Unverified Commit e6bb1dd7 authored by Po Yen Chen's avatar Po Yen Chen Committed by GitHub
Browse files

Merge branch 'develop' into feature/check-window-lengths

parents 9d6a3704 ab250afd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -340,8 +340,7 @@ struct BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.template Run(
a_thread_vec.template AsType<mfma_input_type_a>(),
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type_a>(),
b_thread_vec.template AsType<mfma_input_type_b>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
......@@ -488,7 +487,14 @@ struct BlockwiseGemmXdlopsInterwave_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
// sync point.
if constexpr(k.value != 0 || KPerInnerLoop == KPerThread)
{
#ifdef __gfx12__
asm volatile("\
s_barrier_signal -1 \n \
s_barrier_wait -1 \
" ::);
#else
asm volatile("s_barrier" ::);
#endif
__builtin_amdgcn_sched_barrier(0);
}
static_for<0, KPerInnerLoop, KPack>{}([&](auto k_) {
......@@ -530,8 +536,7 @@ struct BlockwiseGemmXdlopsInterwave_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
// TODO: insert setprio in more precise manner since we
// could have more than >1 MFMA instructions in single call
xdlops_gemm.template Run(
a_thread_vec.template AsType<mfma_input_type_a>(),
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type_a>(),
b_thread_vec.template AsType<mfma_input_type_b>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
if constexpr(k_.value == 0 && m0.value == 0 && n0.value == 0)
......@@ -795,11 +800,6 @@ struct BlockwiseGemmXdlops_v2
"wrong!");
}
__host__ __device__ BlockwiseGemmXdlops_v2(const BlockwiseGemmXdlops_v2& other)
: a_thread_copy_(other.a_origin), b_thread_copy_(other.b_origin)
{
}
// transposed XDL output supporting C_xdl' = B_xdl' * A_xdl'
__host__ __device__ static constexpr auto GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4()
{
......@@ -968,8 +968,7 @@ struct BlockwiseGemmXdlops_v2
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.template Run(
a_thread_vec.template AsType<mfma_input_type>(),
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -281,8 +281,7 @@ struct BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1r1
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.template Run(
a_thread_vec.template AsType<mfma_input_type>(),
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/cluster_descriptor.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v7r3.hpp"
#include "ck/utility/is_detected.hpp"
namespace ck {
// Thread-group level multi-source, multi-destination tensor slice data movement
// Assume:
// 1. All sources and destinations are DynamicBuffer
// 2. Same VectorDim and ScalerPerVector for all sources and destinations
// 3. DstInMemOps are per destination tensor
// 4. ThreadTransferSrcResetCoordinateAfterRunFlags are per source tensor
// 5. ThreadTransferDstResetCoordinateAfterRunFlags are per destination tensor
//
// Does following things to avoid scratch memory issue
// 1. Pass tensor descritpors by reference (or tuple of references)
// 2. Does not keep reference to tensor descriptor
// 3. Does not construct new tensor coordinate when call Run()
template <typename ThreadGroup,
typename SrcDatas,
typename DstDatas,
typename SrcDescs,
typename DstDescs,
typename ElementwiseOperation,
typename DstInMemOps, // Sequence<InMemoryDataOperationEnum ...>
typename SliceLengths,
typename ThreadClusterLengths,
typename ThreadClusterArrangeOrder,
typename SrcDimAccessOrder,
typename DstDimAccessOrder,
index_t SrcVectorDim,
index_t DstVectorDim,
typename SrcScalarPerVectors,
index_t DstScalarPerVector,
typename ThreadTransferSrcResetCoordinateAfterRunFlags,
typename ThreadTransferDstResetCoordinateAfterRunFlags,
index_t NumThreadScratch = 1>
struct ThreadGroupTensorSliceTransfer_v7r3
{
static constexpr index_t nDim =
remove_cvref_t<tuple_element_t<0, SrcDescs>>::GetNumOfDimension();
static constexpr index_t nSrc = remove_cvref_t<SrcDescs>::Size();
static constexpr index_t nDst = remove_cvref_t<DstDescs>::Size();
using Index = MultiIndex<nDim>;
static constexpr auto thread_slice_lengths = SliceLengths{} / ThreadClusterLengths{};
__device__ constexpr ThreadGroupTensorSliceTransfer_v7r3(
const SrcDescs& src_descs,
const StaticallyIndexedArray<Index, nSrc>& src_block_slice_origins,
const DstDescs& dst_descs,
const StaticallyIndexedArray<Index, nDst>& dst_block_slice_origins,
const ElementwiseOperation& element_op)
: threadwise_transfer_(src_descs,
StaticallyIndexedArray<Index, nSrc>{},
dst_descs,
StaticallyIndexedArray<Index, nDst>{},
element_op)
{
static_assert(nSrc == SrcDatas::Size() && nSrc == SrcDescs::Size() &&
nSrc == ThreadTransferSrcResetCoordinateAfterRunFlags::Size() &&
nDst == DstDatas::Size() && nDst == DstDescs::Size() &&
nDst == ThreadTransferDstResetCoordinateAfterRunFlags::Size(),
"wrong!");
static_for<0, nSrc, 1>{}([&](auto i) {
static_assert(
nDim == remove_cvref_t<tuple_element_t<i.value, SrcDescs>>::GetNumOfDimension(),
"wrong!");
});
static_for<0, nDst, 1>{}([&](auto i) {
static_assert(
nDim == remove_cvref_t<tuple_element_t<i.value, DstDescs>>::GetNumOfDimension(),
"wrong!");
});
static_assert(nDim == ThreadClusterLengths::Size() &&
nDim == ThreadClusterArrangeOrder::Size() &&
nDim == SrcDimAccessOrder::Size() && nDim == DstDimAccessOrder::Size(),
"wrong! nDim not consistent");
static_assert(
is_same<SliceLengths, decltype(thread_slice_lengths * ThreadClusterLengths{})>{},
"wrong! threads should be mapped to cover entire slicing window");
static_assert(ThreadGroup::GetNumOfThread() >= thread_cluster_desc_.GetElementSize(),
"wrong! ThreadGroup::GetNumOfThread() too small");
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
const auto thread_cluster_idx = thread_cluster_desc_.CalculateBottomIndex(
make_multi_index(ThreadGroup::GetThreadId()));
const auto thread_data_idx_begin = thread_cluster_idx * thread_slice_lengths;
const auto src_thread_slice_origins = generate_tuple(
[&](auto i) { return src_block_slice_origins[i] + thread_data_idx_begin; },
Number<nSrc>{});
const auto dst_thread_slice_origins = generate_tuple(
[&](auto i) { return dst_block_slice_origins[i] + thread_data_idx_begin; },
Number<nDst>{});
threadwise_transfer_.SetSrcSliceOrigins(src_descs, src_thread_slice_origins);
threadwise_transfer_.SetDstSliceOrigins(dst_descs, dst_thread_slice_origins);
}
}
template <typename SrcBuffers, index_t ThreadScratchId = 0>
__device__ void RunRead(const SrcDescs& src_descs,
const SrcBuffers& src_bufs,
Number<ThreadScratchId> thread_scratch_id = Number<ThreadScratchId>{})
{
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
threadwise_transfer_.RunRead(src_descs, src_bufs, thread_scratch_id);
}
}
template <typename T>
using is_tuple = decltype(std::declval<T&>().IsTuple());
template <typename DstBuffers, index_t ThreadScratchId = 0>
__device__ void RunWrite(const DstDescs& dst_descs,
DstBuffers dst_bufs,
Number<ThreadScratchId> thread_scratch_id = Number<ThreadScratchId>{})
{
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
if constexpr(is_detected<is_tuple, decltype(dst_bufs)>::value)
threadwise_transfer_.RunWrite(dst_descs, dst_bufs, thread_scratch_id);
else
threadwise_transfer_.RunWrite(dst_descs, tie(dst_bufs), thread_scratch_id);
}
}
template <typename SrcBuffers, typename DstBuffers>
__device__ void Run(const SrcDescs& src_descs,
const SrcBuffers& src_bufs,
const DstDescs& dst_descs,
DstBuffers dst_bufs)
{
RunRead(src_descs, src_bufs);
RunWrite(dst_descs, dst_bufs);
}
template <index_t ISrc>
__device__ void
MoveSrcSliceWindow(const SrcDescs& src_descs, Number<ISrc> iSrc, const Index& step)
{
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
threadwise_transfer_.MoveSrcSliceWindow(src_descs, iSrc, step);
}
}
__device__ void MoveSrcSliceWindow(const SrcDescs& src_descs, const Index& step)
{
static_for<0, SrcDescs::Size(), 1>{}(
[&](auto i) { MoveSrcSliceWindow(src_descs, i, step); });
}
template <index_t IDst>
__device__ void
MoveDstSliceWindow(const DstDescs& dst_descs, Number<IDst> iDst, const Index& step)
{
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
threadwise_transfer_.MoveDstSliceWindow(dst_descs, iDst, step);
}
}
__device__ void MoveDstSliceWindow(const DstDescs& dst_descs, const Index& step)
{
static_for<0, DstDescs::Size(), 1>{}(
[&](auto i) { MoveDstSliceWindow(dst_descs, i, step); });
}
private:
static constexpr auto thread_cluster_desc_ =
make_cluster_descriptor(ThreadClusterLengths{}, ThreadClusterArrangeOrder{});
using ThreadwiseTransfer =
ThreadwiseTensorSliceTransfer_v7r3<SrcDatas,
DstDatas,
SrcDescs,
DstDescs,
ElementwiseOperation,
DstInMemOps,
decltype(thread_slice_lengths),
SrcDimAccessOrder,
DstDimAccessOrder,
SrcVectorDim,
DstVectorDim,
SrcScalarPerVectors,
DstScalarPerVector,
ThreadTransferSrcResetCoordinateAfterRunFlags,
ThreadTransferDstResetCoordinateAfterRunFlags,
NumThreadScratch>;
ThreadwiseTransfer threadwise_transfer_;
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -15,6 +15,7 @@ enum struct ConvolutionForwardSpecialization
Filter1x1Pad0,
Filter1x1Stride1Pad0,
OddC,
Filter3x3,
};
inline std::string getConvForwardSpecializationString(const ConvolutionForwardSpecialization& s)
......@@ -25,6 +26,7 @@ inline std::string getConvForwardSpecializationString(const ConvolutionForwardSp
case ConvolutionForwardSpecialization::Filter1x1Pad0: return "Filter1x1Pad0";
case ConvolutionForwardSpecialization::Filter1x1Stride1Pad0: return "Filter1x1Stride1Pad0";
case ConvolutionForwardSpecialization::OddC: return "OddC";
case ConvolutionForwardSpecialization::Filter3x3: return "Filter3x3";
default: return "Unrecognized specialization!";
}
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename CDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
struct DeviceGemm_Streamk_V2 : public BaseOperator
{
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t StrideA,
ck::index_t StrideB,
ck::index_t StrideC,
ck::index_t Streamk_sel,
ck::index_t Grid_size,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include <fstream>
#include <variant>
// functions to return the corresponding structs based on generated template parameters
using layouts = std::variant<ck::tensor_layout::convolution::GNWK,
ck::tensor_layout::convolution::GNHWK,
ck::tensor_layout::convolution::NHWGK,
ck::tensor_layout::convolution::GNDHWK,
ck::tensor_layout::convolution::NDHWGK>;
// return the layout type: currently this is the only type supported in MIOpen
auto layout_type(std::string type)
{
if(type == "ck::tensor_layout::convolution::NHWGK")
{
return ck::tensor_layout::convolution::NHWGK{};
}
throw std::runtime_error("Incorrect layout");
}
// return the right gemm spec based on the generated template parameters
ck::tensor_operation::device::GemmSpecialization gemm_type(std::string type)
{
if(type == "ck::tensor_operation::device::GemmSpecialization::Default")
{
return ck::tensor_operation::device::GemmSpecialization::Default;
}
if(type == "ck::tensor_operation::device::GemmSpecialization::MNKPadding")
{
return ck::tensor_operation::device::GemmSpecialization::MNKPadding;
}
throw std::runtime_error("Incorrect gemm spec: " + type);
}
// return the type of convolution
ck::tensor_operation::device::ConvolutionForwardSpecialization conv_type(std::string type)
{
if(type == "ck::tensor_operation::device::ConvolutionForwardSpecialization::Default")
{
return ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
}
if(type == "ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0")
{
return ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0;
}
if(type ==
"ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0")
{
return ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0;
}
if(type == "ck::tensor_operation::device::ConvolutionForwardSpecialization::OddC")
{
return ck::tensor_operation::device::ConvolutionForwardSpecialization::OddC;
}
throw std::runtime_error("Incorrect conv spec: " + type);
}
// Function to call on MatrixPadder via a wrapper struct
// NOTE: CK only uses MNKPadding for forward convolution
template <typename CDesc_MRaw_NRaw>
auto pad(ck::index_t mpb,
ck::index_t npb,
ck::index_t kpb,
ck::tensor_operation::device::GemmSpecialization gemm,
CDesc_MRaw_NRaw conv)
{
if(gemm == ck::tensor_operation::device::GemmSpecialization::MNKPadding)
{
ck::tensor_operation::device::MatrixPadder<
ck::tensor_operation::device::GemmSpecialization::MNKPadding,
ck::index_t,
ck::index_t,
ck::index_t>
a;
a.MPerTile_ = mpb;
a.NPerTile_ = npb;
a.KPerTile_ = kpb;
auto tmp = grid_desc(a, conv);
return tmp;
}
throw std::runtime_error("Incorrect template parameters, check gemm spec");
}
// Functions to call on TransformConvFwdToGemm through wrapper: different functions based on num
// dims
// FIXME: add a way to properly pass in the layout
auto transform_conv(ck::index_t num_dim,
ck::tensor_operation::device::ConvolutionForwardSpecialization spec,
ck::Array<ck::index_t, 5> out_lengths,
ck::Array<ck::index_t, 5> out_strides)
{
if(num_dim == 2 &&
spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::Default)
{
ck::tensor_operation::TransformConvFwdToGemm<
2,
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
if(num_dim == 2 &&
spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0)
{
ck::tensor_operation::TransformConvFwdToGemm<
2,
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
if(num_dim == 2 &&
spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
ck::tensor_operation::TransformConvFwdToGemm<
2,
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
if(num_dim == 2 && spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::OddC)
{
ck::tensor_operation::TransformConvFwdToGemm<
2,
ck::tensor_operation::device::ConvolutionForwardSpecialization::OddC>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
throw std::runtime_error("Incorrect conv spec");
}
auto transform_conv_3d(ck::index_t num_dim,
ck::tensor_operation::device::ConvolutionForwardSpecialization spec,
ck::Array<ck::index_t, 6> out_lengths,
ck::Array<ck::index_t, 6> out_strides)
{
if(num_dim == 3 &&
spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::Default)
{
ck::tensor_operation::TransformConvFwdToGemm<
3,
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
if(num_dim == 3 &&
spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0)
{
ck::tensor_operation::TransformConvFwdToGemm<
3,
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
if(num_dim == 3 &&
spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
ck::tensor_operation::TransformConvFwdToGemm<
3,
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
if(num_dim == 3 && spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::OddC)
{
ck::tensor_operation::TransformConvFwdToGemm<
3,
ck::tensor_operation::device::ConvolutionForwardSpecialization::OddC>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
throw std::runtime_error("Incorrect conv spec");
}
auto transform_conv_1d(ck::index_t num_dim,
ck::tensor_operation::device::ConvolutionForwardSpecialization spec,
ck::Array<ck::index_t, 4> out_lengths,
ck::Array<ck::index_t, 4> out_strides)
{
if(num_dim == 1 &&
spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::Default)
{
ck::tensor_operation::TransformConvFwdToGemm<
1,
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
if(num_dim == 1 &&
spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0)
{
ck::tensor_operation::TransformConvFwdToGemm<
1,
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
if(num_dim == 1 &&
spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
ck::tensor_operation::TransformConvFwdToGemm<
1,
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
if(num_dim == 1 && spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::OddC)
{
ck::tensor_operation::TransformConvFwdToGemm<
1,
ck::tensor_operation::device::ConvolutionForwardSpecialization::OddC>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
throw std::runtime_error("Incorrect dims or conv spec");
}
template <typename CGridDesc_M_N>
auto block_2_etile(ck::index_t m_per_block, ck::index_t n_per_block, CGridDesc_M_N matrix_padder)
{
if(m_per_block == 32 && n_per_block == 64)
{
auto b2e = ck::BlockToCTileMap_M00_N0_M01Adapt<32, 64, CGridDesc_M_N>(matrix_padder);
return b2e.CalculateGridSize(matrix_padder);
}
if(m_per_block == 32 && n_per_block == 128)
{
ck::BlockToCTileMap_M00_N0_M01Adapt<32, 128, CGridDesc_M_N> b2e(matrix_padder);
return b2e.CalculateGridSize(matrix_padder);
}
if(m_per_block == 64 && n_per_block == 32)
{
ck::BlockToCTileMap_M00_N0_M01Adapt<64, 32, CGridDesc_M_N> b2e(matrix_padder);
return b2e.CalculateGridSize(matrix_padder);
}
if(m_per_block == 64 && n_per_block == 64)
{
ck::BlockToCTileMap_M00_N0_M01Adapt<64, 64, CGridDesc_M_N> b2e(matrix_padder);
return b2e.CalculateGridSize(matrix_padder);
}
if(m_per_block == 64 && n_per_block == 128)
{
ck::BlockToCTileMap_M00_N0_M01Adapt<64, 128, CGridDesc_M_N> b2e(matrix_padder);
return b2e.CalculateGridSize(matrix_padder);
}
if(m_per_block == 128 && n_per_block == 32)
{
ck::BlockToCTileMap_M00_N0_M01Adapt<128, 32, CGridDesc_M_N> b2e(matrix_padder);
return b2e.CalculateGridSize(matrix_padder);
}
if(m_per_block == 128 && n_per_block == 64)
{
ck::BlockToCTileMap_M00_N0_M01Adapt<128, 64, CGridDesc_M_N> b2e(matrix_padder);
return b2e.CalculateGridSize(matrix_padder);
}
if(m_per_block == 128 && n_per_block == 128)
{
ck::BlockToCTileMap_M00_N0_M01Adapt<128, 128, CGridDesc_M_N> b2e(matrix_padder);
return b2e.CalculateGridSize(matrix_padder);
}
if(m_per_block == 128 && n_per_block == 256)
{
ck::BlockToCTileMap_M00_N0_M01Adapt<128, 256, CGridDesc_M_N> b2e(matrix_padder);
return b2e.CalculateGridSize(matrix_padder);
}
if(m_per_block == 256 && n_per_block == 128)
{
ck::BlockToCTileMap_M00_N0_M01Adapt<256, 128, CGridDesc_M_N> b2e(matrix_padder);
return b2e.CalculateGridSize(matrix_padder);
}
throw std::runtime_error("Incorrect template parameters");
}
// wrapper functions by dims to get grid size - uses above 3 functions
// TODO: eventually remove the 1d/2d versions as CK will only support 3d convolutions
auto get_launch_params_1d(ck::host::Solution solution,
ck::Array<ck::index_t, 4> out_lengths,
ck::Array<ck::index_t, 4> out_strides)
{
auto num_dim = solution.GetTemplateParameter<ck::index_t>("NumDim");
auto m_per_block = solution.GetTemplateParameter<ck::index_t>("MPerBlock");
auto n_per_block = solution.GetTemplateParameter<ck::index_t>("NPerBlock");
auto k_per_block = solution.GetTemplateParameter<ck::index_t>("KPerBlock");
auto GemmType = solution.GetTemplateParameter<std::string>("GemmSpecialization");
auto ConvType = solution.GetTemplateParameter<std::string>("ConvSpecialization");
ck::tensor_operation::device::GemmSpecialization GemmSpec = gemm_type(GemmType);
ck::tensor_operation::device::ConvolutionForwardSpecialization ConvSpec = conv_type(ConvType);
auto conv_to_gemm_transformer = transform_conv_1d(num_dim, ConvSpec, out_lengths, out_strides);
auto matrix_padder =
pad(m_per_block, n_per_block, k_per_block, GemmSpec, conv_to_gemm_transformer);
auto b2e = block_2_etile(m_per_block, n_per_block, matrix_padder);
return b2e;
}
auto get_launch_params(ck::host::Solution solution,
ck::Array<ck::index_t, 5> out_lengths,
ck::Array<ck::index_t, 5> out_strides)
{
auto num_dim = solution.GetTemplateParameter<ck::index_t>("NumDim");
auto m_per_block = solution.GetTemplateParameter<ck::index_t>("MPerBlock");
auto n_per_block = solution.GetTemplateParameter<ck::index_t>("NPerBlock");
auto k_per_block = solution.GetTemplateParameter<ck::index_t>("KPerBlock");
auto GemmType = solution.GetTemplateParameter<std::string>("GemmSpecialization");
auto ConvType = solution.GetTemplateParameter<std::string>("ConvSpecialization");
ck::tensor_operation::device::GemmSpecialization GemmSpec = gemm_type(GemmType);
ck::tensor_operation::device::ConvolutionForwardSpecialization ConvSpec = conv_type(ConvType);
auto conv_to_gemm_transformer = transform_conv(num_dim, ConvSpec, out_lengths, out_strides);
auto matrix_padder =
pad(m_per_block, n_per_block, k_per_block, GemmSpec, conv_to_gemm_transformer);
auto b2e = block_2_etile(m_per_block, n_per_block, matrix_padder);
return b2e;
}
auto get_launch_params_3d(ck::host::Solution solution,
ck::Array<ck::index_t, 6> out_lengths,
ck::Array<ck::index_t, 6> out_strides)
{
auto num_dim = solution.GetTemplateParameter<ck::index_t>("NumDim");
auto m_per_block = solution.GetTemplateParameter<ck::index_t>("MPerBlock");
auto n_per_block = solution.GetTemplateParameter<ck::index_t>("NPerBlock");
auto k_per_block = solution.GetTemplateParameter<ck::index_t>("KPerBlock");
auto GemmType = solution.GetTemplateParameter<std::string>("GemmSpecialization");
auto ConvType = solution.GetTemplateParameter<std::string>("ConvSpecialization");
ck::tensor_operation::device::GemmSpecialization GemmSpec = gemm_type(GemmType);
ck::tensor_operation::device::ConvolutionForwardSpecialization ConvSpec = conv_type(ConvType);
auto conv_to_gemm_transformer = transform_conv_3d(num_dim, ConvSpec, out_lengths, out_strides);
auto matrix_padder =
pad(m_per_block, n_per_block, k_per_block, GemmSpec, conv_to_gemm_transformer);
auto b2e = block_2_etile(m_per_block, n_per_block, matrix_padder);
return b2e;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <functional>
#include <iostream>
#include <iterator>
#include <numeric>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/io.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace {
/*
* \brief Wrapper function of GridwiseGemm::Run to realize BatchedGEMM.
*
* \tparam ComputePtrOffsetOfBatch Class that computes the base pointer offsets of A, B, C matrix
* given the batch. For example, ComputePtrOffsetOfStridedBatch() computes the offsets of evenly
* strided batched, but we can easily extend to other layouts. The returned offset can be either \p
* index_t or \p long_index_t. If it returns \p long_index_t, we are not subject to the 2GB
* limitations.
*
* \tparam Block2ETileMap Block2ETileMap::CalculateBottomIndex() takes in id of a workgroup and
* returns the 2D index of the tile that it computes. \see
* GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3::Run().
*
* \note Using \p ComputePtrOffsetOfBatch gives us the flexibility that 2 workgroups can compute 2
* tiles from different matrices. Keep in mind that these 2 matrices can share the same grid
* descriptor (like in BatchedGEMM), or use their own grid descriptors (in GroupedGemm). \link
* impl/device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk.hpp kernel_gemm_xdlops_v2r3_for_conv3d \endlink for
* \link DeviceConv3d \endlink uses the same concept, but currently does NOT encapsulate the
* computing of pointer offset into \p ComputePtrOffsetOfStridedBatch.
*
* \note \p Block2ETileMap allows customized mapping between a workgroup and the C-tile it computes.
* Together with \p ComputePtrOffsetOfBatch, we can reuse GridwiseGemm (and GridwiseGemm fusion ) to
* realize BatchedGemm and GroupedGemm (and the corresponding GEMM fusion).
*
*/
template <typename GridwiseGemm,
typename AsPointer, // tuples if multi AB, pointers if no
typename BsPointer,
typename DsPointer,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename Block2ETileMap,
typename ComputePtrOffsetOfBatch,
bool HasMainKBlockLoop,
bool isMultiA,
bool isMultiB>
__device__ void device_grouped_conv_fwd_multiple_abd_xdl_cshuffle(
AsPointer p_as_grid,
BsPointer p_bs_grid,
DsPointer p_ds_grid,
EDataType* __restrict__ p_e_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op,
const index_t batch_count,
const AGridDesc_AK0_M_AK1 a_grid_desc_k0_m_k1,
const BGridDesc_BK0_N_BK1 b_grid_desc_k0_n_k1,
const DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock,
const EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_,
const Block2ETileMap block_2_ctile_map,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
// offset base pointer for each work-group
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t e_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const auto& ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
DsPointer p_ds_grid_grp;
static constexpr index_t NumDTensor =
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock::Size();
static_for<0, NumDTensor, 1>{}(
[&](auto i) { p_ds_grid_grp(i) = p_ds_grid[i] + ds_batch_offset[i]; });
if constexpr(isMultiA || isMultiB)
{
AsPointer p_as_grid_grp;
BsPointer p_bs_grid_grp;
const auto& as_batch_offset = compute_ptr_offset_of_batch.GetAsPtrOffset(g_idx);
static constexpr index_t NumATensor = AGridDesc_AK0_M_AK1::Size();
static_for<0, NumATensor, 1>{}(
[&](auto i) { p_as_grid_grp(i) = p_as_grid[i] + as_batch_offset[i]; });
const auto& bs_batch_offset = compute_ptr_offset_of_batch.GetBsPtrOffset(g_idx);
static constexpr index_t NumBTensor = BGridDesc_BK0_N_BK1::Size();
static_for<0, NumBTensor, 1>{}(
[&](auto i) { p_bs_grid_grp(i) = p_bs_grid[i] + bs_batch_offset[i]; });
GridwiseGemm::template Run<HasMainKBlockLoop>(
p_as_grid_grp,
p_bs_grid_grp,
p_ds_grid_grp,
p_e_grid + e_batch_offset,
p_shared,
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_k0_m_k1,
b_grid_desc_k0_n_k1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock_,
block_2_ctile_map);
}
else
{
const long_index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
GridwiseGemm::template Run<HasMainKBlockLoop>(
p_as_grid + a_batch_offset,
p_bs_grid + b_batch_offset,
p_ds_grid_grp,
p_e_grid + e_batch_offset,
p_shared,
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_k0_m_k1,
b_grid_desc_k0_n_k1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock_,
block_2_ctile_map);
}
#else
ignore = p_as_grid;
ignore = p_bs_grid;
ignore = p_ds_grid;
ignore = p_e_grid;
ignore = batch_count;
ignore = a_grid_desc_k0_m_k1;
ignore = b_grid_desc_k0_n_k1;
ignore = ds_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = e_grid_desc_mblock_mperblock_nblock_nperblock_;
ignore = a_element_op;
ignore = b_element_op;
ignore = cde_element_op;
ignore = compute_ptr_offset_of_batch;
ignore = block_2_ctile_map;
#endif
}
template <typename GridwiseGemm,
typename AsPointer, // tuples if multi AB, pointers if no
typename BsPointer,
typename DsPointer,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename Block2ETileMap,
typename ComputePtrOffsetOfBatch,
bool HasMainKBlockLoop,
bool isMultiA,
bool isMultiB>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_grouped_conv_fwd_multiple_abd_xdl_cshuffle(
AsPointer p_as_grid,
BsPointer p_bs_grid,
DsPointer p_ds_grid,
EDataType* __restrict__ p_e_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op,
const index_t batch_count,
const AGridDesc_AK0_M_AK1 a_grid_desc_k0_m_k1,
const BGridDesc_BK0_N_BK1 b_grid_desc_k0_n_k1,
const DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock,
const EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_,
const Block2ETileMap block_2_ctile_map,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
{
device_grouped_conv_fwd_multiple_abd_xdl_cshuffle<
GridwiseGemm,
AsPointer, // tuples if multi AB, pointers if no
BsPointer,
DsPointer,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1,
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
Block2ETileMap,
ComputePtrOffsetOfBatch,
HasMainKBlockLoop,
isMultiA,
isMultiB>(p_as_grid,
p_bs_grid,
p_ds_grid,
*p_e_grid,
a_element_op,
b_element_op,
cde_element_op,
batch_count,
a_grid_desc_k0_m_k1,
b_grid_desc_k0_n_k1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock_,
block_2_ctile_map,
compute_ptr_offset_of_batch);
}
} // namespace
template <typename T>
using is_tuple = decltype(std::declval<T&>().IsTuple());
//
// @brief Device Convolution operation.
//
// Supports:
// @li Forward convolution with up to 3 spatial dimentions
// @li Input tensor in GNWC data format
// @li Weight tensor in GKXC data format
// @li Output tensor in GNWK data format
//
// 1D:
// out[N, Wo, K] = in[N, Wi, C] * wei[K, X, C]
// 2D:
// out[N, Ho, Wo, K] = in[N, Hi, Wi, C] * wei[K, Y, X, C]
// 3D:
// out[N, Do, Ho, Wo, K] = in[N, Di, Hi, Wi, C] * wei[K, Z, Y, X, C]
//
template <index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
ConvolutionForwardSpecialization ConvForwardSpecialization,
GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1,
index_t BK1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
index_t ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
index_t BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEBlockTransferScalarPerVector_NPerBlock,
typename ComputeDataType =
decltype(UnpackDataType<is_detected<is_tuple, ADataType>::value,
Number<0>,
ADataType>()), // ComputeType is InputType by default (first
// in tuple for MultiAB), unpack if tuple was
// passed
LoopScheduler LoopSched = make_default_loop_scheduler()>
struct CodegenDeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
: public DeviceGroupedConvFwdMultipleABD<NDimSpatial,
ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
ComputeDataType>
{
using DeviceOp = CodegenDeviceGroupedConvFwdMultipleABD_Xdl_CShuffle;
static constexpr bool isMultiA = is_detected<is_tuple, ADataType>::value;
static constexpr bool isMultiB = is_detected<is_tuple, BDataType>::value;
static constexpr index_t NumATensor = GetNumABTensors<isMultiA, ADataType>();
static constexpr index_t NumBTensor = GetNumABTensors<isMultiB, BDataType>();
static constexpr index_t NumDTensor = DsDataType::Size();
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto conv_to_gemm_transformer =
TransformConvFwdToGemm<NDimSpatial, ConvForwardSpecialization>{};
static constexpr auto matrix_padder =
MatrixPadder<GemmSpec, index_t, index_t, index_t>{MPerBlock, NPerBlock, KPerBlock};
template <typename ALay>
__host__ __device__ static auto
MakeAGridDescriptor_M_K(const ck::Array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const ck::Array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const ck::Array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const ck::Array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const ck::Array<index_t, NDimSpatial>& conv_filter_strides,
const ck::Array<index_t, NDimSpatial>& conv_filter_dilations,
const ck::Array<index_t, NDimSpatial>& input_left_pads,
const ck::Array<index_t, NDimSpatial>& input_right_pads)
{
const auto in_gemmmraw_gemmkraw_desc =
conv_to_gemm_transformer.template MakeADescriptor_M_K<ALay>(a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
const auto in_gemmm_gemmk_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_desc);
return in_gemmm_gemmk_desc;
}
template <typename BLay>
__host__ __device__ static auto
MakeBGridDescriptor_N_K(const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides)
{
const auto wei_gemmnraw_gemmkraw_desc =
conv_to_gemm_transformer.template MakeBDescriptor_N_K<BLay>(b_g_k_c_xs_lengths,
b_g_k_c_xs_strides);
const auto wei_gemmn_gemmk_desc =
matrix_padder.PadBDescriptor_N_K(wei_gemmnraw_gemmkraw_desc);
return wei_gemmn_gemmk_desc;
}
template <typename ELay>
__host__ __device__ static auto
MakeEGridDescriptor_M_N(const ck::Array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const ck::Array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides)
{
const auto out_gemmmraw_gemmnraw_desc =
conv_to_gemm_transformer.template MakeCDescriptor_M_N<ELay>(e_g_n_k_wos_lengths,
e_g_n_k_wos_strides);
const auto out_gemmm_gemmn_desc =
matrix_padder.PadCDescriptor_M_N(out_gemmmraw_gemmnraw_desc);
return out_gemmm_gemmn_desc;
}
// Shape of Ds and E must be aligned. Strides can be different.
// Pass e_g_n_k_wos_lengths for logical broadcast.
__host__ __device__ static auto MakeDsGridDescriptor_M_N(
const ck::Array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const ck::Array<ck::Array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides)
{
return generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return DeviceOp::MakeEGridDescriptor_M_N<DLayout>(e_g_n_k_wos_lengths,
ds_g_n_k_wos_strides[i]);
},
Number<NumDTensor>{});
}
// desc for problem definition
using AGridDesc_M_K = remove_cvref_t<decltype(MakeAGridDescriptor_M_K<ALayout>(
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}))>;
using BGridDesc_N_K = remove_cvref_t<decltype(MakeBGridDescriptor_N_K<BLayout>({}, {}))>;
using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({}, {}))>;
using EGridDesc_M_N = remove_cvref_t<decltype(MakeEGridDescriptor_M_N<ELayout>({}, {}))>;
// If we are using multiAB and one of the template datatype parameters is not a tuple, convert
// it to it
using GemmADataType = std::conditional_t<!isMultiA && isMultiB, Tuple<ADataType>, ADataType>;
using GemmBDataType = std::conditional_t<!isMultiB && isMultiA, Tuple<BDataType>, BDataType>;
#define GridwiseGemmTemplateParameters \
GemmADataType, GemmBDataType, ComputeDataType, AccDataType, CShuffleDataType, DsDataType, \
EDataType, AElementwiseOperation, BElementwiseOperation, CDEElementwiseOperation, \
InMemoryDataOperationEnum::Set, NumGemmKPrefetchStage, BlockSize, MPerBlock, NPerBlock, \
KPerBlock, AK1, BK1, MPerXDL, NPerXDL, MXdlPerWave, NXdlPerWave, \
ABlockTransferThreadClusterLengths_AK0_M_AK1, ABlockTransferThreadClusterArrangeOrder, \
ABlockTransferSrcAccessOrder, ABlockTransferSrcVectorDim, \
ABlockTransferSrcScalarPerVector, ABlockTransferDstScalarPerVector_AK1, false, \
ABlockLdsExtraM, BBlockTransferThreadClusterLengths_BK0_N_BK1, \
BBlockTransferThreadClusterArrangeOrder, BBlockTransferSrcAccessOrder, \
BBlockTransferSrcVectorDim, BBlockTransferSrcScalarPerVector, \
BBlockTransferDstScalarPerVector_BK1, false, BBlockLdsExtraN, \
CShuffleMXdlPerWavePerShuffle, CShuffleNXdlPerWavePerShuffle, \
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock, \
CDEBlockTransferScalarPerVector_NPerBlock, LoopSched
// Use appropriate gridwise gemm
using GridwiseGemm =
std::conditional_t<isMultiA || isMultiB,
GridwiseGemmMultipleABD_xdl_cshuffle<GridwiseGemmTemplateParameters>,
GridwiseGemmMultipleD_xdl_cshuffle<GridwiseGemmTemplateParameters>>;
// If ADataTypes or BDataTypes is tuple, user has to pass ck::Array with pointers.
using APointers =
std::conditional_t<isMultiA, ck::Array<const void*, NumATensor>&, const void*>;
using BPointers =
std::conditional_t<isMultiB, ck::Array<const void*, NumBTensor>&, const void*>;
// Use Tuple for the both cases for GridPointer to initialize it in Argument constructor (not
// in initializer list what is required for single const pointer).
using AGridPointer = remove_cvref_t<
decltype(GetAGridPointer < isMultiA || isMultiB, GridwiseGemm, ADataType > ())>;
using BGridPointer = remove_cvref_t<
decltype(GetBGridPointer < isMultiA || isMultiB, GridwiseGemm, BDataType > ())>;
// desc for blockwise copy
using AGridDesc_AK0_M_AK1 =
remove_cvref_t<decltype(GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(
AGridDesc_M_K{}))>;
using BGridDesc_BK0_N_BK1 =
remove_cvref_t<decltype(GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(
BGridDesc_N_K{}))>;
using DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t<
decltype(GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
DsGridDesc_M_N{}))>;
using EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
remove_cvref_t<decltype(GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
EGridDesc_M_N{}))>;
// block-to-e-tile map
using Block2ETileMap =
remove_cvref_t<decltype(GridwiseGemm::MakeDefaultBlock2ETileMap(EGridDesc_M_N{}))>;
// Argument
struct Argument
{
__device__ __host__ Argument(
APointers p_as,
BPointers p_bs,
const ck::Array<const void*, NumDTensor>& p_ds,
void* p_e,
const ck::Array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const ck::Array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const ck::Array<ck::Array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_lengths,
const ck::Array<ck::Array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides,
const ck::Array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const ck::Array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const ck::Array<index_t, NDimSpatial>& conv_filter_strides,
const ck::Array<index_t, NDimSpatial>& conv_filter_dilations,
const ck::Array<index_t, NDimSpatial>& input_left_pads,
const ck::Array<index_t, NDimSpatial>& input_right_pads,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op)
: p_as_grid_{},
p_bs_grid_{},
p_ds_grid_{},
p_e_grid_{static_cast<EDataType*>(p_e)},
num_group_{a_g_n_c_wis_lengths[0]},
a_grid_desc_m_k_{DeviceOp::MakeAGridDescriptor_M_K<ALayout>(a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads)},
b_grid_desc_n_k_{DeviceOp::MakeBGridDescriptor_N_K<BLayout>(b_g_k_c_xs_lengths,
b_g_k_c_xs_strides)},
ds_grid_desc_m_n_{},
e_grid_desc_m_n_{DeviceOp::MakeEGridDescriptor_M_N<ELayout>(e_g_n_k_wos_lengths,
e_g_n_k_wos_strides)},
a_grid_desc_ak0_m_ak1_{
GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(a_grid_desc_m_k_)},
b_grid_desc_bk0_n_bk1_{
GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(b_grid_desc_n_k_)},
ds_grid_desc_mblock_mperblock_nblock_nperblock_{},
e_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_etile_map_{GridwiseGemm::MakeDefaultBlock2ETileMap(e_grid_desc_m_n_)},
compute_ptr_offset_of_batch_{},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op},
a_g_n_c_wis_lengths_{a_g_n_c_wis_lengths},
a_g_n_c_wis_strides_{a_g_n_c_wis_strides},
b_g_k_c_xs_lengths_{b_g_k_c_xs_lengths},
b_g_k_c_xs_strides_{b_g_k_c_xs_strides},
ds_g_n_k_wos_lengths_{ds_g_n_k_wos_lengths},
ds_g_n_k_wos_strides_{ds_g_n_k_wos_strides},
e_g_n_k_wos_lengths_{e_g_n_k_wos_lengths},
e_g_n_k_wos_strides_{e_g_n_k_wos_strides},
conv_filter_strides_{conv_filter_strides},
conv_filter_dilations_{conv_filter_dilations},
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads}
{
// A/B/E Batch Stride
if constexpr(isMultiA || isMultiB)
{
static_for<0, NumATensor, 1>{}([&](auto i) {
// Init compute_ptr_offset_of_batch_ for multiple AB
compute_ptr_offset_of_batch_.BatchStrideA_(i) = a_g_n_c_wis_strides[0];
// Use GemmADataType/GemmBDataType to iterate over tuple (even if passed data
// type is not tuple)
using DataType = remove_cvref_t<tuple_element_t<i.value, GemmADataType>>;
// It is possible that one of the AB is a pointer and one is a tuple.
// Then also use multiAB but we have to cast single pointer instead of tuple of
// pointer.
if constexpr(isMultiA)
{
// p_as is tuple
p_as_grid_(i) = static_cast<const DataType*>(p_as[i.value]);
}
else
{
// if MultiB and not MultiA then p_as is single pointer
p_as_grid_(i) = static_cast<const DataType*>(p_as);
}
});
static_for<0, NumBTensor, 1>{}([&](auto i) {
// Init compute_ptr_offset_of_batch_ for multiple AB
compute_ptr_offset_of_batch_.BatchStrideB_(i) = b_g_k_c_xs_strides[0];
using DataType = remove_cvref_t<tuple_element_t<i.value, GemmBDataType>>;
// It is possible that one of the AB is a pointer and one is a tuple.
// Then also use multiAB but we have to cast single pointer instead of tuple of
// pointer.
if constexpr(isMultiB)
{
// p_bs is tuple
p_bs_grid_(i) = static_cast<const DataType*>(p_bs[i.value]);
}
else
{
// if MultiA and not MultiB then p_bs is single pointer
p_bs_grid_(i) = static_cast<const DataType*>(p_bs);
}
});
}
else
{
compute_ptr_offset_of_batch_.BatchStrideA_ = a_g_n_c_wis_strides[0];
compute_ptr_offset_of_batch_.BatchStrideB_ = b_g_k_c_xs_strides[0];
// p_as and p_bs are pointers
p_as_grid_(I0) = static_cast<const ADataType*>(p_as);
p_bs_grid_(I0) = static_cast<const BDataType*>(p_bs);
}
// populate pointer, batch stride, desc for Ds
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
// D pointer
p_ds_grid_(i) = static_cast<const DDataType*>(p_ds[i]);
// D batch stride
compute_ptr_offset_of_batch_.BatchStrideDs_(i) = ds_g_n_k_wos_strides[i][0];
// D desc
ds_grid_desc_m_n_(i) = DeviceOp::MakeEGridDescriptor_M_N<DLayout>(
e_g_n_k_wos_lengths, ds_g_n_k_wos_strides[i]);
});
compute_ptr_offset_of_batch_.BatchStrideE_ = e_g_n_k_wos_strides[0];
// populate desc for Ds/E
if constexpr(isMultiA || isMultiB)
{
const auto as_grid_desc_ak0_m_ak1 =
generate_tuple([&](auto) { return a_grid_desc_m_k_; }, Number<NumATensor>{});
const auto bs_grid_desc_bk0_n_bk1 =
generate_tuple([&](auto) { return b_grid_desc_n_k_; }, Number<NumBTensor>{});
if(GridwiseGemm::CheckValidity(as_grid_desc_ak0_m_ak1,
bs_grid_desc_bk0_n_bk1,
ds_grid_desc_m_n_,
e_grid_desc_m_n_,
block_2_etile_map_))
{
e_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
e_grid_desc_m_n_);
ds_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
ds_grid_desc_m_n_);
}
}
else
{
if(GridwiseGemm::CheckValidity(a_grid_desc_m_k_,
b_grid_desc_n_k_,
ds_grid_desc_m_n_,
e_grid_desc_m_n_,
block_2_etile_map_))
{
e_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
e_grid_desc_m_n_);
ds_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
ds_grid_desc_m_n_);
}
}
}
// private:
// pointers (tuple if multi AB, pointer if no)
AGridPointer p_as_grid_;
BGridPointer p_bs_grid_;
typename GridwiseGemm::DsGridPointer p_ds_grid_;
EDataType* p_e_grid_;
// tensor descriptors for problem definiton
index_t num_group_;
AGridDesc_M_K a_grid_desc_m_k_;
BGridDesc_N_K b_grid_desc_n_k_;
DsGridDesc_M_N ds_grid_desc_m_n_;
EGridDesc_M_N e_grid_desc_m_n_;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_;
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock e_grid_desc_mblock_mperblock_nblock_nperblock_;
// block-to-e-tile map
Block2ETileMap block_2_etile_map_;
// for computing batch offset
ComputePtrOffsetOfStridedBatch<NumATensor, NumBTensor, NumDTensor>
compute_ptr_offset_of_batch_;
// element-wise op
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
// for checking IsSupportedArgument()
ck::Array<index_t, NDimSpatial + 3> a_g_n_c_wis_lengths_;
ck::Array<index_t, NDimSpatial + 3> a_g_n_c_wis_strides_;
ck::Array<index_t, NDimSpatial + 3> b_g_k_c_xs_lengths_;
ck::Array<index_t, NDimSpatial + 3> b_g_k_c_xs_strides_;
ck::Array<ck::Array<index_t, NDimSpatial + 3>, NumDTensor> ds_g_n_k_wos_lengths_;
ck::Array<ck::Array<index_t, NDimSpatial + 3>, NumDTensor> ds_g_n_k_wos_strides_;
ck::Array<index_t, NDimSpatial + 3> e_g_n_k_wos_lengths_;
ck::Array<index_t, NDimSpatial + 3> e_g_n_k_wos_strides_;
ck::Array<index_t, NDimSpatial> conv_filter_strides_;
ck::Array<index_t, NDimSpatial> conv_filter_dilations_;
ck::Array<index_t, NDimSpatial> input_left_pads_;
ck::Array<index_t, NDimSpatial> input_right_pads_;
};
static __device__ __host__ auto MakeArgument(
APointers p_as,
BPointers p_bs,
const ck::Array<const void*, NumDTensor>& p_ds,
void* p_e,
const ck::Array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const ck::Array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const ck::Array<ck::Array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_lengths,
const ck::Array<ck::Array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides,
const ck::Array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const ck::Array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const ck::Array<index_t, NDimSpatial>& conv_filter_strides,
const ck::Array<index_t, NDimSpatial>& conv_filter_dilations,
const ck::Array<index_t, NDimSpatial>& input_left_pads,
const ck::Array<index_t, NDimSpatial>& input_right_pads,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op)
{
return Argument{p_as,
p_bs,
p_ds,
p_e,
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
ds_g_n_k_wos_lengths,
ds_g_n_k_wos_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
a_element_op,
b_element_op,
cde_element_op};
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -133,8 +133,13 @@ struct DeviceBatchedContractionMultipleD_Wmma_CShuffle
static constexpr auto NWaves = NPerBlock / (NRepeat * NPerWmma);
static constexpr auto WmmaK = K1 == 16 ? 32 : 16;
static constexpr auto AEnableLds_auto = NWaves == 1 ? false : true;
static constexpr auto BEnableLds_auto = MWaves == 1 ? false : true;
static constexpr auto MaxVectorLoadA = K1 * sizeof(ADataType) == 16 ? true : false;
static constexpr auto MaxVectorLoadB = K1 * sizeof(BDataType) == 16 ? true : false;
static constexpr auto AEnableLds_auto =
(NWaves == 1 && (MaxVectorLoadA || MRepeat == 1)) ? false : true;
static constexpr auto BEnableLds_auto =
(MWaves == 1 && (MaxVectorLoadB || NRepeat == 1)) ? false : true;
// If true, LDS is used unconditionally
static constexpr auto AEnableLds_manu = false;
......@@ -829,7 +834,7 @@ struct DeviceBatchedContractionMultipleD_Wmma_CShuffle
static bool IsSupportedArgument(const Argument& arg)
{
if(ck::is_navi3_supported())
if(ck::is_gfx11_supported() || ck::is_gfx12_supported())
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, int32_t>))
{
......@@ -869,13 +874,17 @@ struct DeviceBatchedContractionMultipleD_Wmma_CShuffle
}
else
{
if(!(arg.a_kz_stride_ == 1 &&
arg.a_grid_desc_.GetLength(I2) % ABlockTransferSrcScalarPerVector == 0))
if(!(arg.a_kz_stride_ == 1))
{
index_t LastK =
AEnableLds ? arg.a_grid_desc_.GetLength(I2) : arg.a_grid_desc_.GetLength(I6);
if(LastK % ABlockTransferSrcScalarPerVector == 0)
{
printf("DeviceOp: Vector Access A-k check failure\n");
return false;
}
}
}
// vector memory access of B: could be on N or BK1 dimension
if constexpr(BBlockTransferSrcVectorDim == 1)
......
......@@ -71,7 +71,8 @@ __global__ void
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx90a__) || defined(__gfx94__) || defined(__gfx103__) || defined(__gfx11__))
defined(__gfx90a__) || defined(__gfx94__) || defined(__gfx103__) || defined(__gfx11__) || \
defined(__gfx12__))
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
......@@ -648,7 +649,7 @@ struct DeviceBatchedGemmMultipleD_Dl : public DeviceBatchedGemmMultiD<ALayout,
static bool IsSupportedArgument(const Argument& arg)
{
if(ck::get_device_name() == "gfx906" || ck::is_xdl_supported() ||
ck::is_navi2_supported() || ck::is_navi3_supported())
ck::is_gfx103_supported() || ck::is_gfx11_supported() || ck::is_gfx12_supported())
{
bool pass = true;
pass = pass && arg.K_ % K1 == 0;
......
......@@ -587,13 +587,14 @@ struct DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
BatchStrideD1s,
BatchStrideE1}
{
#if DEBUG_LOG
if(ck::EnvIsEnabled(CK_ENV(CK_LOGGING)))
{
std::cout << "a0_grid_desc_m_k_{" << a0_grid_desc_m_k_.GetLength(I0) << ", "
<< a0_grid_desc_m_k_.GetLength(I1) << "}" << std::endl;
std::cout << "b0_grid_desc_n_k_{" << b0_grid_desc_n_k_.GetLength(I0) << ", "
<< b0_grid_desc_n_k_.GetLength(I1) << "}" << std::endl;
std::cout << "d0s_grid_desc_m_n_[I0]{" << d0s_grid_desc_m_n_[I0].GetLength(I0) << ", "
<< d0s_grid_desc_m_n_[I0].GetLength(I1) << "}" << std::endl;
std::cout << "d0s_grid_desc_m_n_[I0]{" << d0s_grid_desc_m_n_[I0].GetLength(I0)
<< ", " << d0s_grid_desc_m_n_[I0].GetLength(I1) << "}" << std::endl;
std::cout << "b1_grid_desc_n_k_{" << b1_grid_desc_n_k_.GetLength(I0) << ", "
<< b1_grid_desc_n_k_.GetLength(I1) << "}" << std::endl;
std::cout << "d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_{"
......@@ -610,7 +611,7 @@ struct DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<< std::endl;
std::cout << "e1_grid_desc_m_n_{" << e1_grid_desc_m_n_.GetLength(I0) << ", "
<< e1_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
#endif
}
static_for<0, NumD0Tensor, 1>{}([&](auto i) {
using D0Layout = remove_cvref_t<tuple_element_t<i.value, D0sLayout>>;
......
......@@ -658,7 +658,8 @@ struct DeviceBatchedGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<0, ReduceO
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
#if DEBUG_LOG
if(ck::EnvIsEnabled(CK_ENV(CK_LOGGING)))
{
{
std::cout << "arg.Batch_ = " << arg.Batch_ << std::endl;
......@@ -672,13 +673,13 @@ struct DeviceBatchedGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<0, ReduceO
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I1) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0)
<< ", " << arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
std::cout << "arg.reduce_grid_desc_m_{ " << arg.reduce_grid_desc_m_.GetLength(I0)
<< "}" << std::endl;
std::cout << "arg.reduce_grid_desc_m_{ "
<< arg.reduce_grid_desc_m_.GetLength(I0) << "}" << std::endl;
}
}
#endif
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
......
......@@ -56,7 +56,7 @@ __global__ void
bool input_permute,
bool output_permute)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))
// clang-format off
// ***************************************************
......@@ -159,6 +159,7 @@ __global__ void
ignore = O;
ignore = G0;
ignore = G1;
ignore = alpha;
ignore = input_permute;
ignore = output_permute;
#endif // end of if (defined(__gfx11__))
......@@ -187,7 +188,7 @@ __global__ void
index_t head_size,
float alpha)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))
// clang-format off
// ***************************************************
......@@ -321,7 +322,7 @@ __global__ void
index_t head_size,
float alpha)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))
// clang-format off
// ***************************************************
......@@ -858,7 +859,7 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
static bool IsSupportedArgument(const RawArg& arg)
{
if(ck::is_navi3_supported())
if(ck::is_gfx11_supported() || ck::is_gfx12_supported())
{
if constexpr(!(is_same_v<Acc0DataType, float> || is_same_v<Acc0DataType, int32_t>))
{
......@@ -1435,7 +1436,7 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
#if 0
static bool IsSupportedArgument(const Argument& arg)
{
if(ck::is_navi3_supported())
if(ck::is_gfx11_supported())
{
if constexpr(!(is_same_v<Acc0DataType, float> || is_same_v<Acc0DataType, int32_t>))
{
......
......@@ -719,9 +719,10 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
static bool IsSupportedArgument(const Argument& arg)
{
#if DEBUG_LOG
if(ck::EnvIsEnabled(CK_ENV(CK_LOGGING)))
{
arg.Print();
#endif
}
if(!ck::is_xdl_supported())
{
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -247,7 +247,8 @@ struct DeviceColumnToImageImpl
independent_filter_strides,
conv_filter_dilations,
input_left_pads_with_offset,
input_right_pads);
input_right_pads,
N);
const auto in_gemmm_gemmk_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_desc);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -501,29 +501,24 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
// for sanity check of vector memory access
for(index_t i = 0; i < NumATensor; ++i)
{
as_mz_consecutive_[i] = a_ms_ks_strides[i][NumDimM - 1] == 1;
as_kz_consecutive_[i] = a_ms_ks_strides[i][NumDimM + NumDimK - 1] == 1;
as_max_read_elems_[i] =
tie(as_continous_dim_[i], as_max_read_elems_[i]) =
CalculateMaxRead<NumDimM, NumDimK>(a_ms_ks_lengths[i], a_ms_ks_strides[i]);
}
for(index_t i = 0; i < NumBTensor; ++i)
{
bs_nz_consecutive_[i] = b_ns_ks_strides[i][NumDimN - 1] == 1;
bs_kz_consecutive_[i] = b_ns_ks_strides[i][NumDimN + NumDimK - 1] == 1;
bs_max_read_elems_[i] =
tie(bs_continous_dim_[i], bs_max_read_elems_[i]) =
CalculateMaxRead<NumDimN, NumDimK>(b_ns_ks_lengths[i], b_ns_ks_strides[i]);
}
for(index_t i = 0; i < NumDTensor; ++i)
{
ds_nz_consecutive_[i] = d_ms_ns_strides[i][NumDimM + NumDimN - 1] == 1;
ds_max_read_elems_[i] =
tie(ds_continous_dim_[i], ds_max_read_elems_[i]) =
CalculateMaxRead<NumDimM, NumDimN>(d_ms_ns_lengths[i], d_ms_ns_strides[i]);
}
e_nz_consecutive_ = e_ms_ns_stride[NumDimM + NumDimN - 1] == 1;
e_max_write_elems_ = CalculateMaxRead<NumDimM, NumDimN>(e_ms_ns_length, e_ms_ns_stride);
tie(e_continous_dim_, e_max_write_elems_) =
CalculateMaxRead<NumDimM, NumDimN>(e_ms_ns_length, e_ms_ns_stride);
}
// pointers
......@@ -553,14 +548,11 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
// Describe whether the last part of a given dimension of A/B/D/E is consecutive
// in the memory or not.
std::array<bool, NumATensor> as_mz_consecutive_;
std::array<bool, NumATensor> as_kz_consecutive_;
std::array<bool, NumBTensor> bs_nz_consecutive_;
std::array<bool, NumBTensor> bs_kz_consecutive_;
std::array<bool, NumDTensor> ds_nz_consecutive_;
bool e_nz_consecutive_;
// Describe whether the last part of a given dimension of A/B/D/E is continues dim.
std::array<index_t, NumATensor> as_continous_dim_;
std::array<index_t, NumATensor> bs_continous_dim_;
std::array<index_t, NumBTensor> ds_continous_dim_;
index_t e_continous_dim_;
std::array<index_t, NumATensor> as_max_read_elems_;
std::array<index_t, NumBTensor> bs_max_read_elems_;
......@@ -659,9 +651,9 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
const bool valid_a_vector_size =
arg.as_max_read_elems_[i] % ABlockTransferSrcScalarPerVector == 0;
const bool valid_a_access_dim_m =
ABlockTransferSrcVectorDim == 1 && arg.as_mz_consecutive_[i];
ABlockTransferSrcVectorDim == 1 && arg.as_continous_dim_[i] == 0;
const bool valid_a_access_dim_k =
ABlockTransferSrcVectorDim == 2 && arg.as_kz_consecutive_[i];
ABlockTransferSrcVectorDim == 2 && arg.as_continous_dim_[i] == 1;
const bool valid_a_access_dim = valid_a_access_dim_m || valid_a_access_dim_k;
if(!((valid_a_vector_size && valid_a_access_dim) ||
ABlockTransferSrcScalarPerVector == 1))
......@@ -679,9 +671,9 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
const bool valid_b_vector_size =
arg.bs_max_read_elems_[i] % BBlockTransferSrcScalarPerVector == 0;
const bool valid_b_access_dim_n =
BBlockTransferSrcVectorDim == 1 && arg.bs_nz_consecutive_[i];
BBlockTransferSrcVectorDim == 1 && arg.bs_continous_dim_[i] == 0;
const bool valid_b_access_dim_k =
BBlockTransferSrcVectorDim == 2 && arg.bs_kz_consecutive_[i];
BBlockTransferSrcVectorDim == 2 && arg.bs_continous_dim_[i] == 1;
const bool valid_b_access_dim = valid_b_access_dim_n || valid_b_access_dim_k;
if(!((valid_b_vector_size && valid_b_access_dim) ||
BBlockTransferSrcScalarPerVector == 1))
......@@ -699,7 +691,7 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
const bool valid_d_vector_size =
arg.ds_max_read_elems_[i] % CDEBlockTransferScalarPerVector_NPerBlock == 0;
// Vector read of Ds is always on N dimension.
const bool valid_d_access_dim = arg.ds_nz_consecutive_[i];
const bool valid_d_access_dim = arg.ds_continous_dim_[i] == 1;
if(!((valid_d_vector_size && valid_d_access_dim) ||
CDEBlockTransferScalarPerVector_NPerBlock == 1))
{
......@@ -714,7 +706,7 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
const bool valid_e_vector_size =
arg.e_max_write_elems_ % CDEBlockTransferScalarPerVector_NPerBlock == 0;
// Vector write of E is always on N dimension.
const bool valid_e_access_dim = arg.e_nz_consecutive_;
const bool valid_e_access_dim = arg.e_continous_dim_ == 1;
if(!((valid_e_vector_size && valid_e_access_dim) ||
CDEBlockTransferScalarPerVector_NPerBlock == 1))
{
......
......@@ -53,8 +53,7 @@ __global__ void
e_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2ETileMap block_2_etile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
......@@ -443,25 +442,19 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
}
// for sanity check of vector memory access
a_mz_consecutive_ = a_ms_ks_strides[NumDimM - 1] == 1;
a_kz_consecutive_ = a_ms_ks_strides[NumDimM + NumDimK - 1] == 1;
a_max_read_elems_ =
tie(a_continous_dim_, a_max_read_elems_) =
CalculateMaxRead<NumDimM, NumDimK>(a_ms_ks_lengths, a_ms_ks_strides);
b_nz_consecutive_ = b_ns_ks_strides[NumDimN - 1] == 1;
b_kz_consecutive_ = b_ns_ks_strides[NumDimN + NumDimK - 1] == 1;
b_max_read_elems_ =
tie(b_continous_dim_, b_max_read_elems_) =
CalculateMaxRead<NumDimN, NumDimK>(b_ns_ks_lengths, b_ns_ks_strides);
for(index_t i = 0; i < NumDTensor; ++i)
{
ds_nz_consecutive_[i] = ds_ms_ns_strides[i][NumDimM + NumDimN - 1] == 1;
ds_max_read_elems_[i] =
tie(ds_continous_dim_[i], ds_max_read_elems_[i]) =
CalculateMaxRead<NumDimM, NumDimN>(ds_ms_ns_lengths[i], ds_ms_ns_strides[i]);
}
e_nz_consecutive_ = e_ms_ns_strides[NumDimM + NumDimN - 1] == 1;
e_max_write_elems_ =
tie(e_continous_dim_, e_max_write_elems_) =
CalculateMaxRead<NumDimM, NumDimN>(e_ms_ns_lengths, e_ms_ns_strides);
}
......@@ -502,14 +495,11 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
// Describe whether the last part of a given dimension of A/B/D/E is consecutive
// in the memory or not.
bool a_mz_consecutive_;
bool a_kz_consecutive_;
bool b_nz_consecutive_;
bool b_kz_consecutive_;
std::array<bool, NumDTensor> ds_nz_consecutive_;
bool e_nz_consecutive_;
// Describe whether the last part of a given dimension of A/B/D/E is continues dim.
index_t a_continous_dim_;
index_t b_continous_dim_;
std::array<index_t, NumDTensor> ds_continous_dim_;
index_t e_continous_dim_;
index_t a_max_read_elems_;
index_t b_max_read_elems_;
......@@ -602,9 +592,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
return false;
}
if(ck::get_device_name() != "gfx90a" && ck::get_device_name() != "gfx940" &&
ck::get_device_name() != "gfx941" && ck::get_device_name() != "gfx942" &&
std::is_same<ADataType, double>::value)
if(!ck::is_lds_direct_load_supported() && std::is_same<ADataType, double>::value)
{
return false;
}
......@@ -625,8 +613,10 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
const bool valid_a_vector_size =
arg.a_max_read_elems_ % ABlockTransferSrcScalarPerVector == 0;
const bool valid_a_access_dim_m = ABlockTransferSrcVectorDim == 1 && arg.a_mz_consecutive_;
const bool valid_a_access_dim_k = ABlockTransferSrcVectorDim == 2 && arg.a_kz_consecutive_;
const bool valid_a_access_dim_m =
ABlockTransferSrcVectorDim == 1 && arg.a_continous_dim_ == 0;
const bool valid_a_access_dim_k =
ABlockTransferSrcVectorDim == 2 && arg.a_continous_dim_ == 1;
const bool valid_a_access_dim =
valid_a_access_dim_m || valid_a_access_dim_k || ABlockTransferSrcScalarPerVector == 1;
if(!(valid_a_vector_size && valid_a_access_dim))
......@@ -636,8 +626,10 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
const bool valid_b_vector_size =
arg.b_max_read_elems_ % BBlockTransferSrcScalarPerVector == 0;
const bool valid_b_access_dim_n = BBlockTransferSrcVectorDim == 1 && arg.b_nz_consecutive_;
const bool valid_b_access_dim_k = BBlockTransferSrcVectorDim == 2 && arg.b_kz_consecutive_;
const bool valid_b_access_dim_n =
BBlockTransferSrcVectorDim == 1 && arg.b_continous_dim_ == 0;
const bool valid_b_access_dim_k =
BBlockTransferSrcVectorDim == 2 && arg.b_continous_dim_ == 1;
const bool valid_b_access_dim =
valid_b_access_dim_n || valid_b_access_dim_k || BBlockTransferSrcScalarPerVector == 1;
if(!(valid_b_vector_size && valid_b_access_dim))
......@@ -651,7 +643,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
arg.ds_max_read_elems_[i] % CDEBlockTransferScalarPerVector_NPerBlock == 0;
// Vector read of Ds is always on N dimension.
const bool valid_d_access_dim =
arg.ds_nz_consecutive_[i] || CDEBlockTransferScalarPerVector_NPerBlock == 1;
arg.ds_continous_dim_[i] == 1 || CDEBlockTransferScalarPerVector_NPerBlock == 1;
if(!(valid_d_vector_size && valid_d_access_dim))
{
valid_ds_access = false;
......@@ -666,7 +658,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
arg.e_max_write_elems_ % CDEBlockTransferScalarPerVector_NPerBlock == 0;
// Vector write of E is always on N dimension.
const bool valid_e_access_dim =
arg.e_nz_consecutive_ || CDEBlockTransferScalarPerVector_NPerBlock == 1;
arg.e_continous_dim_ == 1 || CDEBlockTransferScalarPerVector_NPerBlock == 1;
if(!(valid_e_vector_size && valid_e_access_dim))
{
return false;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -50,25 +50,53 @@ auto CalculateMaxRead(const std::vector<index_t>& lengths, const std::vector<ind
}
// Determine the beginning and end idx of the group representing the FCD.
index_t begin_idx, end_idx;
if(strides[NumDim1 - 1] == 1)
index_t begin_idx, end_idx, continous_dim, consecutive_stride = 1;
if(strides[NumDim1 - 1] == 1 && strides[NumDim1 + NumDim2 - 1] == 1)
{
// MZ or KZ are ones
bool dims1_are_ones = true;
for(index_t dim_idx = 0; dim_idx < NumDim1; dim_idx++)
{
if(lengths[dim_idx] != 1)
{
dims1_are_ones = false;
}
}
if(dims1_are_ones)
{
begin_idx = NumDim1;
end_idx = NumDim1 + NumDim2 - 1;
continous_dim = 1;
}
else
{
begin_idx = 0;
end_idx = NumDim1 - 1;
continous_dim = 0;
}
}
else if(strides[NumDim1 - 1] == 1)
{
begin_idx = 0;
end_idx = NumDim1 - 1;
continous_dim = 0;
}
else if(strides[NumDim1 + NumDim2 - 1] == 1)
{
begin_idx = NumDim1;
end_idx = NumDim1 + NumDim2 - 1;
continous_dim = 1;
}
else
{
// The dimension consecutive in memory is not the last dimension of any group, so only
// one element can be read/written at once.
return 1;
consecutive_stride = 1;
continous_dim = 0;
return make_tuple(continous_dim, consecutive_stride);
}
index_t consecutive_stride = 1;
for(index_t dim_idx = end_idx; dim_idx >= begin_idx; --dim_idx)
{
if(strides[dim_idx] == consecutive_stride)
......@@ -81,7 +109,7 @@ auto CalculateMaxRead(const std::vector<index_t>& lengths, const std::vector<ind
}
}
const index_t max_subsequent_elems = consecutive_stride;
return max_subsequent_elems;
return make_tuple(continous_dim, max_subsequent_elems);
}
} // namespace device
......
......@@ -516,7 +516,8 @@ struct DeviceConv2dBwdDataXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
float ave_time = 0;
for(size_t i = 0; i < arg.a_grid_desc_k0_m_k1_container_.size(); i++)
{
#if DEBUG_LOG
if(ck::EnvIsEnabled(CK_ENV(CK_LOGGING)))
{
{
std::cout << "arg.a_grid_desc_k0_m_k1_container_{"
<< arg.a_grid_desc_k0_m_k1_container_[i].GetLength(I0) << ", "
......@@ -535,7 +536,7 @@ struct DeviceConv2dBwdDataXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<< arg.c_grid_desc_m_n_container_[i].GetLength(I1) << "}"
<< std::endl;
}
#endif
}
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_container_[i],
arg.b_grid_desc_k0_n_k1_container_[i],
......
......@@ -644,7 +644,7 @@ struct
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
#if DEBUG_LOG
if(ck::EnvIsEnabled(CK_ENV(CK_LOGGING)))
{
std::cout << DeviceOp{}.GetTypeString() << std::endl;
std::cout << "N " << arg.Conv_N_ << ", "
......@@ -664,9 +664,7 @@ struct
<< arg.input_left_pads_[1] << ", " << std::endl;
std::cout << "InLeftPads " << arg.input_right_pads_[0] << ", "
<< arg.input_right_pads_[1] << ", " << std::endl;
}
{
std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_k0_m_k1_.GetLength(I2) << "}" << std::endl;
......@@ -684,7 +682,6 @@ struct
std::cout << "arg.c1_grid_desc_m_n_{ " << arg.c1_grid_desc_m_n_.GetLength(I0)
<< ", " << arg.c1_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
#endif
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
......
......@@ -614,7 +614,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
#if DEBUG_LOG
if(ck::EnvIsEnabled(CK_ENV(CK_LOGGING)))
{
std::cout << DeviceOp{}.GetTypeString() << std::endl;
std::cout << "N " << arg.Conv_N_ << ", "
......@@ -634,9 +634,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X
<< arg.input_left_pads_[1] << ", " << std::endl;
std::cout << "InLeftPads " << arg.input_right_pads_[0] << ", "
<< arg.input_right_pads_[1] << ", " << std::endl;
}
{
std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_k0_m_k1_.GetLength(I2) << "}" << std::endl;
......@@ -651,7 +649,6 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X
std::cout << "arg.c0_grid_desc_m_n_{ " << arg.c0_grid_desc_m_n_.GetLength(I0)
<< ", " << arg.c0_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
#endif
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment