Commit dec32dc6 authored by ThomasNing's avatar ThomasNing
Browse files

Finish the feature and merge with develop on the computeV2

parents 71352c44 c5fff071
...@@ -31,7 +31,7 @@ constexpr bool isDoubleSmemBuffer = false; ...@@ -31,7 +31,7 @@ constexpr bool isDoubleSmemBuffer = false;
constexpr bool isDoubleSmemBuffer = false; constexpr bool isDoubleSmemBuffer = false;
#elif(CK_TILE_PIPELINE_DEFAULT == CK_TILE_PIPELINE_COMPUTE_V2) #elif(CK_TILE_PIPELINE_DEFAULT == CK_TILE_PIPELINE_COMPUTE_V2)
#define GEMM_PIPELINE ck_tile::GemmPipelineAgBgCrCompV4 #define GEMM_PIPELINE ck_tile::GemmPipelineAgBgCrCompV4
#define UNIVERSAL_GEMM_PIPELINE ck_tile::BaseGemmPipelineAgBgCrCompV3 #define UNIVERSAL_GEMM_PIPELINE ck_tile::BaseGemmPipelineAgBgCrCompV4
#define GEMM_PIPELINE_SCHEDULER ck_tile::GemmPipelineScheduler::Intrawave #define GEMM_PIPELINE_SCHEDULER ck_tile::GemmPipelineScheduler::Intrawave
constexpr bool isDoubleSmemBuffer = true; constexpr bool isDoubleSmemBuffer = true;
#else #else
...@@ -97,7 +97,8 @@ auto create_args(int argc, char* argv[]) ...@@ -97,7 +97,8 @@ auto create_args(int argc, char* argv[])
.insert("warmup", "50", "number of iterations before benchmark the kernel") .insert("warmup", "50", "number of iterations before benchmark the kernel")
.insert("repeat", "100", "number of iterations to benchmark the kernel") .insert("repeat", "100", "number of iterations to benchmark the kernel")
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer") .insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer")
.insert("split_k", "1", "splitK value"); .insert("split_k", "1", "splitK value")
.insert("init", "0", "0:random, 1:linear, 2:constant(1)");
bool result = arg_parser.parse(argc, argv); bool result = arg_parser.parse(argc, argv);
return std::make_tuple(result, arg_parser); return std::make_tuple(result, arg_parser);
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
template <typename Layout>
static constexpr inline auto is_row_major(Layout layout_)
{
return ck_tile::bool_constant<std::is_same_v<ck_tile::remove_cvref_t<decltype(layout_)>,
ck_tile::tensor_layout::gemm::RowMajor>>{};
}
auto calculate_rtol_atol(const ck_tile::index_t K,
const ck_tile::index_t kbatch,
const float max_accumulated_value)
{
using ComputeType =
std::conditional_t<sizeof(ADataType) < sizeof(BDataType), ADataType, BDataType>;
// Calculate thresholds
const auto rtol = ck_tile::get_relative_threshold<ComputeType, CDataType, AccDataType>(
ck_tile::integer_divide_ceil(K, kbatch));
const auto atol = ck_tile::get_absolute_threshold<ComputeType, CDataType, AccDataType>(
max_accumulated_value / kbatch, ck_tile::integer_divide_ceil(K, kbatch));
// Calculate error due to split_k accumulation
const auto rtol_split_k =
ck_tile::get_relative_threshold<CDataType, CDataType, CDataType>(kbatch);
const auto atol_split_k = ck_tile::get_absolute_threshold<CDataType, CDataType, CDataType>(
max_accumulated_value, kbatch);
// Use higher threshold
return ck_tile::make_tuple(std::max(rtol, rtol_split_k), std::max(atol, atol_split_k));
}
template <typename ALayout, typename BLayout, typename CLayout> template <typename ALayout, typename BLayout, typename CLayout>
float invoke_gemm(ck_tile::DeviceMem& a_m_k_dev_buf, float invoke_gemm(ck_tile::DeviceMem& a_m_k_dev_buf,
ck_tile::DeviceMem& b_k_n_dev_buf, ck_tile::DeviceMem& b_k_n_dev_buf,
...@@ -67,53 +94,32 @@ int run_gemm_example_with_layouts(int argc, ...@@ -67,53 +94,32 @@ int run_gemm_example_with_layouts(int argc,
ck_tile::index_t kbatch = arg_parser.get_int("split_k"); ck_tile::index_t kbatch = arg_parser.get_int("split_k");
int n_warmup = arg_parser.get_int("warmup"); int n_warmup = arg_parser.get_int("warmup");
int n_repeat = arg_parser.get_int("repeat"); int n_repeat = arg_parser.get_int("repeat");
ck_tile::index_t init_method = arg_parser.get_int("init");
using namespace ck_tile::literals; stride_A = ck_tile::get_default_stride(M, K, stride_A, is_row_major(a_layout));
stride_B = ck_tile::get_default_stride(K, N, stride_B, is_row_major(b_layout));
stride_C = ck_tile::get_default_stride(M, N, stride_C, is_row_major(CLayout{}));
auto f_host_tensor_descriptor = ck_tile::HostTensor<ADataType> a_m_k(
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) { ck_tile::host_tensor_descriptor(M, K, stride_A, is_row_major(a_layout)));
if constexpr(std::is_same_v<decltype(layout), ck_tile::tensor_layout::gemm::RowMajor>) ck_tile::HostTensor<BDataType> b_k_n(
{ ck_tile::host_tensor_descriptor(K, N, stride_B, is_row_major(b_layout)));
return ck_tile::HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return ck_tile::HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
auto f_get_default_stride = [](std::size_t row,
std::size_t col,
std::size_t stride,
auto layout) {
if(stride == 0)
{
// give a chance if stride is zero, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck_tile::tensor_layout::gemm::RowMajor>)
{
return col;
}
else
{
return row;
}
}
else
return stride;
};
stride_A = f_get_default_stride(M, K, stride_A, a_layout);
stride_B = f_get_default_stride(K, N, stride_B, b_layout);
stride_C = f_get_default_stride(M, N, stride_C, CLayout{});
ck_tile::HostTensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, stride_A, a_layout));
ck_tile::HostTensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, stride_B, b_layout));
ck_tile::HostTensor<CDataType> c_m_n_dev_result( ck_tile::HostTensor<CDataType> c_m_n_dev_result(
f_host_tensor_descriptor(M, N, stride_C, CLayout{})); ck_tile::host_tensor_descriptor(M, N, stride_C, is_row_major(CLayout{})));
// TODO: add different init types if (init_method == 0) {
ck_tile::FillUniformDistribution<ADataType>{-5.f, 5.f}(a_m_k); ck_tile::FillUniformDistribution<ADataType>{-1.f, 1.f}(a_m_k);
ck_tile::FillUniformDistribution<BDataType>{-5.f, 5.f}(b_k_n); ck_tile::FillUniformDistribution<BDataType>{-1.f, 1.f}(b_k_n);
} else if (init_method == 1) {
ck_tile::FillMonotonicSeq<ADataType>{}(a_m_k);
ck_tile::FillMonotonicSeq<BDataType>{}(b_k_n);
} else if (init_method == 2) {
ck_tile::FillConstant<ADataType>{1.f}(a_m_k);
ck_tile::FillConstant<BDataType>{1.f}(b_k_n);
} else {
a_m_k.SetZero();
b_k_n.SetZero();
}
ck_tile::DeviceMem a_m_k_dev_buf(a_m_k.get_element_space_size_in_bytes()); ck_tile::DeviceMem a_m_k_dev_buf(a_m_k.get_element_space_size_in_bytes());
ck_tile::DeviceMem b_k_n_dev_buf(b_k_n.get_element_space_size_in_bytes()); ck_tile::DeviceMem b_k_n_dev_buf(b_k_n.get_element_space_size_in_bytes());
...@@ -143,20 +149,29 @@ int run_gemm_example_with_layouts(int argc, ...@@ -143,20 +149,29 @@ int run_gemm_example_with_layouts(int argc,
if(arg_parser.get_int("v") == 1) if(arg_parser.get_int("v") == 1)
{ {
ck_tile::HostTensor<CDataType> c_m_n_host_ref( ck_tile::HostTensor<CDataType> c_m_n_host_ref(
f_host_tensor_descriptor(M, N, stride_C, CLayout{})); ck_tile::host_tensor_descriptor(M, N, stride_C, is_row_major(CLayout{})));
c_m_n_host_ref.SetZero(); c_m_n_host_ref.SetZero();
ck_tile::reference_gemm<ADataType, BDataType, AccDataType, CDataType>( ck_tile::reference_gemm<ADataType, BDataType, AccDataType, CDataType>(
a_m_k, b_k_n, c_m_n_host_ref); a_m_k, b_k_n, c_m_n_host_ref);
const float max_accumulated_value =
pass = ck_tile::check_err(c_m_n_dev_result, c_m_n_host_ref); *std::max_element(c_m_n_host_ref.mData.begin(), c_m_n_host_ref.mData.end());
const auto rtol_atol = calculate_rtol_atol(K, kbatch, max_accumulated_value);
pass = ck_tile::check_err(c_m_n_dev_result,
c_m_n_host_ref,
"Error: Incorrect results!",
rtol_atol.at(ck_tile::number<0>{}),
rtol_atol.at(ck_tile::number<1>{}));
std::cout << "Relative error threshold: " << rtol_atol.at(ck_tile::number<0>{})
<< " Absolute error threshold: " << rtol_atol.at(ck_tile::number<1>{})
<< std::endl;
std::cout << "The CPU veification result is:" << (pass ? "correct" : "fail") << std::endl; std::cout << "The CPU veification result is:" << (pass ? "correct" : "fail") << std::endl;
} }
else if(arg_parser.get_int("v") == 2) else if(arg_parser.get_int("v") == 2)
{ {
ck_tile::HostTensor<CDataType> c_m_n_gpu_ref( ck_tile::HostTensor<CDataType> c_m_n_gpu_ref(
f_host_tensor_descriptor(M, N, stride_C, CLayout{})); ck_tile::host_tensor_descriptor(M, N, stride_C, is_row_major(CLayout{})));
ck_tile::DeviceMem c_m_n_gpu_buf_ref(c_m_n_gpu_ref.get_element_space_size_in_bytes()); ck_tile::DeviceMem c_m_n_gpu_buf_ref(c_m_n_gpu_ref.get_element_space_size_in_bytes());
c_m_n_gpu_ref.SetZero(); c_m_n_gpu_ref.SetZero();
c_m_n_gpu_buf_ref.SetZero(); c_m_n_gpu_buf_ref.SetZero();
...@@ -196,46 +211,20 @@ int run_gemm_example_with_layouts(int argc, ...@@ -196,46 +211,20 @@ int run_gemm_example_with_layouts(int argc,
ck_tile::hip_check_error(hipFree(d_C)); ck_tile::hip_check_error(hipFree(d_C));
c_m_n_gpu_buf_ref.FromDevice(c_m_n_gpu_ref.data()); c_m_n_gpu_buf_ref.FromDevice(c_m_n_gpu_ref.data());
pass = ck_tile::check_err(c_m_n_dev_result, c_m_n_gpu_ref); const float max_accumulated_value =
*std::max_element(c_m_n_gpu_ref.mData.begin(), c_m_n_gpu_ref.mData.end());
const auto rtol_atol = calculate_rtol_atol(K, kbatch, max_accumulated_value);
pass = ck_tile::check_err(c_m_n_dev_result,
c_m_n_gpu_ref,
"Error: Incorrect results!",
rtol_atol.at(ck_tile::number<0>{}),
rtol_atol.at(ck_tile::number<1>{}));
std::cout << "Relative error threshold: " << rtol_atol.at(ck_tile::number<0>{})
<< " Absolute error threshold: " << rtol_atol.at(ck_tile::number<1>{})
<< std::endl;
std::cout << "The GPU veification result is: " << (pass ? "correct" : "fail") << std::endl; std::cout << "The GPU veification result is: " << (pass ? "correct" : "fail") << std::endl;
} }
return pass; return pass;
} }
int run_gemm_example(int argc, char* argv[])
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
return -1;
using Row = ck_tile::tensor_layout::gemm::RowMajor;
using Col = ck_tile::tensor_layout::gemm::ColumnMajor;
std::string a_layout = arg_parser.get_str("a_layout");
std::string b_layout = arg_parser.get_str("b_layout");
// if(a_layout == "R" && b_layout == "R")
// {
// return run_gemm_example_with_layouts(argc, argv, Row{}, Row{}, Row{});
// }
// else if(a_layout == "R" && b_layout == "C")
// {
return run_gemm_example_with_layouts(argc, argv, Row{}, Col{}, Row{});
// }
// TODO: Fixme: with latest changes to GemmPipelineAGmemBGmemCRegV1DefaultPolicy below do not
// work.
// else if(a_layout == "C" && b_layout == "C")
// {
// return run_gemm_example_with_layouts(argc, argv, Col{}, Col{}, Row{});
// }
// else if(a_layout == "C" && b_layout == "R")
// {
// return run_gemm_example_with_layouts(argc, argv, Col{}, Row{}, Row{});
// }
// else
// {
// throw std::runtime_error("Unsupported data layout configuration for A,B and C tensors!");
// }
}
...@@ -28,8 +28,8 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config& ...@@ -28,8 +28,8 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config&
constexpr ck_tile::index_t M_Warp_Tile = 32; constexpr ck_tile::index_t M_Warp_Tile = 32;
constexpr ck_tile::index_t N_Warp_Tile = 32; constexpr ck_tile::index_t N_Warp_Tile = 32;
constexpr ck_tile::index_t K_Warp_Tile = 8; constexpr ck_tile::index_t K_Warp_Tile = 8;
#endif
#elif(CK_TILE_PIPELINE_DEFAULT == CK_TILE_PIPELINE_COMPUTE) #if(CK_TILE_PIPELINE_DEFAULT == CK_TILE_PIPELINE_COMPUTE)
// Compute friendly for Intrawave scheduler // Compute friendly for Intrawave scheduler
constexpr ck_tile::index_t M_Tile = 256; constexpr ck_tile::index_t M_Tile = 256;
constexpr ck_tile::index_t N_Tile = 256; constexpr ck_tile::index_t N_Tile = 256;
...@@ -63,6 +63,8 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config& ...@@ -63,6 +63,8 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config&
constexpr bool kPadN = false; constexpr bool kPadN = false;
constexpr bool kPadK = false; constexpr bool kPadK = false;
constexpr bool TransposeC = false;
constexpr int kBlockPerCu = 1; constexpr int kBlockPerCu = 1;
// =============================================== // ===============================================
...@@ -71,14 +73,21 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config& ...@@ -71,14 +73,21 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config&
ck_tile::TileGemmShape<ck_tile::sequence<M_Tile, N_Tile, K_Tile>, ck_tile::TileGemmShape<ck_tile::sequence<M_Tile, N_Tile, K_Tile>,
ck_tile::sequence<M_Warp, N_Warp, K_Warp>, ck_tile::sequence<M_Warp, N_Warp, K_Warp>,
ck_tile::sequence<M_Warp_Tile, N_Warp_Tile, K_Warp_Tile>>; ck_tile::sequence<M_Warp_Tile, N_Warp_Tile, K_Warp_Tile>>;
using TilePartitioner = ck_tile::GemmTilePartitioner<GemmShape>; using TilePartitioner = ck_tile::GemmTile2DPartitioner<GemmShape>;
using GemmEpilogue = ck_tile::Default2DEpilogue< using GemmEpilogue = ck_tile::Default2DEpilogue<
ck_tile::Default2DEpilogueProblem<AccDataType, CDataType, kPadM, kPadN>>; ck_tile::Default2DEpilogueProblem<AccDataType, CDataType, kPadM, kPadN>>;
using Traits = using Traits =
ck_tile::TileGemmTraits<kPadM, kPadN, kPadK, isDoubleSmemBuffer, ALayout, BLayout, CLayout>; ck_tile::TileGemmTraits<kPadM, kPadN, kPadK, isDoubleSmemBuffer, ALayout, BLayout, CLayout>;
using GemmUniversalTraits = ck_tile::TileGemmUniversalTraits<kPadM,
kPadN,
kPadK,
isDoubleSmemBuffer,
ALayout,
BLayout,
CLayout,
TransposeC>;
using GemmPipelineProblem = using GemmPipelineProblem =
ck_tile::GemmPipelineProblem<ADataType, BDataType, AccDataType, GemmShape, Traits>; ck_tile::GemmPipelineProblem<ADataType, BDataType, AccDataType, GemmShape, Traits>;
...@@ -101,7 +110,7 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config& ...@@ -101,7 +110,7 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config&
BDataType, BDataType,
AccDataType, AccDataType,
GemmShape, GemmShape,
Traits, GemmUniversalTraits,
scheduler, scheduler,
has_hot_loop_v, has_hot_loop_v,
tail_number_v>; tail_number_v>;
...@@ -133,6 +142,21 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config& ...@@ -133,6 +142,21 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config&
if(has_hot_loop) if(has_hot_loop)
{ {
#if(CK_TILE_PIPELINE_DEFAULT == CK_TILE_PIPELINE_COMPUTE)
if(tail_num == ck_tile::TailNumber::Full)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber, ck_tile::TailNumber::Full>{});
}
else
{
std::ostringstream err;
err << "For compute pipeline tail number should always be Full, but have \"" << tail_num
<< "\" which is not supported! PrefetchStages: " << BaseGemmPipeline::PrefetchStages
<< "\n File: " << __FILE__ << ":" << __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
#elif(CK_TILE_PIPELINE_DEFAULT == CK_TILE_PIPELINE_MEMORY)
// Tail pipeline One to Seven // Tail pipeline One to Seven
if(tail_num == ck_tile::TailNumber::One) if(tail_num == ck_tile::TailNumber::One)
{ {
...@@ -193,6 +217,16 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config& ...@@ -193,6 +217,16 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config&
ck_tile::integral_constant<ck_tile::TailNumber, ck_tile::TailNumber::Seven>{}); ck_tile::integral_constant<ck_tile::TailNumber, ck_tile::TailNumber::Seven>{});
} }
} }
#elif(CK_TILE_PIPELINE_DEFAULT == CK_TILE_PIPELINE_COMPUTE_V2)
if constexpr(BaseGemmPipeline::PrefetchStages > 2)
{
if(tail_num == ck_tile::TailNumber::Two)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber, ck_tile::TailNumber::Two>{});
}
}
#endif
} }
else else
{ {
...@@ -217,4 +251,38 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config& ...@@ -217,4 +251,38 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config&
#include "run_gemm_example.inc" #include "run_gemm_example.inc"
int run_gemm_example(int argc, char* argv[])
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
return -1;
using Row = ck_tile::tensor_layout::gemm::RowMajor;
using Col = ck_tile::tensor_layout::gemm::ColumnMajor;
std::string a_layout = arg_parser.get_str("a_layout");
std::string b_layout = arg_parser.get_str("b_layout");
if(a_layout == "R" && b_layout == "R")
{
return run_gemm_example_with_layouts(argc, argv, Row{}, Row{}, Row{});
}
else if(a_layout == "R" && b_layout == "C")
{
return run_gemm_example_with_layouts(argc, argv, Row{}, Col{}, Row{});
}
else if(a_layout == "C" && b_layout == "C")
{
return run_gemm_example_with_layouts(argc, argv, Col{}, Col{}, Row{});
}
else if(a_layout == "C" && b_layout == "R")
{
return run_gemm_example_with_layouts(argc, argv, Col{}, Row{}, Row{});
}
else
{
throw std::runtime_error("Unsupported data layout configuration for A,B and C tensors!");
}
}
int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); } int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
set(RMSNORM2D_FWD_KNOWN_APIS "fwd;bwd")
set(RMSNORM2D_FWD_ENABLE_APIS "fwd" CACHE STRING
"semicolon-separated list of APIs to generate (${RMSNORM2D_FWD_KNOWN_APIS}) & link, or \"all\".")
if(RMSNORM2D_FWD_ENABLE_APIS STREQUAL "all")
set(RMSNORM2D_FWD_ENABLE_APIS ${RMSNORM2D_FWD_KNOWN_APIS})
endif()
# generate a list of kernels, but not actually emit files at config sta
execute_process(
COMMAND ${Python3_EXECUTABLE} ${CMAKE_CURRENT_LIST_DIR}/generate.py
--api ${RMSNORM2D_FWD_ENABLE_APIS} --working_path ${CMAKE_CURRENT_BINARY_DIR} --list_blobs
RESULT_VARIABLE ret
)
if(ret AND NOT ret EQUAL 0)
message( FATAL_ERROR "Fail to generate kernels via Python. ${ret}")
endif()
file(STRINGS ${CMAKE_CURRENT_BINARY_DIR}/rmsnorm2d_fwd_blobs.txt RMSNORM2D_FWD_GEN_BLOBS)
add_custom_command(
OUTPUT ${RMSNORM2D_FWD_GEN_BLOBS}
COMMAND ${Python3_EXECUTABLE} ${CMAKE_CURRENT_LIST_DIR}/generate.py
--api ${RMSNORM2D_FWD_ENABLE_APIS} --working_path ${CMAKE_CURRENT_BINARY_DIR} --gen_blobs
)
set(TILE_RMSNORM2D_FWD "tile_rmsnorm2d_fwd") set(TILE_RMSNORM2D_FWD "tile_rmsnorm2d_fwd")
# not using add_example_executable() to add this target, since we don't want this to have
# to be included in "make all/install/check"
message("adding ${TILE_RMSNORM2D_FWD}") message("adding ${TILE_RMSNORM2D_FWD}")
file(GLOB INSTANCE_SRCS instances/*.cpp)
add_executable(${TILE_RMSNORM2D_FWD} EXCLUDE_FROM_ALL rmsnorm2d_fwd.cpp) add_executable(${TILE_RMSNORM2D_FWD} EXCLUDE_FROM_ALL rmsnorm2d_fwd.cpp)
target_include_directories(${TILE_RMSNORM2D_FWD} PRIVATE ${CMAKE_CURRENT_LIST_DIR}) target_include_directories(${TILE_RMSNORM2D_FWD} PRIVATE ${CMAKE_CURRENT_LIST_DIR})
target_sources(${TILE_RMSNORM2D_FWD} PRIVATE ${INSTANCE_SRCS}) target_sources(${TILE_RMSNORM2D_FWD} PRIVATE ${RMSNORM2D_FWD_GEN_BLOBS})
set(TILE_RMSNORM2D_FWD_COMPILE_OPTIONS) set(TILE_RMSNORM2D_FWD_COMPILE_OPTIONS)
# NOTE: we turn off undefined-func-template to let source compile without explicit declare function specializations # NOTE: we turn off undefined-func-template to let source compile without explicit declare function specializations
list(APPEND TILE_RMSNORM2D_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -Wno-float-equal) list(APPEND TILE_RMSNORM2D_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -Wno-float-equal --offload-compress)
target_compile_options(${TILE_RMSNORM2D_FWD} PRIVATE ${TILE_RMSNORM2D_FWD_COMPILE_OPTIONS}) target_compile_options(${TILE_RMSNORM2D_FWD} PRIVATE ${TILE_RMSNORM2D_FWD_COMPILE_OPTIONS})
......
#include "ck_tile/host.hpp" #include "ck_tile/host.hpp"
#include "ck_tile/core.hpp" #include "ck_tile/core.hpp"
#include "ck_tile/host/kernel_launch.hpp" #include "ck_tile/host/kernel_launch.hpp"
#include "ck_tile/ops/epilogue.hpp"
#include "ck_tile/ops/rmsnorm2d.hpp" #include "ck_tile/ops/rmsnorm2d.hpp"
#include <cstring> #include <cstring>
...@@ -40,6 +41,8 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -40,6 +41,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
using YDataType = DataType; using YDataType = DataType;
using GammaDataType = DataType; using GammaDataType = DataType;
using InvRmsDataType = ck_tile::null_type; using InvRmsDataType = ck_tile::null_type;
using SmoothScaleDataType = ck_tile::null_type;
using YScaleDataType = ck_tile::null_type;
using ComputeDataType = float; using ComputeDataType = float;
...@@ -68,30 +71,49 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -68,30 +71,49 @@ bool run(const ck_tile::ArgParser& arg_parser)
using BlockTile = ck_tile::sequence<2, 128>; using BlockTile = ck_tile::sequence<2, 128>;
using WarpTile = ck_tile::sequence<1, 64>; using WarpTile = ck_tile::sequence<1, 64>;
using Vector = ck_tile::sequence<1, 1>; using Vector = ck_tile::sequence<1, 1>;
using Shape = ck_tile::Generic2dBlockShape<BlockTile, BlockWarps, WarpTile, Vector>; using Shape = ck_tile::Generic2dBlockShape<BlockTile, BlockWarps, WarpTile, Vector>;
using PipelineTraits =
ck_tile::Rmsnorm2dFwdTraits<true, // kPadN
false, // kSaveInvRms
kTwoPass,
ck_tile::Rmsnorm2dFusedAddEnum::NO_ADD, // fuse add
ck_tile::Rmsnorm2dFusedQuantEnum::NO_SWEEP>; // fuse quant
using Problem = ck_tile::Rmsnorm2dFwdPipelineProblem<XDataType, using Problem = ck_tile::Rmsnorm2dFwdPipelineProblem<XDataType,
GammaDataType, GammaDataType,
ComputeDataType, ComputeDataType,
YDataType, YDataType,
InvRmsDataType, InvRmsDataType,
SmoothScaleDataType,
YScaleDataType,
Shape, Shape,
true, // kPadN PipelineTraits>;
false, // kSaveInvRms
kTwoPass>;
using OnePassPipeline = ck_tile::Rmsnorm2dFwdPipelineOnePass<Problem>; using OnePassPipeline = ck_tile::Rmsnorm2dFwdPipelineOnePass<Problem>;
using TwoPassPipeline = ck_tile::Rmsnorm2dFwdPipelineTwoPass<Problem>; using TwoPassPipeline = ck_tile::Rmsnorm2dFwdPipelineTwoPass<Problem>;
using Pipeline = std::conditional_t<kTwoPass, TwoPassPipeline, OnePassPipeline>; using Pipeline = std::conditional_t<kTwoPass, TwoPassPipeline, OnePassPipeline>;
using Kernel = ck_tile::Rmsnorm2dFwd<Pipeline>;
using Default2DEpilogueProblem = ck_tile::
Default2DEpilogueProblem<ComputeDataType, YDataType, false, PipelineTraits::kPadN, false>;
using Default2DEpilogue = ck_tile::Default2DEpilogue<Default2DEpilogueProblem>;
using Kernel = ck_tile::Rmsnorm2dFwd<Pipeline, Default2DEpilogue>;
ck_tile::Rmsnorm2dFwdHostArgs args{x_buf.GetDeviceBuffer(), ck_tile::Rmsnorm2dFwdHostArgs args{x_buf.GetDeviceBuffer(),
nullptr,
nullptr,
gamma_buf.GetDeviceBuffer(), gamma_buf.GetDeviceBuffer(),
y_buf.GetDeviceBuffer(), y_buf.GetDeviceBuffer(),
nullptr, nullptr,
nullptr,
nullptr,
epsilon, epsilon,
m, m,
n, n,
stride,
stride,
stride,
stride}; stride};
auto kargs = Kernel::MakeKargs(args); auto kargs = Kernel::MakeKargs(args);
......
This diff is collapsed.
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <ck_tile/core.hpp>
#include "rmsnorm2d_fwd.hpp"
template <typename DataType_,
ck_tile::index_t Repeat_M_, // each thread repeat along M
ck_tile::index_t Repeat_N_, // each thread repeat along N
ck_tile::index_t ThreadPerBlock_M_, // num threads along M
ck_tile::index_t ThreadPerBlock_N_, // num threads along N
ck_tile::index_t Vector_N_, // vector size along N
bool kPadN_,
bool kSaveInvRms_,
bool kTwoPass_>
using trait_ = rmsnorm2d_fwd_traits_<DataType_,
Repeat_M_,
Repeat_N_,
ThreadPerBlock_M_,
ThreadPerBlock_N_,
Vector_N_,
kPadN_,
kSaveInvRms_,
kTwoPass_>;
template <typename data_type>
float rmsnorm2d_fwd_b16_(rmsnorm2d_fwd_traits /*t*/,
rmsnorm2d_fwd_args a,
const ck_tile::stream_config& s)
{
float r = -1;
// clang-format off
// rm rn tm tn vn pd rms 2p
if(a.n <= 64) {
r = rmsnorm2d_fwd_<trait_<data_type, 1, 1, 4, 64, 1, true, false, false>>(s, a);
}
else if(a.n <= 128) {
if (a.n % 2 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 1, 4, 64, 2, true, false, false>>(s, a);
else
r = rmsnorm2d_fwd_<trait_<data_type, 1, 2, 4, 64, 1, true, false, false>>(s, a);
}
else if(a.n <= 256) {
if (a.n % 4 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 1, 4, 64, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 2, 4, 64, 2, true, false, false>>(s, a);
else
r = rmsnorm2d_fwd_<trait_<data_type, 1, 4, 4, 64, 1, true, false, false>>(s, a);
}
else if(a.n <= 512) {
if (a.n % 8 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 1, 4, 64, 8, true, false, false>>(s, a);
else if (a.n % 4 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 2, 4, 64, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 4, 4, 64, 2, true, false, false>>(s, a);
else
r = rmsnorm2d_fwd_<trait_<data_type, 1, 8, 4, 64, 1, true, false, false>>(s, a);
}
else if(a.n <= 768) {
if (a.n % 4 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 3, 4, 64, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 6, 4, 64, 2, true, false, false>>(s, a);
else
r = rmsnorm2d_fwd_<trait_<data_type, 1,12, 4, 64, 1, true, false, false>>(s, a);
}
else if(a.n <= 1024) {
if (a.n % 8 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 1, 2, 128, 8, true, false, false>>(s, a);
else if (a.n % 4 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 2, 2, 128, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 4, 2, 128, 2, true, false, false>>(s, a);
else
r = rmsnorm2d_fwd_<trait_<data_type, 1, 4, 1, 256, 1, true, false, false>>(s, a);
}
else if(a.n <= 1536) {
if (a.n % 8 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 3, 4, 64, 8, true, false, false>>(s, a);
else if (a.n % 4 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 3, 2, 128, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 3, 1, 256, 2, true, false, false>>(s, a);
else
r = rmsnorm2d_fwd_<trait_<data_type, 1, 6, 1, 256, 1, true, false, false>>(s, a);
}
else if(a.n <= 2048) {
if (a.n % 8 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 1, 1, 256, 8, true, false, false>>(s, a);
else if (a.n % 4 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 2, 1, 256, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 4, 1, 256, 2, true, false, false>>(s, a);
else
r = rmsnorm2d_fwd_<trait_<data_type, 1, 8, 1, 256, 1, true, false, false>>(s, a);
}
else if(a.n <= 3072) {
if (a.n % 8 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 3, 1, 128, 8, true, false, false>>(s, a);
else if (a.n % 4 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 3, 1, 256, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 6, 1, 256, 2, true, false, false>>(s, a);
else
r = rmsnorm2d_fwd_<trait_<data_type, 1, 3, 1, 1024, 1, true, false, false>>(s, a);
}
else if(a.n <= 4096) {
if (a.n % 8 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 2, 1, 256, 8, true, false, false>>(s, a);
else if (a.n % 4 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 4, 1, 256, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 2, 1, 1024, 2, true, false, false>>(s, a);
else
r = rmsnorm2d_fwd_<trait_<data_type, 1, 4, 1, 1024, 1, true, false, false>>(s, a);
}
else if(a.n > 4096) {
if (a.n % 8 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 2, 1, 256, 8, true, false, true>>(s, a);
else if (a.n % 4 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 4, 1, 256, 4, true, false, true>>(s, a);
else if (a.n % 2 == 0)
r = rmsnorm2d_fwd_<trait_<data_type, 1, 2, 1, 1024, 2, true, false, true>>(s, a);
else
r = rmsnorm2d_fwd_<trait_<data_type, 1, 4, 1, 1024, 1, true, false, true>>(s, a);
}
return r;
// clang-format on
}
float rmsnorm2d_fwd(rmsnorm2d_fwd_traits t, rmsnorm2d_fwd_args a, const ck_tile::stream_config& s)
{
if(t.data_type.compare("fp16") == 0)
{
return rmsnorm2d_fwd_b16_<ck_tile::fp16_t>(t, a, s);
}
else if(t.data_type.compare("bf16") == 0)
{
return rmsnorm2d_fwd_b16_<ck_tile::bf16_t>(t, a, s);
}
else
throw std::runtime_error("Without supported instances!");
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
#if 0
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 4, 64, 8, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 4, 64, 4, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 8, 4, 64, 2, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 16, 4, 64, 1, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 1, 256, 4, true , false, false>>(const S&, A);
#endif
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 2, 128, 8, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 2, 128, 4, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 2, 128, 2, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 4, 64, 8, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 2, 128, 4, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 1, 256, 2, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 6, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 1, 256, 8, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 1, 256, 4, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 1, 256, 2, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 8, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 4, 64, 4, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 4, 64, 2, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 4, 64, 1, true , false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 1, 128, 8, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 1, 256, 4, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 6, 1, 256, 2, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 1, 1024, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 1, 256, 8, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 1, 256, 4, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 1, 1024, 2, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 1, 1024, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 1, 256, 8, true, false, true>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 1, 256, 4, true, false, true>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 1, 1024, 2, true, false, true>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 1, 1024, 1, true, false, true>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 4, 64, 8, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 4, 64, 4, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 4, 64, 2, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 8, 4, 64, 1, true , false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 4, 64, 1, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 4, 64, 2, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 4, 64, 1, true , false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 4, 64, 4, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 6, 4, 64, 2, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 12, 4, 64, 1, true , false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
#if 0
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 4, 64, 8, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 4, 64, 4, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 8, 4, 64, 2, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 16, 4, 64, 1, true , false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 1, 1, 256, 4, true , false, false>>(const S&, A);
#endif
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 1, 2, 128, 8, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 2, 128, 4, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 2, 128, 2, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 3, 4, 64, 8, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 3, 2, 128, 4, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 3, 1, 256, 2, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 6, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "rmsnorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd rms 2p
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 1, 1, 256, 8, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 1, 256, 4, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 1, 256, 2, true, false, false>>(const S&, A);
template float rmsnorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 8, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment