Commit dec32dc6 authored by ThomasNing's avatar ThomasNing
Browse files

Finish the feature and merge with develop on the computeV2

parents 71352c44 c5fff071
......@@ -28,6 +28,7 @@ enum struct GemmDataType
F16_F16_F16_F8, // 6
F8_F8_BF16, // 7
INT8_INT8_BF16, // 8
F8_F8_F16, // 9
};
#define OP_NAME "gemm_multiply_multiply"
......@@ -40,7 +41,7 @@ int profile_gemm_multiply_multiply(int argc, char* argv[])
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f8@f16; 5: f16@f8; 6: "
"f16->f8; 7: f8->bf16, "
"comp f8; 8: int8->bf16)\n");
"comp f8; 8: int8->bf16; 9: f8->f16, comp f8;)\n");
printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
printf(" 1: A[m, k] * B[n, k] = C[m, n];\n");
printf(" 2: A[k, m] * B[k, n] = C[m, n];\n");
......@@ -89,6 +90,7 @@ int profile_gemm_multiply_multiply(int argc, char* argv[])
using F32 = float;
using BF16 = ck::bhalf_t;
using F16 = ck::half_t;
using F8 = ck::f8_t;
using I8 = int8_t;
using I32 = int;
......@@ -165,6 +167,11 @@ int profile_gemm_multiply_multiply(int argc, char* argv[])
return profile(
F8{}, F8{}, F8{}, F32{}, F32{}, F32{}, BF16{}, Row{}, Col{}, Row{}, Col{}, Row{});
}
else if(data_type == GemmDataType::F8_F8_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
return profile(
F8{}, F8{}, F8{}, F32{}, F32{}, F32{}, F16{}, Row{}, Col{}, Row{}, Col{}, Row{});
}
else if(data_type == GemmDataType::INT8_INT8_BF16 && layout == GemmMatrixLayout::MK_NK_MN)
{
return profile(
......
......@@ -21,7 +21,7 @@ enum struct GemmDataType
F16_F16_F16, // 1
F16_F8_F16, // 2
F16_I8_F16, // 3
BF16_BF16_BF16 // 4
};
#define OP_NAME "grouped_gemm_fixed_nk"
......@@ -39,7 +39,6 @@ std::vector<int> argToIntArray(char* input)
{
out.push_back(std::stoi(item));
}
return out;
}
......@@ -83,14 +82,6 @@ int profile_grouped_gemm_fixed_nk(int argc, char* argv[])
const auto StrideCs = argToIntArray(argv[13]);
const int kbatch = argc >= 15 ? std::stoi(argv[14]) : 1;
using F32 = float;
using F16 = ck::half_t;
#if defined(CK_ENABLE_FP8)
using F8 = ck::f8_t;
#endif
using BF16 = ck::bhalf_t;
using I8 = int8_t;
int n_warmup = 1;
int n_iter = 10;
if(argc == 17)
......@@ -99,13 +90,12 @@ int profile_grouped_gemm_fixed_nk(int argc, char* argv[])
n_iter = std::stoi(argv[16]);
}
#if defined(CK_ENABLE_BF16) && defined(CK_ENABLE_INT8)
if(data_type == GemmDataType::BF16_I8_BF16 && layout == GemmMatrixLayout::MK_KN_MN)
if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_grouped_gemm_fixed_nk_impl<BF16,
I8,
BF16,
F32,
ck::profiler::profile_grouped_gemm_fixed_nk_impl<ck::half_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
......@@ -123,12 +113,12 @@ int profile_grouped_gemm_fixed_nk(int argc, char* argv[])
n_warmup,
n_iter);
}
else if(data_type == GemmDataType::BF16_I8_BF16 && layout == GemmMatrixLayout::MK_NK_MN)
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
ck::profiler::profile_grouped_gemm_fixed_nk_impl<BF16,
I8,
BF16,
F32,
ck::profiler::profile_grouped_gemm_fixed_nk_impl<ck::half_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
......@@ -146,14 +136,13 @@ int profile_grouped_gemm_fixed_nk(int argc, char* argv[])
n_warmup,
n_iter);
}
#endif
#if defined(CK_ENABLE_FP16)
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
#if defined(CK_ENABLE_FP8)
else if(data_type == GemmDataType::F16_F8_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_grouped_gemm_fixed_nk_impl<F16,
F16,
F16,
F32,
ck::profiler::profile_grouped_gemm_fixed_nk_impl<ck::half_t,
ck::f8_t,
ck::half_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
......@@ -171,12 +160,12 @@ int profile_grouped_gemm_fixed_nk(int argc, char* argv[])
n_warmup,
n_iter);
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_NK_MN)
else if(data_type == GemmDataType::F16_F8_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
ck::profiler::profile_grouped_gemm_fixed_nk_impl<F16,
F16,
F16,
F32,
ck::profiler::profile_grouped_gemm_fixed_nk_impl<ck::half_t,
ck::f8_t,
ck::half_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
......@@ -194,14 +183,14 @@ int profile_grouped_gemm_fixed_nk(int argc, char* argv[])
n_warmup,
n_iter);
}
#endif
#if defined(CK_ENABLE_FP16) && defined(CK_ENABLE_FP8)
else if(data_type == GemmDataType::F16_F8_F16 && layout == GemmMatrixLayout::MK_KN_MN)
#endif // CK_ENABLE_FP8
#if defined(CK_ENABLE_INT8)
else if(data_type == GemmDataType::F16_I8_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_grouped_gemm_fixed_nk_impl<F16,
F8,
F16,
F32,
ck::profiler::profile_grouped_gemm_fixed_nk_impl<ck::half_t,
int8_t,
ck::half_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
......@@ -219,12 +208,12 @@ int profile_grouped_gemm_fixed_nk(int argc, char* argv[])
n_warmup,
n_iter);
}
else if(data_type == GemmDataType::F16_F8_F16 && layout == GemmMatrixLayout::MK_NK_MN)
else if(data_type == GemmDataType::F16_I8_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
ck::profiler::profile_grouped_gemm_fixed_nk_impl<F16,
F8,
F16,
F32,
ck::profiler::profile_grouped_gemm_fixed_nk_impl<ck::half_t,
int8_t,
ck::half_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
......@@ -242,14 +231,14 @@ int profile_grouped_gemm_fixed_nk(int argc, char* argv[])
n_warmup,
n_iter);
}
#endif
#if defined(CK_ENABLE_FP16) && defined(CK_ENABLE_INT8)
else if(data_type == GemmDataType::F16_I8_F16 && layout == GemmMatrixLayout::MK_KN_MN)
#endif // CK_ENABLE_INT8
#if defined(CK_ENABLE_BF16)
else if(data_type == GemmDataType::BF16_BF16_BF16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_grouped_gemm_fixed_nk_impl<F16,
I8,
F16,
F32,
ck::profiler::profile_grouped_gemm_fixed_nk_impl<ck::bhalf_t,
ck::bhalf_t,
ck::bhalf_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
......@@ -267,12 +256,59 @@ int profile_grouped_gemm_fixed_nk(int argc, char* argv[])
n_warmup,
n_iter);
}
else if(data_type == GemmDataType::F16_I8_F16 && layout == GemmMatrixLayout::MK_NK_MN)
else if(data_type == GemmDataType::BF16_BF16_BF16 && layout == GemmMatrixLayout::MK_NK_MN)
{
ck::profiler::profile_grouped_gemm_fixed_nk_impl<ck::bhalf_t,
ck::bhalf_t,
ck::bhalf_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
time_kernel,
Ms,
Ns,
Ks,
StrideAs,
StrideBs,
StrideCs,
kbatch,
n_warmup,
n_iter);
}
#if defined(CK_ENABLE_INT8)
else if(data_type == GemmDataType::BF16_I8_BF16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_grouped_gemm_fixed_nk_impl<F16,
I8,
F16,
F32,
ck::profiler::profile_grouped_gemm_fixed_nk_impl<ck::bhalf_t,
int8_t,
ck::bhalf_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
time_kernel,
Ms,
Ns,
Ks,
StrideAs,
StrideBs,
StrideCs,
kbatch,
n_warmup,
n_iter);
}
else if(data_type == GemmDataType::BF16_I8_BF16 && layout == GemmMatrixLayout::MK_NK_MN)
{
ck::profiler::profile_grouped_gemm_fixed_nk_impl<ck::bhalf_t,
int8_t,
ck::bhalf_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
......@@ -286,11 +322,12 @@ int profile_grouped_gemm_fixed_nk(int argc, char* argv[])
StrideAs,
StrideBs,
StrideCs,
1,
kbatch,
n_warmup,
n_iter);
}
#endif
#endif // CK_ENABLE_INT8
#endif // CK_ENABLE_BF16
else
{
throw std::runtime_error("wrong! this GEMM data_type & layout is not implemented");
......
......@@ -21,16 +21,19 @@ dependencies = []
"Bug Tracker" = "https://github.com/rocm/composable_kernel/issues"
[tool.setuptools]
packages = ["ck4inductor", "ck4inductor.include", "ck4inductor.library"]
packages = ["ck4inductor", "ck4inductor.include", "ck4inductor.library", "ck4inductor.universal_gemm", "ck4inductor.batched_universal_gemm", "ck4inductor.grouped_conv_fwd"]
[tool.setuptools.package-dir]
ck4inductor = "python/ck4inductor"
"ck4inductor.universal_gemm" = "python/ck4inductor/universal_gemm"
"ck4inductor.batched_universal_gemm" = "python/ck4inductor/batched_universal_gemm"
"ck4inductor.grouped_conv_fwd" = "python/ck4inductor/grouped_conv_fwd"
"ck4inductor.include" = "include"
"ck4inductor.library" = "library"
[tool.setuptools.package-data]
"ck4inductor.include" = ["ck/**/*.hpp"]
"ck4inductor.library" = ["src/tensor_operation_instance/gpu/gemm_universal/**/*.hpp"]
"ck4inductor.library" = ["src/tensor_operation_instance/gpu/gemm_universal/**/*.hpp", "src/tensor_operation_instance/gpu/gemm_universal_batched/**/*.hpp", "include/ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/**/*.hpp"]
[tool.setuptools.dynamic]
version = { attr = "setuptools_scm.get_version" }
......@@ -68,12 +68,13 @@ def parse_instances(str_instances: List[str]) -> List[CKGemmOperation]:
template_args.insert(2, tuple()) # ds layout
template_args.insert(6, tuple()) # ds dtype
try:
new_instance = CKGemmOperation(
*template_args, # type: ignore[arg-type]
)
op_instances.append(new_instance)
except TypeError as e:
log.debug(f"{e} when parsing {line}")
return op_instances
......
# SPDX-License-Identifier: MIT
# Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
import logging
import unittest
from ck4inductor.universal_gemm.gen_instances import (
gen_ops_library as gen_gemm_ops_library,
)
from ck4inductor.universal_gemm.gen_instances import (
gen_ops_preselected as gen_gemm_ops_preselected,
)
from ck4inductor.grouped_conv_fwd.gen_instances import (
gen_conv_ops_library as gen_conv_ops_library,
)
from ck4inductor.batched_universal_gemm.gen_instances import (
gen_ops_library as gen_batched_gemm_ops_library,
)
log = logging.getLogger(__name__)
class TestGenInstances(unittest.TestCase):
def test_gen_gemm_instances(self):
instances = gen_gemm_ops_library()
log.debug("%d gemm instances from library" % len(instances))
self.assertTrue(instances)
def test_preselected_gemm_instances(self):
instances = gen_gemm_ops_preselected()
log.debug("%d preselected gemm instances" % len(instances))
self.assertTrue(instances)
def test_gen_conv_instances(self):
instances = gen_conv_ops_library()
log.debug("%d gemm instances from library" % len(instances))
self.assertTrue(instances)
def test_gen_batched_gemm_instances(self):
instances = gen_batched_gemm_ops_library()
log.debug("%d gemm instances from library" % len(instances))
self.assertTrue(instances)
......@@ -7,6 +7,34 @@ include(gtest)
add_custom_target(tests)
# list of tests that are labelled as REGRESSION_TEST for make regression (runtime more than 30 seconds)
# all other tests are labelled as SMOKE_TEST
set(REGRESSION_TESTS
test_gemm_standalone_xdl_fp16
test_gemm_fp16
test_gemm_splitk
test_batched_gemm
test_gemm_universal
test_batched_gemm_softmax_gemm_fp16
test_batched_gemm_softmax_gemm_permute_fp16
test_batched_gemm_bias_softmax_gemm_permute_fp16
test_batched_gemm_softmax_gemm_permute_bf16
test_batched_gemm_bias_softmax_gemm_permute_bf16
test_grouped_gemm_splitk
test_reduce_no_index
test_reduce_with_index
test_convnd_fwd
test_convnd_bwd_data
test_grouped_convnd_fwd
test_grouped_convnd_bwd_weight
test_softmax_rank3
test_softmax_rank4
test_batchnorm_fwd_rank_4
test_batchnorm_bwd_rank_4
test_grouped_convnd_bwd_data_xdl
test_conv_tensor_rearrange
)
function(add_test_executable TEST_NAME)
message("adding test ${TEST_NAME}")
set(result 1)
......@@ -88,6 +116,15 @@ function(add_test_executable TEST_NAME)
endif()
#message("add_test returns ${result}")
set(result ${result} PARENT_SCOPE)
if(result EQUAL 0 AND NOT "${TEST_NAME}" IN_LIST REGRESSION_TESTS)
message("adding to SMOKE TEST FILTER ${TEST_NAME}")
set_tests_properties(${TEST_NAME} PROPERTIES LABELS "SMOKE_TEST")
add_dependencies(smoke ${TEST_NAME})
elseif(result EQUAL 0 AND "${TEST_NAME}" IN_LIST REGRESSION_TESTS)
message("Adding to REGRESSION TEST FILTER ${TEST_NAME}")
set_tests_properties(${TEST_NAME} PROPERTIES LABELS "REGRESSION_TEST")
add_dependencies(regression ${TEST_NAME})
endif()
endfunction()
function(add_gtest_executable TEST_NAME)
......@@ -168,6 +205,15 @@ function(add_gtest_executable TEST_NAME)
endif()
#message("add_gtest returns ${result}")
set(result ${result} PARENT_SCOPE)
if(result EQUAL 0 AND NOT "${TEST_NAME}" IN_LIST REGRESSION_TESTS)
#message("adding to smoke test FILTER ${TEST_NAME}")
set_tests_properties(${TEST_NAME} PROPERTIES LABELS "SMOKE_TEST")
add_dependencies(smoke ${TEST_NAME})
elseif(result EQUAL 0 AND "${TEST_NAME}" IN_LIST REGRESSION_TESTS)
#message("Adding to REGRESSION TEST FILTER ${TEST_NAME}")
set_tests_properties(${TEST_NAME} PROPERTIES LABELS "REGRESSION_TEST")
add_dependencies(regression ${TEST_NAME})
endif()
endfunction()
add_compile_options(-Wno-c++20-extensions)
......
......@@ -17,7 +17,7 @@ using Col = ck_tile::tensor_layout::gemm::ColumnMajor;
// clang-format off
using KernelTypes = ::testing::Types<
// ALayout, BLayout, CLayout, ADataType, BDataType, AccDataType, CDataType
std::tuple< Row, Row, Row, F16, F16, F32, F16>,
// std::tuple< Row, Row, Row, F16, F16, F32, F16>,
//std::tuple< Col, Row, Row, F16, F16, F32, F16>,
std::tuple< Row, Col, Row, F16, F16, F32, F16>//,
//std::tuple< Col, Col, Row, F16, F16, F32, F16>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <sstream>
......@@ -61,7 +61,7 @@ class TestCkTileBatchedGemm : public ::testing::Test
ck_tile::sequence<M_Warp, N_Warp, K_Warp>,
ck_tile::sequence<M_Warp_Tile, N_Warp_Tile, K_Warp_Tile>>;
using TilePartitioner = ck_tile::GemmTilePartitioner<CodegenGemmShape>;
using TilePartitioner = ck_tile::GemmTile2DPartitioner<CodegenGemmShape>;
using GemmEpilogue = std::conditional_t<
CShuffleEpilogue,
......@@ -73,8 +73,8 @@ class TestCkTileBatchedGemm : public ::testing::Test
kOutputRank,
1,
0,
TilePartitioner::kM,
TilePartitioner::kN>>,
TilePartitioner::MPerBlock,
TilePartitioner::NPerBlock>>,
ck_tile::Default2DEpilogue<
ck_tile::Default2DEpilogueProblem<AccDataType, CDataType, kPadM, kPadN>>>;
......
......@@ -14,26 +14,28 @@ using Row = ck_tile::tensor_layout::gemm::RowMajor;
using Col = ck_tile::tensor_layout::gemm::ColumnMajor;
using Intrawave = ck_tile::integral_constant<ck_tile::GemmPipelineScheduler,
ck_tile::GemmPipelineScheduler::Intrawave>;
using Interwave = ck_tile::integral_constant<ck_tile::GemmPipelineScheduler,
ck_tile::GemmPipelineScheduler::Interwave>;
using Mem = ck_tile::integral_constant<GemmPipelineType, GemmPipelineType::Mem>;
// using Interwave = ck_tile::integral_constant<ck_tile::GemmPipelineScheduler,
// ck_tile::GemmPipelineScheduler::Interwave>;
// using Mem = ck_tile::integral_constant<GemmPipelineType, GemmPipelineType::Mem>;
using Comp = ck_tile::integral_constant<GemmPipelineType, GemmPipelineType::Comp>;
// TODO: Enable Memory pipeline, when it would be updated for vector loads on non-K major tensors.
// clang-format off
using KernelTypes = ::testing::Types<
// ALayout, BLayout, CLayout, ADataType, BDataType, AccDataType, CDataType, GemmPipelineScheduler, PipelineType
std::tuple< Row, Row, Row, F16, F16, F32, F16, Intrawave, Mem>,
// std::tuple< Row, Row, Row, F16, F16, F32, F16, Intrawave, Mem>,
std::tuple< Row, Row, Row, F16, F16, F32, F16, Intrawave, Comp>,
std::tuple< Row, Row, Row, F16, F16, F32, F16, Interwave, Mem>,
std::tuple< Row, Col, Row, F16, F16, F32, F16, Intrawave, Mem>,
// std::tuple< Row, Row, Row, F16, F16, F32, F16, Interwave, Mem>,
// std::tuple< Row, Col, Row, F16, F16, F32, F16, Intrawave, Mem>,
std::tuple< Row, Col, Row, F16, F16, F32, F16, Intrawave, Comp>,
std::tuple< Row, Col, Row, F16, F16, F32, F16, Interwave, Mem>,
std::tuple< Col, Row, Row, F16, F16, F32, F16, Intrawave, Mem>,
// std::tuple< Row, Col, Row, F16, F16, F32, F16, Interwave, Mem>,
// std::tuple< Col, Row, Row, F16, F16, F32, F16, Intrawave, Mem>,
std::tuple< Col, Row, Row, F16, F16, F32, F16, Intrawave, Comp>,
std::tuple< Col, Row, Row, F16, F16, F32, F16, Interwave, Mem>,
std::tuple< Col, Col, Row, F16, F16, F32, F16, Intrawave, Mem>,
std::tuple< Col, Col, Row, F16, F16, F32, F16, Intrawave, Comp>,
std::tuple< Col, Col, Row, F16, F16, F32, F16, Interwave, Mem>
// std::tuple< Col, Row, Row, F16, F16, F32, F16, Interwave, Mem>,
// std::tuple< Col, Col, Row, F16, F16, F32, F16, Intrawave, Mem>,
std::tuple< Col, Col, Row, F16, F16, F32, F16, Intrawave, Comp>
// std::tuple< Col, Col, Row, F16, F16, F32, F16, Interwave, Mem>
>;
// clang-format on
......
......@@ -10,7 +10,13 @@ TYPED_TEST(TestCkTileGemmPipeline, SmallM)
constexpr int K = 320;
for(int M : Ms)
{
if constexpr(std::is_same_v<typename TestFixture::ALayout,
ck_tile::tensor_layout::gemm::ColumnMajor>)
EXPECT_THROW((this->Run(M, N, K)), std::runtime_error);
else
this->Run(M, N, K);
}
}
TYPED_TEST(TestCkTileGemmPipeline, MidLargeM)
......@@ -18,14 +24,29 @@ TYPED_TEST(TestCkTileGemmPipeline, MidLargeM)
std::vector<int> Ms{127, 255, 312, 799, 1573};
constexpr int N = 1024;
constexpr int K = 320;
constexpr int VecLoadSize = 8;
for(int M : Ms)
{
if constexpr(std::is_same_v<typename TestFixture::ALayout,
ck_tile::tensor_layout::gemm::ColumnMajor>)
{
// TODO: Can we anyhow deduce used vector load size?
if(M % VecLoadSize == 0)
this->Run(M, N, K);
else
EXPECT_THROW((this->Run(M, N, K)), std::runtime_error);
}
else
{
this->Run(M, N, K);
}
}
}
TYPED_TEST(TestCkTileGemmPipeline, PaddK)
{
std::vector<int> Ms{127};
std::vector<int> Ms{128};
constexpr int N = 1024;
constexpr int K = 432;
......
......@@ -16,6 +16,7 @@ enum struct GemmPipelineType
Mem,
Comp
};
template <typename Tuple>
class TestCkTileGemmPipeline : public ::testing::Test
{
......@@ -51,6 +52,9 @@ class TestCkTileGemmPipeline : public ::testing::Test
constexpr bool kPadN = PadN;
constexpr bool kPadK = PadK;
// TODO: For now - but this should also be a test parameter
constexpr bool TransposeC = false;
constexpr int kBlockPerCu = 1;
// ===============================================
......@@ -59,20 +63,22 @@ class TestCkTileGemmPipeline : public ::testing::Test
ck_tile::TileGemmShape<ck_tile::sequence<M_Tile, N_Tile, K_Tile>,
ck_tile::sequence<M_Warp, N_Warp, K_Warp>,
ck_tile::sequence<M_Warp_Tile, N_Warp_Tile, K_Warp_Tile>>;
using TilePartitioner = ck_tile::GemmTilePartitioner<GemmShape>;
using TilePartitioner = ck_tile::GemmTile2DPartitioner<GemmShape>;
using GemmEpilogue = ck_tile::Default2DEpilogue<
ck_tile::Default2DEpilogueProblem<AccDataType, CDataType, kPadM, kPadN>>;
using Traits = ck_tile::TileGemmTraits<kPadM, kPadN, kPadK, ALayout, BLayout, CLayout>;
using GemmUniversalTraits = ck_tile::
TileGemmUniversalTraits<kPadM, kPadN, kPadK, ALayout, BLayout, CLayout, TransposeC>;
using BaseGemmPipeline = std::conditional_t<
PipelineType == GemmPipelineType::Mem,
ck_tile::BaseGemmPipelineAgBgCrMem<
ck_tile::GemmPipelineProblem<ADataType, BDataType, AccDataType, GemmShape, Traits>>,
ck_tile::BaseGemmPipelineAgBgCrCompV3<
ck_tile::
GemmPipelineProblem<ADataType, BDataType, AccDataType, GemmShape, Traits>>>;
using GemmPipelineProblem =
ck_tile::GemmPipelineProblem<ADataType, BDataType, AccDataType, GemmShape, Traits>;
using BaseGemmPipeline =
std::conditional_t<PipelineType == GemmPipelineType::Mem,
ck_tile::BaseGemmPipelineAgBgCrMem<GemmPipelineProblem>,
ck_tile::BaseGemmPipelineAgBgCrCompV3<GemmPipelineProblem>>;
const ck_tile::index_t k_grain = args.k_batch * K_Tile;
const ck_tile::index_t K_split = (args.K + k_grain - 1) / k_grain * K_Tile;
......@@ -84,26 +90,22 @@ class TestCkTileGemmPipeline : public ::testing::Test
constexpr bool has_hot_loop_v = has_hot_loop_.value;
constexpr auto tail_number_v = tail_number_.value;
using GemmPipeline =
std::conditional_t<PipelineType == GemmPipelineType::Mem,
ck_tile::GemmPipelineAgBgCrMem<
ck_tile::UniversalGemmPipelineProblem<ADataType,
BDataType,
AccDataType,
GemmShape,
Traits,
Scheduler,
has_hot_loop_v,
tail_number_v>>,
ck_tile::GemmPipelineAgBgCrCompV3<
ck_tile::UniversalGemmPipelineProblem<ADataType,
using UniversalGemmProblem = ck_tile::UniversalGemmPipelineProblem<ADataType,
BDataType,
AccDataType,
GemmShape,
Traits,
GemmUniversalTraits,
Scheduler,
has_hot_loop_v,
tail_number_v>>>;
tail_number_v>;
using GemmPipeline = std::conditional_t<
PipelineType == GemmPipelineType::Mem,
ck_tile::GemmPipelineAgBgCrMem<UniversalGemmProblem,
ck_tile::UniversalGemmPipelineAgBgCrPolicy>,
ck_tile::GemmPipelineAgBgCrCompV3<UniversalGemmProblem,
ck_tile::UniversalGemmPipelineAgBgCrPolicy>>;
using Kernel = ck_tile::GemmKernel<TilePartitioner, GemmPipeline, GemmEpilogue>;
auto kargs = Kernel::MakeKernelArgs(args);
......@@ -128,17 +130,40 @@ class TestCkTileGemmPipeline : public ::testing::Test
};
if(has_hot_loop)
{
if constexpr(PipelineType == GemmPipelineType::Comp)
{
if(tail_num == ck_tile::TailNumber::Full)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber,
ck_tile::TailNumber::Full>{});
}
else
{
std::ostringstream err;
err << "For compute pipeline tail number should always be Full, but have \""
<< tail_num << "\" which is not supported! PrefetchStages: "
<< BaseGemmPipeline::PrefetchStages << "\n File: " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
}
if constexpr(PipelineType == GemmPipelineType::Mem)
{
// Tail pipeline One to Seven
if(tail_num == ck_tile::TailNumber::One)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber, ck_tile::TailNumber::One>{});
ck_tile::integral_constant<ck_tile::TailNumber,
ck_tile::TailNumber::One>{});
}
else if(tail_num == ck_tile::TailNumber::Full)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber, ck_tile::TailNumber::Full>{});
ck_tile::integral_constant<ck_tile::TailNumber,
ck_tile::TailNumber::Full>{});
}
if constexpr(BaseGemmPipeline::PrefetchStages > 2)
......@@ -196,6 +221,7 @@ class TestCkTileGemmPipeline : public ::testing::Test
}
}
}
}
else
{
// Tail number always Full - #PrefetchStages
......
......@@ -17,7 +17,7 @@ using Col = ck_tile::tensor_layout::gemm::ColumnMajor;
// clang-format off
using KernelTypes = ::testing::Types<
// ALayout, BLayout, CLayout, ADataType, BDataType, AccDataType, CDataType
std::tuple< Row, Row, Row, F16, F16, F32, F16>,
// std::tuple< Row, Row, Row, F16, F16, F32, F16>,
//std::tuple< Col, Row, Row, F16, F16, F32, F16>,
std::tuple< Row, Col, Row, F16, F16, F32, F16>//,
//std::tuple< Col, Col, Row, F16, F16, F32, F16>
......
......@@ -96,12 +96,9 @@ class TestCkTileGroupedGemm : public ::testing::Test
CodegenGemmShape,
CodegenGemmTraits<ALayout, BLayout, CLayout>>;
using CodegenGemmPolicy = ck_tile::UniversalGemmPipelineAgBgCrPolicy;
template <typename ALayout, typename BLayout, typename CLayout>
using CodegenGemmPipeline =
ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem<ALayout, BLayout, CLayout>,
CodegenGemmPolicy>;
ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem<ALayout, BLayout, CLayout>>;
template <typename ALayout, typename BLayout, typename CLayout>
using Kernel = ck_tile::GroupedGemmKernel<TilePartitioner,
......
......@@ -49,3 +49,4 @@ if(result EQUAL 0)
endif()
add_gtest_executable(test_type_convert_const type_convert_const.cpp)
add_gtest_executable(test_bhalf test_bhalf.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "ck/utility/data_type.hpp"
#include "ck/utility/type_convert.hpp"
using ck::bhalf_t;
using ck::type_convert;
TEST(BHALF_T, Nan)
{
const uint16_t binary_bhalf_nan = 0x7FC0;
const bhalf_t bhalf_nan = ck::bit_cast<bhalf_t>(binary_bhalf_nan);
EXPECT_EQ(bhalf_nan, type_convert<bhalf_t>(ck::NumericLimits<float>::QuietNaN()));
}
TEST(BHALF_T, Inf)
{
const uint16_t binary_bhalf_inf = 0x7F80;
const bhalf_t bhalf_inf = ck::bit_cast<bhalf_t>(binary_bhalf_inf);
EXPECT_EQ(bhalf_inf, type_convert<bhalf_t>(ck::NumericLimits<float>::Infinity()));
}
TEST(BHALF_T, MantisaOverflow)
{
const float abs_tol = std::pow(2, -7);
const uint32_t val = 0x81FFFFFF;
const float float_val = ck::bit_cast<float>(val);
ASSERT_NEAR(float_val, type_convert<float>(type_convert<bhalf_t>(float_val)), abs_tol);
}
TEST(BHALF_T, ExpOverflow)
{
const uint32_t val = 0xFF800000;
const float float_val = ck::bit_cast<float>(val);
ASSERT_EQ(type_convert<float>(type_convert<bhalf_t>(float_val)), float_val);
}
TEST(BHALF_T, MantisaExpOverflow)
{
const uint32_t val = 0xFFFFFFFF;
const float float_val = ck::bit_cast<float>(val);
ASSERT_TRUE(std::isnan(float_val));
ASSERT_TRUE(std::isnan(type_convert<float>(type_convert<bhalf_t>(float_val))));
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment