Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
e5ebcc41
Commit
e5ebcc41
authored
Feb 19, 2024
by
Artur Wojcik
Browse files
Merge branch 'develop' into uif2-migraphx
parents
57cdd70b
abac8b07
Changes
437
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
604 additions
and
75 deletions
+604
-75
include/ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp
...or_operation/gpu/device/device_contraction_multiple_d.hpp
+2
-1
include/ck/tensor_operation/gpu/device/device_conv_tensor_rearrange.hpp
...sor_operation/gpu/device/device_conv_tensor_rearrange.hpp
+78
-0
include/ck/tensor_operation/gpu/device/device_elementwise_scale.hpp
.../tensor_operation/gpu/device/device_elementwise_scale.hpp
+55
-0
include/ck/tensor_operation/gpu/device/device_gemm_multiple_abd.hpp
.../tensor_operation/gpu/device/device_gemm_multiple_abd.hpp
+60
-0
include/ck/tensor_operation/gpu/device/device_gemm_splitk.hpp
...ude/ck/tensor_operation/gpu/device/device_gemm_splitk.hpp
+6
-3
include/ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data_multiple_d.hpp
...on/gpu/device/device_grouped_conv_bwd_data_multiple_d.hpp
+3
-1
include/ck/tensor_operation/gpu/device/device_grouped_conv_bwd_weight.hpp
...r_operation/gpu/device/device_grouped_conv_bwd_weight.hpp
+3
-1
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp
...ation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp
+132
-0
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp
...eration/gpu/device/device_grouped_conv_fwd_multiple_d.hpp
+42
-40
include/ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp
...sor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp
+63
-0
include/ck/tensor_operation/gpu/device/device_max_pool_bwd.hpp
...de/ck/tensor_operation/gpu/device/device_max_pool_bwd.hpp
+3
-2
include/ck/tensor_operation/gpu/device/device_normalization_bwd_data.hpp
...or_operation/gpu/device/device_normalization_bwd_data.hpp
+59
-0
include/ck/tensor_operation/gpu/device/device_normalization_bwd_gamma_beta.hpp
...ration/gpu/device/device_normalization_bwd_gamma_beta.hpp
+61
-0
include/ck/tensor_operation/gpu/device/device_normalization_fwd.hpp
.../tensor_operation/gpu/device/device_normalization_fwd.hpp
+13
-11
include/ck/tensor_operation/gpu/device/impl/device_batched_contraction_multiple_d_wmma_cshuffle.hpp
...l/device_batched_contraction_multiple_d_wmma_cshuffle.hpp
+1
-2
include/ck/tensor_operation/gpu/device/impl/device_batched_contraction_multiple_d_xdl_cshuffle.hpp
...pl/device_batched_contraction_multiple_d_xdl_cshuffle.hpp
+6
-2
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_e_permute_xdl.hpp
...ion/gpu/device/impl/device_batched_gemm_e_permute_xdl.hpp
+7
-2
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_gemm_xdl_cshuffle.hpp
...gpu/device/impl/device_batched_gemm_gemm_xdl_cshuffle.hpp
+1
-1
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_multi_d_xdl.hpp
...ation/gpu/device/impl/device_batched_gemm_multi_d_xdl.hpp
+5
-1
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_multiple_d_dl.hpp
...ion/gpu/device/impl/device_batched_gemm_multiple_d_dl.hpp
+4
-8
No files found.
Too many changes to show.
To preserve performance only
437 of 437+
files are displayed.
Plain diff
Email patch
include/ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp
View file @
e5ebcc41
...
@@ -33,7 +33,8 @@ template <index_t NumDimM,
...
@@ -33,7 +33,8 @@ template <index_t NumDimM,
typename
EDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
>
typename
CDEElementwiseOperation
,
typename
ComputeDataType
=
ADataType
>
struct
DeviceContractionMultipleD
:
public
BaseOperator
struct
DeviceContractionMultipleD
:
public
BaseOperator
{
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
...
...
include/ck/tensor_operation/gpu/device/device_conv_tensor_rearrange.hpp
0 → 100644
View file @
e5ebcc41
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
/**
* \brief Convolution Tensor Rearrange.
*
* This Device operator supports converting an image to
* the GEMM representation (Image to Column) and
* converting a GEMM form to the image (Column to Image).
* Supported layouts:
* [G, N, Di, Hi, Wi, C] <-> [G, N * Do * Ho * Wo, Z * Y * X * C]
* [N, Di, Hi, Wi, G, C] <-> [N * Do * Ho * Wo, G, Z * Y * X * C]
*
* \tparam NDimSpatial Number of spatial dimensions.
* \tparam ImageLayout Input Layout.
* \tparam InputDataType Input Data Type.
* \tparam OutputDataType Output Data Type.
* \tparam ConvTensorRearrangeOp Operation type: ImageToColumn, ColumnToImage.
*/
template
<
index_t
NDimSpatial
,
typename
ImageLayout
,
typename
InputDataType
,
typename
OutputDataType
,
typename
ConvTensorRearrangeOp
>
struct
DeviceConvTensorRearrange
:
public
BaseOperator
{
/**
* \brief Make argument pointer for image to column.
*
* \param p_in A pointer to the device memory of the input image.
* \param p_out A pointer to the device memory of the output.
* \param G Convolution number of groups.
* \param N Convolution batch size.
* \param C Convolution number of channels.
* \param input_spatial_lengths Input spatial lengths.
* \param filter_spatial_lengths Filter spatial lengths.
* \param output_spatial_lengths Output spatial lengths.
* \param image_g_n_c_wis_strides Image strides in order [G, N, C, D, H, W].
* \param gemm_g_m_k_strides Gemm form strides.
* \param conv_filter_strides Convolution filter strides.
* \param conv_filter_dilations Convolution filter dilations.
* \param input_left_pads Convolution left pads.
* \param input_right_pads Convolution right pads.
* \return Pointer to the argument.
*/
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_in
,
void
*
p_out
,
const
ck
::
index_t
G
,
const
ck
::
index_t
N
,
const
ck
::
index_t
C
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_spatial_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
filter_spatial_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
output_spatial_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
image_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
3
>&
gemm_g_m_k_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_elementwise_scale.hpp
0 → 100644
View file @
e5ebcc41
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <memory>
#include <array>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
InDataTypeTuple
,
typename
OutDataTypeTuple
,
typename
ElementwiseOperation
,
typename
UnaryOperation
,
typename
Scale
,
index_t
NumDim
>
struct
DeviceElementwise
:
public
BaseOperator
{
static
constexpr
int
NumInput
=
InDataTypeTuple
::
Size
();
static
constexpr
int
NumOutput
=
OutDataTypeTuple
::
Size
();
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
array
<
index_t
,
NumDim
>
lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumInput
>
inStridesArray
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumOutput
>
outStridesArray
,
const
std
::
array
<
const
void
*
,
NumInput
>
in_dev_buffers
,
const
std
::
array
<
void
*
,
NumOutput
>
out_dev_buffers
,
ElementwiseOperation
elementwise_op
,
UnaryOperation
unary_op
,
Scale
scale_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
// namespace device
template
<
typename
InDataTypeTuple
,
typename
OutDataTypeTuple
,
typename
ElementwiseOperation
,
typename
UnaryOperation
,
typename
Scale
,
index_t
NumDim
>
using
DeviceElementwisePtr
=
std
::
unique_ptr
<
DeviceElementwise
<
InDataTypeTuple
,
OutDataTypeTuple
,
ElementwiseOperation
,
UnaryOperation
,
Scale
,
NumDim
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_gemm_multiple_abd.hpp
0 → 100644
View file @
e5ebcc41
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// GEMM:
// input : A0[M, K], B0[K, N],
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// D0, D1, ... and E have the same layout
template
<
typename
AsLayout
,
typename
BsLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
AsDataType
,
typename
BsDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
>
struct
DeviceGemmMultipleABD
:
public
BaseOperator
{
static
constexpr
index_t
NumATensor
=
AsDataType
::
Size
();
static
constexpr
index_t
NumBTensor
=
BsDataType
::
Size
();
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
array
<
const
void
*
,
NumATensor
>
p_as
,
std
::
array
<
const
void
*
,
NumBTensor
>
p_bs
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
std
::
array
<
ck
::
index_t
,
NumATensor
>
StrideAs
,
std
::
array
<
ck
::
index_t
,
NumBTensor
>
StrideBs
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
StrideDs
,
ck
::
index_t
StrideE
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_gemm_splitk.hpp
View file @
e5ebcc41
...
@@ -20,7 +20,8 @@ template <typename ALayout,
...
@@ -20,7 +20,8 @@ template <typename ALayout,
typename
CDataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
typename
CElementwiseOperation
,
typename
ComputeType
=
CDataType
>
struct
DeviceGemmSplitK
:
public
BaseOperator
struct
DeviceGemmSplitK
:
public
BaseOperator
{
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
...
@@ -48,7 +49,8 @@ template <typename ALayout,
...
@@ -48,7 +49,8 @@ template <typename ALayout,
typename
CDataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
typename
CElementwiseOperation
,
typename
ComputeType
=
CDataType
>
using
DeviceGemmSplitKPtr
=
std
::
unique_ptr
<
DeviceGemmSplitK
<
ALayout
,
using
DeviceGemmSplitKPtr
=
std
::
unique_ptr
<
DeviceGemmSplitK
<
ALayout
,
BLayout
,
BLayout
,
CLayout
,
CLayout
,
...
@@ -57,7 +59,8 @@ using DeviceGemmSplitKPtr = std::unique_ptr<DeviceGemmSplitK<ALayout,
...
@@ -57,7 +59,8 @@ using DeviceGemmSplitKPtr = std::unique_ptr<DeviceGemmSplitK<ALayout,
CDataType
,
CDataType
,
AElementwiseOperation
,
AElementwiseOperation
,
BElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>>
;
CElementwiseOperation
,
ComputeType
>>
;
}
// namespace device
}
// namespace device
}
// namespace tensor_operation
}
// namespace tensor_operation
...
...
include/ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data_multiple_d.hpp
View file @
e5ebcc41
...
@@ -29,7 +29,9 @@ template <ck::index_t NDimSpatial,
...
@@ -29,7 +29,9 @@ template <ck::index_t NDimSpatial,
typename
EDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
>
typename
CDEElementwiseOperation
,
typename
AComputeType
=
ADataType
,
typename
BComputeType
=
AComputeType
>
struct
DeviceGroupedConvBwdDataMultipleD
:
public
BaseOperator
struct
DeviceGroupedConvBwdDataMultipleD
:
public
BaseOperator
{
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
...
...
include/ck/tensor_operation/gpu/device/device_grouped_conv_bwd_weight.hpp
View file @
e5ebcc41
...
@@ -20,7 +20,9 @@ template <ck::index_t NDimSpatial,
...
@@ -20,7 +20,9 @@ template <ck::index_t NDimSpatial,
typename
OutDataType
,
typename
OutDataType
,
typename
InElementwiseOperation
,
typename
InElementwiseOperation
,
typename
WeiElementwiseOperation
,
typename
WeiElementwiseOperation
,
typename
OutElementwiseOperation
>
typename
OutElementwiseOperation
,
typename
ComputeTypeA
=
InDataType
,
typename
ComputeTypeB
=
ComputeTypeA
>
struct
DeviceGroupedConvBwdWeight
:
public
BaseOperator
struct
DeviceGroupedConvBwdWeight
:
public
BaseOperator
{
{
virtual
std
::
unique_ptr
<
BaseArgument
>
virtual
std
::
unique_ptr
<
BaseArgument
>
...
...
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp
0 → 100644
View file @
e5ebcc41
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/utility/is_detected.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
T
>
using
is_tuple
=
decltype
(
std
::
declval
<
T
&>
().
IsTuple
());
/**
* \brief Grouped Convolution Forward
*
* \details
* input : input image A[G, N, C, Hi, Wi], A1[G, N, C, Hi, Wi]...
* input : weight B[G, K, C, Y, X], B1[G, K, C, Y, X]...
* input : D0[G, N, K, Ho, Wo], D1[G, N, K, Ho, Wo], ...
* output : output image E[G, N, K, Ho, Wo]
*
* C = a_op(A, A1...) * b_op(B, B1...)
* E = cde_op(C, D0, D1, ...)
*
* \tparam NDimSpatial Number of spatial dimensions.
* \tparam ALayout Input layout (also for a1, a2...).
* \tparam BLayout Weight layout (also for b1, b2...).
* \tparam DsLayout Ds layouts.
* \tparam ELayout Output layout.
* \tparam ADataType Input data type. Pass tuple if there is multiple A.
* \tparam BDataType Weight data type. Pass tuple if there is multiple B.
* \tparam DsDataType D data types.
* \tparam EDataType Output data type.
* \tparam AElementwiseOperation A elementwise operation.
* \tparam BElementwiseOperation B elementwise operation.
* \tparam CDEElementwiseOperation CDE elementwise operation.
* \tparam ComputeType Compute data type (default: ADataType, first if tuple passed).
*/
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
ComputeType
=
decltype
(
UnpackDataType
<
is_detected
<
is_tuple
,
ADataType
>
::
value
,
Number
<
0
>
,
ADataType
>
())
>
// ComputeType is InputType by default (first
// in tuple for MultiAB), unpack if tuple was
// passed
struct
DeviceGroupedConvFwdMultipleABD
:
public
BaseOperator
{
static
constexpr
bool
isMultiA
=
is_detected
<
is_tuple
,
ADataType
>::
value
;
static
constexpr
bool
isMultiB
=
is_detected
<
is_tuple
,
BDataType
>::
value
;
static
constexpr
index_t
NumATensor
=
GetNumABTensors
<
isMultiA
,
ADataType
>
();
static
constexpr
index_t
NumBTensor
=
GetNumABTensors
<
isMultiB
,
BDataType
>
();
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static_assert
(
NumDTensor
==
DsLayout
::
Size
(),
"wrong! Inconsistent NumDTensor"
);
// If DataType is tuple, user has to pass std::array with pointers.
using
APointers
=
std
::
conditional_t
<
isMultiA
,
std
::
array
<
const
void
*
,
NumATensor
>&
,
const
void
*>
;
using
BPointers
=
std
::
conditional_t
<
isMultiB
,
std
::
array
<
const
void
*
,
NumBTensor
>&
,
const
void
*>
;
/**
* \brief Make argument pointer for grouped conv fwd.
*
* \param p_a A pointer to the input (std::array<const void*, NumA> with
pointers for multiple A).
* \param p_b A pointer to the weight (std::array<const void*, NumA> with
pointers for multiple B).
* \param p_ds A pointers to the Ds.
* \param p_e A pointers to the output.
* \param a_g_n_c_wis_lengths Input lengths [G, N, C, Spatial...] (for 3d).
* \param a_g_n_c_wis_strides Input strides [G, N, C, Spatial...] (for 3d).
* \param b_g_k_c_xs_lengths Weight lengths [G, K, C, Spatial...] (for 3d).
* \param b_g_k_c_xs_strides Weight strides [G, K, C, Spatial...] (for 3d).
* \param ds_g_n_k_wos_lengths Ds lengths [G, N, K, Spatial...] (for 3d).
* \param ds_g_n_k_wos_strides Ds strides [G, N, K, Spatial...] (for 3d).
* \param e_g_n_k_wos_lengths Output lengths [G, N, K, Spatial...] (for 3d).
* \param e_g_n_k_wos_strides Output strides [G, N, K, Spatial...] (for 3d).
* \param conv_filter_strides Convolution filter strides.
* \param conv_filter_dilations Convolution filter dilations.
* \param input_left_pads Input left paddings.
* \param input_right_pads Input right paddings.
* \param a_element_op A elementwise operation object.
* \param b_element_op B elementwise operation object.
* \param cde_element_op CDE elementwise operation object.
* \return Pointer to the argument.
*/
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
APointers
p_a
,
BPointers
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp
View file @
e5ebcc41
...
@@ -3,21 +3,33 @@
...
@@ -3,21 +3,33 @@
#pragma once
#pragma once
#include <array>
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
ck
{
namespace
tensor_operation
{
namespace
tensor_operation
{
namespace
device
{
namespace
device
{
// Convolution Forward:
/**
// input : input image A[G, N, C, Hi, Wi],
* \brief Grouped Convolution Forward
// input : weight B[G, K, C, Y, X],
*
// input : D0[G, N, K, Ho, Wo], D1[G, N, K, Ho, Wo], ...
* \note This structure is deprecated (left for backwards compatibility). Please use
// output : output image E[G, N, K, Ho, Wo]
* DeviceGroupedConvFwdMultipleABD.
// C = a_op(A) * b_op(B)
*
// E = cde_op(C, D0, D1, ...)
* \tparam NDimSpatial Number of spatial dimensions.
* \tparam ALayout Input layout (also for a1, a2...).
* \tparam BLayout Weight layout (also for b1, b2...).
* \tparam DsLayout Ds layouts.
* \tparam ELayout Output layout.
* \tparam ADataType Input data type. Pass tuple if there is multiple A.
* \tparam BDataType Weight data type. Pass tuple if there is multiple B.
* \tparam DsDataType D data types.
* \tparam EDataType Output data type.
* \tparam AElementwiseOperation A elementwise operation.
* \tparam BElementwiseOperation B elementwise operation.
* \tparam CDEElementwiseOperation CDE elementwise operation.
* \tparam ComputeType Compute data type (default: ADataType, first if tuple passed).
*/
template
<
index_t
NDimSpatial
,
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
ALayout
,
typename
BLayout
,
typename
BLayout
,
...
@@ -29,36 +41,26 @@ template <index_t NDimSpatial,
...
@@ -29,36 +41,26 @@ template <index_t NDimSpatial,
typename
EDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
>
typename
CDEElementwiseOperation
,
struct
DeviceGroupedConvFwdMultipleD
:
public
BaseOperator
typename
ComputeType
=
{
decltype
(
UnpackDataType
<
is_detected
<
is_tuple
,
ADataType
>
::
value
,
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
Number
<
0
>
,
ADataType
>
())
>
// ComputeType is InputType by default (first
static_assert
(
NumDTensor
==
DsLayout
::
Size
(),
"wrong! Inconsistent NumDTensor"
);
// in tuple for MultiAB), unpack if tuple was
// passed
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
using
DeviceGroupedConvFwdMultipleD
=
DeviceGroupedConvFwdMultipleABD
<
NDimSpatial
,
const
void
*
p_a
,
// input image
ALayout
,
const
void
*
p_b
,
// weight
BLayout
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
DsLayout
,
void
*
p_e
,
// output image
ELayout
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
ADataType
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
BDataType
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
DsDataType
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
EDataType
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
AElementwiseOperation
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
BElementwiseOperation
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
CDEElementwiseOperation
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
ComputeType
>
;
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace device
}
// namespace tensor_operation
}
// namespace tensor_operation
...
...
include/ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp
0 → 100644
View file @
e5ebcc41
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <array>
#include "device_grouped_gemm.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
index_t
NumDTensor
=
0
>
struct
GroupedGemmKernelArgument
{
const
void
*
p_a_grid
;
const
void
*
p_b_grid
;
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
;
void
*
p_e_grid
;
index_t
M
;
index_t
N
;
index_t
K
;
index_t
StrideA
;
index_t
StrideB
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
;
index_t
StrideE
;
};
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
struct
DeviceGroupedGemmFixedNK
:
DeviceGroupedGemm
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
virtual
void
SetDeviceKernelArgs
(
BaseArgument
*
p_arg
,
const
void
*
kernel_args
)
const
=
0
;
virtual
size_t
GetDeviceKernelArgSize
(
const
BaseArgument
*
p_arg
)
const
=
0
;
virtual
void
SetKBatch
(
BaseArgument
*
p_arg
,
index_t
k_batch
)
const
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_
inde
x_pool_bwd.hpp
→
include/ck/tensor_operation/gpu/device/device_
ma
x_pool_bwd.hpp
View file @
e5ebcc41
...
@@ -13,7 +13,7 @@ namespace device {
...
@@ -13,7 +13,7 @@ namespace device {
// For pooling which used indexable operation, such as MaxPool, MinPool...etc
// For pooling which used indexable operation, such as MaxPool, MinPool...etc
template
<
typename
DOutDataType
,
typename
IndexDataType
,
typename
DInDataType
>
template
<
typename
DOutDataType
,
typename
IndexDataType
,
typename
DInDataType
>
struct
Device
Inde
xPoolBwd
:
public
BaseOperator
struct
Device
Ma
xPoolBwd
:
public
BaseOperator
{
{
virtual
std
::
unique_ptr
<
BaseArgument
>
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_dout
,
MakeArgumentPointer
(
const
void
*
p_dout
,
...
@@ -22,7 +22,8 @@ struct DeviceIndexPoolBwd : public BaseOperator
...
@@ -22,7 +22,8 @@ struct DeviceIndexPoolBwd : public BaseOperator
index_t
dout_length
,
index_t
dout_length
,
index_t
din_length
,
index_t
din_length
,
std
::
vector
<
ck
::
index_t
>
window_lengths
,
std
::
vector
<
ck
::
index_t
>
window_lengths
,
std
::
vector
<
ck
::
index_t
>
window_strides
)
=
0
;
std
::
vector
<
ck
::
index_t
>
window_strides
,
std
::
vector
<
ck
::
index_t
>
window_dilations
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
};
...
...
include/ck/tensor_operation/gpu/device/device_normalization_bwd_data.hpp
0 → 100644
View file @
e5ebcc41
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
DYDataType
,
typename
XDataType
,
typename
GammaDataType
,
typename
MeanInvStdDataType
,
typename
DXDataType
,
index_t
Rank
,
index_t
NumReduceDim
>
struct
DeviceNormalizationBwdData
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
index_t
>
lengths
,
const
std
::
vector
<
index_t
>
dyStrides
,
const
std
::
vector
<
index_t
>
xStrides
,
const
std
::
vector
<
index_t
>
gammaStrides
,
const
std
::
vector
<
index_t
>
meanStrides
,
const
std
::
vector
<
index_t
>
invStdStrides
,
const
std
::
vector
<
index_t
>
dxStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
const
void
*
p_dy
,
const
void
*
p_x
,
const
void
*
p_gamma
,
const
void
*
p_mean
,
const
void
*
p_invStd
,
void
*
p_dx
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
typename
DYDataType
,
typename
XDataType
,
typename
GammaDataType
,
typename
MeanInvStdDataType
,
typename
DXDataType
,
index_t
Rank
,
index_t
NumReduceDim
>
using
DeviceNormalizationBwdDataPtr
=
std
::
unique_ptr
<
DeviceNormalizationBwdData
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
DXDataType
,
Rank
,
NumReduceDim
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_normalization_bwd_gamma_beta.hpp
0 → 100644
View file @
e5ebcc41
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
DYDataType
,
typename
XDataType
,
typename
MeanInvStdDataType
,
typename
DGammaDataType
,
typename
DBetaDataType
,
index_t
Rank
,
index_t
NumReduceDim
>
struct
DeviceNormalizationBwdGammaBeta
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
index_t
>
inLengths
,
const
std
::
vector
<
index_t
>
dyStrides
,
const
std
::
vector
<
index_t
>
xStrides
,
const
std
::
vector
<
index_t
>
meanStrides
,
const
std
::
vector
<
index_t
>
invStdStrides
,
const
std
::
vector
<
index_t
>
outLengths
,
const
std
::
vector
<
index_t
>
dgammaStrides
,
const
std
::
vector
<
index_t
>
dbetaStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
const
void
*
p_dy
,
const
void
*
p_x
,
const
void
*
p_mean
,
const
void
*
p_invStd
,
void
*
p_dgamma
,
void
*
p_dbeta
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
typename
DYDataType
,
typename
XDataType
,
typename
MeanInvStdDataType
,
typename
DGammaDataType
,
typename
DBetaDataType
,
index_t
Rank
,
index_t
NumReduceDim
>
using
DeviceNormalizationBwdGammaBetaPtr
=
std
::
unique_ptr
<
DeviceNormalizationBwdGammaBeta
<
DYDataType
,
XDataType
,
MeanInvStdDataType
,
DGammaDataType
,
DBetaDataType
,
Rank
,
NumReduceDim
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_normalization.hpp
→
include/ck/tensor_operation/gpu/device/device_normalization
_fwd
.hpp
View file @
e5ebcc41
...
@@ -14,12 +14,12 @@ namespace device {
...
@@ -14,12 +14,12 @@ namespace device {
template
<
typename
XDataType
,
template
<
typename
XDataType
,
typename
GammaDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
BetaDataType
,
typename
ComputeDataType
,
typename
YDataType
,
typename
YDataType
,
typename
SaveMeanInvStdDataType
,
typename
YElementwiseOperation
,
typename
YElementwiseOperation
,
index_t
Rank
,
index_t
Rank
,
index_t
NumReduceDim
>
index_t
NumReduceDim
>
struct
DeviceNormalization
:
public
BaseOperator
struct
DeviceNormalization
Fwd
:
public
BaseOperator
{
{
virtual
std
::
unique_ptr
<
BaseArgument
>
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
index_t
>
lengths
,
MakeArgumentPointer
(
const
std
::
vector
<
index_t
>
lengths
,
...
@@ -27,6 +27,8 @@ struct DeviceNormalization : public BaseOperator
...
@@ -27,6 +27,8 @@ struct DeviceNormalization : public BaseOperator
const
std
::
vector
<
index_t
>
gammaStrides
,
const
std
::
vector
<
index_t
>
gammaStrides
,
const
std
::
vector
<
index_t
>
betaStrides
,
const
std
::
vector
<
index_t
>
betaStrides
,
const
std
::
vector
<
index_t
>
yStrides
,
const
std
::
vector
<
index_t
>
yStrides
,
const
std
::
vector
<
index_t
>
saveMeanStrides
,
const
std
::
vector
<
index_t
>
saveInvStdStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
const
std
::
vector
<
index_t
>
reduceDims
,
double
epsilon
,
double
epsilon
,
const
void
*
p_x
,
const
void
*
p_x
,
...
@@ -43,19 +45,19 @@ struct DeviceNormalization : public BaseOperator
...
@@ -43,19 +45,19 @@ struct DeviceNormalization : public BaseOperator
template
<
typename
XDataType
,
template
<
typename
XDataType
,
typename
GammaDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
BetaDataType
,
typename
ComputeDataType
,
typename
YDataType
,
typename
YDataType
,
typename
SaveMeanInvStdDataType
,
typename
YElementwiseOperation
,
typename
YElementwiseOperation
,
index_t
Rank
,
index_t
Rank
,
index_t
NumReduceDim
>
index_t
NumReduceDim
>
using
DeviceNormalizationPtr
=
std
::
unique_ptr
<
DeviceNormalization
<
XDataType
,
using
DeviceNormalization
Fwd
Ptr
=
std
::
unique_ptr
<
DeviceNormalization
Fwd
<
XDataType
,
GammaDataType
,
GammaDataType
,
BetaDataType
,
BetaDataType
,
Compute
DataType
,
Y
DataType
,
Y
DataType
,
SaveMeanInvStd
DataType
,
YElementwiseOperation
,
YElementwiseOperation
,
Rank
,
Rank
,
NumReduceDim
>>
;
NumReduceDim
>>
;
}
// namespace device
}
// namespace device
}
// namespace tensor_operation
}
// namespace tensor_operation
...
...
include/ck/tensor_operation/gpu/device/impl/device_batched_contraction_multiple_d_wmma_cshuffle.hpp
View file @
e5ebcc41
...
@@ -770,8 +770,7 @@ struct DeviceBatchedContractionMultipleD_Wmma_CShuffle
...
@@ -770,8 +770,7 @@ struct DeviceBatchedContractionMultipleD_Wmma_CShuffle
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
{
if
(
ck
::
get_device_name
()
==
"gfx1100"
||
ck
::
get_device_name
()
==
"gfx1101"
||
if
(
ck
::
is_navi3_supported
())
ck
::
get_device_name
()
==
"gfx1102"
)
{
{
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
))
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
))
{
{
...
...
include/ck/tensor_operation/gpu/device/impl/device_batched_contraction_multiple_d_xdl_cshuffle.hpp
View file @
e5ebcc41
...
@@ -57,7 +57,7 @@ __global__ void
...
@@ -57,7 +57,7 @@ __global__ void
const
Block2ETileMap
block_2_etile_map
)
const
Block2ETileMap
block_2_etile_map
)
{
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94
0__) || defined(__gfx941__) || defined(__gfx942
__))
defined(__gfx94__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
num_blocks_per_batch
=
const
index_t
num_blocks_per_batch
=
...
@@ -543,9 +543,13 @@ struct DeviceBatchedContractionMultipleD_Xdl_CShuffle
...
@@ -543,9 +543,13 @@ struct DeviceBatchedContractionMultipleD_Xdl_CShuffle
EGridDesc_G_M_N
e_grid_desc_g_m_n_
;
EGridDesc_G_M_N
e_grid_desc_g_m_n_
;
};
};
using
ComputeDataType
=
ADataType
;
// GridwiseGemm
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_cshuffle
<
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
ADataType
,
BDataType
,
ComputeDataType
,
AccDataType
,
AccDataType
,
CShuffleDataType
,
CShuffleDataType
,
DsDataType
,
DsDataType
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_e_permute_xdl.hpp
View file @
e5ebcc41
...
@@ -75,7 +75,7 @@ __global__ void
...
@@ -75,7 +75,7 @@ __global__ void
const
Block2ETileMap
block_2_etile_map
)
const
Block2ETileMap
block_2_etile_map
)
{
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94
0__) || defined(__gfx941__) || defined(__gfx942
__))
defined(__gfx94__))
const
index_t
num_blocks_per_batch
=
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
...
@@ -331,8 +331,13 @@ struct DeviceBatchedGemmEPermuteXdl : public DeviceBatchedGemmEPermute<ALayout,
...
@@ -331,8 +331,13 @@ struct DeviceBatchedGemmEPermuteXdl : public DeviceBatchedGemmEPermute<ALayout,
EGridDesc_G0_G1_M_N
e_grid_desc_g0_g1_m_n_
;
EGridDesc_G0_G1_M_N
e_grid_desc_g0_g1_m_n_
;
};
};
using
ComputeDataType
=
ADataType
;
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_cshuffle
<
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
ADataType
,
BDataType
,
ComputeDataType
,
AccDataType
,
AccDataType
,
CShuffleDataType
,
CShuffleDataType
,
ck
::
Tuple
<>
,
// DsDataType,
ck
::
Tuple
<>
,
// DsDataType,
...
...
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_gemm_xdl_cshuffle.hpp
View file @
e5ebcc41
...
@@ -61,7 +61,7 @@ __global__ void
...
@@ -61,7 +61,7 @@ __global__ void
const
ComputeBasePtrOfStridedBatch
compute_base_ptr_of_batch
)
const
ComputeBasePtrOfStridedBatch
compute_base_ptr_of_batch
)
{
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94
0__) || defined(__gfx941__) || defined(__gfx942
__))
defined(__gfx94__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
num_blocks_per_batch
=
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_multi_d_xdl.hpp
View file @
e5ebcc41
...
@@ -84,7 +84,7 @@ __global__ void
...
@@ -84,7 +84,7 @@ __global__ void
{
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94
0__) || defined(__gfx941__) || defined(__gfx942
__))
defined(__gfx94__))
const
index_t
num_blocks_per_batch
=
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
...
@@ -324,8 +324,12 @@ struct DeviceBatchedGemmMultiD_Xdl : public DeviceBatchedGemmMultiD<ALayout,
...
@@ -324,8 +324,12 @@ struct DeviceBatchedGemmMultiD_Xdl : public DeviceBatchedGemmMultiD<ALayout,
index_t
BatchStrideE_
;
index_t
BatchStrideE_
;
};
};
using
ComputeDataType
=
ADataType
;
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_cshuffle
<
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
ADataType
,
// TODO: distinguish A/B datatype
BDataType
,
ComputeDataType
,
AccDataType
,
AccDataType
,
CShuffleDataType
,
CShuffleDataType
,
DsDataType
,
DsDataType
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_multiple_d_dl.hpp
View file @
e5ebcc41
...
@@ -70,9 +70,8 @@ __global__ void
...
@@ -70,9 +70,8 @@ __global__ void
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
,
const
Block2CTileMap
block_2_ctile_map
)
const
Block2CTileMap
block_2_ctile_map
)
{
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx1030__) || defined(__gfx1100__) || \
defined(__gfx90a__) || defined(__gfx94__) || defined(__gfx103__) || defined(__gfx11__))
defined(__gfx1101__) || defined(__gfx1102__))
const
index_t
num_blocks_per_batch
=
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
...
@@ -648,11 +647,8 @@ struct DeviceBatchedGemmMultipleD_Dl : public DeviceBatchedGemmMultiD<ALayout,
...
@@ -648,11 +647,8 @@ struct DeviceBatchedGemmMultipleD_Dl : public DeviceBatchedGemmMultiD<ALayout,
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
{
// TODO: Enable for gfx90a after complier fix
if
(
ck
::
get_device_name
()
==
"gfx906"
||
ck
::
is_xdl_supported
()
||
if
(
ck
::
get_device_name
()
==
"gfx906"
||
ck
::
get_device_name
()
==
"gfx90a"
||
ck
::
is_navi2_supported
()
||
ck
::
is_navi3_supported
())
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx1030"
||
ck
::
get_device_name
()
==
"gfx940"
||
ck
::
get_device_name
()
==
"gfx1100"
||
ck
::
get_device_name
()
==
"gfx1101"
||
ck
::
get_device_name
()
==
"gfx1102"
)
{
{
bool
pass
=
true
;
bool
pass
=
true
;
pass
=
pass
&&
arg
.
K_
%
K1
==
0
;
pass
=
pass
&&
arg
.
K_
%
K1
==
0
;
...
...
Prev
1
…
13
14
15
16
17
18
19
20
21
22
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment