Commit e70a4d19 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'amd-develop' into amd-master

parents ce72f286 0dacd895
......@@ -16,8 +16,8 @@ set(PROFILER_SOURCES
profile_grouped_conv_fwd.cpp
profile_grouped_conv_bwd_weight.cpp
profile_reduce.cpp
profile_groupnorm.cpp
profile_layernorm.cpp
profile_groupnorm_fwd.cpp
profile_layernorm_fwd.cpp
profile_max_pool3d_fwd.cpp
profile_avg_pool3d_bwd.cpp
profile_max_pool3d_bwd.cpp
......@@ -28,9 +28,11 @@ set(PROFILER_SOURCES
profile_grouped_conv_bwd_data.cpp
profile_conv_tensor_rearrange.cpp
)
if(DL_KERNELS)
list(APPEND PROFILER_SOURCES profile_batched_gemm_multi_d.cpp)
endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_batched_gemm_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_fastgelu.cpp)
......@@ -75,7 +77,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_w
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance)
......@@ -110,4 +112,5 @@ if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fastgelu_instance)
endif()
rocm_install(TARGETS ${PROFILER_EXECUTABLE} COMPONENT profiler)
......@@ -17,8 +17,9 @@
static void print_helper_msg()
{
std::cout << "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: fp32; 1: f64)\n"
<< "arg3: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
<< "arg2: data type (0: fp32; 1: f64; 2: f16; 3: bf16)\n"
<< "arg3: compute data type (0: fp32; 1: f64; 2: f16; 3: bf16)\n"
<< "arg4: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];\n"
<< " 1: A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];\n"
......@@ -26,40 +27,42 @@ static void print_helper_msg()
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];\n"
<< " 3: A[k0, k1, m0, m1] * B[n0, n1, k0, k1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1])\n"
<< "arg4: verification (0: no; 1: yes)\n"
<< "arg5: initialization (0: no init; 1: integer value; 2: decimal "
<< "arg5: verification (0: no; 1: yes)\n"
<< "arg6: initialization (0: no init; 1: integer value; 2: decimal "
<< "value)\n"
<< "arg6: print tensor value (0: no; 1: yes)\n"
<< "arg7: time kernel (0: no, 1: yes)\n"
<< "arg8 and arg9: alpha and beta\n"
<< "arg10 to 15: M0, M1, N0, N1, K0, K1\n"
<< "arg16 to 31: Strides for A, B, D and E (skip for default)\n"
<< "arg7: print tensor value (0: no; 1: yes)\n"
<< "arg8: time kernel (0: no, 1: yes)\n"
<< "arg9: alpha\n"
<< "arg10: beta\n"
<< "arg11 to 16: M0, M1, N0, N1, K0, K1\n"
<< "arg17 to 32: Strides for A, B, D and E (skip for default)\n"
<< std::endl;
}
int profile_contraction_bilinear(int argc, char* argv[])
{
const bool default_strides = argc == 16;
const bool default_strides = argc == 17;
if(argc != 32 && argc != 16)
if(argc != 33 && argc != 17)
{
print_helper_msg();
exit(1);
}
const auto data_type = static_cast<ContractionDataType>(std::stoi(argv[2]));
const auto layout = static_cast<ContractionMatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const ck::index_t init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const bool time_kernel = std::stoi(argv[7]);
const float alpha = std::stof(argv[8]);
const float beta = std::stof(argv[9]);
const auto compute_data_type = static_cast<ContractionComputeDataType>(std::stoi(argv[3]));
const auto layout = static_cast<ContractionMatrixLayout>(std::stoi(argv[4]));
const bool do_verification = std::stoi(argv[5]);
const ck::index_t init_method = std::stoi(argv[6]);
const bool do_log = std::stoi(argv[7]);
const bool time_kernel = std::stoi(argv[8]);
const float alpha = std::stof(argv[9]);
const float beta = std::stof(argv[10]);
std::vector<ck::index_t> M;
std::vector<ck::index_t> N;
std::vector<ck::index_t> K;
const ck::index_t dims_arg_num = 10;
const ck::index_t dims_arg_num = 11;
collect_index_params(argv, M, dims_arg_num, 2);
collect_index_params(argv, N, dims_arg_num + 2, 2);
collect_index_params(argv, K, dims_arg_num + 4, 2);
......@@ -76,90 +79,130 @@ int profile_contraction_bilinear(int argc, char* argv[])
collect_index_params(argv, StridesD, dims_arg_num + 18, 4);
}
using F32 = float;
using F64 = double;
auto profile = [&](auto a_layout, auto b_layout, auto cde_layout, auto type) {
using ALayout = decltype(a_layout);
using BLayout = decltype(b_layout);
using CDELayout = decltype(cde_layout);
using DataType = decltype(type);
if(default_strides)
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using F64 = double;
auto profile =
[&](auto a_layout, auto b_layout, auto cde_layout, auto type, auto compute_type) {
using ALayout = decltype(a_layout);
using BLayout = decltype(b_layout);
using CDELayout = decltype(cde_layout);
using DataType = decltype(type);
using ComputeDataType = decltype(compute_type);
if(default_strides)
{
assign_default_strides(a_layout, StridesA, {M[0], M[1], K[0], K[1]});
assign_default_strides(b_layout, StridesB, {N[0], N[1], K[0], K[1]});
assign_default_strides(cde_layout, StridesE, {M[0], M[1], N[0], N[1]});
assign_default_strides(cde_layout, StridesD, {M[0], M[1], N[0], N[1]});
}
bool pass = ck::profiler::profile_contraction_impl<ALayout,
BLayout,
CDELayout,
DataType,
ComputeDataType,
ck::Tuple<DataType>,
Bilinear>(do_verification,
init_method,
do_log,
time_kernel,
Bilinear{alpha, beta},
M,
N,
K,
StridesA,
StridesB,
StridesE,
StridesD);
return pass;
};
auto run_profile_for_datatype = [&](auto type, auto compute_type) {
if(layout == ContractionMatrixLayout::MK_KN_MN_MN)
{
assign_default_strides(a_layout, StridesA, {M[0], M[1], K[0], K[1]});
assign_default_strides(b_layout, StridesB, {K[0], K[1], N[0], N[1]});
assign_default_strides(cde_layout, StridesE, {M[0], M[1], N[0], N[1]});
assign_default_strides(cde_layout, StridesD, {M[0], M[1], N[0], N[1]});
return profile(Row{}, Row{}, Row{}, type, compute_type);
}
bool pass = ck::profiler::profile_contraction_impl<ALayout,
BLayout,
CDELayout,
DataType,
ck::Tuple<DataType>,
Bilinear>(do_verification,
init_method,
do_log,
time_kernel,
Bilinear{alpha, beta},
M,
N,
K,
StridesA,
StridesB,
StridesE,
StridesD);
return pass;
else if(layout == ContractionMatrixLayout::MK_NK_MN_MN)
{
return profile(Row{}, Col{}, Row{}, type, compute_type);
}
else if(layout == ContractionMatrixLayout::KM_KN_MN_MN)
{
return profile(Col{}, Row{}, Row{}, type, compute_type);
}
else if(layout == ContractionMatrixLayout::KM_NK_MN_MN)
{
return profile(Col{}, Col{}, Row{}, type, compute_type);
}
return false;
};
if(data_type == ContractionDataType::F32_F32_F32_F32 &&
layout == ContractionMatrixLayout::MK_KN_MN_MN)
{
return profile(Row{}, Row{}, Row{}, F32{});
}
else if(data_type == ContractionDataType::F32_F32_F32_F32 &&
layout == ContractionMatrixLayout::MK_NK_MN_MN)
if(data_type == ContractionDataType::F32_F32_F32_F32)
{
return profile(Row{}, Col{}, Row{}, F32{});
}
else if(data_type == ContractionDataType::F32_F32_F32_F32 &&
layout == ContractionMatrixLayout::KM_KN_MN_MN)
{
return profile(Col{}, Row{}, Row{}, F32{});
}
else if(data_type == ContractionDataType::F32_F32_F32_F32 &&
layout == ContractionMatrixLayout::KM_NK_MN_MN)
{
return profile(Col{}, Col{}, Row{}, F32{});
}
else if(data_type == ContractionDataType::F64_F64_F64_F64 &&
layout == ContractionMatrixLayout::MK_KN_MN_MN)
{
return profile(Row{}, Row{}, Row{}, F64{});
}
else if(data_type == ContractionDataType::F64_F64_F64_F64 &&
layout == ContractionMatrixLayout::MK_NK_MN_MN)
{
return profile(Row{}, Col{}, Row{}, F64{});
if(compute_data_type == ContractionComputeDataType::F32)
{
return run_profile_for_datatype(F32{}, F32{});
}
else if(compute_data_type == ContractionComputeDataType::F16)
{
return run_profile_for_datatype(F32{}, F16{});
}
else if(compute_data_type == ContractionComputeDataType::BF16)
{
return run_profile_for_datatype(F32{}, BF16{});
}
else
{
std::cout << "Incorrect combination of data type and compute data type." << std::endl;
return 1;
}
}
else if(data_type == ContractionDataType::F64_F64_F64_F64 &&
layout == ContractionMatrixLayout::KM_KN_MN_MN)
else if(data_type == ContractionDataType::F64_F64_F64_F64)
{
return profile(Col{}, Row{}, Row{}, F64{});
if(compute_data_type == ContractionComputeDataType::F64)
{
return run_profile_for_datatype(F64{}, F64{});
}
else if(compute_data_type == ContractionComputeDataType::F32)
{
return run_profile_for_datatype(F64{}, F32{});
}
else
{
std::cout << "Incorrect combination of data type and compute data type." << std::endl;
return 1;
}
}
else if(data_type == ContractionDataType::F64_F64_F64_F64 &&
layout == ContractionMatrixLayout::KM_NK_MN_MN)
else if(data_type == ContractionDataType::F16_F16_F16_F16)
{
return profile(Col{}, Col{}, Row{}, F64{});
if(compute_data_type == ContractionComputeDataType::F32)
{
return run_profile_for_datatype(F16{}, F32{});
}
else
{
std::cout << "Incorrect combination of data type and compute data type." << std::endl;
return 1;
}
}
else
else if(data_type == ContractionDataType::BF16_BF16_BF16_BF16)
{
std::cout << "this data_type & layout is not implemented" << std::endl;
return 1;
if(compute_data_type == ContractionComputeDataType::F32)
{
return run_profile_for_datatype(BF16{}, F32{});
}
else
{
std::cout << "Incorrect combination of data type and compute data type." << std::endl;
return 1;
}
}
return 1;
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_contraction_bilinear);
......@@ -17,8 +17,9 @@
static void print_helper_msg()
{
std::cout << "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: fp32; 1: f64)\n"
<< "arg3: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
<< "arg2: data type (0: fp32; 1: f64; 2: f16; 3: bf16)\n"
<< "arg3: compute data type (0: fp32; 1: f64; 2: f16; 3: bf16)\n"
<< "arg4: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];\n"
<< " 1: A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];\n"
......@@ -26,39 +27,40 @@ static void print_helper_msg()
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];\n"
<< " 3: A[k0, k1, m0, m1] * B[n0, n1, k0, k1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1])\n"
<< "arg4: verification (0: no; 1: yes)\n"
<< "arg5: initialization (0: no init; 1: integer value; 2: decimal "
<< "arg5: verification (0: no; 1: yes)\n"
<< "arg6: initialization (0: no init; 1: integer value; 2: decimal "
<< "value)\n"
<< "arg6: print tensor value (0: no; 1: yes)\n"
<< "arg7: time kernel (0: no, 1: yes)\n"
<< "arg8: alpha\n"
<< "arg9 to 14: M0, M1, N0, N1, K0, K1\n"
<< "arg15 to 30: Strides for A, B, D and E (skip for default)\n"
<< "arg7: print tensor value (0: no; 1: yes)\n"
<< "arg8: time kernel (0: no, 1: yes)\n"
<< "arg9: alpha\n"
<< "arg10 to 15: M0, M1, N0, N1, K0, K1\n"
<< "arg16 to 31: Strides for A, B, D and E (skip for default)\n"
<< std::endl;
}
int profile_contraction_scale(int argc, char* argv[])
{
const bool default_strides = argc == 15;
const bool default_strides = argc == 16;
if(argc != 31 && argc != 15)
if(argc != 32 && argc != 16)
{
print_helper_msg();
exit(1);
}
const auto data_type = static_cast<ContractionDataType>(std::stoi(argv[2]));
const auto layout = static_cast<ContractionMatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const ck::index_t init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const bool time_kernel = std::stoi(argv[7]);
const float alpha = std::stof(argv[8]);
const auto compute_data_type = static_cast<ContractionComputeDataType>(std::stoi(argv[3]));
const auto layout = static_cast<ContractionMatrixLayout>(std::stoi(argv[4]));
const bool do_verification = std::stoi(argv[5]);
const ck::index_t init_method = std::stoi(argv[6]);
const bool do_log = std::stoi(argv[7]);
const bool time_kernel = std::stoi(argv[8]);
const float alpha = std::stof(argv[9]);
std::vector<ck::index_t> M;
std::vector<ck::index_t> N;
std::vector<ck::index_t> K;
const ck::index_t dims_arg_num = 9;
const ck::index_t dims_arg_num = 10;
collect_index_params(argv, M, dims_arg_num, 2);
collect_index_params(argv, N, dims_arg_num + 2, 2);
collect_index_params(argv, K, dims_arg_num + 4, 2);
......@@ -75,88 +77,131 @@ int profile_contraction_scale(int argc, char* argv[])
collect_index_params(argv, StridesD, dims_arg_num + 18, 4);
}
using F32 = float;
using F64 = double;
auto profile = [&](auto a_layout, auto b_layout, auto cde_layout, auto type) {
using ALayout = decltype(a_layout);
using BLayout = decltype(b_layout);
using CDELayout = decltype(cde_layout);
using DataType = decltype(type);
if(default_strides)
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using F64 = double;
auto profile =
[&](auto a_layout, auto b_layout, auto cde_layout, auto type, auto compute_type) {
using ALayout = decltype(a_layout);
using BLayout = decltype(b_layout);
using CDELayout = decltype(cde_layout);
using DataType = decltype(type);
using ComputeDataType = decltype(compute_type);
if(default_strides)
{
assign_default_strides(a_layout, StridesA, {M[0], M[1], K[0], K[1]});
assign_default_strides(b_layout, StridesB, {N[0], N[1], K[0], K[1]});
assign_default_strides(cde_layout, StridesE, {M[0], M[1], N[0], N[1]});
assign_default_strides(cde_layout, StridesD, {M[0], M[1], N[0], N[1]});
}
bool pass = ck::profiler::profile_contraction_impl<ALayout,
BLayout,
CDELayout,
DataType,
ComputeDataType,
ck::Tuple<>,
Scale>(do_verification,
init_method,
do_log,
time_kernel,
Scale{alpha},
M,
N,
K,
StridesA,
StridesB,
StridesE,
StridesD);
return pass;
};
auto run_profile_for_datatype = [&](auto type, auto compute_type) {
if(layout == ContractionMatrixLayout::MK_KN_MN_MN)
{
assign_default_strides(a_layout, StridesA, {M[0], M[1], K[0], K[1]});
assign_default_strides(b_layout, StridesB, {K[0], K[1], N[0], N[1]});
assign_default_strides(cde_layout, StridesE, {M[0], M[1], N[0], N[1]});
assign_default_strides(cde_layout, StridesD, {M[0], M[1], N[0], N[1]});
return profile(Row{}, Row{}, Row{}, type, compute_type);
}
bool pass = ck::profiler::
profile_contraction_impl<ALayout, BLayout, CDELayout, DataType, ck::Tuple<>, Scale>(
do_verification,
init_method,
do_log,
time_kernel,
Scale{alpha},
M,
N,
K,
StridesA,
StridesB,
StridesE,
StridesD);
return pass;
else if(layout == ContractionMatrixLayout::MK_NK_MN_MN)
{
return profile(Row{}, Col{}, Row{}, type, compute_type);
}
else if(layout == ContractionMatrixLayout::KM_KN_MN_MN)
{
return profile(Col{}, Row{}, Row{}, type, compute_type);
}
else if(layout == ContractionMatrixLayout::KM_NK_MN_MN)
{
return profile(Col{}, Col{}, Row{}, type, compute_type);
}
return false;
};
if(data_type == ContractionDataType::F32_F32_F32_F32 &&
layout == ContractionMatrixLayout::MK_KN_MN_MN)
{
return profile(Row{}, Row{}, Row{}, F32{});
}
else if(data_type == ContractionDataType::F32_F32_F32_F32 &&
layout == ContractionMatrixLayout::MK_NK_MN_MN)
{
return profile(Row{}, Col{}, Row{}, F32{});
}
else if(data_type == ContractionDataType::F32_F32_F32_F32 &&
layout == ContractionMatrixLayout::KM_KN_MN_MN)
if(data_type == ContractionDataType::F32_F32_F32_F32)
{
return profile(Col{}, Row{}, Row{}, F32{});
}
else if(data_type == ContractionDataType::F32_F32_F32_F32 &&
layout == ContractionMatrixLayout::KM_NK_MN_MN)
{
return profile(Col{}, Col{}, Row{}, F32{});
}
else if(data_type == ContractionDataType::F64_F64_F64_F64 &&
layout == ContractionMatrixLayout::MK_KN_MN_MN)
{
return profile(Row{}, Row{}, Row{}, F64{});
}
else if(data_type == ContractionDataType::F64_F64_F64_F64 &&
layout == ContractionMatrixLayout::MK_NK_MN_MN)
{
return profile(Row{}, Col{}, Row{}, F64{});
if(compute_data_type == ContractionComputeDataType::F32)
{
return run_profile_for_datatype(F32{}, F32{});
}
else if(compute_data_type == ContractionComputeDataType::F16)
{
return run_profile_for_datatype(F32{}, F16{});
}
else if(compute_data_type == ContractionComputeDataType::BF16)
{
return run_profile_for_datatype(F32{}, BF16{});
}
else
{
std::cout << "Incorrect combination of data type and compute data type." << std::endl;
return 1;
}
}
else if(data_type == ContractionDataType::F64_F64_F64_F64 &&
layout == ContractionMatrixLayout::KM_KN_MN_MN)
else if(data_type == ContractionDataType::F64_F64_F64_F64)
{
return profile(Col{}, Row{}, Row{}, F64{});
if(compute_data_type == ContractionComputeDataType::F64)
{
return run_profile_for_datatype(F64{}, F64{});
}
else if(compute_data_type == ContractionComputeDataType::F32)
{
return run_profile_for_datatype(F64{}, F32{});
}
else
{
std::cout << "Incorrect combination of data type and compute data type." << std::endl;
return 1;
}
}
else if(data_type == ContractionDataType::F64_F64_F64_F64 &&
layout == ContractionMatrixLayout::KM_NK_MN_MN)
else if(data_type == ContractionDataType::F16_F16_F16_F16)
{
return profile(Col{}, Col{}, Row{}, F64{});
if(compute_data_type == ContractionComputeDataType::F32)
{
return run_profile_for_datatype(F16{}, F32{});
}
else
{
std::cout << "Incorrect combination of data type and compute data type." << std::endl;
return 1;
}
}
else
else if(data_type == ContractionDataType::BF16_BF16_BF16_BF16)
{
std::cout << "this data_type & layout is not implemented" << std::endl;
return 1;
if(compute_data_type == ContractionComputeDataType::F32)
{
return run_profile_for_datatype(BF16{}, F32{});
}
else
{
std::cout << "Incorrect combination of data type and compute data type." << std::endl;
return 1;
}
}
return 1;
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_contraction_scale);
......@@ -19,7 +19,8 @@ enum struct RearrangeOp
enum struct ConvLayout
{
NHWC, // 0
GNHWC, // 0
NHWGC, // 1
};
enum struct DataType
......@@ -42,7 +43,8 @@ static void print_helper_msg()
<< " 1: Input fp16, Weight fp16, Output fp16\n"
<< " 2: Input bf16, Weight bf16, Output bf16\n"
<< " 3: Input int8, Weight int8, Output int8)\n"
<< "arg3: tensor layout (0: Input[N, Hi, Wi, C], Output[N * Ho * Wo, Y * X * C])\n"
<< "arg3: tensor layout (0: Input[G, N, Hi, Wi, C], Output[G * N * Ho * Wo, Y * X * C],\n"
<< " 1: Input[N, Hi, Wi, G, C], Output[N * Ho * Wo * G, Y * X * C])\n"
<< "arg4: verification (0: no, 1: yes)\n"
<< "arg5: initialization (0: no init, 1: integer value, 2: decimal value)\n"
<< "arg6: print tensor value (0: no; 1: yes)\n"
......@@ -114,11 +116,9 @@ int profile_conv_tensor_rearrange(int argc, char* argv[])
return pass ? 0 : 1;
};
// Image To Column
if(rearrange_op == RearrangeOp::ImageToColumn)
{
// NHWC
if(layout == ConvLayout::NHWC)
if(layout == ConvLayout::GNHWC)
{
if(num_dim_spatial == 1)
{
......@@ -178,11 +178,70 @@ int profile_conv_tensor_rearrange(int argc, char* argv[])
}
}
}
else if(layout == ConvLayout::NHWGC)
{
if(num_dim_spatial == 1)
{
if(data_type == DataType::F32_F32)
{
return profile(I1, NWGC{}, F32{}, F32{}, ImageToColumn{});
}
else if(data_type == DataType::F16_F16)
{
return profile(I1, NWGC{}, F16{}, F16{}, ImageToColumn{});
}
else if(data_type == DataType::BF16_BF16)
{
return profile(I1, NWGC{}, BF16{}, BF16{}, ImageToColumn{});
}
else if(data_type == DataType::INT8_INT8)
{
return profile(I1, NWGC{}, INT8{}, INT8{}, ImageToColumn{});
}
}
else if(num_dim_spatial == 2)
{
if(data_type == DataType::F32_F32)
{
return profile(I2, NHWGC{}, F32{}, F32{}, ImageToColumn{});
}
else if(data_type == DataType::F16_F16)
{
return profile(I2, NHWGC{}, F16{}, F16{}, ImageToColumn{});
}
else if(data_type == DataType::BF16_BF16)
{
return profile(I2, NHWGC{}, BF16{}, BF16{}, ImageToColumn{});
}
else if(data_type == DataType::INT8_INT8)
{
return profile(I2, NHWGC{}, INT8{}, INT8{}, ImageToColumn{});
}
}
else if(num_dim_spatial == 3)
{
if(data_type == DataType::F32_F32)
{
return profile(I3, NDHWGC{}, F32{}, F32{}, ImageToColumn{});
}
else if(data_type == DataType::F16_F16)
{
return profile(I3, NDHWGC{}, F16{}, F16{}, ImageToColumn{});
}
else if(data_type == DataType::BF16_BF16)
{
return profile(I3, NDHWGC{}, BF16{}, BF16{}, ImageToColumn{});
}
else if(data_type == DataType::INT8_INT8)
{
return profile(I3, NDHWGC{}, INT8{}, INT8{}, ImageToColumn{});
}
}
}
}
else if(rearrange_op == RearrangeOp::ColumnToImage)
{
// NHWC
if(layout == ConvLayout::NHWC)
if(layout == ConvLayout::GNHWC)
{
if(num_dim_spatial == 1)
{
......@@ -242,6 +301,66 @@ int profile_conv_tensor_rearrange(int argc, char* argv[])
}
}
}
else if(layout == ConvLayout::NHWGC)
{
if(num_dim_spatial == 1)
{
if(data_type == DataType::F32_F32)
{
return profile(I1, NWGC{}, F32{}, F32{}, ColumnToImage{});
}
else if(data_type == DataType::F16_F16)
{
return profile(I1, NWGC{}, F16{}, F16{}, ColumnToImage{});
}
else if(data_type == DataType::BF16_BF16)
{
return profile(I1, NWGC{}, BF16{}, BF16{}, ColumnToImage{});
}
else if(data_type == DataType::INT8_INT8)
{
return profile(I1, NWGC{}, INT8{}, INT8{}, ColumnToImage{});
}
}
else if(num_dim_spatial == 2)
{
if(data_type == DataType::F32_F32)
{
return profile(I2, NHWGC{}, F32{}, F32{}, ColumnToImage{});
}
else if(data_type == DataType::F16_F16)
{
return profile(I2, NHWGC{}, F16{}, F16{}, ColumnToImage{});
}
else if(data_type == DataType::BF16_BF16)
{
return profile(I2, NHWGC{}, BF16{}, BF16{}, ColumnToImage{});
}
else if(data_type == DataType::INT8_INT8)
{
return profile(I2, NHWGC{}, INT8{}, INT8{}, ColumnToImage{});
}
}
else if(num_dim_spatial == 3)
{
if(data_type == DataType::F32_F32)
{
return profile(I3, NDHWGC{}, F32{}, F32{}, ColumnToImage{});
}
else if(data_type == DataType::F16_F16)
{
return profile(I3, NDHWGC{}, F16{}, F16{}, ColumnToImage{});
}
else if(data_type == DataType::BF16_BF16)
{
return profile(I3, NDHWGC{}, BF16{}, BF16{}, ColumnToImage{});
}
else if(data_type == DataType::INT8_INT8)
{
return profile(I3, NDHWGC{}, INT8{}, INT8{}, ColumnToImage{});
}
}
}
}
std::cout << "this data_type & layout is not implemented" << std::endl;
......
......@@ -27,6 +27,8 @@ enum struct GemmDataType
F16_F16_F16, // 1
BF16_BF16_BF16, // 2
INT8_INT8_INT8, // 3
F8_F16_F16, // 4
F16_F8_F16, // 5
};
#define OP_NAME "grouped_gemm"
......@@ -56,7 +58,7 @@ int profile_grouped_gemm(int argc, char* argv[])
{
std::cout
<< "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)\n"
<< "arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: fp8@fp6; 5: f16@f8)\n"
<< "arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n"
<< " 1: A[m, k] * B[n, k] = C[m, n];\n"
<< " 2: A[k, m] * B[k, n] = C[m, n];\n"
......@@ -169,6 +171,46 @@ int profile_grouped_gemm(int argc, char* argv[])
StrideCs,
kbatch);
}
else if(data_type == GemmDataType::F8_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_grouped_gemm_impl<ck::f8_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(do_verification,
init_method,
do_log,
time_kernel,
Ms,
Ns,
Ks,
StrideAs,
StrideBs,
StrideCs,
kbatch);
}
else if(data_type == GemmDataType::F16_F8_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_grouped_gemm_impl<ck::half_t,
ck::f8_t,
ck::half_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(do_verification,
init_method,
do_log,
time_kernel,
Ms,
Ns,
Ks,
StrideAs,
StrideBs,
StrideCs,
kbatch);
}
else
{
throw std::runtime_error("wrong! this GEMM data_type & layout is not implemented");
......
......@@ -6,7 +6,7 @@
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_groupnorm_impl.hpp"
#include "profiler/profile_groupnorm_fwd_impl.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t;
......
......@@ -6,7 +6,7 @@
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_layernorm_impl.hpp"
#include "profiler/profile_layernorm_fwd_impl.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t;
......@@ -76,19 +76,46 @@ int profile_layernorm(int argc, char* argv[])
arg_parser(argc, argv);
const std::vector<index_t> length = arg_parser.long_opts["length"];
using F16 = ck::half_t;
using F32 = float;
constexpr int rank = 2;
using F16 = ck::half_t;
using F32 = float;
if(data_type == ck::DataTypeEnum::Half)
if(length.size() == 2)
{
ck::profiler::profile_layernorm_impl<F16, F16, F16, F32, F16, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
constexpr int rank = 2;
if(data_type == ck::DataTypeEnum::Half)
{
ck::profiler::profile_layernorm_impl<F16, F16, F16, F32, F16, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else if(data_type == ck::DataTypeEnum::Float)
{
ck::profiler::profile_layernorm_impl<F32, F32, F32, F32, F32, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else
{
throw std::runtime_error("not implemented yet");
}
}
else if(data_type == ck::DataTypeEnum::Float)
else if(length.size() == 4)
{
ck::profiler::profile_layernorm_impl<F32, F32, F32, F32, F32, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
constexpr int rank = 4;
if(data_type == ck::DataTypeEnum::Half)
{
ck::profiler::profile_layernorm_impl<F16, F16, F16, F32, F16, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else if(data_type == ck::DataTypeEnum::Float)
{
ck::profiler::profile_layernorm_impl<F32, F32, F32, F32, F32, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else
{
throw std::runtime_error("not implemented yet");
}
}
else
{
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_transpose_impl.hpp"
#include "profiler_operation_registry.hpp"
enum struct MatrixLayout
{
NCDHW, // 0
NCHWD, // 1
};
enum struct DataType
{
F32_F32_F32_F32_F32, // 0
F16_F16_F16_F16_F16, // 1
};
#define OP_NAME "transpose"
#define OP_DESC "Transpose"
int profile_transpose(int argc, char* argv[])
{
if(argc != 15)
{
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (0: fp32; 1: fp16)\n");
// printf("arg3: matrix layout (NCDHW -> NDCHW);\n");
printf("arg4: verification (0: no; 1: yes)\n");
printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg6: print tensor value (0: no; 1: yes)\n");
printf("arg7: time kernel (0=no, 1=yes)\n");
printf("arg8 to 13: N, C, D, H, W\n");
exit(1);
}
const auto data_type = static_cast<DataType>(std::stoi(argv[2]));
// const auto layout = static_cast<MatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[3]);
const int init_method = std::stoi(argv[4]);
const bool do_log = std::stoi(argv[5]);
const bool time_kernel = std::stoi(argv[6]);
std::vector<index_t> lengths = std::stoi(argv[7]);
/**const int N = std::stoi(argv[7]);
const int C = std::stoi(argv[8]);
const int D = std::stoi(argv[9]);
const int H = std::stoi(argv[10]);
const int W = std::stoi(argv[11]);**/
using F32 = float;
using F16 = ck::half_t;
auto profile = [&](auto a_type, auto b_type) {
using ADataType = decltype(a_type);
using BDataType = decltype(b_type);
bool pass = ck::profiler::profile_transpose_impl<ADataType, BDataType>(
do_verification, init_method, do_log, time_kernel, lengths);
return pass ? 0 : 1;
};
if(data_type == GemmDataType::F32_F32_F32_F32_F32)
{
return profile(F32{}, F32{});
}
else if(data_type == GemmDataType::F16_F16_F16_F16_F16)
{
return profile(F16{}, F16{});
}
else
{
std::cout << "this data_type & layout is not implemented" << std::endl;
return 1;
}
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_gemm_transpose);
......@@ -8,8 +8,7 @@ MY_PROJECT_SOURCE=$1
cmake \
-D CMAKE_PREFIX_PATH=/opt/rocm \
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-D CMAKE_CXX_FLAGS="-std=c++17 -O3 -ftemplate-backtrace-limit=0 -fPIE -Wno-gnu-line-marker \
-save-temps=$PWD" \
-D CMAKE_CXX_FLAGS="-std=c++17 -O3 -ftemplate-backtrace-limit=0 -fPIE -Wno-gnu-line-marker" \
-D CMAKE_BUILD_TYPE=Release \
-D BUILD_DEV=ON \
-D GPU_TARGETS="gfx908;gfx90a;gfx940" \
......
SECTIONS {
.hipFatBinSegment : { *(.hipFatBinSegment) }
} INSERT AFTER .bss
SECTIONS {
.hip_fatbin : { *(.hip_fatbin) }
} INSERT AFTER .hipFatBinSegment
fips = no
setuid = root
setgid = root
pid = /var/run/stunnel.pid
debug = 7
options = NO_SSLv2
options = NO_SSLv3
[redis-cli]
client = yes
accept = 127.0.0.1:6379
#!/bin/bash
set -e
COMPILERS_HASH_DIR=${COMPILERS_HASH_DIR:-"/tmp/.sccache"}
SCCACHE_EXTRAFILES=${SCCACHE_EXTRAFILES:-"${COMPILERS_HASH_DIR}/rocm_compilers_hash_file"}
SCCACHE_BIN=${SCCACHE_BIN:-"${SCCACHE_INSTALL_LOCATION}/sccache"}
ENFORCE_REDIS="false"
while [ "$1" != "" ];
do
case $1 in
--enforce_redis )
shift; ENFORCE_REDIS="true" ;;
--no-hipcc )
shift ;;
*)
break ;;
esac
done
setup_rocm_compilers_hash_file() {
mkdir -p "$COMPILERS_HASH_DIR"
HIPCC_MD5="$(md5sum "${ROCM_PATH}/bin/hipcc")"
pushd "${ROCM_PATH}/amdgcn/bitcode"
DEVICELIBS_BITCODES_MD5="$(find . -type f -exec md5sum {} \; | sort | md5sum)"
popd
HIPCC_HASH_VALUE="${HIPCC_MD5%% *}"
DEVICELIBS_BITCODES_HASH_VALUE="${DEVICELIBS_BITCODES_MD5%% *}"
# MD5 checksums of clang and clang-offload-bundler cannot be used since they will keep changing
# if the ROCM_PATH changes, ie; for every mainline build.
# This is because ROCM_PATH gets encoded into the clang/clang-offload-bundler binaries as part
# of RPATH.
# The versions themselves contain the commit hash of the compiler repo at the time of building.
# Hence, this should be a viable alternative to using the binary checksum itself.
CLANG_VERSION="$("${ROCM_PATH}/llvm/bin/clang" --version | head -n 1)"
CLANG_OFFLOAD_BUNDLER_VERSION="$("${ROCM_PATH}/llvm/bin/clang-offload-bundler" --version | head -n 1)"
printf '%s: %s\n' 'clang version' "${CLANG_VERSION}" | tee -a "$SCCACHE_EXTRAFILES"
printf '%s: %s\n' 'clang-offload-bundler version' "${CLANG_OFFLOAD_BUNDLER_VERSION}" | tee -a "$SCCACHE_EXTRAFILES"
printf '%s: %s\n' 'hipcc md5sum' "${HIPCC_HASH_VALUE}" | tee -a "$SCCACHE_EXTRAFILES"
printf '%s: %s\n' 'devicelibs bitcode md5sum' "${DEVICELIBS_BITCODES_HASH_VALUE}" | tee -a "$SCCACHE_EXTRAFILES"
echo "sccache-wrapper: compilers hash file set up at ${SCCACHE_EXTRAFILES}"
cat "$SCCACHE_EXTRAFILES"
}
if [ "${ENFORCE_REDIS}" == "true" ]; then
if [ -z "${SCCACHE_REDIS}" ]; then
echo "SCCACHE_REDIS not set. Not wrapping compilers with sccache."
exit 10
else
response=$(redis-cli -u ${SCCACHE_REDIS} ping) || true
if [ "${response}" != "PONG" ]; then
echo "Redis server unreachable. Not wrapping compilers with sccache."
exit 20
fi
fi
fi
setup_rocm_compilers_hash_file
$SCCACHE_BIN --version
$SCCACHE_BIN --start-server
......@@ -139,7 +139,7 @@ add_subdirectory(grouped_convnd_fwd)
add_subdirectory(grouped_convnd_bwd_weight)
add_subdirectory(block_to_ctile_map)
add_subdirectory(softmax)
add_subdirectory(normalization)
add_subdirectory(normalization_fwd)
add_subdirectory(data_type)
add_subdirectory(elementwise_normalization)
add_subdirectory(batchnorm)
......@@ -148,6 +148,7 @@ add_subdirectory(pool)
add_subdirectory(batched_gemm_multi_d)
add_subdirectory(grouped_convnd_bwd_data)
add_subdirectory(conv_tensor_rearrange)
add_subdirectory(transpose)
if(GPU_TARGETS MATCHES "gfx11")
add_subdirectory(wmma_op)
endif()
......@@ -10,9 +10,12 @@
#include <gtest/gtest.h>
#include "profiler/profile_contraction_impl.hpp"
#include "profiler/profile_contraction_utils.hpp"
using F32 = float;
using F64 = double;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using F64 = double;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
......@@ -20,49 +23,49 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
using Bilinear = ck::tensor_operation::element_wise::Bilinear;
using Scale = ck::tensor_operation::element_wise::Scale;
struct MemoryParams
struct Dimensions
{
std::vector<ck::index_t> M;
std::vector<ck::index_t> N;
std::vector<ck::index_t> K;
std::vector<ck::index_t> StridesA;
std::vector<ck::index_t> StridesB;
std::vector<ck::index_t> StridesC;
std::vector<ck::index_t> StridesD;
};
template <typename Tuple>
class TestContraction : public ::testing::Test
{
protected:
using ALayout = std::tuple_element_t<0, Tuple>;
using BLayout = std::tuple_element_t<1, Tuple>;
using CDLayout = std::tuple_element_t<2, Tuple>;
using DataType = std::tuple_element_t<3, Tuple>;
using DTupleDataType = std::tuple_element_t<4, Tuple>;
using CDElementOp = std::tuple_element_t<5, Tuple>;
std::vector<MemoryParams> list_of_memory_params = {{{32, 32},
{32, 32},
{32, 32},
{32768, 1024, 32, 1},
{32768, 1024, 32, 1},
{32768, 1024, 32, 1},
{32768, 1024, 32, 1}},
{{16, 16},
{32, 32},
{16, 16},
{4096, 256, 16, 1},
{16, 1, 8192, 256},
{16384, 1024, 32, 1},
{16384, 1024, 32, 1}}};
std::vector<ck::index_t> init_methods = {0, 1, 2};
using ALayout = std::tuple_element_t<0, Tuple>;
using BLayout = std::tuple_element_t<1, Tuple>;
using CDLayout = std::tuple_element_t<2, Tuple>;
using DataType = std::tuple_element_t<3, Tuple>;
using DTupleDataType = std::tuple_element_t<4, Tuple>;
using ComputeDataType = std::tuple_element_t<5, Tuple>;
using CDElementOp = std::tuple_element_t<6, Tuple>;
std::vector<Dimensions> dimension_list = {{{32, 32}, {32, 32}, {32, 32}},
{{16, 16}, {32, 32}, {16, 16}}};
std::vector<ck::index_t> init_methods = {1, 2};
std::unique_ptr<CDElementOp> p_cd_element_op;
void Run()
{
for(auto& memory_params : list_of_memory_params)
for(auto& dimension_params : dimension_list)
{
std::vector<ck::index_t> StridesA;
std::vector<ck::index_t> StridesB;
std::vector<ck::index_t> StridesC;
std::vector<ck::index_t> StridesD;
const auto& M = dimension_params.M;
const auto& N = dimension_params.N;
const auto& K = dimension_params.K;
assign_default_strides(ALayout{}, StridesA, {M[0], M[1], K[0], K[1]});
assign_default_strides(BLayout{}, StridesB, {N[0], N[1], K[0], K[1]});
assign_default_strides(CDLayout{}, StridesC, {M[0], M[1], N[0], N[1]});
assign_default_strides(CDLayout{}, StridesD, {M[0], M[1], N[0], N[1]});
for(const ck::index_t init_method : init_methods)
{
bool pass =
......@@ -70,19 +73,20 @@ class TestContraction : public ::testing::Test
BLayout,
CDLayout,
DataType,
ComputeDataType,
DTupleDataType,
CDElementOp>(true /*do_verification*/,
init_method,
false /*do_logs*/,
false /*time_kernel*/,
*p_cd_element_op,
memory_params.M,
memory_params.N,
memory_params.K,
memory_params.StridesA,
memory_params.StridesB,
memory_params.StridesC,
memory_params.StridesD);
dimension_params.M,
dimension_params.N,
dimension_params.K,
StridesA,
StridesB,
StridesC,
StridesD);
EXPECT_TRUE(pass);
}
}
......@@ -99,24 +103,18 @@ class TestContractionBilinear : public TestContraction<Tuple>
{
};
#define ALL_LAYOUT_COMBINATIONS(dt, tuple_dt, compute_dt, op) \
std::tuple<Row, Row, Row, dt, tuple_dt, compute_dt, op>, \
std::tuple<Row, Col, Row, dt, tuple_dt, compute_dt, op>, \
std::tuple<Col, Row, Row, dt, tuple_dt, compute_dt, op>, \
std::tuple<Col, Col, Row, dt, tuple_dt, compute_dt, op>
using BilinearKernelTypes =
::testing::Types<std::tuple<Row, Row, Row, F32, ck::Tuple<F32>, Bilinear>,
std::tuple<Row, Col, Row, F32, ck::Tuple<F32>, Bilinear>,
std::tuple<Col, Row, Row, F32, ck::Tuple<F32>, Bilinear>,
std::tuple<Col, Col, Row, F32, ck::Tuple<F32>, Bilinear>,
std::tuple<Row, Row, Row, F64, ck::Tuple<F32>, Bilinear>,
std::tuple<Row, Col, Row, F64, ck::Tuple<F32>, Bilinear>,
std::tuple<Col, Row, Row, F64, ck::Tuple<F32>, Bilinear>,
std::tuple<Col, Col, Row, F64, ck::Tuple<F32>, Bilinear>>;
using ScaleKernelTypes = ::testing::Types<std::tuple<Row, Row, Row, F32, ck::Tuple<>, Scale>,
std::tuple<Row, Col, Row, F32, ck::Tuple<>, Scale>,
std::tuple<Col, Row, Row, F32, ck::Tuple<>, Scale>,
std::tuple<Col, Col, Row, F32, ck::Tuple<>, Scale>,
std::tuple<Row, Row, Row, F64, ck::Tuple<>, Scale>,
std::tuple<Row, Col, Row, F64, ck::Tuple<>, Scale>,
std::tuple<Col, Row, Row, F64, ck::Tuple<>, Scale>,
std::tuple<Col, Col, Row, F64, ck::Tuple<>, Scale>>;
::testing::Types<ALL_LAYOUT_COMBINATIONS(F32, ck::Tuple<F32>, F32, Bilinear),
ALL_LAYOUT_COMBINATIONS(F64, ck::Tuple<F64>, F64, Bilinear)>;
using ScaleKernelTypes = ::testing::Types<ALL_LAYOUT_COMBINATIONS(F32, ck::Tuple<>, F32, Scale),
ALL_LAYOUT_COMBINATIONS(F64, ck::Tuple<>, F64, Scale)>;
TYPED_TEST_SUITE(TestContractionBilinear, BilinearKernelTypes);
TYPED_TEST_SUITE(TestContractionScale, ScaleKernelTypes);
......@@ -136,3 +134,46 @@ TYPED_TEST(TestContractionScale, scale)
this->p_cd_element_op = std::make_unique<Scale>(0.5f);
this->Run();
}
template <typename Tuple>
class TestContractionScaleMixedPrecision : public TestContraction<Tuple>
{
};
template <typename Tuple>
class TestContractionBilinearMixedPrecision : public TestContraction<Tuple>
{
};
using BilinearKernelTypesMixedPrecision =
::testing::Types<ALL_LAYOUT_COMBINATIONS(F32, ck::Tuple<F32>, F16, Bilinear),
ALL_LAYOUT_COMBINATIONS(F32, ck::Tuple<F32>, BF16, Bilinear),
ALL_LAYOUT_COMBINATIONS(F64, ck::Tuple<F64>, F32, Bilinear),
ALL_LAYOUT_COMBINATIONS(F16, ck::Tuple<F16>, F32, Bilinear),
ALL_LAYOUT_COMBINATIONS(BF16, ck::Tuple<BF16>, F32, Bilinear)>;
using ScaleKernelTypesMixedPrecision =
::testing::Types<ALL_LAYOUT_COMBINATIONS(F32, ck::Tuple<>, F16, Scale),
ALL_LAYOUT_COMBINATIONS(F32, ck::Tuple<>, BF16, Scale),
ALL_LAYOUT_COMBINATIONS(F64, ck::Tuple<>, F32, Scale),
ALL_LAYOUT_COMBINATIONS(F16, ck::Tuple<>, F32, Scale),
ALL_LAYOUT_COMBINATIONS(BF16, ck::Tuple<>, F32, Scale)>;
TYPED_TEST_SUITE(TestContractionBilinearMixedPrecision, BilinearKernelTypesMixedPrecision);
TYPED_TEST_SUITE(TestContractionScaleMixedPrecision, ScaleKernelTypesMixedPrecision);
TYPED_TEST(TestContractionBilinearMixedPrecision, bilinear)
{
this->p_cd_element_op = std::make_unique<Bilinear>(1.f, 1.f);
this->Run();
this->p_cd_element_op = std::make_unique<Bilinear>(-0.5f, 0.5f);
this->Run();
}
TYPED_TEST(TestContractionScaleMixedPrecision, scale)
{
this->p_cd_element_op = std::make_unique<Scale>(1.f);
this->Run();
this->p_cd_element_op = std::make_unique<Scale>(0.5f);
this->Run();
}
......@@ -34,11 +34,11 @@ class ContractionInstanceWrapper
static constexpr ck::index_t NumDim = 2;
// clang-format off
using ContractionDeviceInstance = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDim, NumDim, NumDim, F32, F32, F32, F32, ck::Tuple<F32>, F32, Pass, Pass, Bilinear, GemmSpec, 1, 256, 256, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, ABlockTransferSrcVectorDim, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, BBlockTransferSrcVectorDim, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, CDEBlockTransferScalarPerVector>;
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Compute|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| Data|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| Type|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDim, NumDim, NumDim, F32, F32, F32, F32, ck::Tuple<F32>, F32, Pass, Pass, Bilinear, GemmSpec, 1, 256, 256, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, ABlockTransferSrcVectorDim, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, BBlockTransferSrcVectorDim, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, CDEBlockTransferScalarPerVector, F32>;
// clang-format on
bool isSupported(std::vector<ck::index_t>& ADims,
......
......@@ -45,14 +45,20 @@ class TestConvTensorRearrange : public ::testing::Test
using namespace ck::tensor_layout::convolution;
using namespace ck::conv_tensor_rearrange_op;
using KernelTypes1d =
::testing::Types<std::tuple<GNWC, ImageToColumn>, std::tuple<GNWC, ColumnToImage>>;
using KernelTypes1d = ::testing::Types<std::tuple<GNWC, ImageToColumn>,
std::tuple<GNWC, ColumnToImage>,
std::tuple<NWGC, ImageToColumn>,
std::tuple<NWGC, ColumnToImage>>;
using KernelTypes2d =
::testing::Types<std::tuple<GNHWC, ImageToColumn>, std::tuple<GNHWC, ColumnToImage>>;
using KernelTypes2d = ::testing::Types<std::tuple<GNHWC, ImageToColumn>,
std::tuple<GNHWC, ColumnToImage>,
std::tuple<NHWGC, ImageToColumn>,
std::tuple<NHWGC, ColumnToImage>>;
using KernelTypes3d =
::testing::Types<std::tuple<GNDHWC, ImageToColumn>, std::tuple<GNDHWC, ColumnToImage>>;
using KernelTypes3d = ::testing::Types<std::tuple<GNDHWC, ImageToColumn>,
std::tuple<GNDHWC, ColumnToImage>,
std::tuple<NDHWGC, ImageToColumn>,
std::tuple<NDHWGC, ColumnToImage>>;
template <typename Tuple>
class TestConvTensorRearrange1d : public TestConvTensorRearrange<Tuple>
......@@ -77,16 +83,16 @@ TYPED_TEST(TestConvTensorRearrange1d, Test1D)
{
this->conv_params.clear();
this->conv_params.push_back({1, 1, 4, 1, 192, {3}, {28}, {1}, {1}, {1}, {1}});
this->conv_params.push_back({1, 1, 64, 1, 64, {3}, {14}, {1}, {1}, {1}, {1}});
this->conv_params.push_back({1, 1, 64, 1, 64, {1}, {7}, {3}, {1}, {0}, {0}});
this->conv_params.push_back({1, 1, 64, 1, 64, {1}, {3}, {1}, {1}, {0}, {0}});
this->conv_params.push_back({1, 2, 4, 1, 192, {3}, {28}, {1}, {1}, {1}, {1}});
this->conv_params.push_back({1, 2, 64, 1, 64, {3}, {14}, {1}, {1}, {1}, {1}});
this->conv_params.push_back({1, 2, 64, 1, 64, {1}, {7}, {3}, {1}, {0}, {0}});
this->conv_params.push_back({1, 2, 64, 1, 64, {1}, {3}, {1}, {1}, {0}, {0}});
// ScalarPerVector should be 1
this->conv_params.push_back({1, 1, 4, 1, 1, {3}, {28}, {1}, {1}, {1}, {1}});
this->conv_params.push_back({1, 2, 4, 1, 1, {3}, {28}, {1}, {1}, {1}, {1}});
// stride != 1
this->conv_params.push_back({1, 1, 1, 1, 4, {3}, {28}, {2}, {1}, {1}, {1}});
this->conv_params.push_back({1, 2, 1, 1, 4, {3}, {28}, {2}, {1}, {1}, {1}});
// dilation != 1
this->conv_params.push_back({1, 1, 1, 1, 4, {3}, {28}, {1}, {2}, {1}, {1}});
this->conv_params.push_back({1, 2, 1, 1, 4, {3}, {28}, {1}, {2}, {1}, {1}});
#ifdef CK_ENABLE_FP32
this->template Run<1, float, float>();
#endif
......@@ -106,13 +112,13 @@ TYPED_TEST(TestConvTensorRearrange2d, Test2D)
this->conv_params.clear();
this->conv_params.push_back(
{2, 1, 4, 1, 192, {3, 3}, {28, 28}, {1, 1}, {1, 1}, {1, 1}, {1, 1}});
{2, 2, 4, 1, 192, {3, 3}, {28, 28}, {1, 1}, {1, 1}, {1, 1}, {1, 1}});
this->conv_params.push_back(
{2, 1, 64, 1, 64, {3, 3}, {14, 14}, {1, 1}, {1, 1}, {1, 1}, {1, 1}});
{2, 2, 64, 1, 64, {3, 3}, {14, 14}, {1, 1}, {1, 1}, {1, 1}, {1, 1}});
this->conv_params.push_back({2, 1, 64, 1, 64, {1, 1}, {7, 7}, {3, 3}, {1, 1}, {0, 0}, {0, 0}});
this->conv_params.push_back({2, 1, 64, 1, 64, {1, 1}, {3, 3}, {1, 1}, {1, 1}, {0, 0}, {0, 0}});
this->conv_params.push_back(
{2, 1, 64, 1, 64, {3, 3}, {28, 28}, {2, 2}, {2, 2}, {1, 1}, {1, 1}});
{2, 2, 64, 1, 64, {3, 3}, {28, 28}, {2, 2}, {2, 2}, {1, 1}, {1, 1}});
#ifdef CK_ENABLE_FP32
this->template Run<2, float, float>();
#endif
......@@ -131,13 +137,13 @@ TYPED_TEST(TestConvTensorRearrange3d, Test3D)
{
this->conv_params.clear();
this->conv_params.push_back(
{3, 1, 16, 1, 64, {1, 1, 1}, {7, 7, 7}, {2, 2, 2}, {3, 3, 3}, {0, 0, 0}, {0, 0, 0}});
{3, 2, 16, 1, 64, {1, 1, 1}, {7, 7, 7}, {2, 2, 2}, {3, 3, 3}, {0, 0, 0}, {0, 0, 0}});
this->conv_params.push_back(
{3, 1, 2, 1, 64, {3, 3, 3}, {14, 14, 3}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}});
{3, 2, 2, 1, 64, {3, 3, 3}, {14, 14, 3}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}});
this->conv_params.push_back(
{3, 1, 32, 1, 64, {1, 1, 1}, {3, 3, 3}, {1, 1, 1}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}});
{3, 2, 32, 1, 64, {1, 1, 1}, {3, 3, 3}, {1, 1, 1}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}});
this->conv_params.push_back(
{3, 1, 64, 1, 64, {3, 3, 3}, {14, 14, 14}, {2, 2, 2}, {2, 2, 2}, {1, 1, 1}, {1, 1, 1}});
{3, 2, 64, 1, 64, {3, 3, 3}, {14, 14, 14}, {2, 2, 2}, {2, 2, 2}, {1, 1, 1}, {1, 1, 1}});
#ifdef CK_ENABLE_FP32
this->template Run<3, float, float>();
#endif
......
......@@ -53,7 +53,7 @@ class TestConvTensorRearrangeInterface : public ::testing::Test
template <typename ConvTensorRearrangeOp>
bool Run()
{
const auto G = conv_param.G_;
const auto N = conv_param.N_;
const auto C = conv_param.C_;
const auto FakeC =
......@@ -71,13 +71,13 @@ class TestConvTensorRearrangeInterface : public ::testing::Test
const auto image_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<ImLayout>(
conv_param);
const auto gemm_desc = HostTensorDescriptor({NDoHoWo, CZYX});
const auto gemm_desc = HostTensorDescriptor({G, NDoHoWo, CZYX});
std::array<ck::index_t, NDimSpatial> input_spatial_lengths{};
std::array<ck::index_t, NDimSpatial> filter_spatial_lengths{};
std::array<ck::index_t, NDimSpatial> output_spatial_lengths{};
std::array<ck::index_t, NDimSpatial + 3> input_g_n_c_wis_strides{};
std::array<ck::index_t, 2> output_m_k_strides{};
std::array<ck::index_t, 3> output_g_m_k_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
......@@ -89,7 +89,7 @@ class TestConvTensorRearrangeInterface : public ::testing::Test
copy(conv_param.filter_spatial_lengths_, filter_spatial_lengths);
copy(conv_param.output_spatial_lengths_, output_spatial_lengths);
copy(image_desc.GetStrides(), input_g_n_c_wis_strides);
copy(gemm_desc.GetStrides(), output_m_k_strides);
copy(gemm_desc.GetStrides(), output_g_m_k_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
......@@ -100,13 +100,14 @@ class TestConvTensorRearrangeInterface : public ::testing::Test
auto img2col = DeviceImgToColInstance{};
auto argument = img2col.MakeArgument(nullptr,
nullptr,
G,
N,
IsCPacked ? C : FakeC,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
input_g_n_c_wis_strides,
output_m_k_strides,
output_g_m_k_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
......@@ -119,13 +120,14 @@ class TestConvTensorRearrangeInterface : public ::testing::Test
auto col2img = DeviceColToimgInstance{};
auto argument = col2img.MakeArgument(nullptr,
nullptr,
G,
N,
IsCPacked ? C : FakeC,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
input_g_n_c_wis_strides,
output_m_k_strides,
output_g_m_k_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
......
add_gtest_executable(test_grouped_convnd_fwd test_grouped_convnd_fwd.cpp)
target_link_libraries(test_grouped_convnd_fwd PRIVATE utility device_grouped_conv1d_fwd_instance device_grouped_conv2d_fwd_instance device_grouped_conv3d_fwd_instance)
add_gtest_executable(test_grouped_convnd_fwd_multi_ab_interface test_grouped_convnd_fwd_multi_ab_interface.cpp)
target_link_libraries(test_grouped_convnd_fwd_multi_ab_interface PRIVATE utility)
add_gtest_executable(test_grouped_convnd_fwd_multi_d_interface_compatibility test_grouped_convnd_fwd_multi_d_interface_compatibility.cpp)
target_link_libraries(test_grouped_convnd_fwd_multi_d_interface_compatibility PRIVATE utility device_grouped_conv3d_fwd_instance)
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <tuple>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include <gtest/gtest.h>
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using ScaleAdd = ck::tensor_operation::element_wise::ScaleAdd;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
template <typename DataType,
typename InDataTypes,
typename WeiDataTypes,
typename InElementOp,
typename WeiElementOp>
class TestGroupedConvndFwdMultiABInterfaceBase : public ::testing::Test
{
protected:
static constexpr ck::index_t NDimSpatial = 3;
static constexpr ck::index_t NumAs = 2;
static constexpr ck::index_t NumBs = 2;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using InLayout = ck::tensor_layout::convolution::GNDHWC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::GNDHWK;
using OutElementOp = PassThrough;
using DeviceGroupedConvNDMultiABFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataTypes,
WeiDataTypes,
DataType,
DataType,
ck::Tuple<>,
DataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8>;
const ck::utils::conv::ConvParam conv_param{
3, 1, 16, 16, 8, {3, 3, 3}, {17, 17, 17}, {2, 2, 2}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}};
void SetUp() override
{
if(!ck::is_xdl_supported())
{
GTEST_SKIP();
}
}
template <typename ADataType, typename BDataType>
bool Run(ADataType as, BDataType bs)
{
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
std::array<const void*, 0> ds{};
// do Conv
auto conv = DeviceGroupedConvNDMultiABFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(as,
bs,
ds,
nullptr,
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
{},
{},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
return conv.IsSupportedArgument(argument);
}
};
class TestGroupedConvndFwdMultiAInterface
: public TestGroupedConvndFwdMultiABInterfaceBase<float,
ck::Tuple<float, float>,
float,
ScaleAdd,
PassThrough>
{
};
class TestGroupedConvndFwdMultiBInterface
: public TestGroupedConvndFwdMultiABInterfaceBase<float,
float,
ck::Tuple<float, float>,
PassThrough,
ScaleAdd>
{
};
class TestGroupedConvndFwdMultiABInterface
: public TestGroupedConvndFwdMultiABInterfaceBase<float,
ck::Tuple<float, float>,
ck::Tuple<float, float>,
ScaleAdd,
ScaleAdd>
{
};
class TestGroupedConvndFwdInterface
: public TestGroupedConvndFwdMultiABInterfaceBase<float, float, float, PassThrough, PassThrough>
{
};
TEST_F(TestGroupedConvndFwdMultiAInterface, MultiA)
{
std::array<const void*, NumAs> as{nullptr, nullptr};
const void* b = nullptr;
EXPECT_TRUE(this->template Run(as, b));
}
TEST_F(TestGroupedConvndFwdMultiBInterface, MultiB)
{
const void* a = nullptr;
std::array<const void*, NumBs> bs{nullptr, nullptr};
EXPECT_TRUE(this->template Run(a, bs));
}
TEST_F(TestGroupedConvndFwdMultiABInterface, MultiAB)
{
std::array<const void*, NumAs> as{nullptr, nullptr};
std::array<const void*, NumBs> bs{nullptr, nullptr};
EXPECT_TRUE(this->template Run(as, bs));
}
TEST_F(TestGroupedConvndFwdInterface, SingleAB)
{
const void* a = nullptr;
const void* b = nullptr;
EXPECT_TRUE(this->template Run(a, b));
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <tuple>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include <gtest/gtest.h>
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
class TestGroupedConvndFwdMultiDInterfaceCompatibility : public ::testing::Test
{
protected:
static constexpr ck::index_t NDimSpatial = 3;
using InDataType = float;
using WeiDataType = float;
using OutDataType = float;
using InLayout = ck::tensor_layout::convolution::GNDHWC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::GNDHWK;
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
PassThrough,
PassThrough,
PassThrough>;
bool Run()
{
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
return op_ptrs.size() != 0;
}
};
TEST_F(TestGroupedConvndFwdMultiDInterfaceCompatibility, CompatibilityTest)
{
EXPECT_TRUE(this->Run());
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment