Commit e547c141 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents 467b4e50 4cf70b36
...@@ -11,20 +11,12 @@ ...@@ -11,20 +11,12 @@
namespace ck_tile { namespace ck_tile {
template <typename TilePartitioner_, template <typename TilePartitioner_, typename GemmPipeline_, typename EpiloguePipeline_>
typename GemmPipeline_,
typename EpiloguePipeline_,
typename LayoutA_,
typename LayoutB_,
typename LayoutC_>
struct GemmKernel struct GemmKernel
{ {
using TilePartitioner = remove_cvref_t<TilePartitioner_>; using TilePartitioner = remove_cvref_t<TilePartitioner_>;
using GemmPipeline = remove_cvref_t<GemmPipeline_>; using GemmPipeline = remove_cvref_t<GemmPipeline_>;
using EpiloguePipeline = remove_cvref_t<EpiloguePipeline_>; using EpiloguePipeline = remove_cvref_t<EpiloguePipeline_>;
using LayoutA = remove_cvref_t<LayoutA_>;
using LayoutB = remove_cvref_t<LayoutB_>;
using LayoutC = remove_cvref_t<LayoutC_>;
static constexpr index_t KernelBlockSize = GemmPipeline::kBlockSize; static constexpr index_t KernelBlockSize = GemmPipeline::kBlockSize;
using ADataType = remove_cvref_t<typename GemmPipeline::ADataType>; using ADataType = remove_cvref_t<typename GemmPipeline::ADataType>;
...@@ -32,6 +24,10 @@ struct GemmKernel ...@@ -32,6 +24,10 @@ struct GemmKernel
using CAccDataType = remove_cvref_t<typename GemmPipeline::CDataType>; using CAccDataType = remove_cvref_t<typename GemmPipeline::CDataType>;
using CODataType = remove_cvref_t<typename EpiloguePipeline::ODataType>; using CODataType = remove_cvref_t<typename EpiloguePipeline::ODataType>;
using LayoutA = remove_cvref_t<typename GemmPipeline::LayoutA>;
using LayoutB = remove_cvref_t<typename GemmPipeline::LayoutB>;
using LayoutC = remove_cvref_t<typename GemmPipeline::LayoutC>;
__host__ static constexpr auto GridSize(index_t M_size, index_t N_size, index_t Batch_size) __host__ static constexpr auto GridSize(index_t M_size, index_t N_size, index_t Batch_size)
{ {
return TilePartitioner::GridSize(M_size, N_size, Batch_size); return TilePartitioner::GridSize(M_size, N_size, Batch_size);
...@@ -184,6 +180,7 @@ struct GemmKernel ...@@ -184,6 +180,7 @@ struct GemmKernel
c_pad_view, c_pad_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kN>{}), make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kN>{}),
{i_m, i_n}); {i_m, i_n});
EpiloguePipeline{}(CBlockWindow_pad, acc); EpiloguePipeline{}(CBlockWindow_pad, acc);
} }
}; };
......
...@@ -4,15 +4,15 @@ ...@@ -4,15 +4,15 @@
#pragma once #pragma once
#include "ck_tile/core.hpp" #include "ck_tile/core.hpp"
#include "ck_tile/ops/gemm/pipeline/block_gemm_pipeline_agmem_bgmem_creg_v1_default_policy.hpp" #include "ck_tile/ops/gemm/pipeline/gemm_pipeline_agmem_bgmem_creg_v1_default_policy.hpp"
namespace ck_tile { namespace ck_tile {
// A Tile Window: global memory // A Tile Window: global memory
// B Tile Window: global memory // B Tile Window: global memory
// C Distributed tensor: register // C Distributed tensor: register
template <typename Problem, typename Policy = BlockGemmPipelineAGmemBGmemCRegV1DefaultPolicy> template <typename Problem, typename Policy = GemmPipelineAGmemBGmemCRegV1DefaultPolicy>
struct BlockGemmPipelineAGmemBGmemCRegV1 struct GemmPipelineAGmemBGmemCRegV1
{ {
using ADataType = remove_cvref_t<typename Problem::ADataType>; using ADataType = remove_cvref_t<typename Problem::ADataType>;
using BDataType = remove_cvref_t<typename Problem::BDataType>; using BDataType = remove_cvref_t<typename Problem::BDataType>;
...@@ -33,6 +33,10 @@ struct BlockGemmPipelineAGmemBGmemCRegV1 ...@@ -33,6 +33,10 @@ struct BlockGemmPipelineAGmemBGmemCRegV1
static constexpr bool kPadB = Problem::kPadB; static constexpr bool kPadB = Problem::kPadB;
static constexpr bool kPadC = Problem::kPadC; static constexpr bool kPadC = Problem::kPadC;
using LayoutA = remove_cvref_t<typename Problem::LayoutA>;
using LayoutB = remove_cvref_t<typename Problem::LayoutB>;
using LayoutC = remove_cvref_t<typename Problem::LayoutC>;
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetStaticLdsSize() CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetStaticLdsSize()
{ {
return ck_tile::integer_divide_ceil( return ck_tile::integer_divide_ceil(
......
...@@ -7,9 +7,9 @@ ...@@ -7,9 +7,9 @@
namespace ck_tile { namespace ck_tile {
// Default policy for BlockGemmPipelineAGmemBGmemCRegV1 // Default policy for GemmPipelineAGmemBGmemCRegV1
// Default policy class should not be templated, put template on member functions instead // Default policy class should not be templated, put template on member functions instead
struct BlockGemmPipelineAGmemBGmemCRegV1DefaultPolicy struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
{ {
#if 0 #if 0
// 2d // 2d
......
...@@ -4,15 +4,15 @@ ...@@ -4,15 +4,15 @@
#pragma once #pragma once
#include "ck_tile/core.hpp" #include "ck_tile/core.hpp"
#include "ck_tile/ops/gemm/pipeline/block_gemm_pipeline_agmem_bgmem_creg_v2_default_policy.hpp" #include "ck_tile/ops/gemm/pipeline/gemm_pipeline_agmem_bgmem_creg_v2_default_policy.hpp"
namespace ck_tile { namespace ck_tile {
// A Tile Window: global memory // A Tile Window: global memory
// B Tile Window: global memory // B Tile Window: global memory
// C Distributed tensor: register // C Distributed tensor: register
template <typename Problem, typename Policy = BlockGemmPipelineAGmemBGmemCRegV2DefaultPolicy> template <typename Problem, typename Policy = GemmPipelineAGmemBGmemCRegV2DefaultPolicy>
struct BlockGemmPipelineAGmemBGmemCRegV2 struct GemmPipelineAGmemBGmemCRegV2
{ {
using ADataType = remove_cvref_t<typename Problem::ADataType>; using ADataType = remove_cvref_t<typename Problem::ADataType>;
using BDataType = remove_cvref_t<typename Problem::BDataType>; using BDataType = remove_cvref_t<typename Problem::BDataType>;
......
...@@ -7,12 +7,11 @@ ...@@ -7,12 +7,11 @@
namespace ck_tile { namespace ck_tile {
// Default policy for BlockGemmPipelineAGmemBGmemCRegV2 // Default policy for GemmPipelineAGmemBGmemCRegV2
// Default policy class should not be templated, put template on member functions instead // Default policy class should not be templated, put template on member functions instead
// NOTE: policy should be binded to its corresponding operation. It's just a coincidence that // NOTE: policy should be binded to its corresponding operation. It's just a coincidence that
// BlockGemmPipelineAGmemBGmemCRegV2DefaultPolicy is the same as // GemmPipelineAGmemBGmemCRegV2DefaultPolicy is the same as
// BlockGemmPipelineAGmemBGmemCRegV1DefaultPolicy // GemmPipelineAGmemBGmemCRegV1DefaultPolicy
using BlockGemmPipelineAGmemBGmemCRegV2DefaultPolicy = using GemmPipelineAGmemBGmemCRegV2DefaultPolicy = GemmPipelineAGmemBGmemCRegV1DefaultPolicy;
BlockGemmPipelineAGmemBGmemCRegV1DefaultPolicy;
} // namespace ck_tile } // namespace ck_tile
...@@ -13,20 +13,23 @@ template <typename ADataType_, ...@@ -13,20 +13,23 @@ template <typename ADataType_,
typename BDataType_, typename BDataType_,
typename CDataType_, typename CDataType_,
typename BlockGemmShape_, typename BlockGemmShape_,
bool kPadA_ = false, typename TileGemmTraits_>
bool kPadB_ = false, struct GemmPipelineProblem
bool kPadC_ = false>
struct BlockGemmPipelineProblem
{ {
using ADataType = remove_cvref_t<ADataType_>; using ADataType = remove_cvref_t<ADataType_>;
using BDataType = remove_cvref_t<BDataType_>; using BDataType = remove_cvref_t<BDataType_>;
using CDataType = remove_cvref_t<CDataType_>; using CDataType = remove_cvref_t<CDataType_>;
using BlockGemmShape = remove_cvref_t<BlockGemmShape_>; using BlockGemmShape = remove_cvref_t<BlockGemmShape_>;
using GemmTraits = remove_cvref_t<TileGemmTraits_>;
static constexpr index_t kBlockSize = BlockGemmShape::NumWarps * get_warp_size(); static constexpr index_t kBlockSize = BlockGemmShape::NumWarps * get_warp_size();
static constexpr bool kPadA = kPadA_; static constexpr bool kPadA = GemmTraits::kPadA;
static constexpr bool kPadB = kPadB_; static constexpr bool kPadB = GemmTraits::kPadB;
static constexpr bool kPadC = kPadC_; static constexpr bool kPadC = GemmTraits::kPadC;
using LayoutA = remove_cvref_t<typename GemmTraits::LayoutA>;
using LayoutB = remove_cvref_t<typename GemmTraits::LayoutB>;
using LayoutC = remove_cvref_t<typename GemmTraits::LayoutC>;
static constexpr index_t AlignmentA = kPadA ? 1 : VectorLoadSize / sizeof(ADataType); static constexpr index_t AlignmentA = kPadA ? 1 : VectorLoadSize / sizeof(ADataType);
static constexpr index_t AlignmentB = kPadB ? 1 : VectorLoadSize / sizeof(BDataType); static constexpr index_t AlignmentB = kPadB ? 1 : VectorLoadSize / sizeof(BDataType);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
template <bool kPadA_,
bool kPadB_,
bool kPadC_,
typename LayoutA_,
typename LayoutB_,
typename LayoutC_>
struct TileGemmTraits
{
static constexpr bool kPadA = kPadA_;
static constexpr bool kPadB = kPadB_;
static constexpr bool kPadC = kPadC_;
using LayoutA = LayoutA_;
using LayoutB = LayoutB_;
using LayoutC = LayoutC_;
};
} // namespace ck_tile
...@@ -18,4 +18,9 @@ if(result EQUAL 0) ...@@ -18,4 +18,9 @@ if(result EQUAL 0)
target_link_libraries(test_bf8 PRIVATE utility) target_link_libraries(test_bf8 PRIVATE utility)
endif() endif()
add_gtest_executable(test_custom_type test_custom_type.cpp)
if(result EQUAL 0)
target_link_libraries(test_custom_type PRIVATE utility)
endif()
add_gtest_executable(test_type_convert_const type_convert_const.cpp) add_gtest_executable(test_type_convert_const type_convert_const.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "ck/utility/data_type.hpp"
#include "ck/utility/type_convert.hpp"
using ck::bf8_t;
using ck::bhalf_t;
using ck::f8_t;
using ck::half_t;
using ck::Number;
using ck::type_convert;
using ck::vector_type;
TEST(Custom_bool, TestSize)
{
struct custom_bool_t
{
bool data;
};
ASSERT_EQ(sizeof(custom_bool_t), sizeof(bool));
ASSERT_EQ(sizeof(vector_type<custom_bool_t, 2>), sizeof(vector_type<bool, 2>));
ASSERT_EQ(sizeof(vector_type<custom_bool_t, 4>), sizeof(vector_type<bool, 4>));
ASSERT_EQ(sizeof(vector_type<custom_bool_t, 8>), sizeof(vector_type<bool, 8>));
ASSERT_EQ(sizeof(vector_type<custom_bool_t, 16>), sizeof(vector_type<bool, 16>));
ASSERT_EQ(sizeof(vector_type<custom_bool_t, 32>), sizeof(vector_type<bool, 32>));
ASSERT_EQ(sizeof(vector_type<custom_bool_t, 64>), sizeof(vector_type<bool, 64>));
}
TEST(Custom_bool, TestAsType)
{
struct custom_bool_t
{
using type = bool;
type data;
custom_bool_t() : data{type{}} {}
custom_bool_t(type init) : data{init} {}
};
// test size
const int size = 4;
std::vector<bool> test_vec = {false, true, false, true};
// reference vector
vector_type<custom_bool_t, size> right_vec;
// check default CTOR
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(right_vec.template AsType<custom_bool_t>()(Number<i>{}).data, false);
});
// assign test values to the vector
ck::static_for<0, size, 1>{}([&](auto i) {
right_vec.template AsType<custom_bool_t>()(Number<i>{}) = custom_bool_t{test_vec.at(i)};
});
// copy the vector
vector_type<custom_bool_t, size> left_vec{right_vec};
// check if values were copied correctly
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(left_vec.template AsType<custom_bool_t>()(Number<i>{}).data, test_vec.at(i));
});
}
TEST(Custom_bool, TestAsTypeReshape)
{
struct custom_bool_t
{
using type = bool;
type data;
custom_bool_t() : data{type{}} {}
custom_bool_t(type init) : data{init} {}
};
// test size
const int size = 4;
std::vector<bool> test_vec = {false, true, false, true};
// reference vector
vector_type<custom_bool_t, size> right_vec;
// check default CTOR
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(right_vec.template AsType<custom_bool_t>()(Number<i>{}).data, false);
});
// assign test values to the vector
ck::static_for<0, size, 1>{}([&](auto i) {
right_vec.template AsType<custom_bool_t>()(Number<i>{}) = custom_bool_t{test_vec.at(i)};
});
// copy the first half of a vector
vector_type<custom_bool_t, size / 2> left_vec{
right_vec.template AsType<vector_type<custom_bool_t, size / 2>::type>()(Number<0>{})};
// check if values were copied correctly
ck::static_for<0, size / 2, 1>{}([&](auto i) {
ASSERT_EQ(left_vec.template AsType<custom_bool_t>()(Number<i>{}).data, test_vec.at(i));
});
}
TEST(Custom_int8, TestSize)
{
struct custom_int8_t
{
int8_t data;
};
ASSERT_EQ(sizeof(custom_int8_t), sizeof(int8_t));
ASSERT_EQ(sizeof(vector_type<custom_int8_t, 2>), sizeof(vector_type<int8_t, 2>));
ASSERT_EQ(sizeof(vector_type<custom_int8_t, 4>), sizeof(vector_type<int8_t, 4>));
ASSERT_EQ(sizeof(vector_type<custom_int8_t, 8>), sizeof(vector_type<int8_t, 8>));
ASSERT_EQ(sizeof(vector_type<custom_int8_t, 16>), sizeof(vector_type<int8_t, 16>));
ASSERT_EQ(sizeof(vector_type<custom_int8_t, 32>), sizeof(vector_type<int8_t, 32>));
ASSERT_EQ(sizeof(vector_type<custom_int8_t, 64>), sizeof(vector_type<int8_t, 64>));
}
TEST(Custom_int8, TestAsType)
{
struct custom_int8_t
{
using type = int8_t;
type data;
custom_int8_t() : data{type{}} {}
custom_int8_t(type init) : data{init} {}
};
// test size
const int size = 4;
std::vector<int8_t> test_vec = {3, -6, 8, -2};
// reference vector
vector_type<custom_int8_t, size> right_vec;
// check default CTOR
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(right_vec.template AsType<custom_int8_t>()(Number<i>{}).data, 0);
});
// assign test values to the vector
ck::static_for<0, size, 1>{}([&](auto i) {
right_vec.template AsType<custom_int8_t>()(Number<i>{}) = custom_int8_t{test_vec.at(i)};
});
// copy the vector
vector_type<custom_int8_t, size> left_vec{right_vec};
// check if values were copied correctly
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(left_vec.template AsType<custom_int8_t>()(Number<i>{}).data, test_vec.at(i));
});
}
TEST(Custom_int8, TestAsTypeReshape)
{
struct custom_int8_t
{
using type = int8_t;
type data;
custom_int8_t() : data{type{}} {}
custom_int8_t(type init) : data{init} {}
};
// test size
const int size = 4;
std::vector<int8_t> test_vec = {3, -6, 8, -2};
// reference vector
vector_type<custom_int8_t, size> right_vec;
// check default CTOR
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(right_vec.template AsType<custom_int8_t>()(Number<i>{}).data, 0);
});
// assign test values to the vector
ck::static_for<0, size, 1>{}([&](auto i) {
right_vec.template AsType<custom_int8_t>()(Number<i>{}) = custom_int8_t{test_vec.at(i)};
});
// copy the first half of a vector
vector_type<custom_int8_t, size / 2> left_vec{
right_vec.template AsType<vector_type<custom_int8_t, size / 2>::type>()(Number<0>{})};
// check if values were copied correctly
ck::static_for<0, size / 2, 1>{}([&](auto i) {
ASSERT_EQ(left_vec.template AsType<custom_int8_t>()(Number<i>{}).data, test_vec.at(i));
});
}
TEST(Custom_uint8, TestSize)
{
struct custom_uint8_t
{
uint8_t data;
};
ASSERT_EQ(sizeof(custom_uint8_t), sizeof(uint8_t));
ASSERT_EQ(sizeof(vector_type<custom_uint8_t, 2>), sizeof(vector_type<uint8_t, 2>));
ASSERT_EQ(sizeof(vector_type<custom_uint8_t, 4>), sizeof(vector_type<uint8_t, 4>));
ASSERT_EQ(sizeof(vector_type<custom_uint8_t, 8>), sizeof(vector_type<uint8_t, 8>));
ASSERT_EQ(sizeof(vector_type<custom_uint8_t, 16>), sizeof(vector_type<uint8_t, 16>));
ASSERT_EQ(sizeof(vector_type<custom_uint8_t, 32>), sizeof(vector_type<uint8_t, 32>));
ASSERT_EQ(sizeof(vector_type<custom_uint8_t, 64>), sizeof(vector_type<uint8_t, 64>));
}
TEST(Custom_uint8, TestAsType)
{
struct custom_uint8_t
{
using type = uint8_t;
type data;
custom_uint8_t() : data{type{}} {}
custom_uint8_t(type init) : data{init} {}
};
// test size
const int size = 4;
std::vector<uint8_t> test_vec = {3, 6, 8, 2};
// reference vector
vector_type<custom_uint8_t, size> right_vec;
// check default CTOR
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(right_vec.template AsType<custom_uint8_t>()(Number<i>{}).data, 0);
});
// assign test values to the vector
ck::static_for<0, size, 1>{}([&](auto i) {
right_vec.template AsType<custom_uint8_t>()(Number<i>{}) = custom_uint8_t{test_vec.at(i)};
});
// copy the vector
vector_type<custom_uint8_t, size> left_vec{right_vec};
// check if values were copied correctly
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(left_vec.template AsType<custom_uint8_t>()(Number<i>{}).data, test_vec.at(i));
});
}
TEST(Custom_uint8, TestAsTypeReshape)
{
struct custom_uint8_t
{
using type = uint8_t;
type data;
custom_uint8_t() : data{type{}} {}
custom_uint8_t(type init) : data{init} {}
};
// test size
const int size = 4;
std::vector<uint8_t> test_vec = {3, 6, 8, 2};
// reference vector
vector_type<custom_uint8_t, size> right_vec;
// check default CTOR
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(right_vec.template AsType<custom_uint8_t>()(Number<i>{}).data, 0);
});
// assign test values to the vector
ck::static_for<0, size, 1>{}([&](auto i) {
right_vec.template AsType<custom_uint8_t>()(Number<i>{}) = custom_uint8_t{test_vec.at(i)};
});
// copy the first half of a vector
vector_type<custom_uint8_t, size / 2> left_vec{
right_vec.template AsType<vector_type<custom_uint8_t, size / 2>::type>()(Number<0>{})};
// check if values were copied correctly
ck::static_for<0, size / 2, 1>{}([&](auto i) {
ASSERT_EQ(left_vec.template AsType<custom_uint8_t>()(Number<i>{}).data, test_vec.at(i));
});
}
TEST(Custom_f8, TestSize)
{
struct custom_f8_t
{
_BitInt(8) data;
};
ASSERT_EQ(sizeof(custom_f8_t), sizeof(_BitInt(8)));
ASSERT_EQ(sizeof(vector_type<custom_f8_t, 2>), sizeof(vector_type<_BitInt(8), 2>));
ASSERT_EQ(sizeof(vector_type<custom_f8_t, 4>), sizeof(vector_type<_BitInt(8), 4>));
ASSERT_EQ(sizeof(vector_type<custom_f8_t, 8>), sizeof(vector_type<_BitInt(8), 8>));
ASSERT_EQ(sizeof(vector_type<custom_f8_t, 16>), sizeof(vector_type<_BitInt(8), 16>));
ASSERT_EQ(sizeof(vector_type<custom_f8_t, 32>), sizeof(vector_type<_BitInt(8), 32>));
ASSERT_EQ(sizeof(vector_type<custom_f8_t, 64>), sizeof(vector_type<_BitInt(8), 64>));
}
TEST(Custom_f8, TestAsType)
{
struct custom_f8_t
{
using type = _BitInt(8);
type data;
custom_f8_t() : data{type{}} {}
custom_f8_t(type init) : data{init} {}
};
// test size
const int size = 4;
std::vector<_BitInt(8)> test_vec = {type_convert<_BitInt(8)>(0.3f),
type_convert<_BitInt(8)>(-0.6f),
type_convert<_BitInt(8)>(0.8f),
type_convert<_BitInt(8)>(-0.2f)};
// reference vector
vector_type<custom_f8_t, size> right_vec;
// check default CTOR
ck::static_for<0, size, 1>{}(
[&](auto i) { ASSERT_EQ(right_vec.template AsType<custom_f8_t>()(Number<i>{}).data, 0); });
// assign test values to the vector
ck::static_for<0, size, 1>{}([&](auto i) {
right_vec.template AsType<custom_f8_t>()(Number<i>{}) = custom_f8_t{test_vec.at(i)};
});
// copy the vector
vector_type<custom_f8_t, size> left_vec{right_vec};
// check if values were copied correctly
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(left_vec.template AsType<custom_f8_t>()(Number<i>{}).data, test_vec.at(i));
});
}
TEST(Custom_f8, TestAsTypeReshape)
{
struct custom_f8_t
{
using type = _BitInt(8);
type data;
custom_f8_t() : data{type{}} {}
custom_f8_t(type init) : data{init} {}
};
// test size
const int size = 4;
std::vector<_BitInt(8)> test_vec = {type_convert<_BitInt(8)>(0.3f),
type_convert<_BitInt(8)>(-0.6f),
type_convert<_BitInt(8)>(0.8f),
type_convert<_BitInt(8)>(-0.2f)};
// reference vector
vector_type<custom_f8_t, size> right_vec;
// check default CTOR
ck::static_for<0, size, 1>{}(
[&](auto i) { ASSERT_EQ(right_vec.template AsType<custom_f8_t>()(Number<i>{}).data, 0); });
// assign test values to the vector
ck::static_for<0, size, 1>{}([&](auto i) {
right_vec.template AsType<custom_f8_t>()(Number<i>{}) = custom_f8_t{test_vec.at(i)};
});
// copy the first half of a vector
vector_type<custom_f8_t, size / 2> left_vec{
right_vec.template AsType<vector_type<custom_f8_t, size / 2>::type>()(Number<0>{})};
// check if values were copied correctly
ck::static_for<0, size / 2, 1>{}([&](auto i) {
ASSERT_EQ(left_vec.template AsType<custom_f8_t>()(Number<i>{}).data, test_vec.at(i));
});
}
TEST(Custom_bf8, TestSize)
{
struct custom_bf8_t
{
unsigned _BitInt(8) data;
};
ASSERT_EQ(sizeof(custom_bf8_t), sizeof(unsigned _BitInt(8)));
ASSERT_EQ(sizeof(vector_type<custom_bf8_t, 2>), sizeof(vector_type<unsigned _BitInt(8), 2>));
ASSERT_EQ(sizeof(vector_type<custom_bf8_t, 4>), sizeof(vector_type<unsigned _BitInt(8), 4>));
ASSERT_EQ(sizeof(vector_type<custom_bf8_t, 8>), sizeof(vector_type<unsigned _BitInt(8), 8>));
ASSERT_EQ(sizeof(vector_type<custom_bf8_t, 16>), sizeof(vector_type<unsigned _BitInt(8), 16>));
ASSERT_EQ(sizeof(vector_type<custom_bf8_t, 32>), sizeof(vector_type<unsigned _BitInt(8), 32>));
ASSERT_EQ(sizeof(vector_type<custom_bf8_t, 64>), sizeof(vector_type<unsigned _BitInt(8), 64>));
}
TEST(Custom_bf8, TestAsType)
{
struct custom_bf8_t
{
using type = unsigned _BitInt(8);
type data;
custom_bf8_t() : data{type{}} {}
custom_bf8_t(type init) : data{init} {}
};
// test size
const int size = 4;
std::vector<unsigned _BitInt(8)> test_vec = {type_convert<unsigned _BitInt(8)>(0.3f),
type_convert<unsigned _BitInt(8)>(-0.6f),
type_convert<unsigned _BitInt(8)>(0.8f),
type_convert<unsigned _BitInt(8)>(-0.2f)};
// reference vector
vector_type<custom_bf8_t, size> right_vec;
// check default CTOR
ck::static_for<0, size, 1>{}(
[&](auto i) { ASSERT_EQ(right_vec.template AsType<custom_bf8_t>()(Number<i>{}).data, 0); });
// assign test values to the vector
ck::static_for<0, size, 1>{}([&](auto i) {
right_vec.template AsType<custom_bf8_t>()(Number<i>{}) = custom_bf8_t{test_vec.at(i)};
});
// copy the vector
vector_type<custom_bf8_t, size> left_vec{right_vec};
// check if values were copied correctly
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(left_vec.template AsType<custom_bf8_t>()(Number<i>{}).data, test_vec.at(i));
});
}
TEST(Custom_bf8, TestAsTypeReshape)
{
struct custom_bf8_t
{
using type = unsigned _BitInt(8);
type data;
custom_bf8_t() : data{type{}} {}
custom_bf8_t(type init) : data{init} {}
};
// test size
const int size = 4;
std::vector<unsigned _BitInt(8)> test_vec = {type_convert<unsigned _BitInt(8)>(0.3f),
type_convert<unsigned _BitInt(8)>(-0.6f),
type_convert<unsigned _BitInt(8)>(0.8f),
type_convert<unsigned _BitInt(8)>(-0.2f)};
// reference vector
vector_type<custom_bf8_t, size> right_vec;
// check default CTOR
ck::static_for<0, size, 1>{}(
[&](auto i) { ASSERT_EQ(right_vec.template AsType<custom_bf8_t>()(Number<i>{}).data, 0); });
// assign test values to the vector
ck::static_for<0, size, 1>{}([&](auto i) {
right_vec.template AsType<custom_bf8_t>()(Number<i>{}) = custom_bf8_t{test_vec.at(i)};
});
// copy the first half of a vector
vector_type<custom_bf8_t, size / 2> left_vec{
right_vec.template AsType<vector_type<custom_bf8_t, size / 2>::type>()(Number<0>{})};
// check if values were copied correctly
ck::static_for<0, size / 2, 1>{}([&](auto i) {
ASSERT_EQ(left_vec.template AsType<custom_bf8_t>()(Number<i>{}).data, test_vec.at(i));
});
}
TEST(Custom_half, TestSize)
{
struct custom_half_t
{
half_t data;
};
ASSERT_EQ(sizeof(custom_half_t), sizeof(half_t));
ASSERT_EQ(sizeof(vector_type<custom_half_t, 2>), sizeof(vector_type<half_t, 2>));
ASSERT_EQ(sizeof(vector_type<custom_half_t, 4>), sizeof(vector_type<half_t, 4>));
ASSERT_EQ(sizeof(vector_type<custom_half_t, 8>), sizeof(vector_type<half_t, 8>));
ASSERT_EQ(sizeof(vector_type<custom_half_t, 16>), sizeof(vector_type<half_t, 16>));
ASSERT_EQ(sizeof(vector_type<custom_half_t, 32>), sizeof(vector_type<half_t, 32>));
ASSERT_EQ(sizeof(vector_type<custom_half_t, 64>), sizeof(vector_type<half_t, 64>));
}
TEST(Custom_half, TestAsType)
{
struct custom_half_t
{
using type = half_t;
type data;
custom_half_t() : data{type{}} {}
custom_half_t(type init) : data{init} {}
};
// test size
const int size = 4;
std::vector<half_t> test_vec = {half_t{0.3f}, half_t{-0.6f}, half_t{0.8f}, half_t{-0.2f}};
// reference vector
vector_type<custom_half_t, size> right_vec;
// check default CTOR
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(right_vec.template AsType<custom_half_t>()(Number<i>{}).data,
type_convert<half_t>(0.0f));
});
// assign test values to the vector
ck::static_for<0, size, 1>{}([&](auto i) {
right_vec.template AsType<custom_half_t>()(Number<i>{}) = custom_half_t{test_vec.at(i)};
});
// copy the vector
vector_type<custom_half_t, size> left_vec{right_vec};
// check if values were copied correctly
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(left_vec.template AsType<custom_half_t>()(Number<i>{}).data, test_vec.at(i));
});
}
TEST(Custom_half, TestAsTypeReshape)
{
struct custom_half_t
{
using type = half_t;
type data;
custom_half_t() : data{type{}} {}
custom_half_t(type init) : data{init} {}
};
// test size
const int size = 4;
std::vector<half_t> test_vec = {half_t{0.3f}, half_t{-0.6f}, half_t{0.8f}, half_t{-0.2f}};
// reference vector
vector_type<custom_half_t, size> right_vec;
// check default CTOR
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(right_vec.template AsType<custom_half_t>()(Number<i>{}).data,
type_convert<half_t>(0.0f));
});
// assign test values to the vector
ck::static_for<0, size, 1>{}([&](auto i) {
right_vec.template AsType<custom_half_t>()(Number<i>{}) = custom_half_t{test_vec.at(i)};
});
// copy the first half of a vector
vector_type<custom_half_t, size / 2> left_vec{
right_vec.template AsType<vector_type<custom_half_t, size / 2>::type>()(Number<0>{})};
// check if values were copied correctly
ck::static_for<0, size / 2, 1>{}([&](auto i) {
ASSERT_EQ(left_vec.template AsType<custom_half_t>()(Number<i>{}).data, test_vec.at(i));
});
}
TEST(Custom_bhalf, TestSize)
{
struct custom_bhalf_t
{
bhalf_t data;
};
ASSERT_EQ(sizeof(custom_bhalf_t), sizeof(bhalf_t));
ASSERT_EQ(sizeof(vector_type<custom_bhalf_t, 2>), sizeof(vector_type<bhalf_t, 2>));
ASSERT_EQ(sizeof(vector_type<custom_bhalf_t, 4>), sizeof(vector_type<bhalf_t, 4>));
ASSERT_EQ(sizeof(vector_type<custom_bhalf_t, 8>), sizeof(vector_type<bhalf_t, 8>));
ASSERT_EQ(sizeof(vector_type<custom_bhalf_t, 16>), sizeof(vector_type<bhalf_t, 16>));
ASSERT_EQ(sizeof(vector_type<custom_bhalf_t, 32>), sizeof(vector_type<bhalf_t, 32>));
ASSERT_EQ(sizeof(vector_type<custom_bhalf_t, 64>), sizeof(vector_type<bhalf_t, 64>));
}
TEST(Custom_bhalf, TestAsType)
{
struct custom_bhalf_t
{
using type = bhalf_t;
type data;
custom_bhalf_t() : data{type{}} {}
custom_bhalf_t(type init) : data{init} {}
};
// test size
const int size = 4;
std::vector<bhalf_t> test_vec = {type_convert<bhalf_t>(0.3f),
type_convert<bhalf_t>(-0.6f),
type_convert<bhalf_t>(0.8f),
type_convert<bhalf_t>(-0.2f)};
// reference vector
vector_type<custom_bhalf_t, size> right_vec;
// check default CTOR
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(right_vec.template AsType<custom_bhalf_t>()(Number<i>{}).data,
type_convert<bhalf_t>(0.0f));
});
// assign test values to the vector
ck::static_for<0, size, 1>{}([&](auto i) {
right_vec.template AsType<custom_bhalf_t>()(Number<i>{}) = custom_bhalf_t{test_vec.at(i)};
});
// copy the vector
vector_type<custom_bhalf_t, size> left_vec{right_vec};
// check if values were copied correctly
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(left_vec.template AsType<custom_bhalf_t>()(Number<i>{}).data, test_vec.at(i));
});
}
TEST(Custom_bhalf, TestAsTypeReshape)
{
struct custom_bhalf_t
{
using type = bhalf_t;
type data;
custom_bhalf_t() : data{type{}} {}
custom_bhalf_t(type init) : data{init} {}
};
// test size
const int size = 4;
std::vector<bhalf_t> test_vec = {type_convert<bhalf_t>(0.3f),
type_convert<bhalf_t>(-0.6f),
type_convert<bhalf_t>(0.8f),
type_convert<bhalf_t>(-0.2f)};
// reference vector
vector_type<custom_bhalf_t, size> right_vec;
// check default CTOR
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(right_vec.template AsType<custom_bhalf_t>()(Number<i>{}).data,
type_convert<bhalf_t>(0.0f));
});
// assign test values to the vector
ck::static_for<0, size, 1>{}([&](auto i) {
right_vec.template AsType<custom_bhalf_t>()(Number<i>{}) = custom_bhalf_t{test_vec.at(i)};
});
// copy the first half of a vector
vector_type<custom_bhalf_t, size / 2> left_vec{
right_vec.template AsType<vector_type<custom_bhalf_t, size / 2>::type>()(Number<0>{})};
// check if values were copied correctly
ck::static_for<0, size / 2, 1>{}([&](auto i) {
ASSERT_EQ(left_vec.template AsType<custom_bhalf_t>()(Number<i>{}).data, test_vec.at(i));
});
}
TEST(Custom_float, TestSize)
{
struct custom_float_t
{
float data;
};
ASSERT_EQ(sizeof(custom_float_t), sizeof(float));
ASSERT_EQ(sizeof(vector_type<custom_float_t, 2>), sizeof(vector_type<float, 2>));
ASSERT_EQ(sizeof(vector_type<custom_float_t, 4>), sizeof(vector_type<float, 4>));
ASSERT_EQ(sizeof(vector_type<custom_float_t, 8>), sizeof(vector_type<float, 8>));
ASSERT_EQ(sizeof(vector_type<custom_float_t, 16>), sizeof(vector_type<float, 16>));
ASSERT_EQ(sizeof(vector_type<custom_float_t, 32>), sizeof(vector_type<float, 32>));
ASSERT_EQ(sizeof(vector_type<custom_float_t, 64>), sizeof(vector_type<float, 64>));
}
TEST(Custom_float, TestAsType)
{
struct custom_float_t
{
using type = float;
type data;
custom_float_t() : data{type{}} {}
custom_float_t(type init) : data{init} {}
};
// test size
const int size = 4;
std::vector<float> test_vec = {0.3f, -0.6f, 0.8f, -0.2f};
// reference vector
vector_type<custom_float_t, size> right_vec;
// check default CTOR
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(right_vec.template AsType<custom_float_t>()(Number<i>{}).data, 0.0f);
});
// assign test values to the vector
ck::static_for<0, size, 1>{}([&](auto i) {
right_vec.template AsType<custom_float_t>()(Number<i>{}) = custom_float_t{test_vec.at(i)};
});
// copy the vector
vector_type<custom_float_t, size> left_vec{right_vec};
// check if values were copied correctly
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(left_vec.template AsType<custom_float_t>()(Number<i>{}).data, test_vec.at(i));
});
}
TEST(Custom_float, TestAsTypeReshape)
{
struct custom_float_t
{
using type = float;
type data;
custom_float_t() : data{type{}} {}
custom_float_t(type init) : data{init} {}
};
// test size
const int size = 4;
std::vector<float> test_vec = {0.3f, -0.6f, 0.8f, -0.2f};
// reference vector
vector_type<custom_float_t, size> right_vec;
// check default CTOR
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(right_vec.template AsType<custom_float_t>()(Number<i>{}).data, 0.0f);
});
// assign test values to the vector
ck::static_for<0, size, 1>{}([&](auto i) {
right_vec.template AsType<custom_float_t>()(Number<i>{}) = custom_float_t{test_vec.at(i)};
});
// copy the first half of a vector
vector_type<custom_float_t, size / 2> left_vec{
right_vec.template AsType<vector_type<custom_float_t, size / 2>::type>()(Number<0>{})};
// check if values were copied correctly
ck::static_for<0, size / 2, 1>{}([&](auto i) {
ASSERT_EQ(left_vec.template AsType<custom_float_t>()(Number<i>{}).data, test_vec.at(i));
});
}
TEST(Custom_double, TestSize)
{
struct custom_double_t
{
double data;
};
ASSERT_EQ(sizeof(custom_double_t), sizeof(double));
ASSERT_EQ(sizeof(vector_type<custom_double_t, 2>), sizeof(vector_type<double, 2>));
ASSERT_EQ(sizeof(vector_type<custom_double_t, 4>), sizeof(vector_type<double, 4>));
ASSERT_EQ(sizeof(vector_type<custom_double_t, 8>), sizeof(vector_type<double, 8>));
ASSERT_EQ(sizeof(vector_type<custom_double_t, 16>), sizeof(vector_type<double, 16>));
ASSERT_EQ(sizeof(vector_type<custom_double_t, 32>), sizeof(vector_type<double, 32>));
ASSERT_EQ(sizeof(vector_type<custom_double_t, 64>), sizeof(vector_type<double, 64>));
}
TEST(Custom_double, TestAsType)
{
struct custom_double_t
{
using type = double;
type data;
custom_double_t() : data{type{}} {}
custom_double_t(type init) : data{init} {}
};
// test size
const int size = 4;
std::vector<double> test_vec = {0.3, 0.6, 0.8, 0.2};
// reference vector
vector_type<custom_double_t, size> right_vec;
// check default CTOR
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(right_vec.template AsType<custom_double_t>()(Number<i>{}).data, 0.0);
});
// assign test values to the vector
ck::static_for<0, size, 1>{}([&](auto i) {
right_vec.template AsType<custom_double_t>()(Number<i>{}) = custom_double_t{test_vec.at(i)};
});
// copy the vector
vector_type<custom_double_t, size> left_vec{right_vec};
// check if values were copied correctly
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(left_vec.template AsType<custom_double_t>()(Number<i>{}).data, test_vec.at(i));
});
}
TEST(Custom_double, TestAsTypeReshape)
{
struct custom_double_t
{
using type = double;
type data;
custom_double_t() : data{type{}} {}
custom_double_t(type init) : data{init} {}
};
// test size
const int size = 4;
std::vector<double> test_vec = {0.3, 0.6, 0.8, 0.2};
// reference vector
vector_type<custom_double_t, size> right_vec;
// check default CTOR
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(right_vec.template AsType<custom_double_t>()(Number<i>{}).data, 0.0);
});
// assign test values to the vector
ck::static_for<0, size, 1>{}([&](auto i) {
right_vec.template AsType<custom_double_t>()(Number<i>{}) = custom_double_t{test_vec.at(i)};
});
// copy the first half of a vector
vector_type<custom_double_t, size / 2> left_vec{
right_vec.template AsType<vector_type<custom_double_t, size / 2>::type>()(Number<0>{})};
// check if values were copied correctly
ck::static_for<0, size / 2, 1>{}([&](auto i) {
ASSERT_EQ(left_vec.template AsType<custom_double_t>()(Number<i>{}).data, test_vec.at(i));
});
}
TEST(Complex_half, TestSize)
{
struct complex_half_t
{
half_t real;
half_t img;
};
ASSERT_EQ(sizeof(complex_half_t), sizeof(half_t) + sizeof(half_t));
ASSERT_EQ(sizeof(vector_type<complex_half_t, 2>),
sizeof(vector_type<half_t, 2>) + sizeof(vector_type<half_t, 2>));
ASSERT_EQ(sizeof(vector_type<complex_half_t, 4>),
sizeof(vector_type<half_t, 4>) + sizeof(vector_type<half_t, 4>));
ASSERT_EQ(sizeof(vector_type<complex_half_t, 8>),
sizeof(vector_type<half_t, 8>) + sizeof(vector_type<half_t, 8>));
ASSERT_EQ(sizeof(vector_type<complex_half_t, 16>),
sizeof(vector_type<half_t, 16>) + sizeof(vector_type<half_t, 16>));
ASSERT_EQ(sizeof(vector_type<complex_half_t, 32>),
sizeof(vector_type<half_t, 32>) + sizeof(vector_type<half_t, 32>));
ASSERT_EQ(sizeof(vector_type<complex_half_t, 64>),
sizeof(vector_type<half_t, 64>) + sizeof(vector_type<half_t, 64>));
}
TEST(Complex_half, TestAlignment)
{
struct complex_half_t
{
half_t real;
half_t img;
};
ASSERT_EQ(alignof(vector_type<complex_half_t, 2>),
alignof(vector_type<half_t, 2>) + alignof(vector_type<half_t, 2>));
ASSERT_EQ(alignof(vector_type<complex_half_t, 4>),
alignof(vector_type<half_t, 4>) + alignof(vector_type<half_t, 4>));
ASSERT_EQ(alignof(vector_type<complex_half_t, 8>),
alignof(vector_type<half_t, 8>) + alignof(vector_type<half_t, 8>));
ASSERT_EQ(alignof(vector_type<complex_half_t, 16>),
alignof(vector_type<half_t, 16>) + alignof(vector_type<half_t, 16>));
ASSERT_EQ(alignof(vector_type<complex_half_t, 32>),
alignof(vector_type<half_t, 32>) + alignof(vector_type<half_t, 32>));
ASSERT_EQ(alignof(vector_type<complex_half_t, 64>),
alignof(vector_type<half_t, 64>) + alignof(vector_type<half_t, 64>));
}
TEST(Complex_half, TestAsType)
{
struct complex_half_t
{
using type = half_t;
type real;
type img;
complex_half_t() : real{type{}}, img{type{}} {}
complex_half_t(type real_init, type img_init) : real{real_init}, img{img_init} {}
};
// test size
const int size = 4;
// custom type number of elements
const int num_elem = sizeof(complex_half_t) / sizeof(complex_half_t::type);
std::vector<half_t> test_vec = {half_t{0.3f},
half_t{-0.6f},
half_t{0.8f},
half_t{-0.2f},
half_t{0.5f},
half_t{-0.7f},
half_t{0.9f},
half_t{-0.3f}};
// reference vector
vector_type<complex_half_t, size> right_vec;
// check default CTOR
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(right_vec.template AsType<complex_half_t>()(Number<i>{}).real,
type_convert<half_t>(0.0f));
ASSERT_EQ(right_vec.template AsType<complex_half_t>()(Number<i>{}).img,
type_convert<half_t>(0.0f));
});
// assign test values to the vector
ck::static_for<0, size, 1>{}([&](auto i) {
right_vec.template AsType<complex_half_t>()(Number<i>{}) =
complex_half_t{test_vec.at(num_elem * i), test_vec.at(num_elem * i + 1)};
});
// copy the vector
vector_type<complex_half_t, size> left_vec{right_vec};
// check if values were copied correctly
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(left_vec.template AsType<complex_half_t>()(Number<i>{}).real,
test_vec.at(num_elem * i));
ASSERT_EQ(left_vec.template AsType<complex_half_t>()(Number<i>{}).img,
test_vec.at(num_elem * i + 1));
});
}
TEST(Complex_half, TestAsTypeReshape)
{
struct complex_half_t
{
using type = half_t;
type real;
type img;
complex_half_t() : real{type{}}, img{type{}} {}
complex_half_t(type real_init, type img_init) : real{real_init}, img{img_init} {}
};
// test size
const int size = 4;
// custom type number of elements
const int num_elem = sizeof(complex_half_t) / sizeof(complex_half_t::type);
std::vector<half_t> test_vec = {half_t{0.3f},
half_t{-0.6f},
half_t{0.8f},
half_t{-0.2f},
half_t{0.5f},
half_t{-0.7f},
half_t{0.9f},
half_t{-0.3f}};
// reference vector
vector_type<complex_half_t, size> right_vec;
// check default CTOR
ck::static_for<0, size, 1>{}([&](auto i) {
ASSERT_EQ(right_vec.template AsType<complex_half_t>()(Number<i>{}).real,
type_convert<half_t>(0.0f));
ASSERT_EQ(right_vec.template AsType<complex_half_t>()(Number<i>{}).img,
type_convert<half_t>(0.0f));
});
// assign test values to the vector
ck::static_for<0, size, 1>{}([&](auto i) {
right_vec.template AsType<complex_half_t>()(Number<i>{}) =
complex_half_t{test_vec.at(num_elem * i), test_vec.at(num_elem * i + 1)};
});
// copy the first half of a vector
vector_type<complex_half_t, size / 2> left_vec{
right_vec.template AsType<vector_type<complex_half_t, size / 2>::type>()(Number<0>{})};
// check if values were copied correctly
ck::static_for<0, size / 2, 1>{}([&](auto i) {
ASSERT_EQ(left_vec.template AsType<complex_half_t>()(Number<i>{}).real,
test_vec.at(num_elem * i));
ASSERT_EQ(left_vec.template AsType<complex_half_t>()(Number<i>{}).img,
test_vec.at(num_elem * i + 1));
});
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment