Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
e599063f
Commit
e599063f
authored
May 10, 2024
by
illsilin
Browse files
sync from the public repo
parents
5dbbf5d6
566b6480
Changes
301
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1093 additions
and
171 deletions
+1093
-171
example/09_convnd_fwd/convnd_fwd_xdl_fp8.cpp
example/09_convnd_fwd/convnd_fwd_xdl_fp8.cpp
+81
-0
example/09_convnd_fwd/convnd_fwd_xdl_fp8_bf8.cpp
example/09_convnd_fwd/convnd_fwd_xdl_fp8_bf8.cpp
+83
-0
example/10_convnd_fwd_multiple_d_multiple_reduce/CMakeLists.txt
...e/10_convnd_fwd_multiple_d_multiple_reduce/CMakeLists.txt
+13
-21
example/14_gemm_quantization/CMakeLists.txt
example/14_gemm_quantization/CMakeLists.txt
+2
-11
example/15_grouped_gemm/CMakeLists.txt
example/15_grouped_gemm/CMakeLists.txt
+5
-2
example/15_grouped_gemm/README.md
example/15_grouped_gemm/README.md
+0
-16
example/15_grouped_gemm/grouped_gemm_multiple_d_splitk_xdl_fp16.cpp
..._grouped_gemm/grouped_gemm_multiple_d_splitk_xdl_fp16.cpp
+394
-0
example/15_grouped_gemm/grouped_gemm_multiple_d_xdl_fp16.cpp
example/15_grouped_gemm/grouped_gemm_multiple_d_xdl_fp16.cpp
+404
-0
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16.cpp
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16.cpp
+5
-5
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16_fp8.cpp
...le/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16_fp8.cpp
+2
-2
example/16_gemm_multi_d_multi_reduces/CMakeLists.txt
example/16_gemm_multi_d_multi_reduces/CMakeLists.txt
+41
-48
example/17_convnd_bwd_data/CMakeLists.txt
example/17_convnd_bwd_data/CMakeLists.txt
+4
-11
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
+7
-2
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
+10
-5
example/19_binary_elementwise/elementwise_add_1d.cpp
example/19_binary_elementwise/elementwise_add_1d.cpp
+10
-5
example/19_binary_elementwise/elementwise_add_4d.cpp
example/19_binary_elementwise/elementwise_add_4d.cpp
+10
-5
example/20_grouped_conv_bwd_weight/CMakeLists.txt
example/20_grouped_conv_bwd_weight/CMakeLists.txt
+10
-24
example/20_grouped_conv_bwd_weight/grouped_conv_bwd_weight_xdl_fp16_comp_bf8_fp8.cpp
..._weight/grouped_conv_bwd_weight_xdl_fp16_comp_bf8_fp8.cpp
+4
-1
example/20_grouped_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
...d_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
+4
-1
example/21_gemm_layernorm/CMakeLists.txt
example/21_gemm_layernorm/CMakeLists.txt
+4
-12
No files found.
Too many changes to show.
To preserve performance only
301 of 301+
files are displayed.
Plain diff
Email patch
example/09_convnd_fwd/convnd_fwd_xdl_fp8.cpp
0 → 100644
View file @
e599063f
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
f8_t
;
using
OutDataType
=
ck
::
f8_t
;
using
ComputeDataType
=
ck
::
f8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
ComputeDataType
>
;
#include "run_convnd_fwd_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_convnd_fwd_example
(
argc
,
argv
)
?
0
:
1
;
}
example/09_convnd_fwd/convnd_fwd_xdl_fp8_bf8.cpp
0 → 100644
View file @
e599063f
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
bf8_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
f8_t
;
using
OutDataType
=
ck
::
f8_t
;
using
AComputeType
=
ck
::
f8_t
;
using
BComputeType
=
ck
::
bf8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
AComputeType
,
BComputeType
>
;
#include "run_convnd_fwd_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_convnd_fwd_example
(
argc
,
argv
)
?
0
:
1
;
}
example/10_convnd_fwd_multiple_d_multiple_reduce/CMakeLists.txt
View file @
e599063f
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942 gfx950
)
add_custom_target
(
example_convnd_fwd_reduce_xdl
)
set
(
target 0
)
add_example_executable
(
example_convnd_fwd_max_xdl_int8 convnd_fwd_max_xdl_int8.cpp
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
add_example_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_int8
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_custom_target
(
example_convnd_fwd_reduce_xdl
)
add_example_executable
(
example_convnd_fwd_max_xdl_
int8
convnd_fwd_max_xdl_
int8
.cpp
)
add_example_executable
_no_testing
(
example_convnd_fwd_max_xdl_
bf16
convnd_fwd_max_xdl_
bf16
.cpp
)
add_example_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_
int8
)
add_example_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_
bf16
)
add_example_executable_no_testing
(
example_convnd_fwd_max_xdl_
b
f16 convnd_fwd_max_xdl_
b
f16.cpp
)
add_example_executable_no_testing
(
example_convnd_fwd_max_xdl_f
p
16 convnd_fwd_max_xdl_f
p
16.cpp
)
add_example_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_
b
f16
)
add_example_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_f
p
16
)
add_example_executable
_no_testing
(
example_convnd_fwd_max_xdl_fp
16
convnd_fwd_max_xdl_fp
16
.cpp
)
add_example_executable
(
example_convnd_fwd_max_xdl_fp
32
convnd_fwd_max_xdl_fp
32
.cpp
)
add_example_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp
16
)
add_example_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp
32
)
add_example_executable
(
example_convnd_fwd_max_xdl_fp32 convnd_fwd_max_xdl_fp32.cpp
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp32
)
add_example_executable
(
example_convnd_fwd_max_xdl_int4 convnd_fwd_max_xdl_int4.cpp
)
add_example_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_int4
)
if
(
USE_BITINT_EXTENSION_INT4
)
endif
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_convnd_fwd_max_xdl_int4 convnd_fwd_max_xdl_int4.cpp
)
add_example_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_int4
)
endif
(
USE_BITINT_EXTENSION_INT4
)
set
(
target 1
)
endif
()
endforeach
()
example/14_gemm_quantization/CMakeLists.txt
View file @
e599063f
# dlops
add_example_executable
(
example_gemm_dl_quantization_int8 gemm_dl_quantization_int8.cpp
)
add_example_executable
(
example_gemm_dl_quantization_int8 gemm_dl_quantization_int8.cpp
)
# xdlops
add_example_executable
(
example_gemm_xdl_bias_relu_quantization_int8 gemm_xdl_bias_relu_quantization_int8.cpp
)
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942 gfx950
)
add_example_executable
(
example_gemm_xdl_quantization_int8 gemm_xdl_quantization_int8.cpp
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_example_executable
(
example_gemm_xdl_bias_relu_quantization_int8 gemm_xdl_bias_relu_quantization_int8.cpp
)
add_example_executable
(
example_gemm_xdl_quantization_int8 gemm_xdl_quantization_int8.cpp
)
set
(
target 1
)
endif
()
endforeach
()
example/15_grouped_gemm/CMakeLists.txt
View file @
e599063f
...
@@ -23,8 +23,11 @@ add_example_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_bf16)
...
@@ -23,8 +23,11 @@ add_example_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_bf16)
add_example_executable
(
example_grouped_gemm_xdl_int8 grouped_gemm_xdl_int8.cpp
)
add_example_executable
(
example_grouped_gemm_xdl_int8 grouped_gemm_xdl_int8.cpp
)
add_example_dependencies
(
example_grouped_gemm_xdl example_grouped_gemm_xdl_int8
)
add_example_dependencies
(
example_grouped_gemm_xdl example_grouped_gemm_xdl_int8
)
add_example_executable
(
example_grouped_gemm_xdl_fixed_nk_fp8 grouped_gemm_xdl_fixed_nk_fp8.cpp
)
add_example_executable
(
example_grouped_gemm_xdl_fixed_nk_fp16_fp8 grouped_gemm_xdl_fixed_nk_fp16_fp8.cpp
)
add_example_dependencies
(
example_grouped_gemm_xdl example_grouped_gemm_xdl_fixed_nk_fp8
)
add_example_dependencies
(
example_grouped_gemm_xdl example_grouped_gemm_xdl_fixed_nk_fp16_fp8
)
add_example_executable
(
example_grouped_gemm_multiple_d_xdl_fp16 grouped_gemm_multiple_d_xdl_fp16.cpp
)
add_example_dependencies
(
example_grouped_gemm_xdl example_grouped_gemm_multiple_d_xdl_fp16
)
if
(
USE_BITINT_EXTENSION_INT4
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_grouped_gemm_xdl_int4 grouped_gemm_xdl_int4.cpp
)
add_example_executable
(
example_grouped_gemm_xdl_int4 grouped_gemm_xdl_int4.cpp
)
...
...
example/15_grouped_gemm/README.md
View file @
e599063f
...
@@ -7,19 +7,3 @@
...
@@ -7,19 +7,3 @@
#arg3: run kernel # of times (>1)
#arg3: run kernel # of times (>1)
./bin/example_grouped_gemm_xdl_fp16 0 1 5
./bin/example_grouped_gemm_xdl_fp16 0 1 5
```
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
gemm[0] a_m_k: dim 2, lengths {256, 64}, strides {64, 1} b_k_n: dim 2, lengths {64, 128}, strides {1, 64} c_m_n: dim 2, lengths {256, 128}, strides {128, 1}
gemm[1] a_m_k: dim 2, lengths {512, 128}, strides {128, 1} b_k_n: dim 2, lengths {128, 256}, strides {1, 128} c_m_n: dim 2, lengths {512, 256}, strides {256, 1}
gemm[2] a_m_k: dim 2, lengths {768, 192}, strides {192, 1} b_k_n: dim 2, lengths {192, 384}, strides {1, 192} c_m_n: dim 2, lengths {768, 384}, strides {384, 1}
gemm[3] a_m_k: dim 2, lengths {1024, 256}, strides {256, 1} b_k_n: dim 2, lengths {256, 512}, strides {1, 256} c_m_n: dim 2, lengths {1024, 512}, strides {512, 1}
group: 0 arg.a_grid_desc_k0_m_k1_{8, 256, 8}, arg.b_grid_desc_k0_n_k1_{8, 128, 8}, arg.c_grid_desc_m_n_{ 256, 128}
group: 1 arg.a_grid_desc_k0_m_k1_{16, 512, 8}, arg.b_grid_desc_k0_n_k1_{16, 256, 8}, arg.c_grid_desc_m_n_{ 512, 256}
group: 2 arg.a_grid_desc_k0_m_k1_{24, 768, 8}, arg.b_grid_desc_k0_n_k1_{24, 384, 8}, arg.c_grid_desc_m_n_{ 768, 384}
group: 3 arg.a_grid_desc_k0_m_k1_{32, 1024, 8}, arg.b_grid_desc_k0_n_k1_{32, 512, 8}, arg.c_grid_desc_m_n_{ 1024, 512}
launch_and_time_kernel: grid_dim {30, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 0.037887 ms, 11.0706 TFlops, 90.8132 GB/s, DeviceGroupedGemmXdl<256, 256, 128, 4, 8, 32, 32, 4, 2>
```
example/15_grouped_gemm/grouped_gemm_multiple_d_splitk_xdl_fp16.cpp
0 → 100644
View file @
e599063f
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multiple_d_splitk_xdl_cshuffle_two_stage.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include <ck/utility/data_type.hpp>
#include <ck/utility/tuple.hpp>
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_multiple_d.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddAdd
=
ck
::
tensor_operation
::
element_wise
::
AddAdd
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DDataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
,
DDataType
>
;
using
EDataType
=
F32
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DLayout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
DLayout
,
DLayout
>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AddAdd
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
static
constexpr
int
NumDMatrices
=
2
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage
// clang-format off
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
;
// clang-format on
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
std
::
vector
<
ck
::
index_t
>>
stride_Ds
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
int
k_batch
=
128
;
bool
time_kernel
=
true
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
auto
group_count
=
problem_size
.
group_count
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
std
::
vector
<
void
*>
p_Cs
;
std
::
vector
<
const
void
*>
p_As
;
std
::
vector
<
const
void
*>
p_Bs
;
std
::
vector
<
std
::
array
<
const
void
*
,
NumDMatrices
>>
p_Ds
=
{};
gemm_descs
.
reserve
(
group_count
);
p_As
.
reserve
(
group_count
);
p_Bs
.
reserve
(
group_count
);
p_Ds
.
reserve
(
group_count
);
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
std
::
vector
<
Tensor
<
BDataType
>>
b_tensors
;
std
::
vector
<
std
::
array
<
Tensor
<
DDataType
>
,
NumDMatrices
>>
d_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_host_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_device_result_tensors
;
a_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
d_tensors
.
reserve
(
group_count
);
c_host_tensors
.
reserve
(
group_count
);
c_device_result_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
,
b_tensors_device
,
c_tensors_device
;
std
::
vector
<
std
::
vector
<
DeviceMemPtr
>>
d_tensors_device
;
a_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
d_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a_tensors
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
ALayout
{})));
b_tensors
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ks
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Bs
[
i
],
BLayout
{})));
auto
d0_tensor
=
Tensor
<
DDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
DLayout
{}));
auto
d1_tensor
=
Tensor
<
DDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
DLayout
{}));
std
::
array
<
Tensor
<
DDataType
>
,
NumDMatrices
>
d_tens
=
{
d0_tensor
,
d1_tensor
};
d_tensors
.
push_back
(
d_tens
);
c_host_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
c_device_result_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
c_device_result_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
problem_size
.
Ms
[
i
]
*
problem_size
.
Ks
[
i
]
*
problem_size
.
Ns
[
i
];
num_btype
+=
sizeof
(
ADataType
)
*
a_tensors
[
i
].
GetElementSize
()
+
sizeof
(
BDataType
)
*
b_tensors
[
i
].
GetElementSize
()
+
sizeof
(
DDataType
)
*
d_tensors
[
i
][
0
].
GetElementSize
()
*
NumDMatrices
+
sizeof
(
EDataType
)
*
c_device_result_tensors
[
i
].
GetElementSize
();
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
for
(
int
j
=
0
;
j
<
NumDMatrices
;
++
j
)
{
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_2
<
DDataType
>
{
-
5
,
5
});
}
break
;
case
2
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
for
(
int
j
=
0
;
j
<
NumDMatrices
;
++
j
)
{
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
}
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
for
(
int
j
=
0
;
j
<
NumDMatrices
;
++
j
)
{
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
}
}
}
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
a_tensors
[
i
].
GetElementSpaceSize
()
*
sizeof
(
ADataType
)));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
b_tensors
[
i
].
GetElementSpaceSize
()
*
sizeof
(
BDataType
)));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
c_device_result_tensors
[
i
].
GetElementSpaceSize
()
*
sizeof
(
EDataType
)));
for
(
int
j
=
0
;
j
<
NumDMatrices
;
++
j
)
{
d_tensors_device
[
i
].
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
d_tensors
[
i
][
j
].
GetElementSpaceSize
()
*
sizeof
(
DDataType
)));
}
a_tensors_device
[
i
]
->
ToDevice
(
a_tensors
[
i
].
mData
.
data
());
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
());
for
(
int
j
=
0
;
j
<
NumDMatrices
;
++
j
)
{
d_tensors_device
[
i
][
j
]
->
ToDevice
(
d_tensors
[
i
][
j
].
mData
.
data
());
}
c_tensors_device
[
i
]
->
SetZero
();
p_As
.
push_back
(
a_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_Bs
.
push_back
(
b_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_Ds
.
push_back
(
{
d_tensors_device
[
i
][
0
]
->
GetDeviceBuffer
(),
d_tensors_device
[
i
][
1
]
->
GetDeviceBuffer
()});
p_Cs
.
push_back
(
c_tensors_device
[
i
]
->
GetDeviceBuffer
());
gemm_descs
.
push_back
({
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
problem_size
.
stride_Bs
[
i
],
problem_size
.
stride_Cs
[
i
],
problem_size
.
stride_Ds
[
i
]});
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
a_element_op
,
b_element_op
,
cde_element_op
);
gemm
.
SetKBatchSize
(
argument
,
config
.
k_batch
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
DeviceMem
gemm_workspace_dev
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_workspace_dev
.
GetDeviceBuffer
());
DeviceMem
gemm_arg_dev_mem
(
gemm
.
GetDeviceKernelArgSize
(
&
argument
));
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
,
1
});
if
(
config
.
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemmMultipleD
<
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
auto
karg
=
argument
.
gemm_kernel_args_
[
i
].
karg_
;
auto
dev_res_tensor
=
Tensor
<
float
>
(
f_host_tensor_descriptor
(
karg
.
M
,
karg
.
N
,
karg
.
StrideC
,
ELayout
{}));
c_tensors_device
[
i
]
->
FromDevice
(
c_device_result_tensors
[
i
].
mData
.
data
(),
c_device_result_tensors
[
i
].
mDesc
.
GetElementSize
()
*
sizeof
(
EDataType
));
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
d_tensors
[
i
],
c_host_tensors
[
i
],
a_element_op
,
b_element_op
,
cde_element_op
);
ref_invoker
.
Run
(
ref_argument
);
pass
&=
ck
::
utils
::
check_err
(
c_device_result_tensors
[
i
],
c_host_tensors
[
i
]);
}
std
::
cout
<<
"Verification: "
<<
(
pass
?
"SUCCESS"
:
"FAILURE"
)
<<
"!"
<<
std
::
endl
;
}
return
pass
;
}
std
::
vector
<
int
>
argToIntArray
(
char
*
input
)
{
std
::
vector
<
int
>
out
;
std
::
istringstream
in
(
input
);
std
::
string
item
;
while
(
std
::
getline
(
in
,
item
,
','
))
{
out
.
push_back
(
std
::
stoi
(
item
));
}
return
out
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
if
(
argc
<
11
)
{
std
::
vector
<
ck
::
index_t
>
Ms
{
64
,
127
,
255
,
129
,
260
,
190
,
77
};
problem_size
.
group_count
=
Ms
.
size
();
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
problem_size
.
Ms
.
push_back
(
Ms
[
i
]);
problem_size
.
Ns
.
push_back
(
252
);
problem_size
.
Ks
.
push_back
(
4608
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Cs
.
push_back
(
problem_size
.
Ns
[
i
]);
problem_size
.
stride_Ds
.
push_back
({});
for
(
int
j
=
0
;
j
<
NumDMatrices
;
++
j
)
{
problem_size
.
stride_Ds
[
i
].
push_back
(
problem_size
.
Ns
[
i
]);
}
}
std
::
cout
<<
"Usage:
\n
"
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=n0, 1=yes)
\n
"
<<
"arg4 to 9: Ms, Ns, Ks, StrideAs, StrideBs, StrideCs (e.g., 256,256 128,128 64,64 "
"64,64 64,64 128,128)
\n
"
<<
"arg10: k_batch (> 0)
\n
"
<<
"... setting default values."
<<
std
::
endl
;
}
else
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
config
.
k_batch
=
std
::
stoi
(
argv
[
10
]);
problem_size
.
Ms
=
argToIntArray
(
argv
[
4
]);
problem_size
.
Ns
=
argToIntArray
(
argv
[
5
]);
problem_size
.
Ks
=
argToIntArray
(
argv
[
6
]);
problem_size
.
stride_As
=
argToIntArray
(
argv
[
7
]);
problem_size
.
stride_Bs
=
argToIntArray
(
argv
[
8
]);
problem_size
.
stride_Cs
=
argToIntArray
(
argv
[
9
]);
for
(
int
j
=
0
;
j
<
NumDMatrices
;
++
j
)
{
problem_size
.
stride_Ds
.
push_back
(
problem_size
.
stride_Cs
);
}
problem_size
.
group_count
=
problem_size
.
Ms
.
size
();
}
return
!
run_grouped_gemm
(
problem_size
,
config
);
}
example/15_grouped_gemm/grouped_gemm_multiple_d_xdl_fp16.cpp
0 → 100644
View file @
e599063f
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multiple_d_xdl_cshuffle_tile_loop.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_tile_loop.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include <ck/utility/data_type.hpp>
#include <ck/utility/tuple.hpp>
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_multiple_d.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddAdd
=
ck
::
tensor_operation
::
element_wise
::
AddAdd
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DDataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
,
DDataType
>
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DLayout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
DLayout
,
DLayout
>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AddAdd
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
static
constexpr
int
NumDs
=
2
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
// clang-format off
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
;
// clang-format on
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
std
::
vector
<
ck
::
index_t
>>
stride_Ds
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
auto
group_count
=
problem_size
.
group_count
;
using
KernelArguments
=
ck
::
tensor_operation
::
device
::
GroupedGemmTileLoopKernelArguments
<
NumDs
>
;
using
GemmDesc
=
ck
::
tensor_operation
::
device
::
GemmDesc
;
// GEMM shape
std
::
vector
<
GemmDesc
>
gemm_descs
;
std
::
vector
<
KernelArguments
>
ggemm_kargs
;
std
::
vector
<
void
*>
p_Cs
;
std
::
vector
<
const
void
*>
p_As
;
std
::
vector
<
const
void
*>
p_Bs
;
std
::
vector
<
std
::
array
<
const
void
*
,
NumDs
>>
p_Ds
=
{};
gemm_descs
.
reserve
(
group_count
);
ggemm_kargs
.
reserve
(
group_count
);
p_As
.
reserve
(
group_count
);
p_Bs
.
reserve
(
group_count
);
p_Ds
.
reserve
(
group_count
);
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
std
::
vector
<
Tensor
<
BDataType
>>
b_tensors
;
std
::
vector
<
std
::
array
<
Tensor
<
DDataType
>
,
NumDs
>>
d_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_host_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_device_result_tensors
;
a_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
d_tensors
.
reserve
(
group_count
);
c_host_tensors
.
reserve
(
group_count
);
c_device_result_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
,
b_tensors_device
,
c_tensors_device
;
std
::
vector
<
std
::
vector
<
DeviceMemPtr
>>
d_tensors_device
;
a_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
d_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a_tensors
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
ALayout
{})));
b_tensors
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ks
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Bs
[
i
],
BLayout
{})));
auto
d0_tensor
=
Tensor
<
DDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
DLayout
{}));
auto
d1_tensor
=
Tensor
<
DDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
DLayout
{}));
std
::
array
<
Tensor
<
DDataType
>
,
NumDs
>
d_tens
=
{
d0_tensor
,
d1_tensor
};
d_tensors
.
push_back
(
d_tens
);
c_host_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
c_device_result_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
c_device_result_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
problem_size
.
Ms
[
i
]
*
problem_size
.
Ks
[
i
]
*
problem_size
.
Ns
[
i
];
num_btype
+=
sizeof
(
ADataType
)
*
a_tensors
[
i
].
GetElementSize
()
+
sizeof
(
BDataType
)
*
b_tensors
[
i
].
GetElementSize
()
+
sizeof
(
DDataType
)
*
d_tensors
[
i
][
0
].
GetElementSize
()
*
NumDs
+
sizeof
(
EDataType
)
*
c_device_result_tensors
[
i
].
GetElementSize
();
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
for
(
int
j
=
0
;
j
<
NumDs
;
++
j
)
{
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_2
<
DDataType
>
{
-
5
,
5
});
}
break
;
case
2
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
for
(
int
j
=
0
;
j
<
NumDs
;
++
j
)
{
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
}
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
for
(
int
j
=
0
;
j
<
NumDs
;
++
j
)
{
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
}
}
}
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
a_tensors
[
i
].
GetElementSpaceSize
()
*
sizeof
(
ADataType
)));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
b_tensors
[
i
].
GetElementSpaceSize
()
*
sizeof
(
BDataType
)));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
c_device_result_tensors
[
i
].
GetElementSpaceSize
()
*
sizeof
(
EDataType
)));
for
(
int
j
=
0
;
j
<
NumDs
;
++
j
)
{
d_tensors_device
[
i
].
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
d_tensors
[
i
][
j
].
GetElementSpaceSize
()
*
sizeof
(
DDataType
)));
}
a_tensors_device
[
i
]
->
ToDevice
(
a_tensors
[
i
].
mData
.
data
());
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
());
for
(
int
j
=
0
;
j
<
NumDs
;
++
j
)
{
d_tensors_device
[
i
][
j
]
->
ToDevice
(
d_tensors
[
i
][
j
].
mData
.
data
());
}
c_tensors_device
[
i
]
->
SetZero
();
p_As
.
push_back
(
a_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_Bs
.
push_back
(
b_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_Ds
.
push_back
(
{
d_tensors_device
[
i
][
0
]
->
GetDeviceBuffer
(),
d_tensors_device
[
i
][
1
]
->
GetDeviceBuffer
()});
p_Cs
.
push_back
(
c_tensors_device
[
i
]
->
GetDeviceBuffer
());
// The device op does not have to know M problem size at lunch time.
gemm_descs
.
push_back
({
0
,
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
problem_size
.
stride_Bs
[
i
],
problem_size
.
stride_Cs
[
i
],
{
problem_size
.
stride_Cs
[
i
],
problem_size
.
stride_Cs
[
i
]}});
ggemm_kargs
.
push_back
(
{
a_tensors_device
[
i
]
->
GetDeviceBuffer
(),
b_tensors_device
[
i
]
->
GetDeviceBuffer
(),
{
d_tensors_device
[
i
][
0
]
->
GetDeviceBuffer
(),
d_tensors_device
[
i
][
1
]
->
GetDeviceBuffer
()},
c_tensors_device
[
i
]
->
GetDeviceBuffer
(),
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
problem_size
.
stride_Bs
[
i
],
{
problem_size
.
stride_Cs
[
i
],
problem_size
.
stride_Cs
[
i
]},
problem_size
.
stride_Cs
[
i
]});
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
DeviceMem
gemm_arg_dev_mem
(
gemm
.
GetDeviceKernelArgSize
(
&
argument
));
hip_check_error
(
hipMemcpy
(
gemm_arg_dev_mem
.
GetDeviceBuffer
(),
ggemm_kargs
.
data
(),
gemm
.
GetDeviceKernelArgSize
(
&
argument
),
hipMemcpyHostToDevice
));
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
,
1
});
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemmMultipleD
<
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
auto
karg
=
ggemm_kargs
[
i
];
auto
dev_res_tensor
=
Tensor
<
float
>
(
f_host_tensor_descriptor
(
karg
.
M
,
karg
.
N
,
karg
.
StrideE
,
ELayout
{}));
c_tensors_device
[
i
]
->
FromDevice
(
c_device_result_tensors
[
i
].
mData
.
data
());
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
d_tensors
[
i
],
c_host_tensors
[
i
],
a_element_op
,
b_element_op
,
cde_element_op
);
ref_invoker
.
Run
(
ref_argument
);
pass
&=
ck
::
utils
::
check_err
(
c_device_result_tensors
[
i
],
c_host_tensors
[
i
]);
}
std
::
cout
<<
"Verification: "
<<
(
pass
?
"SUCCESS"
:
"FAILURE"
)
<<
"!"
<<
std
::
endl
;
}
if
(
config
.
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
return
pass
;
}
std
::
vector
<
int
>
argToIntArray
(
char
*
input
)
{
std
::
vector
<
int
>
out
;
std
::
istringstream
in
(
input
);
std
::
string
item
;
while
(
std
::
getline
(
in
,
item
,
','
))
{
out
.
push_back
(
std
::
stoi
(
item
));
}
return
out
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
if
(
argc
<
10
)
{
std
::
vector
<
ck
::
index_t
>
Ms
{
64
,
127
,
255
,
129
,
260
,
190
,
77
};
problem_size
.
group_count
=
Ms
.
size
();
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
problem_size
.
Ms
.
push_back
(
Ms
[
i
]);
problem_size
.
Ns
.
push_back
(
252
);
problem_size
.
Ks
.
push_back
(
4608
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Cs
.
push_back
(
problem_size
.
Ns
[
i
]);
problem_size
.
stride_Ds
.
push_back
({});
for
(
int
j
=
0
;
j
<
NumDs
;
++
j
)
{
problem_size
.
stride_Ds
[
i
].
push_back
(
problem_size
.
Ns
[
i
]);
}
}
std
::
cout
<<
"Usage:
\n
"
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=n0, 1=yes)
\n
"
<<
"arg4 to 9: Ms, Ns, Ks, StrideAs, StrideBs, StrideCs (e.g., 256,256 128,128 64,64 "
"64,64 64,64 128,128)
\n
"
<<
"... setting default values."
<<
std
::
endl
;
}
else
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
problem_size
.
Ms
=
argToIntArray
(
argv
[
4
]);
problem_size
.
Ns
=
argToIntArray
(
argv
[
5
]);
problem_size
.
Ks
=
argToIntArray
(
argv
[
6
]);
problem_size
.
stride_As
=
argToIntArray
(
argv
[
7
]);
problem_size
.
stride_Bs
=
argToIntArray
(
argv
[
8
]);
problem_size
.
stride_Cs
=
argToIntArray
(
argv
[
9
]);
for
(
int
j
=
0
;
j
<
NumDs
;
++
j
)
{
problem_size
.
stride_Ds
.
push_back
(
problem_size
.
stride_Cs
);
}
problem_size
.
group_count
=
problem_size
.
Ms
.
size
();
}
return
!
run_grouped_gemm
(
problem_size
,
config
);
}
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16.cpp
View file @
e599063f
...
@@ -36,7 +36,7 @@ using BDataType = F16;
...
@@ -36,7 +36,7 @@ using BDataType = F16;
using
AccDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F
32
;
using
EDataType
=
F
16
;
using
ALayout
=
Row
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
BLayout
=
Col
;
...
@@ -55,7 +55,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGroupedGemm_Xdl_F
...
@@ -55,7 +55,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGroupedGemm_Xdl_F
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
;
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
;
// clang-format on
// clang-format on
struct
ProblemSize
final
struct
ProblemSize
final
...
@@ -298,9 +298,9 @@ int main(int argc, char* argv[])
...
@@ -298,9 +298,9 @@ int main(int argc, char* argv[])
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
{
problem_size
.
Ms
.
push_back
(
256
+
256
*
i
);
problem_size
.
Ms
.
push_back
(
128
+
rand
()
%
128
);
problem_size
.
Ns
.
push_back
(
256
);
problem_size
.
Ns
.
push_back
(
1024
);
problem_size
.
Ks
.
push_back
(
1
28
);
problem_size
.
Ks
.
push_back
(
1
024
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ks
[
i
]);
...
...
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp8.cpp
→
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_
fp16_
fp8.cpp
View file @
e599063f
...
@@ -35,7 +35,7 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
...
@@ -35,7 +35,7 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using
ADataType
=
F16
;
using
ADataType
=
F16
;
using
BDataType
=
F8
;
using
BDataType
=
F8
;
using
AccDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F
32
;
using
CShuffleDataType
=
F
16
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F16
;
using
EDataType
=
F16
;
...
@@ -56,7 +56,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGroupedGemm_Xdl_F
...
@@ -56,7 +56,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGroupedGemm_Xdl_F
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
// clang-format on
struct
ProblemSize
final
struct
ProblemSize
final
...
...
example/16_gemm_multi_d_multi_reduces/CMakeLists.txt
View file @
e599063f
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942 gfx950
)
add_custom_target
(
example_gemm_reduce_xdl
)
set
(
target 0
)
add_custom_target
(
example_gemm_reduce_xdl_max
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
add_custom_target
(
example_gemm_reduce_xdl_mean_meansquare
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_custom_target
(
example_gemm_add_add_mean_meansquare_xdl
)
add_custom_target
(
example_gemm_reduce_xdl
)
add_custom_target
(
example_gemm_reduce_xdl_max
)
add_example_executable
(
example_gemm_max_xdl_fp16 gemm_max_xdl_fp16.cpp
)
add_custom_target
(
example_gemm_reduce_xdl_mean_meansquare
)
add_example_dependencies
(
example_gemm_reduce_xdl_max example_gemm_max_xdl_fp16
)
add_custom_target
(
example_gemm_add_add_mean_meansquare_xdl
)
add_example_executable
(
example_gemm_add_add_mean_meansquare_xdl_fp16 gemm_add_add_mean_meansquare_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_max_xdl_fp16 gemm_max_xdl_fp16.cpp
)
add_example_dependencies
(
example_gemm_add_add_mean_meansquare_xdl example_gemm_add_add_mean_meansquare_xdl_fp16
)
add_example_dependencies
(
example_gemm_reduce_xdl_max example_gemm_max_xdl_fp16
)
add_example_executable
(
example_gemm_mean_meansquare_xdl_fp16 gemm_mean_meansquare_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_add_add_mean_meansquare_xdl_fp16 gemm_add_add_mean_meansquare_xdl_fp16.cpp
)
add_example_dependencies
(
example_gemm_reduce_xdl_mean_meansquare example_gemm_mean_meansquare_xdl_fp16
)
add_example_dependencies
(
example_gemm_add_add_mean_meansquare_xdl example_gemm_add_add_mean_meansquare_xdl_fp16
)
add_example_executable
(
example_gemm_max_xdl_int8 gemm_max_xdl_int8.cpp
)
add_example_executable
(
example_gemm_mean_meansquare_xdl_fp16 gemm_mean_meansquare_xdl_fp16.cpp
)
add_example_dependencies
(
example_gemm_reduce_xdl_max example_gemm_max_xdl_int8
)
add_example_dependencies
(
example_gemm_reduce_xdl_mean_meansquare example_gemm_mean_meansquare_xdl_fp16
)
add_example_executable
(
example_gemm_add_addsquare_xdl_int8 gemm_add_addsquare_xdl_int8.cpp
)
add_example_executable
(
example_gemm_max_xdl_int8 gemm_max_xdl_int8.cpp
)
add_example_dependencies
(
example_gemm_reduce_xdl_mean_meansquare example_gemm_add_addsquare_xdl_int8
)
add_example_dependencies
(
example_gemm_reduce_xdl_max example_gemm_max_xdl_int8
)
add_example_executable
(
example_gemm_max_xdl_fp32 gemm_max_xdl_fp32.cpp
)
add_example_executable
(
example_gemm_add_addsquare_xdl_int8 gemm_add_addsquare_xdl_int8.cpp
)
add_example_dependencies
(
example_gemm_reduce_xdl_max example_gemm_max_xdl_fp32
)
add_example_dependencies
(
example_gemm_reduce_xdl_mean_meansquare example_gemm_add_addsquare_xdl_int8
)
add_example_executable
(
example_gemm_mean_meansquare_xdl_fp32 gemm_mean_meansquare_xdl_fp32.cpp
)
add_example_executable
(
example_gemm_max_xdl_fp32 gemm_max_xdl_fp32.cpp
)
add_example_dependencies
(
example_gemm_reduce_xdl_mean_meansquare example_gemm_mean_meansquare_xdl_fp32
)
add_example_dependencies
(
example_gemm_reduce_xdl_max example_gemm_max_xdl_fp32
)
add_example_executable
(
example_gemm_max_xdl_bf16 gemm_max_xdl_bf16.cpp
)
add_example_executable
(
example_gemm_mean_meansquare_xdl_fp32 gemm_mean_meansquare_xdl_fp32.cpp
)
add_example_dependencies
(
example_gemm_reduce_xdl_max example_gemm_max_xdl_bf16
)
add_example_dependencies
(
example_gemm_reduce_xdl_mean_meansquare example_gemm_mean_meansquare_xdl_fp32
)
add_example_executable
(
example_gemm_mean_meansquare_xdl_bf16 gemm_mean_meansquare_xdl_bf16.cpp
)
add_example_executable
(
example_gemm_max_xdl_bf16 gemm_max_xdl_bf16.cpp
)
add_example_dependencies
(
example_gemm_reduce_xdl_mean_meansquare example_gemm_mean_meansquare_xdl_bf16
)
add_example_dependencies
(
example_gemm_reduce_xdl_max example_gemm_max_xdl_bf16
)
add_example_dependencies
(
example_gemm_reduce_xdl
add_example_executable
(
example_gemm_mean_meansquare_xdl_bf16 gemm_mean_meansquare_xdl_bf16.cpp
)
example_gemm_reduce_xdl_mean_meansquare
add_example_dependencies
(
example_gemm_reduce_xdl_mean_meansquare example_gemm_mean_meansquare_xdl_bf16
)
example_gemm_reduce_xdl_max
example_gemm_add_add_mean_meansquare_xdl
)
add_example_dependencies
(
example_gemm_reduce_xdl
example_gemm_reduce_xdl_mean_meansquare
if
(
USE_BITINT_EXTENSION_INT4
)
example_gemm_reduce_xdl_max
add_example_executable
(
example_gemm_max_xdl_int4 gemm_max_xdl_int4.cpp
)
example_gemm_add_add_mean_meansquare_xdl
)
add_example_dependencies
(
example_gemm_reduce_xdl_max example_gemm_max_xdl_int4
)
endif
()
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_gemm_max_xdl_int4 gemm_max_xdl_int4.cpp
)
add_example_dependencies
(
example_gemm_reduce_xdl_max example_gemm_max_xdl_int4
)
endif
()
set
(
target 1
)
endif
()
endforeach
()
example/17_convnd_bwd_data/CMakeLists.txt
View file @
e599063f
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942 gfx950
)
add_example_executable
(
example_convnd_bwd_data_xdl_fp16 convnd_bwd_data_xdl_fp16.cpp
)
set
(
target 0
)
if
(
result EQUAL 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
target_link_libraries
(
example_convnd_bwd_data_xdl_fp16 PRIVATE utility
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
endif
()
add_example_executable
(
example_convnd_bwd_data_xdl_fp16 convnd_bwd_data_xdl_fp16.cpp
)
if
(
result EQUAL 0
)
target_link_libraries
(
example_convnd_bwd_data_xdl_fp16 PRIVATE utility
)
endif
()
set
(
target 1
)
endif
()
endforeach
()
add_example_executable
(
example_convnd_bwd_data_dl_fp16 convnd_bwd_data_dl_fp16.cpp
)
add_example_executable
(
example_convnd_bwd_data_dl_fp16 convnd_bwd_data_dl_fp16.cpp
)
if
(
result EQUAL 0
)
if
(
result EQUAL 0
)
...
...
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
View file @
e599063f
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <cstdlib>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_
dynamic_vector_dims_
impl.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
...
@@ -27,7 +27,12 @@ using DeviceElementwiseAddInstance =
...
@@ -27,7 +27,12 @@ using DeviceElementwiseAddInstance =
ck
::
Tuple
<
CDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
Add
,
2
,
2
,
64
,
64
,
64
,
8
,
8
,
8
,
ck
::
Sequence
<
1
,
0
>
,
ck
::
Sequence
<
8
,
8
>
,
ck
::
Sequence
<
8
,
8
>
,
ck
::
Sequence
<
8
>>
;
ck
::
Sequence
<
8
>>
;
...
...
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
View file @
e599063f
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <cstdlib>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_
dynamic_vector_dims_
impl.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
...
@@ -27,9 +27,14 @@ using DeviceElementwiseAddInstance =
...
@@ -27,9 +27,14 @@ using DeviceElementwiseAddInstance =
ck
::
Tuple
<
CDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
Add
,
3
,
3
,
8
,
64
,
ck
::
Sequence
<
1
,
8
>
,
16
,
ck
::
Sequence
<
8
>>
;
16
,
2
,
2
,
ck
::
Sequence
<
1
,
0
>
,
ck
::
Sequence
<
1
,
2
>
,
ck
::
Sequence
<
2
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
void
host_broadcast3D_am_bmnk
(
HostTensorC
&
C
,
void
host_broadcast3D_am_bmnk
(
HostTensorC
&
C
,
...
...
example/19_binary_elementwise/elementwise_add_1d.cpp
View file @
e599063f
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <cstdlib>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_
dynamic_vector_dims_
impl.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
...
@@ -25,9 +25,14 @@ using DeviceElementwiseAddInstance =
...
@@ -25,9 +25,14 @@ using DeviceElementwiseAddInstance =
ck
::
Tuple
<
CDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
Add
,
1
,
1
,
8
,
64
,
ck
::
Sequence
<
8
,
8
>
,
16
,
ck
::
Sequence
<
8
>>
;
16
,
2
,
2
,
ck
::
Sequence
<
1
,
0
>
,
ck
::
Sequence
<
2
,
2
>
,
ck
::
Sequence
<
2
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
void
host_elementwise1D
(
void
host_elementwise1D
(
...
...
example/19_binary_elementwise/elementwise_add_4d.cpp
View file @
e599063f
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <cstdlib>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_
dynamic_vector_dims_
impl.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
...
@@ -27,9 +27,14 @@ using DeviceElementwiseAddInstance =
...
@@ -27,9 +27,14 @@ using DeviceElementwiseAddInstance =
ck
::
Tuple
<
CDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
Add
,
4
,
4
,
8
,
64
,
ck
::
Sequence
<
8
,
8
>
,
2
,
ck
::
Sequence
<
8
>>
;
128
,
2
,
2
,
ck
::
Sequence
<
1
,
0
>
,
ck
::
Sequence
<
2
,
2
>
,
ck
::
Sequence
<
2
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
void
host_elementwise4D
(
HostTensorC
&
C
,
void
host_elementwise4D
(
HostTensorC
&
C
,
...
...
example/20_grouped_conv_bwd_weight/CMakeLists.txt
View file @
e599063f
list
(
APPEND gpu_list_xdl gfx908 gfx90a gfx940 gfx941 gfx942 gfx950
)
add_custom_target
(
example_grouped_conv_bwd_weight
)
list
(
APPEND gpu_list_wmma gfx1100 gfx1101 gfx1102 gfx1200 gfx1201
)
add_example_executable
(
example_grouped_conv_bwd_weight_xdl_fp16 grouped_conv_bwd_weight_xdl_fp16.cpp
)
set
(
target 0
)
add_example_dependencies
(
example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_fp16
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list_xdl AND target EQUAL 0
)
add_custom_target
(
example_grouped_conv_bwd_weight
)
add_example_executable
(
example_grouped_conv_bwd_weight_xdl_fp16 grouped_conv_bwd_weight_xdl_fp16.cpp
)
add_example_dependencies
(
example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_fp16
)
add_example_executable
(
example_grouped_conv_bwd_weight_xdl_bf16 grouped_conv_bwd_weight_xdl_bf16.cpp
)
add_example_executable
(
example_grouped_conv_bwd_weight_xdl_bf16 grouped_conv_bwd_weight_xdl_bf16.cpp
)
add_example_dependencies
(
example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_bf16
)
add_example_dependencies
(
example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_bf16
)
add_example_executable
(
example_grouped_conv_bwd_weight_xdl_fp16_comp_bf8_fp8 grouped_conv_bwd_weight_xdl_fp16_comp_bf8_fp8.cpp
)
add_example_executable
(
example_grouped_conv_bwd_weight_xdl_fp16_comp_bf8_fp8 grouped_conv_bwd_weight_xdl_fp16_comp_bf8_fp8.cpp
)
add_example_dependencies
(
example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_fp16_comp_bf8_fp8
)
add_example_dependencies
(
example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_fp16_comp_bf8_fp8
)
set
(
target 1
)
endif
()
if
(
gpu IN_LIST gpu_list_wmma AND target EQUAL 0
)
add_example_executable
(
example_grouped_conv_bwd_weight_wmma_fp16 grouped_conv_bwd_weight_wmma_fp16.cpp
)
add_custom_target
(
example_grouped_conv_bwd_weight
)
add_example_dependencies
(
example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_wmma_fp16
)
add_example_executable
(
example_grouped_conv_bwd_weight_wmma_fp16 grouped_conv_bwd_weight_wmma_fp16.cpp
)
add_example_dependencies
(
example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_wmma_fp16
)
set
(
target 1
)
endif
()
endforeach
()
add_custom_target
(
example_grouped_conv_bwd_weight_dl
)
add_example_executable
(
example_grouped_conv_bwd_weight_dl_fp16 grouped_conv_bwd_weight_dl_fp16.cpp
)
add_example_executable
(
example_grouped_conv_bwd_weight_dl_fp16 grouped_conv_bwd_weight_dl_fp16.cpp
)
add_example_dependencies
(
example_grouped_conv_bwd_weight
_dl
example_grouped_conv_bwd_weight_dl_fp16
)
add_example_dependencies
(
example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_dl_fp16
)
example/20_grouped_conv_bwd_weight/grouped_conv_bwd_weight_xdl_fp16_comp_bf8_fp8.cpp
View file @
e599063f
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "common.hpp"
...
@@ -78,6 +78,9 @@ using HostConvBwdWeightInstance = ck::tensor_operation::host::ReferenceConvBwdWe
...
@@ -78,6 +78,9 @@ using HostConvBwdWeightInstance = ck::tensor_operation::host::ReferenceConvBwdWe
InElementOp
,
InElementOp
,
WeiElementOp
,
WeiElementOp
,
OutElementOp
,
OutElementOp
,
0
,
0
,
0
,
ComputeTypeA
,
ComputeTypeA
,
ComputeTypeB
>
;
ComputeTypeB
>
;
...
...
example/20_grouped_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
View file @
e599063f
...
@@ -119,7 +119,10 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
...
@@ -119,7 +119,10 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
conv_param
.
input_right_pads_
,
conv_param
.
input_right_pads_
,
InElementOp
{},
InElementOp
{},
WeiElementOp
{},
WeiElementOp
{},
OutElementOp
{});
OutElementOp
{},
{},
{},
{});
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
...
...
example/21_gemm_layernorm/CMakeLists.txt
View file @
e599063f
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942 gfx950
)
add_example_executable
(
example_gemm_bias_relu_add_layernorm_xdl_welford_fp16 gemm_bias_relu_add_layernorm_xdl_welford_fp16.cpp
)
set
(
target 0
)
add_example_executable
(
example_gemm_bias_relu_add_layernorm_xdl_naive_fp16 gemm_bias_relu_add_layernorm_xdl_naive_fp16.cpp
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
add_example_executable
(
example_gemm_layernorm_xdl_naive_fp16 gemm_layernorm_xdl_naive_fp16.cpp
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_example_executable
(
example_gemm_xdl_layernorm_naive_single_kernel_fp16 gemm_xdl_layernorm_naive_single_kernel_fp16.cpp
)
add_example_executable
(
example_gemm_bias_relu_add_layernorm_xdl_welford_fp16 gemm_bias_relu_add_layernorm_xdl_welford_fp16.cpp
)
add_example_executable
(
example_gemm_bias_relu_add_layernorm_xdl_naive_fp16 gemm_bias_relu_add_layernorm_xdl_naive_fp16.cpp
)
add_example_executable
(
example_gemm_layernorm_xdl_naive_fp16 gemm_layernorm_xdl_naive_fp16.cpp
)
add_example_executable
(
example_gemm_xdl_layernorm_naive_single_kernel_fp16 gemm_xdl_layernorm_naive_single_kernel_fp16.cpp
)
set
(
target 1
)
endif
()
endforeach
()
Prev
1
2
3
4
5
6
7
8
9
…
16
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment