGroups|
//#########################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| //################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| Pipeline| Pipeline| ToMerge|
//#########################################| Spatial| | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl| //################################| Spatial| | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl| Scheduler| Version| |
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| | //################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| | | | |
// generic instance // generic instance
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 1, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 1, 4, true, 1, 1, S<1, 16, 1, 4>, 1>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 64, 32, 8, 32, 32, 2, 2, S<4, 8, 2>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, S<4, 8, 2>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, 1, 1, S<1, 16, 1, 4>, 2, Scheduler, PipelineVersion, 1>,
// instance for small conv.K // instance for small conv.K
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 1, 1, true, 1, 1, S<1, 32, 1, 4>, 1>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 32, 8, 32, 32, 1, 2, S<4, 4, 4>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 2, false, S<4, 8, 2>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 4, false, 1, 1, S<1, 16, 1, 4>, 2, Scheduler, PipelineVersion, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 1, 2, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 4>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 256, 128, 32, 8, 32, 32, 4, 2, S<4, 32, 2>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 4, false, S<4, 16, 4>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 2, false, 1, 1, S<1, 32, 1, 8>, 4, Scheduler, PipelineVersion, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 256, 32, 8, 32, 32, 2, 4, S<4, 16, 4>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 2, false, S<4, 32, 2>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 4, false, 1, 1, S<1, 32, 1, 8>, 2, Scheduler, PipelineVersion, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 8>, 4>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 128, 32, 8, 32, 32, 4, 2, S<4, 16, 2>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 4, false, S<4, 16, 2>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 4, false, 1, 1, S<1, 32, 1, 4>, 2, Scheduler, PipelineVersion, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 8>, 4>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 128, 32, 8, 32, 32, 2, 2, S<4, 16, 4>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 2, false, S<4, 16, 4>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 2, false, 1, 1, S<1, 32, 1, 4>, 2, Scheduler, PipelineVersion, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 4>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 64, 32, 8, 32, 32, 2, 2, S<4, 16, 2>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 4, false, S<4, 8, 4>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 2, false, 1, 1, S<1, 32, 1, 4>, 2, Scheduler, PipelineVersion, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 4>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 64, 128, 32, 8, 32, 32, 2, 2, S<4, 8, 4>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 2, false, S<4, 16, 2>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 4, false, 1, 1, S<1, 32, 1, 4>, 2, Scheduler, PipelineVersion, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 4>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 64, 32, 8, 32, 32, 2, 2, S<4, 8, 2>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 4, false, S<4, 8, 2>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 4, false, 1, 1, S<1, 16, 1, 4>, 2, Scheduler, PipelineVersion, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 4>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 64, 32, 8, 32, 32, 2, 1, S<4, 16, 4>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 2, false, S<4, 8, 8>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 1, false, 1, 1, S<1, 32, 1, 4>, 2, Scheduler, PipelineVersion, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 4>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 64, 128, 32, 8, 32, 32, 1, 2, S<4, 8, 8>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 1, false, S<4, 16, 4>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 2, false, 1, 1, S<1, 32, 1, 4>, 2, Scheduler, PipelineVersion, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 4>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 32, 128, 32, 8, 32, 32, 1, 2, S<4, 4, 8>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 1, false, S<4, 16, 2>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 4, false, 1, 1, S<1, 32, 1, 4>, 2, Scheduler, PipelineVersion, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 4>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 32, 32, 8, 32, 32, 2, 1, S<4, 8, 2>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 4, false, S<4, 4, 4>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 2, false, 1, 1, S<1, 16, 1, 4>, 2, Scheduler, PipelineVersion, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 4>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 32, 8, 32, 32, 1, 2, S<4, 4, 4>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 2, false, S<4, 8, 2>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 4, false, 1, 1, S<1, 16, 1, 4>, 2, Scheduler, PipelineVersion, 4>
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 4>
// clang-format on // clang-format on
>; >;
...@@ -145,34 +134,22 @@ template <ck::index_t NDimSpatial, ...@@ -145,34 +134,22 @@ template <ck::index_t NDimSpatial,
typename ALayout, typename ALayout,
typename BLayout, typename BLayout,
typename ELayout, typename ELayout,
ConvolutionBackwardWeightSpecialization ConvSpec> ConvolutionBackwardWeightSpecialization ConvSpec,
BlockGemmPipelineScheduler Scheduler,
BlockGemmPipelineVersion PipelineVersion>
using device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_instances = std::tuple< using device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_instances = std::tuple<
// clang-format off // clang-format off
//#########################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| //################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| BlockGemm| BlockGemm| NumGroups|
//#########################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| //################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| Pipeline| Pipeline| ToMerge|
//#########################################| Spatial| | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl| //################################| Spatial| | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl| Scheduler| Version| |
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| | //################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| | | | |
// generic instance DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 16, 16, 32, 8, 16, 16, 1, 1, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 1>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 2, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 2, 4, true, 1, 1, S<1, 16, 1, 4>, 2>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 32, 32, 8, 32, 32, 1, 1, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, 1, 1, S<1, 8, 1, 8>, 4, Scheduler, PipelineVersion, 2>,
// instance for small conv.K DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 32, 8, 32, 32, 1, 2, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 4>,
// for bf16 conv.K and conv.C must be divisible by 2 DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 128, 32, 8, 32, 32, 1, 4, S<4, 4, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 8>,
// since half_t atomic_add require scalar_per_x_vector % 2 == 0 DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 32, 32, 8, 32, 32, 1, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, 1, 1, S<1, 8, 1, 8>, 4, Scheduler, PipelineVersion, 2>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 2, 1, true, 1, 1, S<1, 32, 1, 4>, 2>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 32, 32, 8, 32, 32, 2, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 4>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 2, 2, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 128, 32, 32, 8, 32, 32, 4, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, S<4, 4, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 8>
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8>
// clang-format on // clang-format on
>; >;
...@@ -180,35 +157,35 @@ template <ck::index_t NDimSpatial, ...@@ -180,35 +157,35 @@ template <ck::index_t NDimSpatial,
typename ALayout, typename ALayout,
typename BLayout, typename BLayout,
typename ELayout, typename ELayout,
ConvolutionBackwardWeightSpecialization ConvSpec> ConvolutionBackwardWeightSpecialization ConvSpec,
BlockGemmPipelineScheduler Scheduler,
BlockGemmPipelineVersion PipelineVersion>
using device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_comp_bf8_f8_instances = std::tuple< using device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_comp_bf8_f8_instances = std::tuple<
// clang-format off // clang-format off
//#########################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| Compute| Compute| //################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| BlockGemm| BlockGemm| NumGroups|
//#########################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| TypeA| TypeB| //################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| Pipeline| Pipeline| ToMerge|
//#########################################| Spatial| | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl| | | //################################| Spatial| | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl| Scheduler| Version| |
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| | | | //################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| | | | |
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8 #if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
// generic instance DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 16, 16, 32, 8, 16, 16, 1, 1, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 1, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 2, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 2, 4, true, 1, 1, S<1, 16, 1, 4>, 2, BF8, F8>,
// instance for small conv.K DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 32, 32, 8, 32, 32, 1, 1, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 2, BF8, F8>,
// for fp16 conv.K and conv.C must be divisible by 2 DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 32, 8, 32, 32, 1, 2, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 4, BF8, F8>,
// since half_t atomic_add require scalar_per_x_vector % 2 == 0 DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 128, 32, 8, 32, 32, 1, 4, S<4, 4, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, 1, 1, S<1, 4, 1, 8>, 2, Scheduler, PipelineVersion, 8, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 2, 1, true, 1, 1, S<1, 32, 1, 4>, 2, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 2, 2, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8, BF8, F8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 32, 32, 8, 32, 32, 1, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, 1, 1, S<1, 8, 1, 8>, 4, Scheduler, PipelineVersion, 2, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 32, 32, 8, 32, 32, 2, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 4, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 8>, 8, BF8, F8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 128, 32, 32, 8, 32, 32, 4, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, S<4, 4, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, 1, 1, S<1, 8, 1, 4>, 2, Scheduler, PipelineVersion, 8, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 8>, 8, BF8, F8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 32, 32, 8, 32, 32, 1, 1, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, 1, 1, S<1, 8, 1, 8>, 4, Scheduler, PipelineVersion, 2, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8, BF8, F8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 32, 8, 32, 32, 1, 2, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 4, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8, BF8, F8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 128, 32, 8, 32, 32, 1, 4, S<4, 4, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, 1, 1, S<1, 4, 1, 8>, 2, Scheduler, PipelineVersion, 8, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8, BF8, F8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 32, 32, 8, 32, 32, 2, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 4, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8, BF8, F8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 128, 32, 32, 8, 32, 32, 4, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, S<4, 4, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, 1, 1, S<1, 8, 1, 4>, 2, Scheduler, PipelineVersion, 8, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8, BF8, F8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 32, 32, 8, 32, 32, 1, 1, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 2, 2, false, 1, 1, S<1, 8, 1, 8>, 4, Scheduler, PipelineVersion, 2, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 8, BF8, F8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 32, 8, 32, 32, 1, 2, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 4, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8, BF8, F8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 128, 32, 8, 32, 32, 1, 4, S<4, 4, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, 1, 1, S<1, 4, 1, 8>, 2, Scheduler, PipelineVersion, 8, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 8, BF8, F8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 32, 32, 8, 32, 32, 2, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 4, 4, false, 1, 1, S<1, 8, 1, 8>, 2, Scheduler, PipelineVersion, 4, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8, BF8, F8>, DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 128, 32, 32, 8, 32, 32, 4, 1, S<4, 16, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, S<4, 4, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 8, 8, false, 1, 1, S<1, 8, 1, 4>, 2, Scheduler, PipelineVersion, 8, BF8, F8>
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 16, 1, 4>, 8, BF8, F8>,
DeviceGroupedConvBwdWeight_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8, BF8, F8>
#endif #endif
// clang-format on // clang-format on
>; >;
......
...@@ -276,7 +276,14 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -276,7 +276,14 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<OutDataType, float> && is_same_v<ComputeTypeA, float> && is_same_v<OutDataType, float> && is_same_v<ComputeTypeA, float> &&
is_same_v<ComputeTypeB, float>) is_same_v<ComputeTypeB, float>)
{ {
add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_instances(op_ptrs); add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_pad0_pipev5_instances(
op_ptrs);
} }
#endif #endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
...@@ -284,7 +291,14 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -284,7 +291,14 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, half_t> && is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, half_t> &&
is_same_v<ComputeTypeB, half_t>) is_same_v<ComputeTypeB, half_t>)
{ {
add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_instances(op_ptrs); add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_pad0_pipev5_instances(
op_ptrs);
} }
#endif #endif
#ifdef CK_ENABLE_BF16 #ifdef CK_ENABLE_BF16
...@@ -293,7 +307,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -293,7 +307,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<ComputeTypeA, ck::bhalf_t> && is_same_v<ComputeTypeA, ck::bhalf_t> &&
is_same_v<ComputeTypeB, ck::bhalf_t>) is_same_v<ComputeTypeB, ck::bhalf_t>)
{ {
add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_instances( add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_pad0_pipev5_instances(
op_ptrs); op_ptrs);
} }
#endif #endif
...@@ -309,7 +329,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -309,7 +329,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<OutDataType, float> && is_same_v<ComputeTypeA, float> && is_same_v<OutDataType, float> && is_same_v<ComputeTypeA, float> &&
is_same_v<ComputeTypeB, float>) is_same_v<ComputeTypeB, float>)
{ {
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_instances( add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_pad0_pipev5_instances(
op_ptrs); op_ptrs);
} }
#endif #endif
...@@ -318,7 +344,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -318,7 +344,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, half_t> && is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, half_t> &&
is_same_v<ComputeTypeB, half_t>) is_same_v<ComputeTypeB, half_t>)
{ {
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_instances( add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_pad0_pipev2_instances(
op_ptrs); op_ptrs);
} }
#endif #endif
...@@ -328,7 +360,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -328,7 +360,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<ComputeTypeA, ck::bhalf_t> && is_same_v<ComputeTypeA, ck::bhalf_t> &&
is_same_v<ComputeTypeB, ck::bhalf_t>) is_same_v<ComputeTypeB, ck::bhalf_t>)
{ {
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_bf16_f32_bf16_instances( add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_bf16_f32_bf16_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_bf16_f32_bf16_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_bf16_f32_bf16_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_bf16_f32_bf16_pad0_pipev5_instances(
op_ptrs); op_ptrs);
} }
#endif #endif
...@@ -341,7 +379,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -341,7 +379,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<OutDataType, float> && is_same_v<ComputeTypeA, float> && is_same_v<OutDataType, float> && is_same_v<ComputeTypeA, float> &&
is_same_v<ComputeTypeB, float>) is_same_v<ComputeTypeB, float>)
{ {
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_instances( add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_pad0_pipev5_instances(
op_ptrs); op_ptrs);
} }
#endif #endif
...@@ -350,7 +394,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -350,7 +394,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, half_t> && is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, half_t> &&
is_same_v<ComputeTypeB, half_t>) is_same_v<ComputeTypeB, half_t>)
{ {
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_instances( add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_pad0_pipev5_instances(
op_ptrs); op_ptrs);
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev1_instances( add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev1_instances(
op_ptrs); op_ptrs);
...@@ -366,7 +416,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -366,7 +416,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<ComputeTypeA, ck::bhalf_t> && is_same_v<ComputeTypeA, ck::bhalf_t> &&
is_same_v<ComputeTypeB, ck::bhalf_t>) is_same_v<ComputeTypeB, ck::bhalf_t>)
{ {
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_f32_bf16_instances( add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_f32_bf16_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_f32_bf16_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_f32_bf16_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_f32_bf16_pad0_pipev5_instances(
op_ptrs); op_ptrs);
} }
if constexpr(is_same_v<InDataType, ck::bhalf_t> && if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
...@@ -375,7 +431,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -375,7 +431,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<ComputeTypeA, ck::bhalf_t> && is_same_v<ComputeTypeA, ck::bhalf_t> &&
is_same_v<ComputeTypeB, ck::bhalf_t>) is_same_v<ComputeTypeB, ck::bhalf_t>)
{ {
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_instances( add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_pad0_pipev5_instances(
op_ptrs); op_ptrs);
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev1_instances( add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev1_instances(
op_ptrs); op_ptrs);
...@@ -429,7 +491,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -429,7 +491,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<OutDataType, float> && is_same_v<ComputeTypeA, float> && is_same_v<OutDataType, float> && is_same_v<ComputeTypeA, float> &&
is_same_v<ComputeTypeB, float>) is_same_v<ComputeTypeB, float>)
{ {
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f32_instances( add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f32_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f32_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f32_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f32_pad0_pipev5_instances(
op_ptrs); op_ptrs);
} }
#endif #endif
...@@ -438,7 +506,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -438,7 +506,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, half_t> && is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, half_t> &&
is_same_v<ComputeTypeB, half_t>) is_same_v<ComputeTypeB, half_t>)
{ {
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f16_instances( add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f16_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f16_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f16_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f16_pad0_pipev5_instances(
op_ptrs); op_ptrs);
} }
#endif #endif
...@@ -448,7 +522,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -448,7 +522,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<ComputeTypeA, ck::bhalf_t> && is_same_v<ComputeTypeA, ck::bhalf_t> &&
is_same_v<ComputeTypeB, ck::bhalf_t>) is_same_v<ComputeTypeB, ck::bhalf_t>)
{ {
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_instances( add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_pad0_pipev5_instances(
op_ptrs); op_ptrs);
} }
#endif #endif
...@@ -461,7 +541,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -461,7 +541,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<OutDataType, float> && is_same_v<ComputeTypeA, float> && is_same_v<OutDataType, float> && is_same_v<ComputeTypeA, float> &&
is_same_v<ComputeTypeB, float>) is_same_v<ComputeTypeB, float>)
{ {
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances( add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_pad0_pipev2_instances(
op_ptrs); op_ptrs);
} }
#endif #endif
...@@ -470,7 +556,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -470,7 +556,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, half_t> && is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, half_t> &&
is_same_v<ComputeTypeB, half_t>) is_same_v<ComputeTypeB, half_t>)
{ {
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instances( add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pad0_pipev5_instances(
op_ptrs); op_ptrs);
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev1_instances( add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev1_instances(
op_ptrs); op_ptrs);
...@@ -486,7 +578,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -486,7 +578,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<ComputeTypeA, ck::bhalf_t> && is_same_v<ComputeTypeA, ck::bhalf_t> &&
is_same_v<ComputeTypeB, ck::bhalf_t>) is_same_v<ComputeTypeB, ck::bhalf_t>)
{ {
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instances( add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_pad0_pipev5_instances(
op_ptrs); op_ptrs);
} }
if constexpr(is_same_v<InDataType, ck::bhalf_t> && if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
...@@ -495,7 +593,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -495,7 +593,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<ComputeTypeA, ck::bhalf_t> && is_same_v<ComputeTypeA, ck::bhalf_t> &&
is_same_v<ComputeTypeB, ck::bhalf_t>) is_same_v<ComputeTypeB, ck::bhalf_t>)
{ {
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instances( add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pad0_pipev5_instances(
op_ptrs); op_ptrs);
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev1_instances( add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev1_instances(
op_ptrs); op_ptrs);
...@@ -510,7 +614,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -510,7 +614,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, bf8_t> && is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, bf8_t> &&
is_same_v<ComputeTypeB, f8_t>) is_same_v<ComputeTypeB, f8_t>)
{ {
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_f8_instances( add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_f8_default_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_f8_default_pipev5_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_f8_pad0_pipev2_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_f8_pad0_pipev5_instances(
op_ptrs); op_ptrs);
} }
#endif #endif
......
...@@ -10,7 +10,40 @@ namespace instance { ...@@ -10,7 +10,40 @@ namespace instance {
// conv1d backward weight // conv1d backward weight
#ifdef CK_ENABLE_BF16 #ifdef CK_ENABLE_BF16
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_instances( void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_pad0_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC, GNWC,
GKXC, GKXC,
...@@ -23,7 +56,40 @@ void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_insta ...@@ -23,7 +56,40 @@ void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_insta
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_instances( void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_pad0_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC, GNWC,
GKXC, GKXC,
...@@ -36,7 +102,40 @@ void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_instances( ...@@ -36,7 +102,40 @@ void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_instances(
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_FP32 #ifdef CK_ENABLE_FP32
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_instances( void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_pad0_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC, GNWC,
GKXC, GKXC,
...@@ -50,7 +149,40 @@ void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_instances( ...@@ -50,7 +149,40 @@ void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_instances(
#endif #endif
// conv2d backward weight // conv2d backward weight
#ifdef CK_ENABLE_BF16 #ifdef CK_ENABLE_BF16
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_bf16_f32_bf16_instances( void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_bf16_f32_bf16_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC,
GKYXC,
GNHWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_bf16_f32_bf16_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC,
GKYXC,
GNHWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_bf16_f32_bf16_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC,
GKYXC,
GNHWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_bf16_f32_bf16_pad0_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC, GNHWC,
GKYXC, GKYXC,
...@@ -63,7 +195,40 @@ void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_bf16_f32_bf16_in ...@@ -63,7 +195,40 @@ void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_bf16_f32_bf16_in
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_instances( void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC,
GKYXC,
GNHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC,
GKYXC,
GNHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC,
GKYXC,
GNHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_pad0_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC, GNHWC,
GKYXC, GKYXC,
...@@ -76,7 +241,40 @@ void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_instances( ...@@ -76,7 +241,40 @@ void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_instances(
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_FP32 #ifdef CK_ENABLE_FP32
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_instances( void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC,
GKYXC,
GNHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC,
GKYXC,
GNHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC,
GKYXC,
GNHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_pad0_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC, GNHWC,
GKYXC, GKYXC,
...@@ -89,7 +287,7 @@ void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_instances( ...@@ -89,7 +287,7 @@ void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_instances(
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_BF16 #ifdef CK_ENABLE_BF16
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_instances( void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC, NHWGC,
GKYXC, GKYXC,
...@@ -100,8 +298,73 @@ void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_instances( ...@@ -100,8 +298,73 @@ void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_instances(
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_default_pipev5_instances(
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_f32_bf16_instances( std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_pad0_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_f32_bf16_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_f32_bf16_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_f32_bf16_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_f32_bf16_pad0_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC, NHWGC,
GKYXC, GKYXC,
...@@ -186,7 +449,76 @@ void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_bf16_p ...@@ -186,7 +449,76 @@ void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_bf16_p
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_instances( void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_pad0_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev1_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC, NHWGC,
GKYXC, GKYXC,
...@@ -197,72 +529,175 @@ void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_instances( ...@@ -197,72 +529,175 @@ void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_instances(
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev1_instances( void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_f16_pipev1_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC, NGCHW,
GKYXC, GKYXC,
NHWGK, NGKHW,
F16, F16,
F16, F16,
F16, F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_f16_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NGCHW,
GKYXC,
NGKHW,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_f16_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NGCHW,
GKYXC,
NGKHW,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP32
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_pad0_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
NHWGC,
GKYXC,
NHWGK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
// conv3d backward weight
#ifdef CK_ENABLE_BF16
void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
GNDHWC,
GKZYXC,
GNDHWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
GNDHWC,
GKZYXC,
GNDHWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
GNDHWC,
GKZYXC,
GNDHWK,
BF16,
F32,
BF16,
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_pad0_pipev5_instances(
void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev2_instances( std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2, GNDHWC,
NHWGC, GKZYXC,
GKYXC, GNDHWK,
NHWGK, BF16,
F16, F32,
F16, BF16,
F16,
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif
void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev5_instances( #ifdef CK_ENABLE_FP16
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2, void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f16_default_pipev2_instances(
NHWGC, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
GKYXC, GNDHWC,
NHWGK, GKZYXC,
GNDHWK,
F16, F16,
F16, F16,
F16, F16,
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f16_default_pipev5_instances(
void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_f16_pipev1_instances( std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2, GNDHWC,
NGCHW, GKZYXC,
GKYXC, GNDHWK,
NGKHW,
F16, F16,
F16, F16,
F16, F16,
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f16_pad0_pipev2_instances(
void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_f16_pipev2_instances( std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2, GNDHWC,
NGCHW, GKZYXC,
GKYXC, GNDHWK,
NGKHW,
F16, F16,
F16, F16,
F16, F16,
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f16_pad0_pipev5_instances(
void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_f16_pipev5_instances( std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2, GNDHWC,
NGCHW, GKZYXC,
GKYXC, GNDHWK,
NGKHW,
F16, F16,
F16, F16,
F16, F16,
...@@ -271,47 +706,40 @@ void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_f16_pi ...@@ -271,47 +706,40 @@ void add_device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_f16_pi
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_FP32 #ifdef CK_ENABLE_FP32
void add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f32_instances( void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f32_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NHWGC, GNDHWC,
GKYXC, GKZYXC,
NHWGK, GNDHWK,
F32, F32,
F32, F32,
F32, F32,
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f32_default_pipev5_instances(
// conv3d backward weight
#ifdef CK_ENABLE_BF16
void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
GNDHWC, GNDHWC,
GKZYXC, GKZYXC,
GNDHWK, GNDHWK,
BF16,
F32, F32,
BF16, F32,
F32,
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f32_pad0_pipev2_instances(
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
GNDHWC, GNDHWC,
GKZYXC, GKZYXC,
GNDHWK, GNDHWK,
F16, F32,
F16, F32,
F16, F32,
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
#endif void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f32_pad0_pipev5_instances(
#ifdef CK_ENABLE_FP32
void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
GNDHWC, GNDHWC,
GKZYXC, GKZYXC,
...@@ -324,7 +752,7 @@ void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f32_instances ...@@ -324,7 +752,7 @@ void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f32_instances
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_BF16 #ifdef CK_ENABLE_BF16
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instances( void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC, NDHWGC,
GKZYXC, GKZYXC,
...@@ -335,8 +763,73 @@ void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instance ...@@ -335,8 +763,73 @@ void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instance
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_default_pipev5_instances(
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instances( std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pad0_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_pad0_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC, NDHWGC,
GKZYXC, GKZYXC,
...@@ -421,7 +914,40 @@ void add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf1 ...@@ -421,7 +914,40 @@ void add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf1
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_FP16 #ifdef CK_ENABLE_FP16
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instances( void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pad0_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC, NDHWGC,
GKZYXC, GKZYXC,
...@@ -506,7 +1032,40 @@ void add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_f16 ...@@ -506,7 +1032,40 @@ void add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_f16
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#ifdef CK_ENABLE_FP32 #ifdef CK_ENABLE_FP32
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances( void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC, NDHWGC,
GKZYXC, GKZYXC,
...@@ -519,7 +1078,46 @@ void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances ...@@ -519,7 +1078,46 @@ void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances
PassThrough>>>& instances); PassThrough>>>& instances);
#endif #endif
#if defined CK_ENABLE_FP16 && defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8 #if defined CK_ENABLE_FP16 && defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_f8_instances( void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_f8_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough,
BF8,
F8>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_f8_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough,
BF8,
F8>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_f8_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough,
BF8,
F8>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_f8_pad0_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC, NDHWGC,
GKZYXC, GKZYXC,
......
# ONLY XDL_AND_DL_KERNELS # ONLY XDL_AND_DL_KERNELS
set(GROUPED_CONV1D_BWD_WEIGHT set(GROUPED_CONV1D_BWD_WEIGHT
xdl/device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_instance.cpp xdl/device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_default_pipev2_instance.cpp
xdl/device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_instance.cpp xdl/device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_default_pipev5_instance.cpp
xdl/device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_instance.cpp) xdl/device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_pad0_pipev2_instance.cpp
xdl/device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_pad0_pipev5_instance.cpp
xdl/device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_default_pipev2_instance.cpp
xdl/device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_default_pipev5_instance.cpp
xdl/device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_pad0_pipev2_instance.cpp
xdl/device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_pad0_pipev5_instance.cpp
xdl/device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_default_pipev2_instance.cpp
xdl/device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_default_pipev5_instance.cpp
xdl/device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_pad0_pipev2_instance.cpp
xdl/device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_pad0_pipev5_instance.cpp)
if(DL_KERNELS) if(DL_KERNELS)
list(APPEND GROUPED_CONV1D_BWD_WEIGHT list(APPEND GROUPED_CONV1D_BWD_WEIGHT
...@@ -15,3 +24,4 @@ if(DL_KERNELS) ...@@ -15,3 +24,4 @@ if(DL_KERNELS)
endif() endif()
add_instance_library(device_grouped_conv1d_bwd_weight_instance ${GROUPED_CONV1D_BWD_WEIGHT}) add_instance_library(device_grouped_conv1d_bwd_weight_instance ${GROUPED_CONV1D_BWD_WEIGHT})
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp" #include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
...@@ -9,7 +9,7 @@ namespace tensor_operation { ...@@ -9,7 +9,7 @@ namespace tensor_operation {
namespace device { namespace device {
namespace instance { namespace instance {
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_instances( void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC, GNWC,
GKXC, GKXC,
...@@ -21,7 +21,6 @@ void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_insta ...@@ -21,7 +21,6 @@ void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_insta
PassThrough, PassThrough,
PassThrough>>>& instances) PassThrough>>>& instances)
{ {
// 1. Default
add_device_operation_instances( add_device_operation_instances(
instances, instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_f32_bf16_instances< device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_f32_bf16_instances<
...@@ -29,16 +28,9 @@ void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_insta ...@@ -29,16 +28,9 @@ void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_insta
GNWC, GNWC,
GKXC, GKXC,
GNWK, GNWK,
ConvBwdWeightDefault>{}); ConvBwdWeightDefault,
// 2. Filter1x1Stride1Pad0 BlockGemmPipelineScheduler::Intrawave,
add_device_operation_instances( BlockGemmPipelineVersion::v2>{});
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_f32_bf16_instances<
1,
GNWC,
GKXC,
GNWK,
ConvBwdWeightFilter1x1Stride1Pad0>{});
} }
} // namespace instance } // namespace instance
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_f32_bf16_instances<
1,
GNWC,
GKXC,
GNWK,
ConvBwdWeightDefault,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v5>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_f32_bf16_instances<
1,
GNWC,
GKXC,
GNWK,
ConvBwdWeightFilter1x1Stride1Pad0,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v2>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_pad0_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_bf16_f32_bf16_instances<
1,
GNWC,
GKXC,
GNWK,
ConvBwdWeightFilter1x1Stride1Pad0,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v5>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_instances<
1,
GNWC,
GKXC,
GNWK,
ConvBwdWeightDefault,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v2>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_instances<
1,
GNWC,
GKXC,
GNWK,
ConvBwdWeightDefault,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v5>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp" #include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
...@@ -9,7 +9,7 @@ namespace tensor_operation { ...@@ -9,7 +9,7 @@ namespace tensor_operation {
namespace device { namespace device {
namespace instance { namespace instance {
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_instances( void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC, GNWC,
GKXC, GKXC,
...@@ -21,22 +21,15 @@ void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_instances( ...@@ -21,22 +21,15 @@ void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_instances(
PassThrough, PassThrough,
PassThrough>>>& instances) PassThrough>>>& instances)
{ {
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_instances<1,
GNWC,
GKXC,
GNWK,
ConvBwdWeightDefault>{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_instances< device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_instances<
1, 1,
GNWC, GNWC,
GKXC, GKXC,
GNWK, GNWK,
ConvBwdWeightFilter1x1Stride1Pad0>{}); ConvBwdWeightFilter1x1Stride1Pad0,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v2>{});
} }
} // namespace instance } // namespace instance
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_pad0_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f16_instances<
1,
GNWC,
GKXC,
GNWK,
ConvBwdWeightFilter1x1Stride1Pad0,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v5>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_default_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f32_instances<
1,
GNWC,
GKXC,
GNWK,
ConvBwdWeightDefault,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v2>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_default_pipev5_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f32_instances<
1,
GNWC,
GKXC,
GNWK,
ConvBwdWeightDefault,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v5>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp" #include "ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_weight/device_grouped_conv_bwd_weight_xdl_instance.hpp"
...@@ -9,7 +9,7 @@ namespace tensor_operation { ...@@ -9,7 +9,7 @@ namespace tensor_operation {
namespace device { namespace device {
namespace instance { namespace instance {
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_instances( void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_pad0_pipev2_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1, std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC, GNWC,
GKXC, GKXC,
...@@ -21,22 +21,15 @@ void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_instances( ...@@ -21,22 +21,15 @@ void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_instances(
PassThrough, PassThrough,
PassThrough>>>& instances) PassThrough>>>& instances)
{ {
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f32_instances<1,
GNWC,
GKXC,
GNWK,
ConvBwdWeightDefault>{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_grouped_conv_bwd_weight_xdl_c_shuffle_f32_instances< device_grouped_conv_bwd_weight_xdl_c_shuffle_f32_instances<
1, 1,
GNWC, GNWC,
GKXC, GKXC,
GNWK, GNWK,
ConvBwdWeightFilter1x1Stride1Pad0>{}); ConvBwdWeightFilter1x1Stride1Pad0,
BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion::v2>{});
} }
} // namespace instance } // namespace instance
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment