Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
defa2071
Commit
defa2071
authored
Nov 15, 2023
by
Adam Osewski
Browse files
Merge branch 'develop' into aosewski/ggemm_multi_d2
parents
28a68428
f2398f61
Changes
438
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
633 additions
and
319 deletions
+633
-319
library/src/tensor_operation_instance/gpu/normalization_fwd/normalization_fwd_instance_common.hpp
...u/normalization_fwd/normalization_fwd_instance_common.hpp
+201
-0
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_dl_bias_perchannel_quantization_int8_instance.cpp
..._conv2d_dl_bias_perchannel_quantization_int8_instance.cpp
+37
-36
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_dl_bias_perlayer_quantization_int8_instance.cpp
...ce_conv2d_dl_bias_perlayer_quantization_int8_instance.cpp
+37
-36
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_dl_perchannel_quantization_int8_instance.cpp
...evice_conv2d_dl_perchannel_quantization_int8_instance.cpp
+24
-24
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_dl_perlayer_quantization_int8_instance.cpp
.../device_conv2d_dl_perlayer_quantization_int8_instance.cpp
+24
-24
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_xdl_bias_perchannel_quantization_int8_instance.cpp
...conv2d_xdl_bias_perchannel_quantization_int8_instance.cpp
+37
-36
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_xdl_bias_perlayer_quantization_int8_instance.cpp
...e_conv2d_xdl_bias_perlayer_quantization_int8_instance.cpp
+37
-36
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_xdl_int8_instance.hpp
...antization/conv2d_fwd/device_conv2d_xdl_int8_instance.hpp
+14
-14
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_xdl_perchannel_quantization_int8_instance.cpp
...vice_conv2d_xdl_perchannel_quantization_int8_instance.cpp
+24
-24
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_xdl_perlayer_quantization_int8_instance.cpp
...device_conv2d_xdl_perlayer_quantization_int8_instance.cpp
+24
-24
library/src/tensor_operation_instance/gpu/transpose/CMakeLists.txt
...rc/tensor_operation_instance/gpu/transpose/CMakeLists.txt
+3
-0
library/src/tensor_operation_instance/gpu/transpose/device_transpose_instances_3d.cpp
..._instance/gpu/transpose/device_transpose_instances_3d.cpp
+43
-0
profiler/README.md
profiler/README.md
+20
-17
profiler/include/profiler/profile_contraction_impl.hpp
profiler/include/profiler/profile_contraction_impl.hpp
+46
-16
profiler/include/profiler/profile_contraction_utils.hpp
profiler/include/profiler/profile_contraction_utils.hpp
+12
-2
profiler/include/profiler/profile_conv_tensor_rearrange_impl.hpp
...r/include/profiler/profile_conv_tensor_rearrange_impl.hpp
+26
-5
profiler/include/profiler/profile_gemm_impl.hpp
profiler/include/profiler/profile_gemm_impl.hpp
+2
-2
profiler/include/profiler/profile_gemm_splitk_impl.hpp
profiler/include/profiler/profile_gemm_splitk_impl.hpp
+1
-2
profiler/include/profiler/profile_grouped_conv_fwd_impl.hpp
profiler/include/profiler/profile_grouped_conv_fwd_impl.hpp
+12
-12
profiler/include/profiler/profile_groupnorm_fwd_impl.hpp
profiler/include/profiler/profile_groupnorm_fwd_impl.hpp
+9
-9
No files found.
library/src/tensor_operation_instance/gpu/normalization_fwd/normalization_fwd_instance_common.hpp
0 → 100644
View file @
defa2071
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_fwd_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_fwd_splitk_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
template
<
typename
OutElementwise
,
index_t
Rank
,
index_t
Reduce
>
using
device_normalization_f16_instances
=
// clang-format off
std
::
tuple
<
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
2
,
1
,
2
,
1
,
2
,
1
,
2
,
2
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
64
,
1
,
64
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
2
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
2
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
// clang-format on
>
;
template
<
typename
OutElementwise
,
index_t
Rank
,
index_t
Reduce
>
using
device_normalization_splitk_f16_instances
=
// clang-format off
std
::
tuple
<
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
2
,
1
,
2
,
1
,
2
,
1
,
2
,
2
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
64
,
1
,
64
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
2
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
2
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
,
1
>
// clang-format on
>
;
template
<
typename
OutElementwise
,
index_t
Rank
,
index_t
Reduce
>
using
device_normalization_f16_generic_instance
=
std
::
tuple
<
// clang-format off
DeviceNormalizationFwdImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
64
,
1
,
64
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
// clang-format on
>
;
template
<
typename
OutElementwise
,
index_t
Rank
,
index_t
Reduce
>
using
device_normalization_f32_instances
=
std
::
tuple
<
// clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationFwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
2
,
1
,
2
,
1
,
2
,
1
,
2
,
2
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
16
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
32
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
2
,
16
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
2
>
,
DeviceNormalizationFwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
2
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
2
>
,
DeviceNormalizationFwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
// clang-format on
>
;
template
<
typename
OutElementwise
,
index_t
Rank
,
index_t
Reduce
>
using
device_normalization_splitk_f32_instances
=
std
::
tuple
<
// clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationFwdSplitKImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
2
,
1
,
2
,
1
,
2
,
1
,
2
,
2
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
16
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
32
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
2
,
16
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
2
>
,
DeviceNormalizationFwdSplitKImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
2
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
2
>
,
DeviceNormalizationFwdSplitKImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
// clang-format on
>
;
template
<
typename
OutElementwise
,
index_t
Rank
,
index_t
Reduce
>
using
device_normalization_f32_generic_instance
=
std
::
tuple
<
// clang-format off
DeviceNormalizationFwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
64
,
1
,
64
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
// clang-format on
>
;
template
<
typename
OutElementwise
,
index_t
Rank
,
index_t
Reduce
>
using
device_normalization_f16_f32_f32_f16_instances
=
std
::
tuple
<
// clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationFwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
2
,
1
,
2
,
1
,
2
,
1
,
2
,
2
,
1
>
,
// irregular size
DeviceNormalizationFwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
16
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
32
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
2
,
16
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
2
>
,
DeviceNormalizationFwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
2
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
2
>
,
DeviceNormalizationFwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
// clang-format on
>
;
template
<
typename
OutElementwise
,
index_t
Rank
,
index_t
Reduce
>
using
device_normalization_splitk_f16_f32_f32_f16_instances
=
std
::
tuple
<
// clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationFwdSplitKImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
2
,
1
,
2
,
1
,
2
,
1
,
2
,
2
,
1
>
,
// irregular size
DeviceNormalizationFwdSplitKImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
16
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
32
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
2
,
16
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
2
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
2
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
2
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
,
DeviceNormalizationFwdSplitKImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
,
1
>
// clang-format on
>
;
template
<
typename
OutElementwise
,
index_t
Rank
,
index_t
Reduce
>
using
device_normalization_f16_f32_f32_f16_generic_instance
=
std
::
tuple
<
// clang-format off
DeviceNormalizationFwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
64
,
1
,
64
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
// clang-format on
>
;
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_dl_bias_perchannel_quantization_int8_instance.cpp
View file @
defa2071
...
...
@@ -8,18 +8,18 @@ namespace tensor_operation {
namespace
device
{
namespace
instance
{
void
add_device_conv2d_dl_bias_perchannel_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul2_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul2_Clamp
>>>&
instances
)
{
// dl
add_device_operation_instances
(
instances
,
...
...
@@ -52,18 +52,18 @@ void add_device_conv2d_dl_bias_perchannel_quantization_int8_instances(
}
void
add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Relu_Mul2_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Relu_Mul2_Clamp
>>>&
instances
)
{
// dl
add_device_operation_instances
(
instances
,
...
...
@@ -96,18 +96,19 @@ void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
}
void
add_device_conv2d_dl_bias_tanh_perchannel_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul2_TanH_Mul_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul2_TanH_Mul_Clamp
>>>&
instances
)
{
// dl
add_device_operation_instances
(
instances
,
...
...
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_dl_bias_perlayer_quantization_int8_instance.cpp
View file @
defa2071
...
...
@@ -8,18 +8,18 @@ namespace tensor_operation {
namespace
device
{
namespace
instance
{
void
add_device_conv2d_dl_bias_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_dl_int8_instances
<
NHWGC
,
...
...
@@ -51,18 +51,18 @@ void add_device_conv2d_dl_bias_perlayer_quantization_int8_instances(
}
void
add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Relu_Mul_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Relu_Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_dl_int8_instances
<
NHWGC
,
...
...
@@ -96,18 +96,19 @@ void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
}
void
add_device_conv2d_dl_bias_tanh_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul_TanH_Mul_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul_TanH_Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_dl_int8_instances
<
NHWGC
,
...
...
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_dl_perchannel_quantization_int8_instance.cpp
View file @
defa2071
...
...
@@ -8,18 +8,18 @@ namespace tensor_operation {
namespace
device
{
namespace
instance
{
void
add_device_conv2d_dl_perchannel_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Mul2_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Mul2_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_dl_int8_instances
<
NHWGC
,
...
...
@@ -51,18 +51,18 @@ void add_device_conv2d_dl_perchannel_quantization_int8_instances(
}
void
add_device_conv2d_dl_relu_perchannel_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Relu_Mul2_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Relu_Mul2_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_dl_int8_instances
<
NHWGC
,
...
...
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_dl_perlayer_quantization_int8_instance.cpp
View file @
defa2071
...
...
@@ -8,18 +8,18 @@ namespace tensor_operation {
namespace
device
{
namespace
instance
{
void
add_device_conv2d_dl_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
Empty_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Mul_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
Empty_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_dl_int8_instances
<
NHWGC
,
...
...
@@ -51,18 +51,18 @@ void add_device_conv2d_dl_perlayer_quantization_int8_instances(
}
void
add_device_conv2d_dl_relu_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
Empty_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Relu_Mul_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
Empty_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Relu_Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_dl_int8_instances
<
NHWGC
,
...
...
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_xdl_bias_perchannel_quantization_int8_instance.cpp
View file @
defa2071
...
...
@@ -8,18 +8,18 @@ namespace tensor_operation {
namespace
device
{
namespace
instance
{
void
add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul2_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul2_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_xdl_int8_instances
<
NHWGC
,
...
...
@@ -51,18 +51,18 @@ void add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances(
}
void
add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Relu_Mul2_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Relu_Mul2_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_xdl_int8_instances
<
NHWGC
,
...
...
@@ -94,18 +94,19 @@ void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances(
}
void
add_device_conv2d_xdl_bias_tanh_perchannel_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul2_TanH_Mul_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul2_TanH_Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_xdl_int8_instances
<
NHWGC
,
...
...
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_xdl_bias_perlayer_quantization_int8_instance.cpp
View file @
defa2071
...
...
@@ -8,18 +8,18 @@ namespace tensor_operation {
namespace
device
{
namespace
instance
{
void
add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_xdl_int8_instances
<
NHWGC
,
...
...
@@ -51,18 +51,18 @@ void add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances(
}
void
add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Relu_Mul_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Relu_Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_xdl_int8_instances
<
NHWGC
,
...
...
@@ -96,18 +96,19 @@ void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances(
}
void
add_device_conv2d_xdl_bias_tanh_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul_TanH_Mul_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul_TanH_Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_xdl_int8_instances
<
NHWGC
,
...
...
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_xdl_int8_instance.hpp
View file @
defa2071
...
...
@@ -4,7 +4,7 @@
#pragma once
#include "conv2d_quantization_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
@@ -26,19 +26,19 @@ using device_grouped_conv2d_xdl_int8_instances =
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
16
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
64
,
64
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
128
,
32
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
32
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
64
,
64
,
32
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
64
,
32
,
64
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
DstScalarPerVector
>
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
16
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
64
,
64
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
128
,
32
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
32
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
64
,
64
,
32
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
DstScalarPerVector
>
,
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
DsDatatype
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
64
,
32
,
64
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
DstScalarPerVector
>
>
;
// clang-format on
...
...
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_xdl_perchannel_quantization_int8_instance.cpp
View file @
defa2071
...
...
@@ -8,18 +8,18 @@ namespace tensor_operation {
namespace
device
{
namespace
instance
{
void
add_device_conv2d_xdl_perchannel_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Mul2_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Mul2_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_xdl_int8_instances
<
NHWGC
,
...
...
@@ -51,18 +51,18 @@ void add_device_conv2d_xdl_perchannel_quantization_int8_instances(
}
void
add_device_conv2d_xdl_relu_perchannel_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Relu_Mul2_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
GK_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Relu_Mul2_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_xdl_int8_instances
<
NHWGC
,
...
...
library/src/tensor_operation_instance/gpu/quantization/conv2d_fwd/device_conv2d_xdl_perlayer_quantization_int8_instance.cpp
View file @
defa2071
...
...
@@ -8,18 +8,18 @@ namespace tensor_operation {
namespace
device
{
namespace
instance
{
void
add_device_conv2d_xdl_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
Empty_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Mul_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
Empty_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_xdl_int8_instances
<
NHWGC
,
...
...
@@ -51,18 +51,18 @@ void add_device_conv2d_xdl_perlayer_quantization_int8_instances(
}
void
add_device_conv2d_xdl_relu_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
NHWGC
,
GKYXC
,
Empty_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Relu_Mul_Clamp
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
NHWGC
,
GKYXC
,
Empty_Tuple
,
NHWGK
,
int8_t
,
int8_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Relu_Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv2d_xdl_int8_instances
<
NHWGC
,
...
...
library/src/tensor_operation_instance/gpu/transpose/CMakeLists.txt
0 → 100644
View file @
defa2071
add_instance_library
(
device_transpose_instance
device_transpose_instances_3d.cpp
)
library/src/tensor_operation_instance/gpu/transpose/device_transpose_instances_3d.cpp
0 → 100644
View file @
defa2071
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/transpose/device_transpose_instance.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
void
add_device_transpose_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
PassThrough
,
5
>>>&
instances
)
{
#ifdef CK_ENABLE_FP16
add_device_operation_instances
(
instances
,
device_transpose_f16_instances
{});
#else
ignore
=
instances
;
#endif
}
void
add_device_transpose_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
PassThrough
,
5
>>>&
instances
)
{
#ifdef CK_ENABLE_FP32
add_device_operation_instances
(
instances
,
device_transpose_f32_instances
{});
#else
ignore
=
instances
;
#endif
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
profiler/README.md
View file @
defa2071
...
...
@@ -22,7 +22,7 @@ c_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
Best Perf: 1.1933 ms, 107.977 TFlops, 79.0848 GB/s
```
## Profile 2
d
forward convolution kernels
## Profile 2
D
forward convolution kernels
```
bash
#arg1: tensor operation (conv=Convolution)
#arg2: data type (0=fp32, 1=fp16)
...
...
@@ -50,21 +50,23 @@ Best Perf: 1.42509 ms, 102.988 TFlops, 234.086 GB/s
## Profile contraction kernels
```
bash
#arg1: tensor operation (contraction_bilinear=CONTRACTION+Bilinear)
#arg2: data type (0: fp32; 1: f64)\n"
#arg3: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
#arg2: data type (0: fp32; 1: f64; 2: f16; 3: bf16)
#arg3: compute data type (0: fp32; 1: f64; 2: f16; 3: bf16)
#arg4: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
# 1: A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
# 2: A[k0, k1, m0, m1] * B[k0, k1, n0, n1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
# 3: A[k0, k1, m0, m1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1])
#arg4: verification (0: no; 1: yes)
#arg5: initialization (0: no init; 1: integer value; 2: decimal value)
#arg6: print tensor value (0: no; 1: yes)
#arg7: time kernel (0: no, 1: yes)
#arg8 and arg9: alpha and beta
#arg10 to 15: M0, M1, N0, N1, K0, K1
#arg16 to 31: Strides for A, B, D and E (skip for default)
################ op datatype layout verify init log time alpha beta M0 M1 N0 N1 K0 K1
./bin/ckProfiler contraction_bilinear 0 1 0 0 0 1 1.0 1.0 128 128 128 128 128 128
#arg5: verification (0: no; 1: yes)
#arg6: initialization (0: no init; 1: integer value; 2: decimal value)
#arg7: print tensor value (0: no; 1: yes)
#arg8: time kernel (0: no, 1: yes)
#arg9: alpha
#arg10: beta
#arg11 to 16: M0, M1, N0, N1, K0, K1
#arg17 to 32: Strides for A, B, D and E (skip for default)
################ op datatype compute_datatype layout verify init log time alpha beta M0 M1 N0 N1 K0 K1
./bin/ckProfiler contraction_bilinear 0 0 1 0 0 0 1 1.0 1.0 128 128 128 128 128 128
```
Result (MI100)
...
...
@@ -115,7 +117,7 @@ Best Perf: 58.0306 ms, 37.8942 TFlops, 27.7545 GB/s
# arg6: print tensor value (0: no; 1: yes)
# arg7: time kernel (0: no, 1: yes)
# Following arguments (depending on number of spatial dims):
# Number of spatial dimensions (1=Conv1
d
, 2=Conv2
d
, 3=Conv3
d
)
# Number of spatial dimensions (1=Conv1
D
, 2=Conv2
D
, 3=Conv3
D
)
# G, N, K, C,
# <filter spatial dimensions>, (ie Y, X for 2D)
# <input image spatial dimensions>, (ie Hi, Wi for 2D)
...
...
@@ -158,7 +160,7 @@ GB/s: 127.947
# arg6: print tensor value (0: no; 1: yes)
# arg7: time kernel (0: no, 1: yes)
# Following arguments (depending on number of spatial dims):
# Number of spatial dimensions (1=Conv1
d
, 2=Conv2
d
, 3=Conv3
d
)
# Number of spatial dimensions (1=Conv1
D
, 2=Conv2
D
, 3=Conv3
D
)
# G, N, K, C,
# <filter spatial dimensions>, (ie Y, X for 2D)
# <input image spatial dimensions>, (ie Hi, Wi for 2D)
...
...
@@ -194,14 +196,15 @@ Note: This kernel use atomic add, this will cause output buffer to be accumulate
# 1: Input fp16, Weight fp16, Output fp16
# 2: Input bf16, Weight bf16, Output bf16
# 3: Input int8, Weight int8, Output int8)
# arg3: tensor layout (0: Input[N, Hi, Wi, C], Output[N * Ho * Wo, Y * X * C])
# arg3: tensor layout (0: Input[G, N, Hi, Wi, C], Output[G * N * Ho * Wo, Y * X * C],
# 1: Input[N, Hi, Wi, G, C], Output[N * Ho * Wo * G, Y * X * C])
# arg4: verification (0: no, 1: yes)
# arg5: initialization (0: no init, 1: integer value, 2: decimal value)
# arg6: print tensor value (0: no; 1: yes)
# arg7: time kernel (0: no, 1: yes)
# arg8: operation type (0: ImageToColumn, 1: ColumnToImage)
# Following arguments (depending on number of spatial dims):
# Number of spatial dimensions (1=Conv1
d
, 2=Conv2
d
, 3=Conv3
d
)
# Number of spatial dimensions (1=Conv1
D
, 2=Conv2
D
, 3=Conv3
D
)
# G, N, K, C,
# <filter spatial dimensions>, (ie Y, X for 2D)
# <input image spatial dimensions>, (ie Hi, Wi for 2D)
...
...
profiler/include/profiler/profile_contraction_impl.hpp
View file @
defa2071
...
...
@@ -31,10 +31,14 @@ namespace profiler {
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
F32
=
float
;
using
F64
=
double
;
template
<
typename
ALayout
,
typename
BLayout
,
typename
CDELayout
,
typename
DataType
,
typename
ComputeDataType
,
typename
DTupleDataType
,
typename
CDElementOp
>
int
profile_contraction_impl
(
ck
::
index_t
do_verification
,
...
...
@@ -45,10 +49,10 @@ int profile_contraction_impl(ck::index_t do_verification,
const
std
::
vector
<
ck
::
index_t
>&
M
,
const
std
::
vector
<
ck
::
index_t
>&
N
,
const
std
::
vector
<
ck
::
index_t
>&
K
,
const
std
::
vector
<
ck
::
index_t
>&
StridesA
,
const
std
::
vector
<
ck
::
index_t
>&
StridesB
,
const
std
::
vector
<
ck
::
index_t
>&
StridesE
,
const
std
::
vector
<
ck
::
index_t
>&
StridesD
)
const
std
::
vector
<
ck
::
index_t
>&
StridesA
,
// [M0, M1, K0, K1]
const
std
::
vector
<
ck
::
index_t
>&
StridesB
,
// [N0, N1, K0, K1]
const
std
::
vector
<
ck
::
index_t
>&
StridesE
,
// [M0, M1, N0, N1]
const
std
::
vector
<
ck
::
index_t
>&
StridesD
)
// [M0, M1, N0, N1]
{
bool
pass
=
true
;
...
...
@@ -63,13 +67,13 @@ int profile_contraction_impl(ck::index_t do_verification,
};
Tensor
<
DataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StridesA
));
Tensor
<
DataType
>
b_
k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StridesB
));
Tensor
<
DataType
>
b_
n_k
(
f_host_tensor_descriptor
(
N
,
K
,
StridesB
));
Tensor
<
DataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StridesE
));
Tensor
<
DataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StridesE
));
Tensor
<
DataType
>
d_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StridesD
));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_
k_n
: "
<<
b_
k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_
n_k
: "
<<
b_
n_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_m_n: "
<<
d_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_device_result
.
mDesc
<<
std
::
endl
;
...
...
@@ -78,12 +82,12 @@ int profile_contraction_impl(ck::index_t do_verification,
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
DataType
>
{
-
5
,
5
});
b_
k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
DataType
>
{
-
5
,
5
});
b_
n_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
DataType
>
{
-
5
,
5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
DataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
DataType
>
{
0.0
,
1.0
});
b_
k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
DataType
>
{
-
0.5
,
0.5
});
b_
n_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
DataType
>
{
-
0.5
,
0.5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
DataType
>
{
-
0.5
,
0.5
});
}
...
...
@@ -91,12 +95,12 @@ int profile_contraction_impl(ck::index_t do_verification,
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
DeviceMem
a_device_buf
(
sizeof
(
DataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
DataType
)
*
b_
k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
DataType
)
*
b_
n_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
DataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
DataType
)
*
d_m_n
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_
k_n
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_
n_k
.
mData
.
data
());
e_device_buf
.
SetZero
();
d_device_buf
.
ToDevice
(
d_m_n
.
mData
.
data
());
...
...
@@ -118,7 +122,8 @@ int profile_contraction_impl(ck::index_t do_verification,
DataType
,
AElementOp
,
BElementOp
,
CDElementOp
>
;
CDElementOp
,
ComputeDataType
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
...
...
@@ -126,6 +131,9 @@ int profile_contraction_impl(ck::index_t do_verification,
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
using
AccDataType
=
typename
std
::
conditional
<
std
::
is_same
<
ComputeDataType
,
F64
>::
value
,
F64
,
F32
>::
type
;
// Run reference op
if
(
do_verification
)
{
...
...
@@ -136,7 +144,8 @@ int profile_contraction_impl(ck::index_t do_verification,
DataType
,
DataType
,
DataType
,
DataType
,
AccDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
>
;
...
...
@@ -146,7 +155,7 @@ int profile_contraction_impl(ck::index_t do_verification,
Tensor
<
DataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StridesE
));
auto
ref_argument
=
ref_op
.
MakeArgument
(
a_m_k
,
b_
k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
);
ref_op
.
MakeArgument
(
a_m_k
,
b_
n_k
,
c_m_n_host_result
,
a_element_op
,
b_element_op
);
ref_invoker
.
Run
(
ref_argument
);
...
...
@@ -272,8 +281,29 @@ int profile_contraction_impl(ck::index_t do_verification,
{
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
float
threshold
=
static_cast
<
DataType
>
(
nelems_k
)
*
std
::
numeric_limits
<
DataType
>::
epsilon
();
// Both the kernel and the reference use `AccDataType`, so an absolute error of both
// of them is bounded by `nelems_k * std::numeric_limits<AccDataType>::epsilon()`.
// Comparing one to another can result in an absolute error as high as twice that
// value.
double
threshold
=
2
*
nelems_k
*
std
::
numeric_limits
<
AccDataType
>::
epsilon
();
// Handle the possible casting error of either AccDataType -> DataType or
// DataType -> ComputeDataType.
// TODO: Add a generic solution for calculating thresholds in CK.
if
constexpr
(
ck
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
||
ck
::
is_same_v
<
ComputeDataType
,
ck
::
bhalf_t
>
)
{
const
double
epsilon
=
std
::
pow
(
2
,
-
7
);
// Maximum relative casting error when rounding to zero.
threshold
+=
epsilon
*
2
;
}
else
if
constexpr
(
ck
::
is_same_v
<
DataType
,
ck
::
half_t
>
||
ck
::
is_same_v
<
ComputeDataType
,
ck
::
half_t
>
)
{
const
double
epsilon
=
std
::
pow
(
2
,
-
10
);
// Maximum relative casting error when rounding to zero.
threshold
+=
epsilon
*
2
;
}
pass
=
pass
&
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
,
"Error: incorrect results!"
,
...
...
@@ -283,7 +313,7 @@ int profile_contraction_impl(ck::index_t do_verification,
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_
k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_
n_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
e_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
e_m_n_device_result
.
mData
,
","
)
...
...
profiler/include/profiler/profile_contraction_utils.hpp
View file @
defa2071
...
...
@@ -23,8 +23,18 @@ enum struct ContractionMatrixLayout
enum
struct
ContractionDataType
{
F32_F32_F32_F32
,
// 0
F64_F64_F64_F64
,
// 1
F32_F32_F32_F32
,
// 0
F64_F64_F64_F64
,
// 1
F16_F16_F16_F16
,
// 2
BF16_BF16_BF16_BF16
,
// 3
};
enum
struct
ContractionComputeDataType
{
F32
=
0
,
F64
,
F16
,
BF16
,
};
inline
void
collect_index_params
(
char
*
argv
[],
...
...
profiler/include/profiler/profile_conv_tensor_rearrange_impl.hpp
View file @
defa2071
...
...
@@ -93,6 +93,26 @@ static auto make_ref_op()
}
}
template
<
typename
InputLayout
>
static
auto
create_gemm_desc
(
const
ck
::
index_t
G
,
const
ck
::
index_t
NDoHoWo
,
const
ck
::
index_t
CZYX
)
{
using
namespace
ck
::
tensor_layout
::
convolution
;
if
constexpr
(
std
::
is_same_v
<
InputLayout
,
GNWC
>
||
std
::
is_same_v
<
InputLayout
,
GNHWC
>
||
std
::
is_same_v
<
InputLayout
,
GNDHWC
>
)
{
return
HostTensorDescriptor
({
G
,
NDoHoWo
,
CZYX
});
}
else
if
constexpr
(
std
::
is_same_v
<
InputLayout
,
NWGC
>
||
std
::
is_same_v
<
InputLayout
,
NHWGC
>
||
std
::
is_same_v
<
InputLayout
,
NDHWGC
>
)
{
return
HostTensorDescriptor
({
G
,
NDoHoWo
,
CZYX
},
{
CZYX
,
CZYX
*
G
,
1
});
}
else
{
throw
std
::
runtime_error
(
"Unsupported layout!"
);
}
}
template
<
index_t
NDimSpatial
,
typename
InputLayout
,
typename
InputDataType
,
...
...
@@ -116,13 +136,13 @@ bool profile_conv_tensor_rearrange_impl(int do_verification,
const
auto
image_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InputLayout
>
(
conv_param
);
const
auto
gemm_desc
=
HostTensorDescriptor
({
NDoHoWo
,
CZYX
}
);
const
auto
gemm_desc
=
create_gemm_desc
<
InputLayout
>
(
conv_param
.
G_
,
NDoHoWo
,
CZYX
);
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
image_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
2
>
gemm_m_k_strides
{};
std
::
array
<
ck
::
index_t
,
3
>
gemm_
g_
m_k_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
...
...
@@ -134,7 +154,7 @@ bool profile_conv_tensor_rearrange_impl(int do_verification,
copy
(
conv_param
.
filter_spatial_lengths_
,
filter_spatial_lengths
);
copy
(
conv_param
.
output_spatial_lengths_
,
output_spatial_lengths
);
copy
(
image_desc
.
GetStrides
(),
image_g_n_c_wis_strides
);
copy
(
gemm_desc
.
GetStrides
(),
gemm_m_k_strides
);
copy
(
gemm_desc
.
GetStrides
(),
gemm_
g_
m_k_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
...
...
@@ -212,13 +232,14 @@ bool profile_conv_tensor_rearrange_impl(int do_verification,
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InputDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutputDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
C_
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
image_g_n_c_wis_strides
,
gemm_m_k_strides
,
gemm_
g_
m_k_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
...
...
@@ -234,7 +255,7 @@ bool profile_conv_tensor_rearrange_impl(int do_verification,
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
num_btype
=
NDoHoWo
*
CZYX
*
(
sizeof
(
OutputDataType
)
+
sizeof
(
InputDataType
));
conv_param
.
G_
*
NDoHoWo
*
CZYX
*
(
sizeof
(
OutputDataType
)
+
sizeof
(
InputDataType
));
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
...
...
profiler/include/profiler/profile_gemm_impl.hpp
View file @
defa2071
...
...
@@ -75,8 +75,8 @@ int profile_gemm_impl(int do_verification,
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.
5
,
0.
5
});
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
0.1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.
01
,
0.
01
});
}
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
...
...
profiler/include/profiler/profile_gemm_splitk_impl.hpp
View file @
defa2071
...
...
@@ -143,8 +143,7 @@ bool profile_gemm_splitk_impl(int do_verification,
// profile device GEMM instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
std
::
vector
<
int
>
kbatch_list
=
{
1
,
2
,
4
,
8
,
12
,
16
,
20
,
24
,
32
,
36
,
40
,
60
,
64
,
72
,
80
,
88
,
96
,
128
,
144
,
160
,
176
,
192
,
256
};
std
::
vector
<
int
>
kbatch_list
=
{
1
,
2
,
4
,
8
,
12
,
16
,
20
,
32
,
36
,
40
,
64
,
96
,
128
};
if
(
KBatch
>
0
)
{
...
...
profiler/include/profiler/profile_grouped_conv_fwd_impl.hpp
View file @
defa2071
...
...
@@ -198,18 +198,18 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
}
};
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
...
...
profiler/include/profiler/profile_groupnorm_impl.hpp
→
profiler/include/profiler/profile_groupnorm_
fwd_
impl.hpp
View file @
defa2071
...
...
@@ -7,7 +7,7 @@
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization
_fwd
.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
@@ -88,14 +88,14 @@ bool profile_groupnorm_impl(int do_verification,
beta_dev
.
ToDevice
(
beta
.
mData
.
data
());
// add device normalization instances
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalization
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
PassThrough
,
5
,
3
>
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalization
Fwd
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
PassThrough
,
5
,
3
>
;
// get device op instances
const
auto
instance_ptrs
=
...
...
Prev
1
…
16
17
18
19
20
21
22
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment