Commit ead5167a authored by dummycoderfe's avatar dummycoderfe
Browse files

merge develop

parents da1a2829 03c6448b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "smoothquant_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd 2p
template float smoothquant_<trait_<ck_tile::fp16_t, 1, 2, 1, 256, 8, true, true>>(const S&, A);
template float smoothquant_<trait_<ck_tile::fp16_t, 1, 4, 1, 256, 4, true, true>>(const S&, A);
template float smoothquant_<trait_<ck_tile::fp16_t, 1, 2, 1, 1024, 2, true, true>>(const S&, A);
template float smoothquant_<trait_<ck_tile::fp16_t, 1, 4, 1, 1024, 1, true, true>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "smoothquant_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd 2p
template float smoothquant_<trait_<ck_tile::fp16_t, 1, 1, 4, 64, 8, true , false>>(const S&, A);
template float smoothquant_<trait_<ck_tile::fp16_t, 1, 2, 4, 64, 4, true , false>>(const S&, A);
template float smoothquant_<trait_<ck_tile::fp16_t, 1, 4, 4, 64, 2, true , false>>(const S&, A);
template float smoothquant_<trait_<ck_tile::fp16_t, 1, 8, 4, 64, 1, true , false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "smoothquant_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd 2p
template float smoothquant_<trait_<ck_tile::fp16_t, 1, 1, 4, 64, 1, true, false>>(const S&, A);
template float smoothquant_<trait_<ck_tile::fp16_t, 1, 1, 4, 64, 2, true, false>>(const S&, A);
template float smoothquant_<trait_<ck_tile::fp16_t, 1, 2, 4, 64, 1, true, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "smoothquant_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd 2p
template float smoothquant_<trait_<ck_tile::fp16_t, 1, 3, 4, 64, 4, true , false>>(const S&, A);
template float smoothquant_<trait_<ck_tile::fp16_t, 1, 6, 4, 64, 2, true , false>>(const S&, A);
template float smoothquant_<trait_<ck_tile::fp16_t, 1, 12, 4, 64, 1, true , false>>(const S&, A);
// clang-format on
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <ck_tile/core.hpp> #include <ck_tile/core.hpp>
#include "layernorm2d_fwd.hpp" #include "smoothquant.hpp"
template <typename DataType_, template <typename DataType_,
ck_tile::index_t Repeat_M_, // each thread repeat along M ck_tile::index_t Repeat_M_, // each thread repeat along M
...@@ -11,145 +11,133 @@ template <typename DataType_, ...@@ -11,145 +11,133 @@ template <typename DataType_,
ck_tile::index_t ThreadPerBlock_N_, // num threads along N ck_tile::index_t ThreadPerBlock_N_, // num threads along N
ck_tile::index_t Vector_N_, // vector size along N ck_tile::index_t Vector_N_, // vector size along N
bool kPadN_, bool kPadN_,
bool kSaveMeanInvStd_,
bool kTwoPass_> bool kTwoPass_>
using trait_ = layernorm2d_fwd_traits_<DataType_, using trait_ = smoothquant_traits_<DataType_,
Repeat_M_, Repeat_M_,
Repeat_N_, Repeat_N_,
ThreadPerBlock_M_, ThreadPerBlock_M_,
ThreadPerBlock_N_, ThreadPerBlock_N_,
Vector_N_, Vector_N_,
kPadN_, kPadN_,
kSaveMeanInvStd_, kTwoPass_>;
kTwoPass_>;
template <typename data_type> template <typename data_type>
float layernorm2d_fwd_b16_(layernorm2d_fwd_traits /*t*/, float smoothquant_dispatch(smoothquant_traits /*t*/,
layernorm2d_fwd_args a, smoothquant_args a,
const ck_tile::stream_config& s) const ck_tile::stream_config& s)
{ {
#if 1
float r = -1; float r = -1;
// clang-format off // clang-format off
// rm rn tm tn vn pd mv 2p // rm rn tm tn vn pd 2p
if(a.n <= 64) { if(a.n <= 64) {
r = layernorm2d_fwd_<trait_<data_type, 1, 1, 4, 64, 1, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 1, 4, 64, 1, true, false>>(s, a);
} }
else if(a.n <= 128) { else if(a.n <= 128) {
if (a.n % 2 == 0) if (a.n % 2 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 1, 4, 64, 2, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 1, 4, 64, 2, true, false>>(s, a);
else else
r = layernorm2d_fwd_<trait_<data_type, 1, 2, 4, 64, 1, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 2, 4, 64, 1, true, false>>(s, a);
} }
else if(a.n <= 256) { else if(a.n <= 256) {
if (a.n % 4 == 0) if (a.n % 4 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 1, 4, 64, 4, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 1, 4, 64, 4, true, false>>(s, a);
else if (a.n % 2 == 0) else if (a.n % 2 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 2, 4, 64, 2, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 2, 4, 64, 2, true, false>>(s, a);
else else
r = layernorm2d_fwd_<trait_<data_type, 1, 4, 4, 64, 1, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 4, 4, 64, 1, true, false>>(s, a);
} }
else if(a.n <= 512) { else if(a.n <= 512) {
if (a.n % 8 == 0) if (a.n % 8 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 1, 4, 64, 8, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 1, 4, 64, 8, true, false>>(s, a);
else if (a.n % 4 == 0) else if (a.n % 4 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 2, 4, 64, 4, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 2, 4, 64, 4, true, false>>(s, a);
else if (a.n % 2 == 0) else if (a.n % 2 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 4, 4, 64, 2, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 4, 4, 64, 2, true, false>>(s, a);
else else
r = layernorm2d_fwd_<trait_<data_type, 1, 8, 4, 64, 1, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 8, 4, 64, 1, true, false>>(s, a);
} }
else if(a.n <= 768) { else if(a.n <= 768) {
if (a.n % 4 == 0) if (a.n % 4 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 3, 4, 64, 4, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 3, 4, 64, 4, true, false>>(s, a);
else if (a.n % 2 == 0) else if (a.n % 2 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 6, 4, 64, 2, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 6, 4, 64, 2, true, false>>(s, a);
else else
r = layernorm2d_fwd_<trait_<data_type, 1,12, 4, 64, 1, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1,12, 4, 64, 1, true, false>>(s, a);
} }
else if(a.n <= 1024) { else if(a.n <= 1024) {
if (a.n % 8 == 0) if (a.n % 8 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 1, 2, 128, 8, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 1, 2, 128, 8, true, false>>(s, a);
else if (a.n % 4 == 0) else if (a.n % 4 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 2, 2, 128, 4, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 2, 2, 128, 4, true, false>>(s, a);
else if (a.n % 2 == 0) else if (a.n % 2 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 4, 2, 128, 2, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 4, 2, 128, 2, true, false>>(s, a);
else else
r = layernorm2d_fwd_<trait_<data_type, 1, 4, 1, 256, 1, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 4, 1, 256, 1, true, false>>(s, a);
} }
else if(a.n <= 1536) { else if(a.n <= 1536) {
if (a.n % 8 == 0) if (a.n % 8 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 3, 4, 64, 8, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 3, 4, 64, 8, true, false>>(s, a);
else if (a.n % 4 == 0) else if (a.n % 4 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 3, 2, 128, 4, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 3, 2, 128, 4, true, false>>(s, a);
else if (a.n % 2 == 0) else if (a.n % 2 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 3, 1, 256, 2, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 3, 1, 256, 2, true, false>>(s, a);
else else
r = layernorm2d_fwd_<trait_<data_type, 1, 6, 1, 256, 1, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 6, 1, 256, 1, true, false>>(s, a);
} }
else if(a.n <= 2048) { else if(a.n <= 2048) {
if (a.n % 8 == 0) if (a.n % 8 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 1, 1, 256, 8, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 1, 1, 256, 8, true, false>>(s, a);
else if (a.n % 4 == 0) else if (a.n % 4 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 2, 1, 256, 4, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 2, 1, 256, 4, true, false>>(s, a);
else if (a.n % 2 == 0) else if (a.n % 2 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 4, 1, 256, 2, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 4, 1, 256, 2, true, false>>(s, a);
else else
r = layernorm2d_fwd_<trait_<data_type, 1, 8, 1, 256, 1, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 8, 1, 256, 1, true, false>>(s, a);
} }
else if(a.n <= 3072) { else if(a.n <= 3072) {
if (a.n % 8 == 0) if (a.n % 8 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 3, 1, 128, 8, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 3, 1, 128, 8, true, false>>(s, a);
else if (a.n % 4 == 0) else if (a.n % 4 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 3, 1, 256, 4, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 3, 1, 256, 4, true, false>>(s, a);
else if (a.n % 2 == 0) else if (a.n % 2 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 6, 1, 256, 2, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 6, 1, 256, 2, true, false>>(s, a);
else else
r = layernorm2d_fwd_<trait_<data_type, 1, 3, 1, 1024, 1, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 3, 1, 1024, 1, true, false>>(s, a);
} }
else if(a.n <= 4096) { else if(a.n <= 4096) {
if (a.n % 8 == 0) if (a.n % 8 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 2, 1, 256, 8, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 2, 1, 256, 8, true, false>>(s, a);
else if (a.n % 4 == 0) else if (a.n % 4 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 4, 1, 256, 4, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 4, 1, 256, 4, true, false>>(s, a);
else if (a.n % 2 == 0) else if (a.n % 2 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 2, 1, 1024, 2, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 2, 1, 1024, 2, true, false>>(s, a);
else else
r = layernorm2d_fwd_<trait_<data_type, 1, 4, 1, 1024, 1, true, false, false>>(s, a); r = smoothquant_<trait_<data_type, 1, 4, 1, 1024, 1, true, false>>(s, a);
} }
else if(a.n > 4096) { else if(a.n > 4096) {
if (a.n % 8 == 0) if (a.n % 8 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 2, 1, 256, 8, true, false, true>>(s, a); r = smoothquant_<trait_<data_type, 1, 2, 1, 256, 8, true, true>>(s, a);
else if (a.n % 4 == 0) else if (a.n % 4 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 4, 1, 256, 4, true, false, true>>(s, a); r = smoothquant_<trait_<data_type, 1, 4, 1, 256, 4, true, true>>(s, a);
else if (a.n % 2 == 0) else if (a.n % 2 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 2, 1, 1024, 2, true, false, true>>(s, a); r = smoothquant_<trait_<data_type, 1, 2, 1, 1024, 2, true, true>>(s, a);
else else
r = layernorm2d_fwd_<trait_<data_type, 1, 4, 1, 1024, 1, true, false, true>>(s, a); r = smoothquant_<trait_<data_type, 1, 4, 1, 1024, 1, true, true>>(s, a);
} }
return r; return r;
#else
return layernorm2d_fwd_<trait_<data_type, 1, 1, 1, 256, 4, true, false, false>>(s, a);
#endif
// clang-format on // clang-format on
} }
float layernorm2d_fwd(layernorm2d_fwd_traits t, float smoothquant(smoothquant_traits t, smoothquant_args a, const ck_tile::stream_config& s)
layernorm2d_fwd_args a,
const ck_tile::stream_config& s)
{ {
float r = -1;
if(t.data_type.compare("fp16") == 0) if(t.data_type.compare("fp16") == 0)
{ {
return layernorm2d_fwd_b16_<ck_tile::fp16_t>(t, a, s); return smoothquant_dispatch<ck_tile::fp16_t>(t, a, s);
} }
else if(t.data_type.compare("bf16") == 0) else if(t.data_type.compare("bf16") == 0)
{ {
return layernorm2d_fwd_b16_<ck_tile::bf16_t>(t, a, s); return smoothquant_dispatch<ck_tile::bf16_t>(t, a, s);
} }
if(r < 0) else
throw std::runtime_error("Without supported instances!"); throw std::runtime_error("Without supported instances!");
return r;
} }
...@@ -3,13 +3,13 @@ ...@@ -3,13 +3,13 @@
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <ck_tile/core.hpp> #include <ck_tile/core.hpp>
#include "layernorm2d_fwd.hpp" #include "smoothquant.hpp"
#include <iostream> #include <iostream>
#pragma once #pragma once
using S = ck_tile::stream_config; using S = ck_tile::stream_config;
using A = layernorm2d_fwd_args; using A = smoothquant_args;
template <typename DataType_, template <typename DataType_,
ck_tile::index_t Repeat_M_, // each thread repeat along M ck_tile::index_t Repeat_M_, // each thread repeat along M
...@@ -18,41 +18,36 @@ template <typename DataType_, ...@@ -18,41 +18,36 @@ template <typename DataType_,
ck_tile::index_t ThreadPerBlock_N_, // num threads along N ck_tile::index_t ThreadPerBlock_N_, // num threads along N
ck_tile::index_t Vector_N_, // vector size along N ck_tile::index_t Vector_N_, // vector size along N
bool kPadN_, bool kPadN_,
bool kSaveMeanInvStd_,
bool kTwoPass_> bool kTwoPass_>
using trait_ = layernorm2d_fwd_traits_<DataType_, using trait_ = smoothquant_traits_<DataType_,
Repeat_M_, Repeat_M_,
Repeat_N_, Repeat_N_,
ThreadPerBlock_M_, ThreadPerBlock_M_,
ThreadPerBlock_N_, ThreadPerBlock_N_,
Vector_N_, Vector_N_,
kPadN_, kPadN_,
kSaveMeanInvStd_, kTwoPass_>;
kTwoPass_>;
template <typename Traits_> template <typename Traits_>
float layernorm2d_fwd_(const S& s, A a) float smoothquant_(const S& s, A a)
{ {
using DataType = typename Traits_::DataType; using DataType = typename Traits_::DataType;
using PipelineProblem = ck_tile::Layernorm2dFwdPipelineProblem< using PipelineProblem = ck_tile::SmoothquantPipelineProblem<
typename LayerNormTypeConfig<DataType>::XDataType, typename SmoothquantTypeConfig<DataType>::XDataType,
typename LayerNormTypeConfig<DataType>::GammaDataType, typename SmoothquantTypeConfig<DataType>::XScaleDataType,
typename LayerNormTypeConfig<DataType>::BetaDataType, typename SmoothquantTypeConfig<DataType>::ComputeDataType,
typename LayerNormTypeConfig<DataType>::ComputeDataType, typename SmoothquantTypeConfig<DataType>::YScaleDataType,
typename LayerNormTypeConfig<DataType>::YDataType, typename SmoothquantTypeConfig<DataType>::QYDataType,
typename LayerNormTypeConfig<DataType>::MeanDataType,
typename LayerNormTypeConfig<DataType>::InvStdDataType,
typename Traits_::Shape, typename Traits_::Shape,
Traits_::kPadN, Traits_::kPadN,
Traits_::kSaveMeanInvStd,
Traits_::kTwoPass>; Traits_::kTwoPass>;
using OnePassPipeline = ck_tile::Layernorm2dFwdPipelineOnePass<PipelineProblem>; using OnePassPipeline = ck_tile::SmoothquantPipelineOnePass<PipelineProblem>;
using TwoPassPipeline = ck_tile::Layernorm2dFwdPipelineTwoPass<PipelineProblem>; using TwoPassPipeline = ck_tile::SmoothquantPipelineTwoPass<PipelineProblem>;
using Pipeline = std::conditional_t<Traits_::kTwoPass, TwoPassPipeline, OnePassPipeline>; using Pipeline = std::conditional_t<Traits_::kTwoPass, TwoPassPipeline, OnePassPipeline>;
using Kernel = ck_tile::Layernorm2dFwd<Pipeline>; using Kernel = ck_tile::Smoothquant<Pipeline>;
const dim3 grids = Kernel::GridSize(a); const dim3 grids = Kernel::GridSize(a);
constexpr dim3 blocks = Kernel::BlockSize(); constexpr dim3 blocks = Kernel::BlockSize();
......
EXE="$(find . -name tile_smoothquant -type f | head -n 1)"
$EXE -m=1 -n=1 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=80 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=128 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=144 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=168 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=184 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=256 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=288 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=344 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=376 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=448 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=512 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=924 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=1024 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=1078 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=1996 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=4080 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=80 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=128 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=144 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=168 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=184 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=256 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=288 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=344 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=376 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=448 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=512 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=924 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=1024 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=1078 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=1996 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=4080 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
\ No newline at end of file
#!/bin/sh
EXE="$(find . -name tile_smoothquant -type f | head -n 1)"
for pr_i in "fp16" "bf16" ; do
$EXE -prec=$pr_i -m=99 -n=13
$EXE -prec=$pr_i -m=17 -n=16
$EXE -prec=$pr_i -m=1 -n=100
$EXE -prec=$pr_i -m=4 -n=128
$EXE -prec=$pr_i -m=80 -n=127
$EXE -prec=$pr_i -m=22 -n=255 -stride=256
$EXE -prec=$pr_i -m=7 -n=599
$EXE -prec=$pr_i -m=19 -n=512
$EXE -prec=$pr_i -m=33 -n=313 -stride=1000
$EXE -prec=$pr_i -m=11 -n=510
$EXE -prec=$pr_i -m=171 -n=676 -stride=818
$EXE -prec=$pr_i -m=91 -n=636
$EXE -prec=$pr_i -m=12 -n=768 -stride=800
$EXE -prec=$pr_i -m=100 -n=766 -stride=812
$EXE -prec=$pr_i -m=31 -n=1024
$EXE -prec=$pr_i -m=64 -n=1000 -stride=1004
$EXE -prec=$pr_i -m=8 -n=1501
$EXE -prec=$pr_i -m=3 -n=1826
$EXE -prec=$pr_i -m=5 -n=2040
$EXE -prec=$pr_i -m=7 -n=2734
$EXE -prec=$pr_i -m=1 -n=3182
$EXE -prec=$pr_i -m=9 -n=4096
$EXE -prec=$pr_i -m=3 -n=8192
$EXE -prec=$pr_i -m=1 -n=10547
$EXE -prec=$pr_i -m=3 -n=17134
done
#include "ck_tile/host.hpp"
#include "smoothquant.hpp"
#include <cstring>
// different threshold for different dtype
template <typename DataType>
auto get_elimit()
{
double rtol = 1e-5;
double atol = 1e-5;
return ck_tile::make_tuple(rtol, atol);
}
template <>
auto get_elimit<ck_tile::bf16_t>()
{
double rtol = 1e-5;
double atol = 1e-5;
return ck_tile::make_tuple(rtol, atol);
}
template <>
auto get_elimit<ck_tile::int8_t>()
{
// due to rounding, int8 quantization might have 1 abs error
double rtol = 1;
double atol = 1;
return ck_tile::make_tuple(rtol, atol);
}
auto create_args(int argc, char* argv[])
{
ck_tile::ArgParser arg_parser;
arg_parser.insert("m", "3328", "m dimension")
.insert("n", "4096", "n dimension")
.insert("stride", "-1", "stride per row, if -1 then equal to n")
.insert("v", "1", "cpu validation or not")
.insert("kname", "1", "print kernel name or not")
.insert("prec", "fp16", "precision")
.insert("warmup", "5", "cold iter")
.insert("repeat", "20", "hot iter");
bool result = arg_parser.parse(argc, argv);
return std::make_tuple(result, arg_parser);
}
template <typename DataType>
bool run(const ck_tile::ArgParser& arg_parser)
{
ck_tile::index_t m = arg_parser.get_int("m");
ck_tile::index_t n = arg_parser.get_int("n");
ck_tile::index_t stride = arg_parser.get_int("stride");
if(stride < 0)
stride = n;
std::string data_type = arg_parser.get_str("prec");
int kname = arg_parser.get_int("kname");
int do_validation = arg_parser.get_int("v");
int warmup = arg_parser.get_int("warmup");
int repeat = arg_parser.get_int("repeat");
assert(stride >= n);
using TypeConfig = SmoothquantTypeConfig<DataType>;
using XDataType = typename TypeConfig::XDataType;
using XScaleDataType = typename TypeConfig::XScaleDataType;
using YScaleDataType = typename TypeConfig::YScaleDataType;
using QYDataType = typename TypeConfig::QYDataType;
using ComputeDataType = typename TypeConfig::ComputeDataType;
// host verify
ck_tile::HostTensor<XDataType> x_host({m, n}, {stride, 1});
ck_tile::HostTensor<XScaleDataType> xscale_host({n});
ck_tile::HostTensor<YScaleDataType> yscale_host_ref({m}, {1});
ck_tile::HostTensor<YScaleDataType> yscale_host_dev({m}, {1});
ck_tile::HostTensor<QYDataType> qy_host_ref({m, n}, {stride, 1});
ck_tile::HostTensor<QYDataType> qy_host_dev({m, n}, {stride, 1});
ck_tile::FillUniformDistribution<XDataType>{-.5f, .5f}(x_host);
ck_tile::FillUniformDistribution<XScaleDataType>{1e-3, .5f}(xscale_host);
ck_tile::DeviceMem x_buf(x_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem xscale_buf(xscale_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem yscale_buf(yscale_host_dev.get_element_space_size_in_bytes());
ck_tile::DeviceMem qy_buf(qy_host_dev.get_element_space_size_in_bytes());
x_buf.ToDevice(x_host.data());
xscale_buf.ToDevice(xscale_host.data());
std::cout << "[" << data_type << "]"
<< " m:" << m << ", n:" << n << ", stride:" << stride << std::flush;
smoothquant_traits traits{data_type};
smoothquant_args args{x_buf.GetDeviceBuffer(),
xscale_buf.GetDeviceBuffer(),
yscale_buf.GetDeviceBuffer(),
qy_buf.GetDeviceBuffer(),
m,
n,
stride};
float ave_time = smoothquant(
traits, args, ck_tile::stream_config{nullptr, true, kname ? 1 : 0, warmup, repeat});
std::size_t num_byte = sizeof(XDataType) * m * n + sizeof(XScaleDataType) * n +
sizeof(YScaleDataType) * m + sizeof(QYDataType) * m * n;
float gb_per_sec = num_byte / 1.E6 / ave_time;
std::cout << ", " << ave_time * 1.E3 << " us, " << gb_per_sec << " GB/s" << std::flush;
bool pass = true;
if(do_validation)
{
using YDataType = ComputeDataType;
ck_tile::HostTensor<ComputeDataType> y_host({m, n}, {stride, 1});
// smooth outlier
{
auto f = [&](auto n_) {
auto v_xscale = ck_tile::type_convert<ComputeDataType>(xscale_host(n_));
for(int m_ = 0; m_ < m; ++m_)
{
auto v_x = ck_tile::type_convert<ComputeDataType>(x_host(m_, n_));
y_host(m_, n_) = v_x * v_xscale;
}
};
ck_tile::make_ParallelTensorFunctor(f, xscale_host.get_element_space_size())(
std::thread::hardware_concurrency());
}
// yscale
{
ck_tile::HostTensor<YDataType> y_rowwise_amax_host({m});
using ReduceAmax = ck_tile::ReduceOp::AbsMax;
ck_tile::reference_reduce<ComputeDataType, ComputeDataType, YDataType>(
y_host, y_rowwise_amax_host, ReduceAmax{});
auto op = [](const auto& v0) {
return v0 /
ck_tile::type_convert<ComputeDataType>(ck_tile::numeric<QYDataType>::max());
};
ck_tile::reference_unary_elementwise<YDataType, YScaleDataType, ComputeDataType>(
y_rowwise_amax_host, yscale_host_ref, op);
yscale_buf.FromDevice(yscale_host_dev.mData.data());
auto [rtol, atol] = get_elimit<YScaleDataType>();
pass &= ck_tile::check_err(yscale_host_dev,
yscale_host_ref,
std::string("yscale Error: Incorrect results!"),
rtol,
atol);
}
// rowwise quantization
{
ck_tile::reference_rowwise_quantization2d<YDataType, YScaleDataType, QYDataType>(
y_host, yscale_host_ref, qy_host_ref);
qy_buf.FromDevice(qy_host_dev.data());
auto [rtol, atol] = get_elimit<QYDataType>();
if(stride == n)
{
pass = ck_tile::check_err(qy_host_dev,
qy_host_ref,
std::string("qy Error: Incorrect results!"),
rtol,
atol);
}
else
{
for(int i_r = 0; i_r < m; i_r++)
{
std::vector<QYDataType> qy_host_dev_row(qy_host_dev.begin() + i_r * stride,
qy_host_dev.begin() + i_r * stride + n);
std::vector<QYDataType> qy_host_ref_row(qy_host_ref.begin() + i_r * stride,
qy_host_ref.begin() + i_r * stride + n);
pass &= ck_tile::check_err(qy_host_dev_row,
qy_host_ref_row,
std::string("qy[") + std::to_string(i_r) +
std::string("] Error: Incorrect results!"),
rtol,
atol);
}
}
}
std::cout << ", valid:" << (pass ? "y" : "n") << std::flush << std::endl;
}
return pass;
}
int main(int argc, char* argv[])
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
return -1;
const std::string data_type = arg_parser.get_str("prec");
if(data_type == "fp16")
{
return run<ck_tile::half_t>(arg_parser) ? 0 : -2;
}
else if(data_type == "bf16")
{
return run<ck_tile::bf16_t>(arg_parser) ? 0 : -2;
}
return -3;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host/kernel_launch.hpp"
#include "ck_tile/ops/smoothquant.hpp"
#include <string>
template <typename DataType>
struct SmoothquantTypeConfig;
template <>
struct SmoothquantTypeConfig<ck_tile::half_t>
{
using XDataType = ck_tile::half_t;
using XScaleDataType = float;
using YScaleDataType = float;
using QYDataType = ck_tile::int8_t;
using ComputeDataType = float;
};
template <>
struct SmoothquantTypeConfig<ck_tile::bf16_t>
{
using XDataType = ck_tile::bf16_t;
using XScaleDataType = float;
using YScaleDataType = float;
using QYDataType = ck_tile::int8_t;
using ComputeDataType = float;
};
// runtime args
struct smoothquant_args : public ck_tile::SmoothquantHostArgs
{
};
// this is used to pattern-match internl kernel implementation, not to instantiate kernel
template <typename DataType_,
ck_tile::index_t Repeat_M_, // each thread repeat along M
ck_tile::index_t Repeat_N_, // each thread repeat along N
ck_tile::index_t ThreadPerBlock_M_, // num threads along M
ck_tile::index_t ThreadPerBlock_N_, // num threads along N
ck_tile::index_t Vector_N_, // vector size along N
bool kPadN_,
bool kTwoPass_>
struct smoothquant_traits_
{
using DataType = ck_tile::remove_cvref_t<DataType_>;
static constexpr bool is_warp_per_row = ThreadPerBlock_N_ <= warpSize;
static_assert((ThreadPerBlock_M_ * ThreadPerBlock_N_) % warpSize == 0);
static constexpr ck_tile::index_t total_warps =
(ThreadPerBlock_M_ * ThreadPerBlock_N_) / warpSize;
// num of warps along m
static constexpr ck_tile::index_t BlockWarps_M = []() {
if constexpr(is_warp_per_row)
{
static_assert(warpSize % ThreadPerBlock_N_ == 0);
return total_warps * (warpSize / ThreadPerBlock_N_);
}
else
{
// static_assert(warpSize % ThreadPerBlock_M_ == 0);
return total_warps / (ThreadPerBlock_N_ / warpSize);
}
}();
// num of warps along n
static constexpr ck_tile::index_t BlockWarps_N = []() {
if constexpr(is_warp_per_row)
{
static_assert(warpSize % ThreadPerBlock_N_ == 0);
return 1;
}
else
{
static_assert(ThreadPerBlock_N_ % warpSize == 0);
return ThreadPerBlock_N_ / warpSize;
}
}();
static constexpr ck_tile::index_t Repeat_M = Repeat_M_;
static constexpr ck_tile::index_t Repeat_N = Repeat_N_;
static constexpr ck_tile::index_t Block_M = Repeat_M_ * ThreadPerBlock_M_;
static constexpr ck_tile::index_t Block_N = Repeat_N_ * ThreadPerBlock_N_ * Vector_N_;
static constexpr ck_tile::index_t Warp_M = ThreadPerBlock_M_ / BlockWarps_M;
static constexpr ck_tile::index_t Warp_N = ThreadPerBlock_N_ / BlockWarps_N * Vector_N_;
using BlockTile = ck_tile::sequence<Block_M, Block_N>;
using BlockWarps = ck_tile::sequence<BlockWarps_M, BlockWarps_N>;
using WarpTile = ck_tile::sequence<Warp_M, Warp_N>;
using Vector = ck_tile::sequence<1, Vector_N_>;
using Shape = ck_tile::Generic2dBlockShape<BlockTile, BlockWarps, WarpTile, Vector>;
static constexpr bool kPadN = kPadN_;
static constexpr bool kTwoPass = kTwoPass_;
};
template <typename Traits_>
float smoothquant_(const ck_tile::stream_config& s, smoothquant_args a);
// This is the public API, will be generated by script
struct smoothquant_traits
{
std::string data_type;
};
float smoothquant(smoothquant_traits, smoothquant_args, const ck_tile::stream_config&);
...@@ -11,4 +11,5 @@ add_subdirectory(06_permute) ...@@ -11,4 +11,5 @@ add_subdirectory(06_permute)
add_subdirectory(09_topk_softmax) add_subdirectory(09_topk_softmax)
add_subdirectory(10_rmsnorm2d) add_subdirectory(10_rmsnorm2d)
add_subdirectory(11_add_rmsnorm2d_rdquant) add_subdirectory(11_add_rmsnorm2d_rdquant)
add_subdirectory(12_moe_sorting) add_subdirectory(12_smoothquant)
add_subdirectory(13_moe_sorting)
...@@ -13,15 +13,17 @@ namespace ck { ...@@ -13,15 +13,17 @@ namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace element_wise { namespace element_wise {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wnon-virtual-dtor"
struct UnaryOpBase struct UnaryOpBase
{ {
public: public:
__host__ __device__ virtual ~UnaryOpBase() = default; __host__ __device__ ~UnaryOpBase() = default;
__host__ __device__ UnaryOpBase() = default; __host__ __device__ constexpr UnaryOpBase() = default;
__host__ __device__ UnaryOpBase(const UnaryOpBase&) = default; __host__ __device__ constexpr UnaryOpBase(const UnaryOpBase&) = default;
__host__ __device__ constexpr UnaryOpBase(UnaryOpBase&&) = default;
__host__ __device__ UnaryOpBase& operator=(const UnaryOpBase&) = default; __host__ __device__ UnaryOpBase& operator=(const UnaryOpBase&) = default;
__host__ __device__ UnaryOpBase(UnaryOpBase&&) = default;
__host__ __device__ UnaryOpBase& operator=(UnaryOpBase&&) = default; __host__ __device__ UnaryOpBase& operator=(UnaryOpBase&&) = default;
__host__ __device__ virtual inline void operator()(float& y, const float& x) const = 0; __host__ __device__ virtual inline void operator()(float& y, const float& x) const = 0;
...@@ -50,8 +52,14 @@ struct PassThroughPack2 ...@@ -50,8 +52,14 @@ struct PassThroughPack2
constexpr const static bool is_pack2_invocable = true; constexpr const static bool is_pack2_invocable = true;
}; };
struct PassThrough : public UnaryOpBase struct PassThrough final : public UnaryOpBase
{ {
__host__ __device__ constexpr PassThrough() = default;
__host__ __device__ constexpr PassThrough(const PassThrough&) = default;
__host__ __device__ constexpr PassThrough(PassThrough&&) = default;
__host__ __device__ PassThrough& operator=(const PassThrough&) = default;
__host__ __device__ PassThrough& operator=(PassThrough&&) = default;
__host__ __device__ ~PassThrough() = default;
__host__ __device__ inline void operator()(float& y, const float& x) const final { y = x; } __host__ __device__ inline void operator()(float& y, const float& x) const final { y = x; }
...@@ -409,8 +417,15 @@ struct UnarySquare ...@@ -409,8 +417,15 @@ struct UnarySquare
}; };
}; };
struct UnaryAbs : public UnaryOpBase struct UnaryAbs final : public UnaryOpBase
{ {
__host__ __device__ constexpr UnaryAbs() = default;
__host__ __device__ constexpr UnaryAbs(const UnaryAbs&) = default;
__host__ __device__ constexpr UnaryAbs(UnaryAbs&&) = default;
__host__ __device__ UnaryAbs& operator=(const UnaryAbs&) = default;
__host__ __device__ UnaryAbs& operator=(UnaryAbs&&) = default;
__host__ __device__ ~UnaryAbs() = default;
__host__ __device__ inline void operator()(float& y, const float& x) const final __host__ __device__ inline void operator()(float& y, const float& x) const final
{ {
y = ck::math::abs(x); y = ck::math::abs(x);
...@@ -459,8 +474,15 @@ struct UnarySqrt ...@@ -459,8 +474,15 @@ struct UnarySqrt
}; };
}; };
struct Relu : public UnaryOpBase struct Relu final : public UnaryOpBase
{ {
__host__ __device__ constexpr Relu() = default;
__host__ __device__ constexpr Relu(const Relu&) = default;
__host__ __device__ constexpr Relu(Relu&&) = default;
__host__ __device__ Relu& operator=(const Relu&) = default;
__host__ __device__ Relu& operator=(Relu&&) = default;
__host__ __device__ ~Relu() = default;
__host__ __device__ inline void operator()(float& y, const float& x) const final __host__ __device__ inline void operator()(float& y, const float& x) const final
{ {
y = x > 0 ? x : 0; y = x > 0 ? x : 0;
...@@ -633,8 +655,14 @@ struct Gelu ...@@ -633,8 +655,14 @@ struct Gelu
} }
}; };
struct Sigmoid : public UnaryOpBase struct Sigmoid final : public UnaryOpBase
{ {
__host__ __device__ constexpr Sigmoid() = default;
__host__ __device__ constexpr Sigmoid(const Sigmoid&) = default;
__host__ __device__ constexpr Sigmoid(Sigmoid&&) = default;
__host__ __device__ Sigmoid& operator=(const Sigmoid&) = default;
__host__ __device__ Sigmoid& operator=(Sigmoid&&) = default;
__host__ __device__ ~Sigmoid() = default;
__host__ __device__ inline void operator()(float& y, const float& x) const final __host__ __device__ inline void operator()(float& y, const float& x) const final
{ {
...@@ -688,8 +716,15 @@ struct Silu ...@@ -688,8 +716,15 @@ struct Silu
}; };
}; };
struct TanH : public UnaryOpBase struct TanH final : public UnaryOpBase
{ {
__host__ __device__ constexpr TanH() = default;
__host__ __device__ constexpr TanH(const TanH&) = default;
__host__ __device__ constexpr TanH(TanH&&) = default;
__host__ __device__ TanH& operator=(const TanH&) = default;
__host__ __device__ TanH& operator=(TanH&&) = default;
__host__ __device__ ~TanH() = default;
__host__ __device__ inline void operator()(float& y, const float& x) const final __host__ __device__ inline void operator()(float& y, const float& x) const final
{ {
y = ck::math::tanh(x); y = ck::math::tanh(x);
...@@ -959,8 +994,12 @@ struct Rcp ...@@ -959,8 +994,12 @@ struct Rcp
}; };
}; };
struct Swish : public UnaryOpBase struct Swish final : public UnaryOpBase
{ {
__host__ __device__ constexpr Swish(const Swish&) = default;
__host__ __device__ constexpr Swish(Swish&&) = default;
__host__ __device__ ~Swish() = default;
__host__ __device__ Swish(float beta = 1.0f) : beta_(beta) {} __host__ __device__ Swish(float beta = 1.0f) : beta_(beta) {}
__host__ __device__ float get_beta() const { return beta_; } __host__ __device__ float get_beta() const { return beta_; }
...@@ -1019,8 +1058,12 @@ struct Swish : public UnaryOpBase ...@@ -1019,8 +1058,12 @@ struct Swish : public UnaryOpBase
} }
}; };
struct SoftRelu : public UnaryOpBase struct SoftRelu final : public UnaryOpBase
{ {
__host__ __device__ constexpr SoftRelu(const SoftRelu&) = default;
__host__ __device__ constexpr SoftRelu(SoftRelu&&) = default;
__host__ __device__ ~SoftRelu() = default;
__host__ __device__ SoftRelu(float alpha = 1.0f) : alpha_(alpha) {} __host__ __device__ SoftRelu(float alpha = 1.0f) : alpha_(alpha) {}
__host__ __device__ float get_alpha() const { return alpha_; } __host__ __device__ float get_alpha() const { return alpha_; }
...@@ -1070,8 +1113,12 @@ struct SoftRelu : public UnaryOpBase ...@@ -1070,8 +1113,12 @@ struct SoftRelu : public UnaryOpBase
} }
}; };
struct Power : public UnaryOpBase struct Power final : public UnaryOpBase
{ {
__host__ __device__ constexpr Power(const Power&) = default;
__host__ __device__ constexpr Power(Power&&) = default;
__host__ __device__ ~Power() = default;
__host__ __device__ Power(float alpha = 0.f, float beta = 1.f, float gamma = 2.f) __host__ __device__ Power(float alpha = 0.f, float beta = 1.f, float gamma = 2.f)
: alpha_(alpha), beta_(beta), gamma_(gamma) : alpha_(alpha), beta_(beta), gamma_(gamma)
{ {
...@@ -1148,8 +1195,12 @@ struct Power : public UnaryOpBase ...@@ -1148,8 +1195,12 @@ struct Power : public UnaryOpBase
} }
}; };
struct ClippedRelu : public UnaryOpBase struct ClippedRelu final : public UnaryOpBase
{ {
__host__ __device__ constexpr ClippedRelu(const ClippedRelu&) = default;
__host__ __device__ constexpr ClippedRelu(ClippedRelu&&) = default;
__host__ __device__ ~ClippedRelu() = default;
__host__ __device__ ClippedRelu(float alpha = 0.f, float beta = 1.f) __host__ __device__ ClippedRelu(float alpha = 0.f, float beta = 1.f)
: alpha_(alpha), beta_(beta) : alpha_(alpha), beta_(beta)
{ {
...@@ -1205,8 +1256,11 @@ struct ClippedRelu : public UnaryOpBase ...@@ -1205,8 +1256,11 @@ struct ClippedRelu : public UnaryOpBase
} }
}; };
struct LeakyRelu : public UnaryOpBase struct LeakyRelu final : public UnaryOpBase
{ {
__host__ __device__ constexpr LeakyRelu(const LeakyRelu&) = default;
__host__ __device__ constexpr LeakyRelu(LeakyRelu&&) = default;
__host__ __device__ ~LeakyRelu() = default;
__host__ __device__ LeakyRelu(float alpha = 0.f) : alpha_(alpha) {} __host__ __device__ LeakyRelu(float alpha = 0.f) : alpha_(alpha) {}
...@@ -1250,8 +1304,11 @@ struct LeakyRelu : public UnaryOpBase ...@@ -1250,8 +1304,11 @@ struct LeakyRelu : public UnaryOpBase
} }
}; };
struct Elu : public UnaryOpBase struct Elu final : public UnaryOpBase
{ {
__host__ __device__ constexpr Elu(const Elu&) = default;
__host__ __device__ constexpr Elu(Elu&&) = default;
__host__ __device__ ~Elu() = default;
__host__ __device__ Elu(float alpha = 1.f) : alpha_(alpha) {} __host__ __device__ Elu(float alpha = 1.f) : alpha_(alpha) {}
...@@ -1296,8 +1353,11 @@ struct Elu : public UnaryOpBase ...@@ -1296,8 +1353,11 @@ struct Elu : public UnaryOpBase
} }
}; };
struct Logistic : public UnaryOpBase struct Logistic final : public UnaryOpBase
{ {
__host__ __device__ constexpr Logistic(const Logistic&) = default;
__host__ __device__ constexpr Logistic(Logistic&&) = default;
__host__ __device__ ~Logistic() = default;
__host__ __device__ Logistic(float alpha = 1.0f) : alpha_(alpha) {} __host__ __device__ Logistic(float alpha = 1.0f) : alpha_(alpha) {}
...@@ -1631,8 +1691,23 @@ struct DynamicUnaryOp ...@@ -1631,8 +1691,23 @@ struct DynamicUnaryOp
__host__ __device__ ~DynamicUnaryOp() __host__ __device__ ~DynamicUnaryOp()
{ {
if(unary_op_ptr_) switch(unary_op_type_)
delete unary_op_ptr_; {
case(UnaryOpType::Swish): delete static_cast<Swish*>(unary_op_ptr_); break;
case(UnaryOpType::Sigmoid): delete static_cast<Sigmoid*>(unary_op_ptr_); break;
case(UnaryOpType::PassThrough): delete static_cast<PassThrough*>(unary_op_ptr_); break;
case(UnaryOpType::Logistic): delete static_cast<Logistic*>(unary_op_ptr_); break;
case(UnaryOpType::TanH): delete static_cast<TanH*>(unary_op_ptr_); break;
case(UnaryOpType::Relu): delete static_cast<Relu*>(unary_op_ptr_); break;
case(UnaryOpType::SoftRelu): delete static_cast<SoftRelu*>(unary_op_ptr_); break;
case(UnaryOpType::UnaryAbs): delete static_cast<UnaryAbs*>(unary_op_ptr_); break;
case(UnaryOpType::Power): delete static_cast<Power*>(unary_op_ptr_); break;
case(UnaryOpType::ClippedRelu): delete static_cast<ClippedRelu*>(unary_op_ptr_); break;
case(UnaryOpType::LeakyRelu): delete static_cast<LeakyRelu*>(unary_op_ptr_); break;
case(UnaryOpType::Elu): delete static_cast<Elu*>(unary_op_ptr_); break;
default: break;
}
} }
__device__ void InitUnaryOpPtrOnDevice() __device__ void InitUnaryOpPtrOnDevice()
...@@ -1721,6 +1796,7 @@ struct DynamicUnaryOp ...@@ -1721,6 +1796,7 @@ struct DynamicUnaryOp
float beta; float beta;
float gamma; float gamma;
}; };
#pragma clang diagnostic pop
} // namespace element_wise } // namespace element_wise
} // namespace tensor_operation } // namespace tensor_operation
......
...@@ -25,6 +25,7 @@ ...@@ -25,6 +25,7 @@
#include "ck_tile/core/numeric/bfloat16.hpp" #include "ck_tile/core/numeric/bfloat16.hpp"
#include "ck_tile/core/numeric/float8.hpp" #include "ck_tile/core/numeric/float8.hpp"
#include "ck_tile/core/numeric/half.hpp" #include "ck_tile/core/numeric/half.hpp"
#include "ck_tile/core/numeric/int8.hpp"
#include "ck_tile/core/numeric/integer.hpp" #include "ck_tile/core/numeric/integer.hpp"
#include "ck_tile/core/numeric/integral_constant.hpp" #include "ck_tile/core/numeric/integral_constant.hpp"
#include "ck_tile/core/numeric/math.hpp" #include "ck_tile/core/numeric/math.hpp"
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck_tile/core/config.hpp"
#include "ck_tile/core/numeric/half.hpp"
#include "ck_tile/core/numeric/integral_constant.hpp"
#include "ck_tile/core/numeric/math.hpp"
#include "ck_tile/core/numeric/numeric.hpp"
#include "ck_tile/core/utility/bit_cast.hpp"
#include "ck_tile/core/utility/random.hpp"
#include <stdint.h>
#include <type_traits>
#pragma once
namespace ck_tile {
// use int8_t directly for int8 arithemetic
// here one can use ck_tile::int8_t to access original int8_t
using int8_t = int8_t;
// limits
template <class T>
struct numeric;
template <>
struct numeric<int8_t>
{
// minimum finite value, or minimum positive normalized value for float
CK_TILE_HOST_DEVICE static constexpr int8_t min() { return int8_t(-128); }
// minumum finite value
CK_TILE_HOST_DEVICE static constexpr int8_t lowest() { return int8_t(-128); }
// maximum finite value
CK_TILE_HOST_DEVICE static constexpr int8_t max() { return int8_t(127); }
// difference between 1.0 and next value representable by float
CK_TILE_HOST_DEVICE static constexpr int8_t epsilon()
{
return 1; // not used
}
CK_TILE_HOST_DEVICE static constexpr int8_t round_error()
{
return 1; // not used
}
// positive infinity value
CK_TILE_HOST_DEVICE static constexpr int8_t infinity()
{
return 1; // not used
}
// quiet NaN
CK_TILE_HOST_DEVICE static constexpr int8_t quiet_NaN()
{
return 1; // not used
}
// signaling NaN
CK_TILE_HOST_DEVICE static constexpr int8_t signaling_NaN()
{
return 1; // not used
}
// smallest positive subnormal value
CK_TILE_HOST_DEVICE static constexpr int8_t denorm_min()
{
return 1; // not used
}
CK_TILE_HOST_DEVICE static constexpr int8_t zero() { return 0; }
};
#if 0
template <typename T>
struct numeric_traits;
template <>
struct numeric_traits<int8_t>
{
static constexpr int exp = 5;
static constexpr int mant = 10;
static constexpr int bias = 15;
static constexpr uint16_t nan_mask = 0x7C00;
static constexpr uint16_t head_mask = 0xFC00;
static constexpr uint16_t mant_mask = 0x3FF;
static constexpr uint16_t exp_mask = 0x1F;
static constexpr uint32_t Inf = 0x7C00;
static constexpr uint32_t NegInf = 0xFC00;
static constexpr uint32_t NaN = 0x7C01;
static constexpr uint32_t Neg0 = 0x8000;
using bitwise_type = uint16_t;
};
#endif
CK_TILE_HOST_DEVICE
constexpr float int8_to_float(const int8_t& x) { return static_cast<float>(x); }
CK_TILE_HOST_DEVICE
constexpr int8_t float_to_int8(const float& x) { return static_cast<int8_t>(x); }
} // namespace ck_tile
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment