Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
dd0188b3
Commit
dd0188b3
authored
Jan 06, 2025
by
Mateusz Ozga
Browse files
Merge remote-tracking branch 'origin/develop' into mozga-amd/universal_gemm_weight
parents
7ff4d613
888317e6
Changes
160
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
3833 additions
and
86 deletions
+3833
-86
include/ck/tensor_operation/gpu/device/device_gemm_v2.hpp
include/ck/tensor_operation/gpu/device/device_gemm_v2.hpp
+41
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp
...n/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp
+5
-1
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3.hpp
...operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3.hpp
+11
-2
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3_b_scale.hpp
...n/gpu/device/impl/device_gemm_xdl_cshuffle_v3_b_scale.hpp
+781
-0
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
...or_operation/gpu/element/unary_element_wise_operation.hpp
+258
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v3.hpp
...nsor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v3.hpp
+77
-27
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v3_b_scale.hpp
...ration/gpu/grid/gridwise_gemm_xdl_cshuffle_v3_b_scale.hpp
+2208
-0
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp
...operation/gpu/thread/threadwise_tensor_slice_transfer.hpp
+247
-7
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v3r1.hpp
...tion/gpu/thread/threadwise_tensor_slice_transfer_v3r1.hpp
+52
-22
include/ck/tensor_operation/gpu/warp/wmma_gemm.hpp
include/ck/tensor_operation/gpu/warp/wmma_gemm.hpp
+1
-1
include/ck/utility/amd_buffer_addressing.hpp
include/ck/utility/amd_buffer_addressing.hpp
+2
-1
include/ck/utility/amd_inline_asm.hpp
include/ck/utility/amd_inline_asm.hpp
+22
-1
include/ck/utility/data_type.hpp
include/ck/utility/data_type.hpp
+37
-0
include/ck/utility/dynamic_buffer.hpp
include/ck/utility/dynamic_buffer.hpp
+4
-2
include/ck/utility/static_buffer.hpp
include/ck/utility/static_buffer.hpp
+4
-2
include/ck/utility/type_convert.hpp
include/ck/utility/type_convert.hpp
+14
-1
include/ck_tile/ops/epilogue/cshuffle_epilogue.hpp
include/ck_tile/ops/epilogue/cshuffle_epilogue.hpp
+27
-4
include/ck_tile/ops/epilogue/default_2d_epilogue.hpp
include/ck_tile/ops/epilogue/default_2d_epilogue.hpp
+22
-4
include/ck_tile/ops/fmha.hpp
include/ck_tile/ops/fmha.hpp
+0
-3
include/ck_tile/ops/fmha/kernel/fmha_fwd_appendkv_kernel.hpp
include/ck_tile/ops/fmha/kernel/fmha_fwd_appendkv_kernel.hpp
+20
-8
No files found.
include/ck/tensor_operation/gpu/device/device_gemm_v2.hpp
View file @
dd0188b3
...
...
@@ -36,6 +36,10 @@ struct DeviceGemmV2 : public BaseOperator
CElementwiseOperation
c_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
virtual
bool
GetPermuteA
()
=
0
;
virtual
bool
GetPermuteB
()
=
0
;
virtual
ck
::
index_t
GetKPerBlock
()
=
0
;
};
template
<
typename
ALayout
,
...
...
@@ -73,6 +77,43 @@ struct DeviceGemmV2R1 : public BaseOperator
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
BScaleType
,
typename
CDataType
,
index_t
ScaleBlockN
,
index_t
ScaleBlockK
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
struct
DeviceGemmV2BScale
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB
,
ck
::
index_t
StrideC
,
ck
::
index_t
StrideScaleB
,
const
void
*
p_b_scale
,
ck
::
index_t
KSplit
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
virtual
bool
GetPermuteB
()
=
0
;
virtual
ck
::
index_t
GetKPerBlock
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp
100755 → 100644
View file @
dd0188b3
...
...
@@ -469,7 +469,11 @@ struct DeviceGemm_Xdl_CShuffle_Streamk_V3 : public DeviceGemm_Streamk_V2<ALayout
{
return
false
;
}
if
(
!
is_bf16_atomic_supported
()
&&
std
::
is_same_v
<
CDataType
,
ck
::
bhalf_t
>
&&
arg
.
Streamk_sel
>
0
)
{
return
false
;
}
if
((
arg
.
K
%
AK1
!=
0
||
arg
.
K
%
BK1
!=
0
)
&&
!
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
||
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3.hpp
View file @
dd0188b3
...
...
@@ -64,7 +64,9 @@ template <typename ALayout,
BlockGemmPipelineScheduler
BlkGemmPipeSched
=
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
BlkGemmPipelineVer
=
BlockGemmPipelineVersion
::
v1
,
typename
ComputeTypeA
=
CDataType
,
typename
ComputeTypeB
=
ComputeTypeA
>
typename
ComputeTypeB
=
ComputeTypeA
,
bool
PermuteA
=
false
,
bool
PermuteB
=
false
>
struct
DeviceGemm_Xdl_CShuffleV3
:
public
DeviceGemmV2
<
ALayout
,
BLayout
,
CLayout
,
...
...
@@ -122,7 +124,9 @@ struct DeviceGemm_Xdl_CShuffleV3 : public DeviceGemmV2<ALayout,
BlkGemmPipeSched
,
BlkGemmPipelineVer
,
ComputeTypeA
,
ComputeTypeB
>
;
ComputeTypeB
,
PermuteA
,
PermuteB
>
;
using
Argument
=
typename
GridwiseGemm
::
Argument
;
...
...
@@ -633,6 +637,11 @@ struct DeviceGemm_Xdl_CShuffleV3 : public DeviceGemmV2<ALayout,
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
index_t
GetKPerBlock
()
override
{
return
KPerBlock
;
}
bool
GetPermuteA
()
override
{
return
PermuteA
;
}
bool
GetPermuteB
()
override
{
return
PermuteB
;
}
static
auto
MakeArgument
(
const
ADataType
*
p_a
,
const
BDataType
*
p_b
,
CDataType
*
p_c
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3_b_scale.hpp
0 → 100644
View file @
dd0188b3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/host_utility/flush_cache.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_v2.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v3_b_scale.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
BScaleDataType
,
typename
CDataType
,
typename
GemmAccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
BlockSize
,
index_t
ScaleBlockN
,
// scale block for N
index_t
ScaleBlockK
,
// scale block for K
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
BlockGemmPipelineScheduler
BlkGemmPipeSched
=
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
BlkGemmPipelineVer
=
BlockGemmPipelineVersion
::
v1
,
typename
ComputeTypeA
=
CDataType
,
typename
ComputeTypeB
=
ComputeTypeA
,
bool
PermuteA
=
false
,
bool
PermuteB
=
false
>
struct
DeviceGemm_Xdl_CShuffleV3
:
public
DeviceGemmV2BScale
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
BScaleDataType
,
CDataType
,
ScaleBlockN
,
ScaleBlockK
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemm_xdl_cshuffle_v3
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
GemmSpec
,
BlockSize
,
ScaleBlockN
,
ScaleBlockK
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
BlkGemmPipeSched
,
BlkGemmPipelineVer
,
ComputeTypeA
,
ComputeTypeB
,
PermuteA
,
PermuteB
>
;
using
Argument
=
typename
GridwiseGemm
::
Argument
;
// Invoker
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
stream_config
.
log_level_
>
0
)
{
arg
.
Print
();
}
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
index_t
gdx
,
gdy
,
gdz
;
std
::
tie
(
gdx
,
gdy
,
gdz
)
=
GridwiseGemm
::
CalculateGridSize
(
arg
.
M
,
arg
.
N
,
arg
.
KBatch
);
float
ave_time
=
0
;
index_t
k_grain
=
arg
.
KBatch
*
KPerBlock
;
index_t
K_split
=
(
arg
.
K
+
k_grain
-
1
)
/
k_grain
*
KPerBlock
;
const
bool
has_main_k_block_loop
=
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K_split
);
const
auto
Run
=
[
&
](
const
auto
&
kernel
)
{
if
(
stream_config
.
flush_cache
)
{
Argument
arg_
=
arg
;
const
auto
a_grid_desc_ak0_m_ak1
=
GridwiseGemm
::
MakeAGridDescriptor_AK0_M_AK1
(
arg_
.
M
,
arg_
.
MPadded
,
arg_
.
K
,
arg_
.
KPadded
,
arg_
.
StrideA
,
arg_
.
AK0
);
const
auto
b_grid_desc_bk0_n_bk1
=
GridwiseGemm
::
MakeBGridDescriptor_BK0_N_BK1
(
arg_
.
K
,
arg_
.
KPadded
,
arg_
.
N
,
arg_
.
NPadded
,
arg_
.
StrideB
,
arg_
.
BK0
);
auto
size_a_buffer
=
a_grid_desc_ak0_m_ak1
.
GetElementSpaceSize
()
*
sizeof
(
ADataType
);
auto
size_b_buffer
=
b_grid_desc_bk0_n_bk1
.
GetElementSpaceSize
()
*
sizeof
(
BDataType
);
ck
::
utility
::
RotatingMemWrapper
<
Argument
>
rotating_mem
(
arg_
,
stream_config
.
rotating_count
,
size_a_buffer
,
size_b_buffer
);
rotating_mem
.
Print
();
auto
run_flush_cache
=
[
&
]()
{
// flush icache
ck
::
utility
::
flush_icache
();
// rotating mem
rotating_mem
.
Next
();
// clear c mem
if
(
arg_
.
KBatch
>
1
)
hipGetErrorString
(
hipMemsetAsync
(
arg_
.
p_c_grid
,
0
,
arg_
.
M
*
arg_
.
N
*
sizeof
(
CDataType
),
stream_config
.
stream_id_
));
};
ave_time
=
ck
::
utility
::
launch_and_time_kernel_with_preprocess
<
false
>
(
stream_config
,
run_flush_cache
,
kernel
,
dim3
(
gdx
,
gdy
,
gdz
),
dim3
(
BlockSize
),
0
,
arg_
);
}
else
{
if
(
arg
.
KBatch
>
1
)
hipGetErrorString
(
hipMemsetAsync
(
arg
.
p_c_grid
,
0
,
arg
.
M
*
arg
.
N
*
sizeof
(
CDataType
),
stream_config
.
stream_id_
));
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
gdx
,
gdy
,
gdz
),
dim3
(
BlockSize
),
0
,
arg
);
}
};
constexpr
index_t
minimum_occupancy
=
BlkGemmPipeSched
==
BlockGemmPipelineScheduler
::
Intrawave
?
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v3
&&
MPerBlock
*
NPerBlock
*
KPerBlock
*
sizeof
(
ADataType
)
<=
128
*
128
*
64
*
2
)
?
2
:
1
:
2
;
if
(
has_main_k_block_loop
)
{
// Tail number always full
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v1
||
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v3
)
{
if
(
arg
.
KBatch
>
1
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
>
;
Run
(
kernel
);
}
}
// Tail number could be One to Seven
else
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v2
)
{
if
(
arg
.
KBatch
>
1
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
One
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
One
>
;
Run
(
kernel
);
}
else
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Full
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Full
>
;
Run
(
kernel
);
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
2
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Two
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Two
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
3
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Three
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Three
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
4
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Four
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Four
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
5
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Five
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Five
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
6
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Six
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Six
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
7
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Seven
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Seven
>
;
Run
(
kernel
);
}
}
}
else
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
One
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
One
>
;
Run
(
kernel
);
}
else
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Full
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Full
>
;
Run
(
kernel
);
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
2
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Two
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Two
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
3
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Three
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Three
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
4
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Four
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Four
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
5
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Five
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Five
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
6
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Six
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Six
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
7
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Seven
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Seven
>
;
Run
(
kernel
);
}
}
}
}
// Tail number could be Odd or Even
else
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v4
)
{
if
(
arg
.
KBatch
>
1
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Odd
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3_2lds
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Odd
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3_2lds
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Even
>
;
Run
(
kernel
);
}
}
else
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Odd
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3_2lds
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Odd
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3_2lds
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Even
>
;
Run
(
kernel
);
}
}
}
else
{
if
(
arg
.
KBatch
>
1
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Odd
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Odd
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
,
TailNumber
::
Even
>
;
Run
(
kernel
);
}
}
else
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Odd
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Odd
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Even
>
;
Run
(
kernel
);
}
}
}
}
else
{
// Tail number always 1
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v1
)
{
if
(
arg
.
KBatch
>
1
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
false
,
InMemoryDataOperationEnum
::
AtomicAdd
,
minimum_occupancy
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
false
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
>
;
Run
(
kernel
);
}
}
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
if
(
!
is_bf16_atomic_supported
()
&&
std
::
is_same_v
<
CDataType
,
ck
::
bhalf_t
>
&&
arg
.
KBatch
>
1
)
{
return
false
;
}
if
((
arg
.
K
%
AK1
!=
0
||
arg
.
K
%
BK1
!=
0
)
&&
!
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
||
GemmSpec
==
GemmSpecialization
::
KPadding
))
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
index_t
GetKPerBlock
()
override
{
return
KPerBlock
;
}
bool
GetPermuteB
()
override
{
return
PermuteB
;
}
static
auto
MakeArgument
(
const
ADataType
*
p_a
,
const
BDataType
*
p_b
,
CDataType
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
index_t
StrideScaleB
,
const
BScaleDataType
*
p_b_scale
,
index_t
KBatch
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_c
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
StrideScaleB
,
p_b_scale
,
KBatch
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
index_t
StrideScaleB
,
const
void
*
p_b_scale
,
index_t
KBatch
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
static_cast
<
CDataType
*>
(
p_c
),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
StrideScaleB
,
static_cast
<
const
BScaleDataType
*>
(
p_b_scale
),
KBatch
,
a_element_op
,
b_element_op
,
c_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
std
::
map
<
BlockGemmPipelineScheduler
,
std
::
string
>
BlkGemmPipelineSchedulerToString
{
{
BlockGemmPipelineScheduler
::
Intrawave
,
"Intrawave"
},
{
BlockGemmPipelineScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
BlockGemmPipelineVersion
,
std
::
string
>
BlkGemmPipelineVersionToString
{
{
BlockGemmPipelineVersion
::
v1
,
"v1"
},
{
BlockGemmPipelineVersion
::
v2
,
"v2"
},
{
BlockGemmPipelineVersion
::
v3
,
"v3"
},
{
BlockGemmPipelineVersion
::
v4
,
"v4"
},
{
BlockGemmPipelineVersion
::
v5
,
"v5"
}};
// clang-format off
str
<<
"DeviceGemmXdlUniversal"
<<
"<"
<<
getGemmSpecializationString
(
GemmSpec
)
<<
", "
<<
std
::
string
(
ALayout
::
name
)[
0
]
<<
std
::
string
(
BLayout
::
name
)[
0
]
<<
std
::
string
(
CLayout
::
name
)[
0
]
<<
">"
<<
" BlkSize: "
<<
BlockSize
<<
", "
<<
"BlkTile: "
<<
MPerBlock
<<
"x"
<<
NPerBlock
<<
"x"
<<
KPerBlock
<<
", "
<<
"WaveTile: "
<<
MPerXDL
<<
"x"
<<
NPerXDL
<<
", "
<<
"WaveMap: "
<<
MXdlPerWave
<<
"x"
<<
NXdlPerWave
<<
", "
<<
"VmemReadVec: "
<<
ABlockTransferSrcScalarPerVector
<<
"x"
<<
BBlockTransferSrcScalarPerVector
<<
", "
<<
"BlkGemmPipelineScheduler: "
<<
BlkGemmPipelineSchedulerToString
[
BlkGemmPipeSched
]
<<
", "
<<
"BlkGemmPipelineVersion: "
<<
BlkGemmPipelineVersionToString
[
BlkGemmPipelineVer
]
<<
", "
<<
"BlkGemmPipelinePrefetchStages: "
<<
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
View file @
dd0188b3
...
...
@@ -7,12 +7,246 @@
#include "ck/utility/math.hpp"
#include "ck/utility/math_v2.hpp"
#include "ck/utility/type_convert.hpp"
#include "ck/utility/amd_inline_asm.hpp"
#include <cassert>
namespace
ck
{
// Fast int4x4 to half8_t data type conversion based on paper
// [Who Says Elephants Can't Run: Bringing Large Scale MoE Models into Cloud Scale Production]
// (https://arxiv.org/abs/2211.10017) and implementation:
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h
__host__
__device__
inline
half4_t
pki4_to_half4
(
int
q
)
{
const
int
LO
=
0x000f000f
;
const
int
HI
=
0x00f000f0
;
const
int
EX
=
0x64006400
;
// Extract the two int4 at low bit and create two fp16 number.
int
lo
=
amd_assembly_and_or_b32
(
q
,
LO
,
EX
);
// Extract the two int4 at hight bit and create two fp16 number.
int
hi
=
amd_assembly_and_or_b32
(
q
,
HI
,
EX
);
const
int
SUB
=
0xE408E408
;
// half2 {-1032, -1032}
const
int
MUL
=
0x2c002c00
;
// half2 {1 / 16, 1 / 16}
const
int
ADD
=
0xd480d480
;
// half2 {-72, -72}
vector_type
<
half_t
,
4
>
res
;
// for two fp16 from lowbit, subtract 1032 to get correct fp16 value
res
.
template
AsType
<
half2_t
>()(
Number
<
0
>
{})
=
amd_assembly_pk_add_f16
(
bit_cast
<
half2_t
>
(
lo
),
bit_cast
<
half2_t
>
(
SUB
));
// for two fp16 from highbit, divide 16 and subtract 72 to get correct fp16 value
res
.
template
AsType
<
half2_t
>()(
Number
<
1
>
{})
=
amd_assembly_pk_fma_f16
(
bit_cast
<
half2_t
>
(
hi
),
bit_cast
<
half2_t
>
(
MUL
),
bit_cast
<
half2_t
>
(
ADD
));
return
res
.
template
AsType
<
half4_t
>()[
Number
<
0
>
{}];
}
__host__
__device__
inline
half4_t
pki4_to_half4_scale
(
int
q
,
const
ck
::
half2_t
&
scale
)
{
const
int
LO
=
0x000f000f
;
const
int
HI
=
0x00f000f0
;
const
int
EX
=
0x64006400
;
// Extract the two int4 at low bit and create two fp16 number.
int
lo
=
amd_assembly_and_or_b32
(
q
,
LO
,
EX
);
// Extract the two int4 at hight bit and create two fp16 number.
int
hi
=
amd_assembly_and_or_b32
(
q
,
HI
,
EX
);
const
int
SUB
=
0xE408E408
;
// half2 {-1032, -1032}
const
int
MUL
=
0x2c002c00
;
// half2 {1 / 16, 1 / 16}
const
int
ADD
=
0xd480d480
;
// half2 {-72, -72}
vector_type
<
half_t
,
4
>
res
;
res
.
template
AsType
<
half2_t
>()(
Number
<
0
>
{})
=
amd_assembly_pk_add_f16
(
bit_cast
<
half2_t
>
(
lo
),
bit_cast
<
half2_t
>
(
SUB
));
res
.
template
AsType
<
half2_t
>()(
Number
<
1
>
{})
=
amd_assembly_pk_fma_f16
(
bit_cast
<
half2_t
>
(
hi
),
bit_cast
<
half2_t
>
(
MUL
),
bit_cast
<
half2_t
>
(
ADD
));
asm
volatile
(
"v_pk_mul_f16 %0, %1, %2"
:
"=v"
(
res
.
template
AsType
<
half2_t
>()(
Number
<
0
>
{}))
:
"v"
(
res
.
template
AsType
<
half2_t
>()(
Number
<
0
>
{})),
"v"
(
scale
));
asm
volatile
(
"v_pk_mul_f16 %0, %1, %2"
:
"=v"
(
res
.
template
AsType
<
half2_t
>()(
Number
<
1
>
{}))
:
"v"
(
res
.
template
AsType
<
half2_t
>()(
Number
<
1
>
{})),
"v"
(
scale
));
return
res
.
template
AsType
<
half4_t
>()[
Number
<
0
>
{}];
}
__host__
__device__
inline
half2_t
pki4_to_half2
(
pk_i4_t
q
)
{
#if 1
uint8_t
x_u8
=
ck
::
bit_cast
<
uint8_t
>
(
q
);
uint32_t
i4s
=
((
x_u8
&
0x0f
)
<<
16
)
|
((
x_u8
&
0xf0
)
>>
4
);
const
int
EX
=
0x64006400
;
const
int
SUB
=
0xE408E408
;
//-8
int
lo
=
i4s
|
EX
;
return
amd_assembly_pk_add_f16
(
bit_cast
<
half2_t
>
(
lo
),
bit_cast
<
half2_t
>
(
SUB
));
#else
uint8_t
x_u8
=
ck
::
bit_cast
<
uint8_t
>
(
q
);
vector_type
<
half_t
,
2
>
res
;
half_t
x_h
=
(
x_u8
&
0x0f
)
-
8
;
half_t
x_l
=
((
x_u8
&
0xf0
)
>>
4
)
-
8
;
res
.
template
AsType
<
half_t
>()(
Number
<
0
>
{})
=
x_l
;
res
.
template
AsType
<
half_t
>()(
Number
<
1
>
{})
=
x_h
;
return
res
.
template
AsType
<
half2_t
>()[
Number
<
0
>
{}];
#endif
}
__host__
__device__
inline
bhalf4_t
pki4_to_bhalf4
(
int
q
)
{
uint32_t
i8s
=
(
q
&
0xf
)
|
((
q
&
0xf0
)
<<
4
)
|
((
q
&
0xf00
)
<<
8
)
|
((
q
&
0xf000
)
<<
12
);
static
constexpr
uint32_t
fp32_base
=
0x4B000000
;
float
fp32_intermediates
[
4
];
uint32_t
*
fp32_intermediates_casted
=
reinterpret_cast
<
uint32_t
*>
(
fp32_intermediates
);
fp32_intermediates_casted
[
0
]
=
__byte_perm
(
i8s
,
fp32_base
,
0x7650
);
fp32_intermediates_casted
[
1
]
=
__byte_perm
(
i8s
,
fp32_base
,
0x7651
);
fp32_intermediates_casted
[
2
]
=
__byte_perm
(
i8s
,
fp32_base
,
0x7652
);
fp32_intermediates_casted
[
3
]
=
__byte_perm
(
i8s
,
fp32_base
,
0x7653
);
fp32_intermediates
[
0
]
-=
8388616.
f
;
fp32_intermediates
[
1
]
-=
8388616.
f
;
fp32_intermediates
[
2
]
-=
8388616.
f
;
fp32_intermediates
[
3
]
-=
8388616.
f
;
vector_type
<
bhalf_t
,
4
>
res
;
res
.
template
AsType
<
bhalf2_t
>()(
Number
<
0
>
{})
=
bit_cast
<
bhalf2_t
>
(
__byte_perm
(
fp32_intermediates_casted
[
1
],
fp32_intermediates_casted
[
0
],
0x7632
));
res
.
template
AsType
<
bhalf2_t
>()(
Number
<
1
>
{})
=
bit_cast
<
bhalf2_t
>
(
__byte_perm
(
fp32_intermediates_casted
[
3
],
fp32_intermediates_casted
[
2
],
0x7632
));
return
res
.
template
AsType
<
bhalf4_t
>()[
Number
<
0
>
{}];
}
__host__
__device__
inline
bhalf2_t
pki4_to_bhalf2
(
pk_i4_t
q
)
{
uint8_t
x_u8
=
ck
::
bit_cast
<
uint8_t
>
(
q
);
float
x_h
=
((
x_u8
&
0x0f
)
>>
0
)
-
8.
f
;
float
x_l
=
((
x_u8
&
0xf0
)
>>
4
)
-
8.
f
;
vector_type
<
bhalf_t
,
2
>
res
;
res
.
template
AsType
<
bhalf_t
>()(
Number
<
0
>
{})
=
type_convert
<
bhalf_t
>
(
x_l
);
res
.
template
AsType
<
bhalf_t
>()(
Number
<
1
>
{})
=
type_convert
<
bhalf_t
>
(
x_h
);
return
res
.
template
AsType
<
bhalf2_t
>()[
Number
<
0
>
{}];
}
namespace
tensor_operation
{
namespace
element_wise
{
struct
PassThroughPack8
{
template
<
typename
Y
,
typename
X
>
__host__
__device__
void
operator
()(
Y
&
y
,
const
X
&
x
)
const
;
__host__
__device__
constexpr
void
operator
()(
ck
::
half8_t
&
y
,
const
ck
::
pk_i4x4_t
&
x
)
const
{
#if 1
vector_type
<
half_t
,
8
>
result
;
result
.
template
AsType
<
half4_t
>()(
Number
<
0
>
{})
=
pki4_to_half4
(
bit_cast
<
int
>
(
x
));
result
.
template
AsType
<
half4_t
>()(
Number
<
1
>
{})
=
pki4_to_half4
(
bit_cast
<
int
>
(
x
)
>>
8
);
y
=
result
.
template
AsType
<
half8_t
>()[
Number
<
0
>
{}];
#else
vector_type
<
half_t
,
8
>
dst
;
vector_type
<
pk_i4_t
,
4
>
src
{
x
};
dst
.
template
AsType
<
half2_t
>()(
Number
<
0
>
{})
=
pki4_to_half2
(
src
.
template
AsType
<
pk_i4_t
>()[
Number
<
0
>
{}]);
dst
.
template
AsType
<
half2_t
>()(
Number
<
1
>
{})
=
pki4_to_half2
(
src
.
template
AsType
<
pk_i4_t
>()[
Number
<
1
>
{}]);
dst
.
template
AsType
<
half2_t
>()(
Number
<
2
>
{})
=
pki4_to_half2
(
src
.
template
AsType
<
pk_i4_t
>()[
Number
<
2
>
{}]);
dst
.
template
AsType
<
half2_t
>()(
Number
<
3
>
{})
=
pki4_to_half2
(
src
.
template
AsType
<
pk_i4_t
>()[
Number
<
3
>
{}]);
y
=
dst
.
template
AsType
<
half8_t
>()[
Number
<
0
>
{}];
#endif
}
__host__
__device__
constexpr
void
operator
()(
ck
::
bhalf8_t
&
y
,
const
ck
::
pk_i4x4_t
&
x
)
const
{
#if 1
vector_type
<
bhalf_t
,
8
>
result
;
result
.
template
AsType
<
bhalf4_t
>()(
Number
<
0
>
{})
=
pki4_to_bhalf4
(
bit_cast
<
int
>
(
x
));
result
.
template
AsType
<
bhalf4_t
>()(
Number
<
1
>
{})
=
pki4_to_bhalf4
(
bit_cast
<
int
>
(
x
)
>>
16
);
y
=
result
.
template
AsType
<
bhalf8_t
>()[
Number
<
0
>
{}];
#else
vector_type
<
bhalf_t
,
8
>
dst
;
vector_type
<
pk_i4_t
,
4
>
src
{
x
};
dst
.
template
AsType
<
bhalf2_t
>()(
Number
<
0
>
{})
=
pki4_to_bhalf2
(
src
.
template
AsType
<
pk_i4_t
>()[
Number
<
0
>
{}]);
dst
.
template
AsType
<
bhalf2_t
>()(
Number
<
1
>
{})
=
pki4_to_bhalf2
(
src
.
template
AsType
<
pk_i4_t
>()[
Number
<
1
>
{}]);
dst
.
template
AsType
<
bhalf2_t
>()(
Number
<
2
>
{})
=
pki4_to_bhalf2
(
src
.
template
AsType
<
pk_i4_t
>()[
Number
<
2
>
{}]);
dst
.
template
AsType
<
bhalf2_t
>()(
Number
<
3
>
{})
=
pki4_to_bhalf2
(
src
.
template
AsType
<
pk_i4_t
>()[
Number
<
3
>
{}]);
y
=
dst
.
template
AsType
<
bhalf8_t
>()[
Number
<
0
>
{}];
#endif
}
constexpr
const
static
bool
is_pack8_invocable
=
true
;
};
struct
DequantPack8
{
template
<
typename
Y
,
typename
X
,
typename
Z
>
__host__
__device__
void
operator
()(
Y
&
y
,
const
X
&
x
,
const
Z
&
z
)
const
;
__host__
__device__
constexpr
void
operator
()(
ck
::
half8_t
&
y
,
const
ck
::
pk_i4x4_t
&
x
,
const
ck
::
half2_t
&
z
)
const
{
#if 1
vector_type
<
half_t
,
8
>
result
;
result
.
template
AsType
<
half4_t
>()(
Number
<
0
>
{})
=
pki4_to_half4_scale
(
bit_cast
<
int
>
(
x
),
z
);
result
.
template
AsType
<
half4_t
>()(
Number
<
1
>
{})
=
pki4_to_half4_scale
(
bit_cast
<
int
>
(
x
)
>>
8
,
z
);
y
=
result
.
template
AsType
<
half8_t
>()[
Number
<
0
>
{}];
#else
vector_type
<
half_t
,
8
>
dst
;
vector_type
<
pk_i4_t
,
4
>
src
{
x
};
dst
.
template
AsType
<
half2_t
>()(
Number
<
0
>
{})
=
pki4_to_half2
(
src
.
template
AsType
<
pk_i4_t
>()[
Number
<
0
>
{}]);
dst
.
template
AsType
<
half2_t
>()(
Number
<
1
>
{})
=
pki4_to_half2
(
src
.
template
AsType
<
pk_i4_t
>()[
Number
<
1
>
{}]);
dst
.
template
AsType
<
half2_t
>()(
Number
<
2
>
{})
=
pki4_to_half2
(
src
.
template
AsType
<
pk_i4_t
>()[
Number
<
2
>
{}]);
dst
.
template
AsType
<
half2_t
>()(
Number
<
3
>
{})
=
pki4_to_half2
(
src
.
template
AsType
<
pk_i4_t
>()[
Number
<
3
>
{}]);
y
=
dst
.
template
AsType
<
half8_t
>()[
Number
<
0
>
{}];
#endif
}
constexpr
const
static
bool
is_pack8_invocable
=
true
;
};
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wnon-virtual-dtor"
struct
UnaryOpBase
...
...
@@ -49,6 +283,24 @@ struct PassThroughPack2
auto
t
=
type_convert
<
float2_t
>
(
x
);
y
=
type_convert
<
half2_t
>
(
t
);
}
__host__
__device__
constexpr
void
operator
()(
ck
::
half2_t
&
y
,
const
ck
::
pk_i4_t
&
x
)
const
{
#if 1
uint8_t
x_u8
=
ck
::
bit_cast
<
uint8_t
>
(
x
);
uint8_t
x_l
=
(
x_u8
&
0x0f
)
>>
0
;
uint8_t
x_h
=
(
x_u8
&
0xf0
)
>>
4
;
auto
l_f16
=
ck
::
type_convert
<
ck
::
half_t
>
(
x_l
);
auto
h_f16
=
ck
::
type_convert
<
ck
::
half_t
>
(
x_h
);
y
=
{
l_f16
,
h_f16
};
#else
uint32_t
t
=
ck
::
bit_cast
<
uint8_t
>
(
x
);
y
=
ck
::
bit_cast
<
half2_t
>
(
t
);
#endif
}
constexpr
const
static
bool
is_pack2_invocable
=
true
;
};
...
...
@@ -76,6 +328,12 @@ struct PassThrough final : public UnaryOpBase
template
<
typename
Y
,
typename
X
>
__host__
__device__
void
operator
()(
Y
&
y
,
const
X
&
x
)
const
;
template
<
>
__host__
__device__
void
operator
()
<
pk_i4_t
,
pk_i4_t
>
(
pk_i4_t
&
y
,
const
pk_i4_t
&
x
)
const
{
y
=
x
;
}
template
<
>
__host__
__device__
void
operator
()
<
float
,
double
>
(
float
&
y
,
const
double
&
x
)
const
{
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v3.hpp
View file @
dd0188b3
...
...
@@ -127,7 +127,9 @@ template <typename ALayout,
BlockGemmPipelineScheduler
BlkGemmPipeSched
=
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
BlkGemmPipelineVer
=
BlockGemmPipelineVersion
::
v4
,
typename
ComputeTypeA
=
CDataType
,
typename
ComputeTypeB
=
ComputeTypeA
>
typename
ComputeTypeB
=
ComputeTypeA
,
bool
PermuteA
=
false
,
bool
PermuteB
=
false
>
struct
GridwiseGemm_xdl_cshuffle_v3
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
...
...
@@ -151,6 +153,20 @@ struct GridwiseGemm_xdl_cshuffle_v3
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
static
constexpr
index_t
APackedSize
=
[]()
{
if
constexpr
(
is_same_v
<
remove_cvref_t
<
ADataType
>
,
pk_i4_t
>
)
return
2
;
else
return
1
;
}();
static
constexpr
index_t
BPackedSize
=
[]()
{
if
constexpr
(
is_same_v
<
remove_cvref_t
<
BDataType
>
,
pk_i4_t
>
)
return
2
;
else
return
1
;
}();
__host__
static
auto
CalculateGridSize
(
index_t
M
,
index_t
N
,
index_t
KBatch
)
{
return
std
::
make_tuple
(
Block2CTileMap
::
CalculateGridSize
(
M
,
N
),
1
,
KBatch
);
...
...
@@ -319,6 +335,10 @@ struct GridwiseGemm_xdl_cshuffle_v3
using
GemmSpecialization
=
tensor_operation
::
device
::
GemmSpecialization
;
static_assert
(
!
(
is_same_v
<
remove_cvref_t
<
ADataType
>
,
pk_i4_t
>
&&
GemmSpec
!=
GemmSpecialization
::
Default
),
"pk_i4_t does not support padding"
);
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
...
...
@@ -373,15 +393,39 @@ struct GridwiseGemm_xdl_cshuffle_v3
}
else
{
// not pad N or K
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
if
constexpr
(
!
PermuteB
)
{
// not pad N or K
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
{
// Pre-shuffled Weight
// BGlobal[K / KPerBlock, N, KPerBlock / K1, K1] -> BTile[K / K1, N, K1]
constexpr
index_t
BK01
=
KPerBlock
/
BK1Value
;
const
index_t
BK0_
=
StrideB
/
BK1Value
;
const
index_t
BK00
=
BK0_
/
BK01
;
const
auto
b_grid_desc_bk00_n_bk01_bk1_permute
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
BK00
,
N
,
BK01
,
BK1Value
));
const
auto
b_grid_desc_bk0_n_bk1_permute
=
transform_tensor_descriptor
(
b_grid_desc_bk00_n_bk01_bk1_permute
,
make_tuple
(
make_merge_transform
(
make_tuple
(
BK00
,
BK01
)),
make_pass_through_transform
(
make_tuple
(
N
)),
make_pass_through_transform
(
BK1Value
)),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
b_grid_desc_bk0_n_bk1_permute
;
}
}
}
...
...
@@ -572,7 +616,7 @@ struct GridwiseGemm_xdl_cshuffle_v3
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
a_k_split_offset
=
blockIdx
.
z
*
karg
.
KRead
;
a_k_split_offset
=
blockIdx
.
z
*
karg
.
KRead
/
APackedSize
;
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
...
...
@@ -585,7 +629,15 @@ struct GridwiseGemm_xdl_cshuffle_v3
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>
)
{
b_k_split_offset
=
blockIdx
.
z
*
karg
.
KRead
;
if
constexpr
(
!
PermuteB
)
{
b_k_split_offset
=
blockIdx
.
z
*
karg
.
KRead
/
BPackedSize
;
}
else
{
const
int
k0_offset
=
karg
.
KRead
*
karg
.
N
;
b_k_split_offset
=
blockIdx
.
z
*
k0_offset
/
BPackedSize
;
}
}
if
(
blockIdx
.
z
<
static_cast
<
uint32_t
>
(
karg
.
KBatch
-
1
))
...
...
@@ -625,9 +677,8 @@ struct GridwiseGemm_xdl_cshuffle_v3
// in some cases.
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
constexpr
auto
MLdsLayer
=
32
*
4
/
KPerBlock
/
sizeof
(
ADataType
)
<
1
?
1
:
32
*
4
/
KPerBlock
/
sizeof
(
ADataType
);
constexpr
index_t
LdsSize
=
32
*
4
/
KPerBlock
/
sizeof
(
ADataType
)
/
APackedSize
;
constexpr
auto
MLdsLayer
=
LdsSize
<
1
?
1
:
LdsSize
;
constexpr
auto
a_lds_block_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
AK0Number
*
Number
<
MLdsLayer
>
{},
Number
<
MPerBlock
/
MLdsLayer
>
{},
AK1Number
),
...
...
@@ -761,10 +812,8 @@ struct GridwiseGemm_xdl_cshuffle_v3
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
// NLdsLayer * K0 as logical Bank
constexpr
auto
NLdsLayer
=
32
*
4
/
KPerBlock
/
sizeof
(
BDataType
)
<
1
?
1
:
32
*
4
/
KPerBlock
/
sizeof
(
BDataType
);
;
constexpr
index_t
LdsSize
=
32
*
4
/
KPerBlock
/
sizeof
(
BDataType
)
/
BPackedSize
;
constexpr
index_t
NLdsLayer
=
LdsSize
<
1
?
1
:
LdsSize
;
constexpr
auto
b_lds_block_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
BK0Number
*
Number
<
NLdsLayer
>
{},
Number
<
NPerBlock
/
NLdsLayer
>
{},
BK1Number
),
...
...
@@ -946,8 +995,8 @@ struct GridwiseGemm_xdl_cshuffle_v3
constexpr
auto
c_block_size
=
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
();
return
math
::
max
((
a_block_space_size_aligned
*
sizeof
(
ADataType
)
+
b_block_space_size_aligned
*
sizeof
(
BDataType
)),
return
math
::
max
((
a_block_space_size_aligned
*
sizeof
(
ADataType
)
/
APackedSize
+
b_block_space_size_aligned
*
sizeof
(
BDataType
)
/
BPackedSize
),
c_block_size
*
sizeof
(
CShuffleDataType
));
}
...
...
@@ -1312,8 +1361,9 @@ struct GridwiseGemm_xdl_cshuffle_v3
static_cast
<
ADataType
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
auto
b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
BDataType
*>
(
p_shared
)
+
a_block_space_size_aligned
*
sizeof
(
ADataType
)
/
sizeof
(
BDataType
),
reinterpret_cast
<
BDataType
*>
(
static_cast
<
char
*>
(
p_shared
)
+
a_block_space_size_aligned
*
sizeof
(
ADataType
)
/
APackedSize
),
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
AK1Number
,
0
,
0
);
...
...
@@ -1706,16 +1756,16 @@ struct GridwiseGemm_xdl_cshuffle_v3
static_cast
<
ADataType
*>
(
p_shared_0
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
auto
b_block_buf_ping
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static
_cast
<
BDataType
*>
(
p_shared_0
)
+
a_block_space_size_aligned
*
sizeof
(
ADataType
)
/
sizeof
(
BDataType
),
bit
_cast
<
BDataType
*>
(
static_cast
<
char
*>
(
p_shared_0
)
+
a_block_space_size_aligned
*
sizeof
(
ADataType
)),
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
auto
a_block_buf_pong
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
ADataType
*>
(
p_shared_1
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
auto
b_block_buf_pong
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static
_cast
<
BDataType
*>
(
p_shared_1
)
+
a_block_space_size_aligned
*
sizeof
(
ADataType
)
/
sizeof
(
BDataType
),
bit
_cast
<
BDataType
*>
(
bit_cast
<
char
*>
(
p_shared_1
)
+
a_block_space_size_aligned
*
sizeof
(
ADataType
)),
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
auto
a_block_bufs
=
make_tuple
(
a_block_buf_ping
,
a_block_buf_pong
);
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v3_b_scale.hpp
0 → 100644
View file @
dd0188b3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_scale_selector.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/utility/common_header.hpp"
namespace
ck
{
// Currently we do not have a elegant way to put single lds buffer & double lds buffer pipe in same
// kernel function Blockers:
// 1. Two separted declaration of __shared__ pointer is the key to make sure data access operate on
// two lds chunks.
// 2. Occupied __shared__ won't release until whole shader end, a.k.a AB and C may not use same lds
// buffer when we declare __shared__ inside blkgemmpipe
template
<
typename
GridwiseGemm
,
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
index_t
MinimumOccupancy
=
1
,
TailNumber
TailNum
=
TailNumber
::
Full
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
MinimumOccupancy
)
#endif
// __attribute__((amdgpu_waves_per_eu(1, 1)))
kernel_gemm_xdl_cshuffle_v3
(
typename
GridwiseGemm
::
Argument
karg
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
auto
splitk_batch_offset
=
typename
GridwiseGemm
::
SplitKBatchOffset
(
karg
);
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
,
CGlobalMemoryDataOperation
,
TailNum
>(
karg
.
p_a_grid
+
splitk_batch_offset
.
a_k_split_offset
,
karg
.
p_b_grid
+
splitk_batch_offset
.
b_k_split_offset
,
karg
.
p_c_grid
+
splitk_batch_offset
.
c_reduce_offset
,
karg
.
p_b_scale_grid
+
splitk_batch_offset
.
scale_k_split_offset
,
p_shared
,
karg
);
#else
ignore
=
karg
;
#endif // end of if (defined(__gfx9__))
}
template
<
typename
GridwiseGemm
,
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
index_t
MinimumOccupancy
=
1
,
TailNumber
TailNum
=
TailNumber
::
Full
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
MinimumOccupancy
)
#endif
// __attribute__((amdgpu_waves_per_eu(1, 1)))
kernel_gemm_xdl_cshuffle_v3_2lds
(
typename
GridwiseGemm
::
Argument
karg
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
// Pass two lds pointer is the key to tell compiler that ds_read/write
// operate on different lds chunk at same time without order dependecy
__shared__
char
p_shared_0
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
__shared__
char
p_shared_1
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
auto
splitk_batch_offset
=
typename
GridwiseGemm
::
SplitKBatchOffset
(
karg
);
GridwiseGemm
::
template
Run_2Lds
<
HasMainKBlockLoop
,
CGlobalMemoryDataOperation
,
TailNum
>(
karg
.
p_a_grid
+
splitk_batch_offset
.
a_k_split_offset
,
karg
.
p_b_grid
+
splitk_batch_offset
.
b_k_split_offset
,
karg
.
p_c_grid
+
splitk_batch_offset
.
c_reduce_offset
,
karg
.
p_b_scale_grid
+
splitk_batch_offset
.
scale_k_split_offset
,
p_shared_0
,
p_shared_1
,
karg
);
#else
ignore
=
karg
;
#endif // end of if (defined(__gfx9__))
}
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
,
index_t
BlockSize
,
index_t
ScaleBlockN
,
// scale N
index_t
ScaleBlockK
,
// scale K
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1Value
,
index_t
BK1Value
,
index_t
MPerXdl
,
index_t
NPerXdl
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
AThreadTransferSrcResetCoordinateAfterRun
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BThreadTransferSrcResetCoordinateAfterRun
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
BlockGemmPipelineScheduler
BlkGemmPipeSched
=
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
BlkGemmPipelineVer
=
BlockGemmPipelineVersion
::
v4
,
typename
ComputeTypeA
=
CDataType
,
typename
ComputeTypeB
=
ComputeTypeA
,
bool
PermuteA
=
false
,
bool
PermuteB
=
false
>
struct
GridwiseGemm_xdl_cshuffle_v3
{
using
BScaleType
=
ck
::
half_t
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
// K1 should be Number<...>
static
constexpr
auto
AK0Number
=
Number
<
KPerBlock
/
AK1Value
>
{};
static
constexpr
auto
BK0Number
=
Number
<
KPerBlock
/
BK1Value
>
{};
static
constexpr
auto
AK1Number
=
Number
<
AK1Value
>
{};
static
constexpr
auto
BK1Number
=
Number
<
BK1Value
>
{};
static
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1Number
,
BK1Number
),
MfmaSelector
<
ComputeTypeA
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
k_per_blk
);
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
static
constexpr
index_t
APackedSize
=
[]()
{
if
constexpr
(
is_same_v
<
remove_cvref_t
<
ADataType
>
,
pk_i4_t
>
)
return
2
;
else
return
1
;
}();
static
constexpr
index_t
BPackedSize
=
[]()
{
if
constexpr
(
is_same_v
<
remove_cvref_t
<
BDataType
>
,
pk_i4_t
>
)
return
2
;
else
return
1
;
}();
__host__
static
auto
CalculateGridSize
(
index_t
M
,
index_t
N
,
index_t
KBatch
)
{
return
std
::
make_tuple
(
Block2CTileMap
::
CalculateGridSize
(
M
,
N
),
1
,
KBatch
);
}
__host__
static
auto
CalculateMPadded
(
index_t
M
)
{
return
math
::
integer_least_multiple
(
M
,
MPerBlock
);
}
__host__
static
auto
CalculateNPadded
(
index_t
N
)
{
return
math
::
integer_least_multiple
(
N
,
NPerBlock
);
}
__host__
static
auto
CalculateKPadded
(
index_t
K
)
{
return
math
::
integer_divide_ceil
(
K
,
KPerBlock
)
*
KPerBlock
;
}
__host__
static
auto
CalculateAK0Padded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
(
KPerBlock
/
AK1Value
);
}
__host__
static
auto
CalculateBK0Padded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
(
KPerBlock
/
BK1Value
);
}
__host__
static
auto
CalculateKPadded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K_t
=
K_Batch
*
KPerBlock
;
return
(
K
+
K_t
-
1
)
/
K_t
*
KPerBlock
;
}
__host__
static
auto
CalculateKRead
(
index_t
K
,
index_t
K_Batch
=
1
)
{
constexpr
auto
KReadVec
=
math
::
lcm
(
AK1Number
,
BK1Number
);
auto
K_t
=
K_Batch
*
KReadVec
;
return
(
K
+
K_t
-
1
)
/
K_t
*
KReadVec
;
}
__host__
static
auto
CalculateMBlock
(
index_t
M
)
{
return
math
::
integer_divide_ceil
(
M
,
MPerBlock
);
}
__host__
static
auto
CalculateNBlock
(
index_t
N
)
{
return
math
::
integer_divide_ceil
(
N
,
NPerBlock
);
}
template
<
index_t
MNXdlPerWave
,
index_t
MNWaves
,
index_t
MNPerXdl
,
typename
TileDesc_K0_MN_K1
>
__host__
__device__
static
constexpr
auto
MakeGemmMmaTileDescriptor
(
const
TileDesc_K0_MN_K1
&
)
{
constexpr
index_t
K0
=
TileDesc_K0_MN_K1
{}.
GetLength
(
Number
<
0
>
{});
constexpr
index_t
K1
=
TileDesc_K0_MN_K1
{}.
GetLength
(
Number
<
2
>
{});
return
transform_tensor_descriptor
(
TileDesc_K0_MN_K1
{},
make_tuple
(
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
K0
>
{},
Number
<
K1
>
{})),
make_unmerge_transform
(
make_tuple
(
Number
<
MNXdlPerWave
>
{},
Number
<
MNWaves
>
{},
Number
<
MNPerXdl
>
{}))),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
3
>
{},
Sequence
<
0
,
1
,
2
>
{}));
}
__host__
__device__
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
index_t
M
,
index_t
MPad
,
index_t
K
,
index_t
KPad
,
index_t
StrideA
,
index_t
AK0
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
I1
,
StrideA
));
}
}();
using
GemmSpecialization
=
tensor_operation
::
device
::
GemmSpecialization
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both M and K
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
MPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad M, but not K
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_right_pad_transform
(
M
,
MPad
-
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad K, but not M
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_pass_through_transform
(
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
{
// not pad M or K
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1Value
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
}
__host__
__device__
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
index_t
K
,
index_t
KPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideB
,
index_t
BK0
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
K
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
K
),
make_tuple
(
StrideB
,
I1
));
}
}();
using
GemmSpecialization
=
tensor_operation
::
device
::
GemmSpecialization
;
static_assert
(
!
(
is_same_v
<
remove_cvref_t
<
ADataType
>
,
pk_i4_t
>
&&
GemmSpec
!=
GemmSpecialization
::
Default
),
"pk_i4_t does not support padding"
);
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both N and K
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_right_pad_transform
(
N
,
NPad
-
N
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
NPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad N, but not K
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad K, but not N
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_pass_through_transform
(
N
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
{
if
constexpr
(
!
PermuteB
)
{
// not pad N or K
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1Value
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
{
// Weight Tile Permute
constexpr
index_t
BK01
=
KPerBlock
/
BK1Value
;
// const index_t BK00 = BK0 / BK01;
const
index_t
BK0_
=
StrideB
/
BK1Value
;
const
index_t
BK00
=
BK0_
/
BK01
;
const
auto
b_grid_desc_bk00_n_bk01_bk1_permute
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
BK00
,
N
,
BK01
,
BK1Value
));
const
auto
b_grid_desc_bk0_n_bk1_permute
=
transform_tensor_descriptor
(
b_grid_desc_bk00_n_bk01_bk1_permute
,
make_tuple
(
make_merge_transform
(
make_tuple
(
BK00
,
BK01
)),
make_pass_through_transform
(
make_tuple
(
N
)),
make_pass_through_transform
(
BK1Value
)),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
b_grid_desc_bk0_n_bk1_permute
;
}
}
}
template
<
typename
ABlockDesc_AK0_M_AK1
>
__host__
__device__
static
constexpr
auto
MakeAMmaTileDescriptor_M0_M1_M2_K
(
const
ABlockDesc_AK0_M_AK1
&
)
{
constexpr
index_t
MWaves
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
return
MakeGemmMmaTileDescriptor
<
MXdlPerWave
,
MWaves
,
MPerXdl
>
(
ABlockDesc_AK0_M_AK1
{});
}
template
<
typename
BBlockDesc_BK0_N_BK1
>
__host__
__device__
static
constexpr
auto
MakeBMmaTileDescriptor_N0_N1_N2_K
(
const
BBlockDesc_BK0_N_BK1
&
)
{
constexpr
index_t
NWaves
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
return
MakeGemmMmaTileDescriptor
<
NXdlPerWave
,
NWaves
,
NPerXdl
>
(
BBlockDesc_BK0_N_BK1
{});
}
__host__
__device__
static
auto
MakeCGridDescriptor_M_N
(
index_t
M
,
index_t
MPad
,
index_t
N
,
index_t
NPad
,
index_t
StrideC
)
{
const
auto
c_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideC
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I1
,
StrideC
));
}
}();
// pad M and N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
#if 0
using GemmSpecialization = tensor_operation::device::GemmSpecialization;
if constexpr(GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad M and N
return transform_tensor_descriptor(c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(M, MPad - M),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad M, but not N
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(M, MPad - M), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad N, but not M
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_pass_through_transform(M), make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
// not pad M or N
return c_grid_desc_mraw_nraw;
}
#endif
}
struct
Problem
{
__host__
Problem
(
index_t
M_
,
index_t
N_
,
index_t
K_
,
index_t
StrideA_
,
index_t
StrideB_
,
index_t
StrideC_
,
index_t
StrideScaleB_
,
index_t
KBatch_
)
:
M
{
M_
},
N
{
N_
},
K
{
K_
},
StrideA
{
StrideA_
},
StrideB
{
StrideB_
},
StrideC
{
StrideC_
},
StrideScaleB
{
StrideScaleB_
},
KBatch
{
KBatch_
},
MPadded
{
CalculateMPadded
(
M_
)},
NPadded
{
CalculateNPadded
(
N_
)},
KRead
{
CalculateKRead
(
K_
,
KBatch_
)},
KPadded
{
CalculateKPadded
(
K_
,
KBatch_
)},
AK0
{
CalculateAK0Padded
(
K_
,
KBatch_
)},
BK0
{
CalculateBK0Padded
(
K_
,
KBatch_
)},
MBlock
{
CalculateMBlock
(
M_
)},
NBlock
{
CalculateNBlock
(
N_
)}
{
}
__host__
void
Print
()
const
{
std
::
cout
<<
"problem {"
<<
"M:"
<<
M
<<
", "
<<
"N:"
<<
N
<<
", "
<<
"K:"
<<
K
<<
", "
<<
"SA:"
<<
StrideA
<<
", "
<<
"SB:"
<<
StrideB
<<
", "
<<
"SC:"
<<
StrideC
<<
", "
<<
"SScaleB:"
<<
StrideScaleB
<<
", "
<<
"MP:"
<<
MPadded
<<
", "
<<
"NP:"
<<
NPadded
<<
", "
<<
"KRead:"
<<
KRead
<<
", "
<<
"KP:"
<<
KPadded
<<
", "
<<
"AK0:"
<<
AK0
<<
", "
<<
"BK0:"
<<
BK0
<<
", "
<<
"MBlock: "
<<
MBlock
<<
", "
<<
"NBlock: "
<<
NBlock
<<
"}"
<<
std
::
endl
;
}
index_t
M
;
index_t
N
;
index_t
K
;
index_t
StrideA
;
index_t
StrideB
;
index_t
StrideC
;
index_t
StrideScaleB
;
index_t
KBatch
;
index_t
MPadded
;
index_t
NPadded
;
index_t
KRead
;
index_t
KPadded
;
index_t
AK0
;
index_t
BK0
;
index_t
MBlock
;
index_t
NBlock
;
};
// Argument
struct
Argument
:
public
tensor_operation
::
device
::
BaseArgument
,
public
Problem
{
__host__
Argument
(
const
ADataType
*
p_a_grid_
,
const
BDataType
*
p_b_grid_
,
CDataType
*
p_c_grid_
,
index_t
M_
,
index_t
N_
,
index_t
K_
,
index_t
StrideA_
,
index_t
StrideB_
,
index_t
StrideC_
,
index_t
StrideScaleB_
,
const
BScaleType
*
p_b_scale_grid_
,
index_t
k_batch_
,
AElementwiseOperation
a_element_op_
,
BElementwiseOperation
b_element_op_
,
CElementwiseOperation
c_element_op_
,
bool
is_reduce_
=
false
)
:
Problem
{
M_
,
N_
,
K_
,
StrideA_
,
StrideB_
,
StrideC_
,
StrideScaleB_
,
k_batch_
},
p_a_grid
{
p_a_grid_
},
p_b_grid
{
p_b_grid_
},
p_c_grid
{
p_c_grid_
},
p_b_scale_grid
{
p_b_scale_grid_
},
a_element_op
{
a_element_op_
},
b_element_op
{
b_element_op_
},
c_element_op
{
c_element_op_
},
is_reduce
(
is_reduce_
)
{
}
__host__
__device__
inline
bool
IsReduceAdd
()
const
{
return
(
Problem
::
KBatch
>
1
)
&&
is_reduce
;
}
__host__
__device__
inline
bool
IsAtomicAdd
()
const
{
return
(
Problem
::
KBatch
>
1
)
&&
(
!
is_reduce
);
}
const
ADataType
*
p_a_grid
;
const
BDataType
*
p_b_grid
;
CDataType
*
p_c_grid
;
const
BScaleType
*
p_b_scale_grid
;
const
AElementwiseOperation
a_element_op
;
const
BElementwiseOperation
b_element_op
;
const
CElementwiseOperation
c_element_op
;
bool
is_reduce
;
};
struct
SplitKBatchOffset
{
__device__
SplitKBatchOffset
(
Argument
&
karg
)
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
a_k_split_offset
=
blockIdx
.
z
*
karg
.
KRead
/
APackedSize
;
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
a_k_split_offset
=
blockIdx
.
z
*
karg
.
KRead
*
karg
.
StrideA
;
}
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>
)
{
b_k_split_offset
=
blockIdx
.
z
*
karg
.
KRead
*
karg
.
StrideB
;
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>
)
{
if
constexpr
(
!
PermuteB
)
{
b_k_split_offset
=
blockIdx
.
z
*
karg
.
KRead
/
BPackedSize
;
}
else
{
const
int
k0_offset
=
karg
.
KRead
*
karg
.
N
;
b_k_split_offset
=
blockIdx
.
z
*
k0_offset
/
BPackedSize
;
}
}
// Calculate B scale offset
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>
)
{
scale_k_split_offset
=
blockIdx
.
z
*
(
karg
.
KRead
/
ScaleBlockK
)
*
karg
.
StrideB
;
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>
)
{
scale_k_split_offset
=
blockIdx
.
z
*
(
karg
.
KRead
/
ScaleBlockK
);
}
if
(
blockIdx
.
z
<
static_cast
<
uint32_t
>
(
karg
.
KBatch
-
1
))
{
karg
.
K
=
karg
.
KRead
;
}
else
{
karg
.
K
=
karg
.
K
-
karg
.
KRead
*
(
karg
.
KBatch
-
1
);
}
if
(
karg
.
IsReduceAdd
())
{
c_reduce_offset
=
blockIdx
.
z
*
karg
.
M
*
karg
.
N
;
}
else
{
c_reduce_offset
=
0
;
}
}
index_t
a_k_split_offset
;
index_t
b_k_split_offset
;
index_t
scale_k_split_offset
;
// New member for scale matrix offset
index_t
c_reduce_offset
;
};
__device__
static
constexpr
auto
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()
{
// A matrix in LDS memory, dst of blockwise copy
if
constexpr
(
ABlockLdsExtraM
||
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v4
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
AK0Number
,
Number
<
MPerBlock
>
{},
AK1Number
),
make_tuple
(
AK1Number
,
Number
<
KPerBlock
+
ABlockLdsExtraM
>
{},
I1
));
}
// xor tensor transformation request more unnecessary vgpr usage, would cause register spill
// in some cases.
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
constexpr
index_t
LdsSize
=
32
*
4
/
KPerBlock
/
sizeof
(
ADataType
)
/
APackedSize
;
constexpr
auto
MLdsLayer
=
LdsSize
<
1
?
1
:
LdsSize
;
constexpr
auto
a_lds_block_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
AK0Number
*
Number
<
MLdsLayer
>
{},
Number
<
MPerBlock
/
MLdsLayer
>
{},
AK1Number
),
make_tuple
(
AK1Number
,
Number
<
KPerBlock
*
MLdsLayer
>
{},
I1
));
constexpr
auto
a_lds_block_desc_permuted
=
transform_tensor_descriptor
(
a_lds_block_desc
,
make_tuple
(
make_xor_with_modulo_transform
(
make_tuple
(
Number
<
MPerBlock
/
MLdsLayer
>
{},
Number
<
AK0Number
*
MLdsLayer
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
1
,
0
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
1
,
0
>
{},
Sequence
<
2
>
{}));
constexpr
auto
a_lds_block_desc_ak0_mldslayer_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_permuted
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0Number
,
Number
<
MLdsLayer
>
{})),
make_pass_through_transform
(
Number
<
MPerBlock
/
MLdsLayer
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{},
Sequence
<
3
>
{}));
constexpr
auto
a_lds_block_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_ak0_mldslayer_m_ak1
,
make_tuple
(
make_pass_through_transform
(
AK0Number
),
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
MPerBlock
/
MLdsLayer
>
{},
Number
<
MLdsLayer
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
a_lds_block_desc_ak0_m_ak1
;
}
else
// ColumnMajor A
{
// kfold and mpair dimension is not always required.
// more dimension in merge_transform increase the difficulty of generating immarg offset
// for compiler.
constexpr
auto
M0
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I1
);
constexpr
auto
M1
=
MPerBlock
/
M0
;
constexpr
auto
KThreadWrite
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I0
);
constexpr
auto
K0PerThreadWrite
=
AK0Number
/
KThreadWrite
;
constexpr
auto
KThreadRead
=
64
/
MPerXdl
;
constexpr
auto
K0PerThreadRead
=
AK0Number
/
KThreadRead
;
constexpr
auto
kfold
=
(
AK1Number
*
M0
*
sizeof
(
ADataType
)
>
128
)
?
1
:
128
/
(
AK1Number
*
M0
*
sizeof
(
ADataType
));
constexpr
auto
KThreadReadPerm
=
(
kfold
*
K0PerThreadWrite
/
K0PerThreadRead
)
>
1
?
KThreadRead
/
(
kfold
*
K0PerThreadWrite
/
K0PerThreadRead
)
:
KThreadRead
;
// 1<=mpair<=n0
constexpr
auto
mpair
=
(
AK1Number
*
MPerXdl
*
sizeof
(
ADataType
)
>
128
)
?
1
:
((
128
/
(
AK1Number
*
MPerXdl
*
sizeof
(
ADataType
)))
>
M0
?
M0
:
128
/
(
AK1Number
*
MPerXdl
*
sizeof
(
ADataType
)));
constexpr
auto
a_lds_block_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{},
Number
<
K0PerThreadWrite
>
{},
Number
<
KThreadReadPerm
*
M1
>
{},
Number
<
kfold
*
M0
/
mpair
>
{},
Number
<
mpair
>
{},
AK1Number
));
constexpr
auto
a_lds_block_desc_permuted
=
transform_tensor_descriptor
(
a_lds_block_desc
,
make_tuple
(
make_pass_through_transform
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{}),
make_pass_through_transform
(
Number
<
K0PerThreadWrite
>
{}),
make_xor_with_modulo_transform
(
make_tuple
(
Number
<
KThreadReadPerm
*
M1
>
{},
Number
<
kfold
*
M0
/
mpair
>
{})),
make_pass_through_transform
(
Number
<
mpair
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}));
constexpr
auto
a_lds_block_desc_unmerged
=
transform_tensor_descriptor
(
a_lds_block_desc_permuted
,
make_tuple
(
make_pass_through_transform
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{}),
make_pass_through_transform
(
Number
<
K0PerThreadWrite
>
{}),
make_unmerge_transform
(
make_tuple
(
Number
<
KThreadReadPerm
>
{},
Number
<
M1
>
{})),
make_unmerge_transform
(
make_tuple
(
Number
<
kfold
>
{},
Number
<
M0
/
mpair
>
{})),
make_pass_through_transform
(
Number
<
mpair
>
{}),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
0
,
3
>
{},
Sequence
<
4
,
5
>
{},
Sequence
<
6
>
{},
Sequence
<
7
>
{}));
constexpr
auto
a_lds_block_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_lds_block_desc_unmerged
,
make_tuple
(
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
KThreadReadPerm
>
{},
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{},
Number
<
kfold
>
{},
Number
<
K0PerThreadWrite
>
{})),
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
M0
/
mpair
>
{},
Number
<
mpair
>
{},
Number
<
M1
>
{})),
make_pass_through_transform
(
AK1Number
)),
make_tuple
(
Sequence
<
0
,
1
,
4
,
2
>
{},
Sequence
<
5
,
6
,
3
>
{},
Sequence
<
7
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
a_lds_block_desc_ak0_m_ak1
;
}
}
__device__
static
constexpr
auto
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()
{
// B matrix in LDS memory, dst of blockwise copy
if
constexpr
(
BBlockLdsExtraN
||
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v4
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
BK0Number
,
Number
<
NPerBlock
>
{},
BK1Number
),
make_tuple
(
BK1Number
,
Number
<
KPerBlock
+
BBlockLdsExtraN
>
{},
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
// NLdsLayer * K0 as logical Bank
constexpr
index_t
LdsSize
=
32
*
4
/
KPerBlock
/
sizeof
(
BDataType
)
/
BPackedSize
;
constexpr
index_t
NLdsLayer
=
LdsSize
<
1
?
1
:
LdsSize
;
constexpr
auto
b_lds_block_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
BK0Number
*
Number
<
NLdsLayer
>
{},
Number
<
NPerBlock
/
NLdsLayer
>
{},
BK1Number
),
make_tuple
(
BK1Number
,
Number
<
KPerBlock
*
NLdsLayer
>
{},
I1
));
constexpr
auto
b_lds_block_desc_permuted
=
transform_tensor_descriptor
(
b_lds_block_desc
,
make_tuple
(
make_xor_with_modulo_transform
(
make_tuple
(
Number
<
NPerBlock
/
NLdsLayer
>
{},
Number
<
BK0Number
*
NLdsLayer
>
{})),
make_pass_through_transform
(
BK1Number
)),
make_tuple
(
Sequence
<
1
,
0
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
1
,
0
>
{},
Sequence
<
2
>
{}));
constexpr
auto
b_lds_block_desc_bk0_nldslayer_n_bk1
=
transform_tensor_descriptor
(
b_lds_block_desc_permuted
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0Number
,
Number
<
NLdsLayer
>
{})),
make_pass_through_transform
(
Number
<
NPerBlock
/
NLdsLayer
>
{}),
make_pass_through_transform
(
BK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{},
Sequence
<
3
>
{}));
constexpr
auto
b_lds_block_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_lds_block_desc_bk0_nldslayer_n_bk1
,
make_tuple
(
make_pass_through_transform
(
BK0Number
),
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
NPerBlock
/
NLdsLayer
>
{},
Number
<
NLdsLayer
>
{})),
make_pass_through_transform
(
BK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
b_lds_block_desc_bk0_n_bk1
;
}
else
// RowMajor B
{
constexpr
auto
N0
=
BBlockTransferThreadClusterLengths_BK0_N_BK1
{}.
At
(
I1
);
constexpr
auto
N1
=
NPerBlock
/
N0
;
constexpr
auto
KThreadWrite
=
BBlockTransferThreadClusterLengths_BK0_N_BK1
{}.
At
(
I0
);
constexpr
auto
K0PerThreadWrite
=
BK0Number
/
KThreadWrite
;
constexpr
auto
KThreadRead
=
64
/
NPerXdl
;
constexpr
auto
K0PerThreadRead
=
BK0Number
/
KThreadRead
;
constexpr
auto
kfold
=
(
BK1Number
*
N0
*
sizeof
(
BDataType
)
>
128
)
?
1
:
128
/
(
BK1Number
*
N0
*
sizeof
(
BDataType
));
constexpr
auto
KThreadReadPerm
=
(
kfold
*
K0PerThreadWrite
/
K0PerThreadRead
)
>
1
?
KThreadRead
/
(
kfold
*
K0PerThreadWrite
/
K0PerThreadRead
)
:
KThreadRead
;
// 1<=npair<=n0
constexpr
auto
npair
=
(
BK1Number
*
NPerXdl
*
sizeof
(
BDataType
)
>
128
)
?
1
:
((
128
/
(
BK1Number
*
NPerXdl
*
sizeof
(
BDataType
)))
>
N0
?
N0
:
128
/
(
BK1Number
*
NPerXdl
*
sizeof
(
BDataType
)));
constexpr
auto
b_lds_block_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{},
Number
<
K0PerThreadWrite
>
{},
Number
<
KThreadReadPerm
*
N1
>
{},
Number
<
kfold
*
N0
/
npair
>
{},
Number
<
npair
>
{},
BK1Number
));
constexpr
auto
b_lds_block_desc_permuted
=
transform_tensor_descriptor
(
b_lds_block_desc
,
make_tuple
(
make_pass_through_transform
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{}),
make_pass_through_transform
(
Number
<
K0PerThreadWrite
>
{}),
make_xor_with_modulo_transform
(
make_tuple
(
Number
<
KThreadReadPerm
*
N1
>
{},
Number
<
kfold
*
N0
/
npair
>
{})),
make_pass_through_transform
(
Number
<
npair
>
{}),
make_pass_through_transform
(
BK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}));
constexpr
auto
b_lds_block_desc_unmerged
=
transform_tensor_descriptor
(
b_lds_block_desc_permuted
,
make_tuple
(
make_pass_through_transform
(
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{}),
make_pass_through_transform
(
Number
<
K0PerThreadWrite
>
{}),
make_unmerge_transform
(
make_tuple
(
Number
<
KThreadReadPerm
>
{},
Number
<
N1
>
{})),
make_unmerge_transform
(
make_tuple
(
Number
<
kfold
>
{},
Number
<
N0
/
npair
>
{})),
make_pass_through_transform
(
Number
<
npair
>
{}),
make_pass_through_transform
(
BK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
0
,
3
>
{},
Sequence
<
4
,
5
>
{},
Sequence
<
6
>
{},
Sequence
<
7
>
{}));
constexpr
auto
b_lds_block_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_lds_block_desc_unmerged
,
make_tuple
(
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
KThreadReadPerm
>
{},
Number
<
KThreadWrite
/
kfold
/
KThreadReadPerm
>
{},
Number
<
kfold
>
{},
Number
<
K0PerThreadWrite
>
{})),
make_merge_transform_v3_division_mod
(
make_tuple
(
Number
<
N0
/
npair
>
{},
Number
<
npair
>
{},
Number
<
N1
>
{})),
make_pass_through_transform
(
BK1Number
)),
make_tuple
(
Sequence
<
0
,
1
,
4
,
2
>
{},
Sequence
<
5
,
6
,
3
>
{},
Sequence
<
7
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
return
b_lds_block_desc_bk0_n_bk1
;
}
}
__device__
static
constexpr
auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
()
{
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
>
{},
I1
,
Number
<
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
{}));
return
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
;
}
using
BlockwiseGemmPipe
=
remove_cvref_t
<
decltype
(
BlockGemmPipeline_Selector
<
BlkGemmPipelineVer
,
BlkGemmPipeSched
,
BlockSize
,
ADataType
,
BDataType
,
ComputeTypeA
,
AccDataType
,
decltype
(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()),
decltype
(
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()),
decltype
(
MakeAMmaTileDescriptor_M0_M1_M2_K
(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
())),
decltype
(
MakeBMmaTileDescriptor_N0_N1_N2_K
(
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
())),
ABlockTransferSrcScalarPerVector
,
BBlockTransferSrcScalarPerVector
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
MPerXdl
,
NPerXdl
,
MXdlPerWave
,
NXdlPerWave
,
KPack
>
())
>
;
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1Number
,
BK1Number
);
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
constexpr
auto
b_block_space_size_aligned
=
math
::
integer_least_multiple
(
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
(),
max_lds_align
);
// LDS allocation for C shuffle in LDS
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
constexpr
auto
c_block_size
=
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
();
return
math
::
max
((
a_block_space_size_aligned
*
sizeof
(
ADataType
)
/
APackedSize
+
b_block_space_size_aligned
*
sizeof
(
BDataType
)
/
BPackedSize
),
c_block_size
*
sizeof
(
CShuffleDataType
));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
__host__
static
constexpr
bool
CheckValidity
(
const
Argument
&
karg
)
{
static_assert
((
MPerBlock
%
(
MPerXdl
*
MXdlPerWave
)
==
0
)
&&
(
NPerBlock
%
(
NXdlPerWave
*
NPerXdl
))
==
0
,
"Invalid tuning param!"
);
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
&&
!
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
))
{
if
(
!
(
karg
.
M
%
MPerBlock
==
0
))
{
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
"Arg M value is not a multiple of MPerBlock! M: "
<<
karg
.
M
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
}
return
false
;
}
}
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
&&
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
))
{
if
(
!
(
karg
.
N
%
NPerBlock
==
0
))
{
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
"Arg N value is not a multiple of NPerBlock! N: "
<<
karg
.
N
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
}
return
false
;
}
}
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
KPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
))
{
auto
K_t
=
karg
.
KBatch
*
KPerBlock
;
if
(
!
(
karg
.
K
%
K_t
==
0
))
{
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
"Arg K value is not a multiple of K_Batch * K0PerBlock * K1! K: "
<<
karg
.
K
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
}
return
false
;
}
}
else
{
constexpr
auto
KReadVec
=
math
::
lcm
(
AK1Number
,
BK1Number
);
auto
K_t
=
karg
.
KBatch
*
KReadVec
;
auto
KReadPadSplited
=
math
::
integer_divide_ceil
(
karg
.
K
,
K_t
)
*
KReadVec
;
if
((
KReadPadSplited
*
(
karg
.
KBatch
-
1
))
>=
karg
.
K
)
{
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
if
(
karg
.
K
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
"Arg K ("
<<
karg
.
K
<<
") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<<
ABlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
}
return
false
;
}
}
else
{
if
(
karg
.
M
%
ABlockTransferSrcScalarPerVector
!=
0
)
{
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
"Arg M ("
<<
karg
.
M
<<
") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<<
ABlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
}
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
if
(
karg
.
N
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
"Arg N ("
<<
karg
.
N
<<
") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<<
BBlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
}
return
false
;
}
}
else
{
if
(
karg
.
K
%
BBlockTransferSrcScalarPerVector
!=
0
)
{
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
"Arg K ("
<<
karg
.
K
<<
") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<<
BBlockTransferSrcScalarPerVector
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
}
return
false
;
}
}
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
if
(
karg
.
N
%
CShuffleBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
"Arg N ("
<<
karg
.
N
<<
") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<<
CShuffleBlockTransferScalarPerVector_NPerBlock
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
}
return
false
;
}
}
else
{
if
(
karg
.
M
%
CShuffleBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
"Arg M ("
<<
karg
.
M
<<
") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<<
CShuffleBlockTransferScalarPerVector_NPerBlock
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
}
return
false
;
}
}
if
constexpr
(
!
(
is_same
<
remove_cvref_t
<
CDataType
>
,
half_t
>::
value
||
is_same
<
remove_cvref_t
<
CDataType
>
,
float
>::
value
||
is_same
<
remove_cvref_t
<
CDataType
>
,
bhalf_t
>::
value
||
is_same
<
remove_cvref_t
<
CDataType
>
,
int32_t
>::
value
))
{
if
(
!
karg
.
IsReduceAdd
())
{
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
" KBatch: "
<<
karg
.
KBatch
<<
" > 1 is not support yet"
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
}
if
(
karg
.
KBatch
>
1
)
{
return
false
;
}
}
}
// check gridwise gemm pipeline
const
auto
num_k_loop
=
karg
.
AK0
/
(
KPerBlock
/
AK1Value
);
if
constexpr
(
BlkGemmPipelineVer
!=
BlockGemmPipelineVersion
::
v1
)
{
if
(
num_k_loop
<=
BlockwiseGemmPipe
::
PrefetchStages
)
{
return
false
;
}
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return
true
;
}
__host__
static
constexpr
bool
CalculateHasMainKBlockLoop
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
BlockwiseGemmPipe
::
BlockHasHotloop
(
num_loop
);
}
__host__
static
constexpr
TailNumber
CalculateKBlockLoopTailNum
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
BlockwiseGemmPipe
::
BlockLoopTailNum
(
num_loop
);
}
template
<
typename
CGridDesc
>
__host__
__device__
static
constexpr
auto
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
CGridDesc
&
c_grid_desc_m_n
,
index_t
MBlock
,
index_t
NBlock
)
{
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{})),
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
return
c_grid_desc_mblock_mperblock_nblock_nperblock
;
}
// return block_id to C matrix tile idx (m0, n0) mapping
// if arch = gfx942
using
Block2CTileMap
=
BlockToCTileMap_Grouped_M00_N0_M01Adapt
<
8
,
MPerBlock
,
NPerBlock
>
;
// using Block2CTileMap = BlockToCTileMap_3DGrid_KSplit<MPerBlock, NPerBlock>;
template
<
typename
AGridDesc_AK0_M_K1
,
typename
BGridDesc_BK0_N_K1
,
typename
BScaleGridDesc_BN_AK
,
typename
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
TailNumber
TailNum
=
TailNumber
::
Odd
>
__device__
static
void
Run
(
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
CDataType
*
p_c_grid
,
const
BScaleType
*
p_b_scale_grid
,
void
*
p_shared
,
const
Problem
&
problem
,
const
AGridDesc_AK0_M_K1
&
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_K1
&
b_grid_desc_bk0_n_bk1
,
const
BScaleGridDesc_BN_AK
&
b_scale_grid_desc_bn_ak
,
const
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
&
c_grid_desc_mblock_mperblock_nblock_nperblock
)
{
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_ak0_m_ak1
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
,
b_grid_desc_bk0_n_bk1
.
GetElementSpaceSize
());
auto
c_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_grid
,
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
// B Scale buffer
const
auto
b_scale_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_scale_grid
,
b_scale_grid_desc_bn_ak
.
GetElementSpaceSize
());
const
AElementwiseOperation
a_element_op
{};
const
BElementwiseOperation
b_element_op
{};
const
CElementwiseOperation
c_element_op
{};
// divide block work by [M, N]
const
auto
block_2_ctile_map
=
Block2CTileMap
{
problem
.
M
,
problem
.
N
,
4
};
const
auto
block_work_idx
=
block_2_ctile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
if
(
!
block_2_ctile_map
.
ValidCTileIndex
(
block_work_idx
,
make_tuple
(
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I0
),
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I2
))))
{
return
;
}
const
index_t
block_m_id
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]);
const
index_t
block_n_id
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I1
]);
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_m_id
*
MPerBlock
);
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_n_id
*
NPerBlock
);
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1Number
,
BK1Number
);
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
AK0Number
,
MPerBlock
,
AK1Number
>
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ADataType
,
ADataType
,
decltype
(
a_grid_desc_ak0_m_ak1
),
decltype
(
a_block_desc_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
0
,
1
,
2
>
,
ABlockTransferSrcVectorDim
,
2
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
1
,
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
,
BlockwiseGemmPipe
::
GlobalBufferNum
>
(
a_grid_desc_ak0_m_ak1
,
make_multi_index
(
0
,
m_block_data_idx_on_grid
,
0
),
a_element_op
,
a_block_desc_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// B matrix blockwise copy
auto
b_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
BK0Number
,
NPerBlock
,
BK1Number
>
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BDataType
,
BDataType
,
decltype
(
b_grid_desc_bk0_n_bk1
),
decltype
(
b_block_desc_bk0_n_bk1
),
BBlockTransferSrcAccessOrder
,
Sequence
<
0
,
1
,
2
>
,
BBlockTransferSrcVectorDim
,
2
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
1
,
1
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
,
BlockwiseGemmPipe
::
GlobalBufferNum
>
(
b_grid_desc_bk0_n_bk1
,
make_multi_index
(
0
,
n_block_data_idx_on_grid
,
0
),
b_element_op
,
b_block_desc_bk0_n_bk1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
// Cast after lds
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
ADataType
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
auto
b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
reinterpret_cast
<
BDataType
*>
(
static_cast
<
char
*>
(
p_shared
)
+
a_block_space_size_aligned
*
sizeof
(
ADataType
)
/
APackedSize
),
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
AK1Number
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
BK1Number
,
0
,
0
);
// Blockwise GEMM pipeline
static_assert
(
std
::
is_default_constructible_v
<
BlockwiseGemmPipe
>
);
auto
blockwise_gemm_pipeline
=
BlockwiseGemmPipe
{};
auto
c_thread_buf
=
blockwise_gemm_pipeline
.
GetCThreadBuffer
();
const
index_t
num_k_block_main_loop
=
__builtin_amdgcn_readfirstlane
(
(
a_grid_desc_ak0_m_ak1
.
GetLength
(
I0
)
*
a_grid_desc_ak0_m_ak1
.
GetLength
(
I2
))
/
KPerBlock
);
// b scale
// static_assert(KPerBlock <= ScaleBlockK);
static
constexpr
auto
mfma
=
MfmaSelector
<
ComputeTypeA
,
MPerXdl
,
NPerXdl
>
{};
static
constexpr
auto
KPerXdlops
=
mfma
.
GetKPerXdlops
();
static
constexpr
auto
K1PerXdlops
=
mfma
.
GetK1PerXdlops
();
static
constexpr
auto
K0PerXdlops
=
KPerXdlops
/
K1PerXdlops
;
static
constexpr
auto
KPerThread
=
KPerBlock
/
K0PerXdlops
;
static
constexpr
auto
ScaleSliceSizeN
=
NXdlPerWave
;
static
constexpr
auto
ScaleSliceSizeK
=
(
KPerThread
+
ScaleBlockK
-
1
)
/
ScaleBlockK
;
static
constexpr
auto
KBlockScaleSliceSizeK
=
(
KPerBlock
+
ScaleBlockK
-
1
)
/
ScaleBlockK
;
constexpr
auto
b_scale_thread_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
ScaleSliceSizeN
>
{},
Number
<
ScaleSliceSizeK
>
{}));
constexpr
index_t
NWaves
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
auto
b_thread_offset_n
=
get_thread_local_1d_id
()
%
NPerXdl
+
(
get_thread_local_1d_id
()
/
64
)
%
NWaves
*
NPerXdl
;
auto
b_thread_offset_k
=
(
get_thread_local_1d_id
()
%
64
)
/
NPerXdl
*
KPerThread
;
auto
b_scale_thread_copy
=
ThreadwiseTensorSliceTransfer_v2
<
BScaleType
,
BScaleType
,
decltype
(
b_scale_grid_desc_bn_ak
),
decltype
(
b_scale_thread_desc
),
Sequence
<
1
,
ScaleSliceSizeK
>
,
Sequence
<
0
,
1
>
,
1
,
ScaleSliceSizeK
,
1
,
false
>
(
b_scale_grid_desc_bn_ak
,
make_multi_index
(
block_n_id
*
NPerBlock
/
ScaleBlockN
+
b_thread_offset_n
,
b_thread_offset_k
/
ScaleBlockK
));
constexpr
auto
b_scale_thread_slice_copy_step
=
make_tuple
(
make_multi_index
(
NWaves
*
NPerXdl
,
0
),
make_multi_index
(
-
NPerBlock
,
0
),
make_multi_index
(
-
NPerBlock
,
KBlockScaleSliceSizeK
));
const
index_t
num_k_block_per_scale
=
(
ScaleBlockK
+
KPerBlock
-
1
)
/
KPerBlock
;
blockwise_gemm_pipeline
.
template
Run
<
HasMainKBlockLoop
,
TailNum
>(
a_grid_desc_ak0_m_ak1
,
a_block_desc_ak0_m_ak1
,
a_blockwise_copy
,
a_grid_buf
,
a_block_buf
,
a_block_slice_copy_step
,
b_grid_desc_bk0_n_bk1
,
b_block_desc_bk0_n_bk1
,
b_blockwise_copy
,
b_grid_buf
,
b_block_buf
,
b_block_slice_copy_step
,
c_thread_buf
,
b_scale_grid_desc_bn_ak
,
b_scale_thread_desc
,
b_scale_thread_copy
,
b_scale_grid_buf
,
b_scale_thread_slice_copy_step
,
num_k_block_main_loop
,
num_k_block_per_scale
);
// shuffle C and write out
{
static_assert
(
MXdlPerWave
%
CShuffleMXdlPerWavePerShuffle
==
0
&&
NXdlPerWave
%
CShuffleNXdlPerWavePerShuffle
==
0
,
"wrong!"
);
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
// TODO: hacky, fix it!
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
blockwise_gemm_pipeline
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
=
blockwise_gemm_pipeline
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I4
);
constexpr
auto
M3
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I5
);
constexpr
auto
M4
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I6
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I7
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
auto
c_shuffle_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
CShuffleDataType
*>
(
p_shared
),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleMXdlPerWavePerShuffle
>
{},
// M0 (MXdlPerWave) per shuffle
M1
,
// M1 = MWave
M2
,
// M2 * M3 * M4 = MPerXdl
M3
,
M4
)),
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleNXdlPerWavePerShuffle
>
{},
// N0 (NXdlPerWave) per shuffle
N1
,
// N1 = NWave
N2
))),
// N2 = NPerXdl
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
,
2
,
4
,
5
,
6
>
{},
Sequence
<>
{},
Sequence
<
1
,
3
,
7
>
{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm_pipeline
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
,
M3
,
M4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_to_n0_n1_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_n0_n1_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// shuffle: threadwise copy C from VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
CShuffleDataType
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
I1
,
I1
,
M2
,
I1
,
M4
,
I1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_multi_index
(
0
,
0
,
m_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
m_thread_data_on_block_idx
[
I3
],
m_thread_data_on_block_idx
[
I4
],
n_thread_data_on_block_idx
[
I2
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
// shuffle: blockwise copy C from LDS to global
auto
c_shuffle_block_copy_lds_to_global
=
ThreadGroupTensorSliceTransfer_v6r1
<
ThisThreadBlock
,
// ThreadGroup
CElementwiseOperation
,
// ElementwiseOperation,
CGlobalMemoryDataOperation
,
// DstInMemOp,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
,
// BlockSliceLengths,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename ThreadClusterArrangeOrder,
CShuffleDataType
,
// typename SrcData,
CDataType
,
// typename DstData,
decltype
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
),
decltype
(
c_grid_desc_mblock_mperblock_nblock_nperblock
),
Sequence
<
0
,
1
,
2
,
3
>
,
// typename DimAccessOrder,
3
,
// index_t VectorDim,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
// index_t ScalarPerVector,
true
,
// bool ThreadTransferSrcResetCoordinateAfterRun,
false
>
// bool ThreadTransferDstResetCoordinateAfterRun>
{
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
0
,
0
,
0
,
0
),
c_grid_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
block_m_id
,
0
,
block_n_id
,
0
),
c_element_op
};
// space filling curve for threadwise C in VGPR
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MXdlPerWave
,
NXdlPerWave
,
1
,
1
,
M2
,
1
,
M4
,
1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
1
,
1
,
M2
,
1
,
M4
,
1
>>
{};
// space filling curve for shuffled blockwise C in global mem
constexpr
auto
sfc_c_global
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>>
{};
constexpr
index_t
num_access
=
sfc_c_vgpr
.
GetNumOfAccess
();
static_assert
(
num_access
==
sfc_c_global
.
GetNumOfAccess
(),
"wrong!"
);
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
access_id
)
{
// make sure it's safe to write to LDS
block_sync_lds
();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
sfc_c_vgpr
.
GetIndexTupleOfNumber
(
access_id
),
c_thread_buf
,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
c_shuffle_block_buf
);
// make sure it's safe to read from LDS
block_sync_lds
();
// each block copy its data from LDS to global
c_shuffle_block_copy_lds_to_global
.
Run
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
c_shuffle_block_buf
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_grid_buf
);
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
c_global_step
=
sfc_c_global
.
GetForwardStep
(
access_id
);
// move on C
c_shuffle_block_copy_lds_to_global
.
MoveDstSliceWindow
(
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_global_step
);
}
});
}
}
template
<
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
TailNumber
TailNum
=
TailNumber
::
Odd
>
__device__
static
void
Run
(
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
CDataType
*
p_c_grid
,
const
BScaleType
*
p_b_scale_grid
,
void
*
p_shared
,
const
Problem
&
problem
)
{
const
auto
a_grid_desc_ak0_m_ak1
=
MakeAGridDescriptor_AK0_M_AK1
(
problem
.
M
,
problem
.
MPadded
,
problem
.
K
,
problem
.
KPadded
,
problem
.
StrideA
,
problem
.
AK0
);
const
auto
b_grid_desc_bk0_n_bk1
=
MakeBGridDescriptor_BK0_N_BK1
(
problem
.
K
,
problem
.
KPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideB
,
problem
.
BK0
);
const
auto
c_grid_desc_m_n
=
MakeCGridDescriptor_M_N
(
problem
.
M
,
problem
.
MPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideC
);
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
c_grid_desc_m_n
,
problem
.
MBlock
,
problem
.
NBlock
);
// B Scale grid
const
auto
b_scale_grid_desc_bn_ak
=
make_naive_tensor_descriptor
(
make_tuple
(
math
::
integer_divide_ceil
(
problem
.
N
,
ScaleBlockN
),
math
::
integer_divide_ceil
(
problem
.
K
,
ScaleBlockK
)),
make_tuple
(
problem
.
StrideScaleB
,
1
));
Run
<
decltype
(
a_grid_desc_ak0_m_ak1
),
decltype
(
b_grid_desc_bk0_n_bk1
),
decltype
(
b_scale_grid_desc_bn_ak
),
decltype
(
c_grid_desc_mblock_mperblock_nblock_nperblock
),
HasMainKBlockLoop
,
CGlobalMemoryDataOperation
,
TailNum
>
(
p_a_grid
,
p_b_grid
,
p_c_grid
,
p_b_scale_grid
,
p_shared
,
problem
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
b_scale_grid_desc_bn_ak
,
c_grid_desc_mblock_mperblock_nblock_nperblock
);
}
template
<
typename
AGridDesc_AK0_M_K1
,
typename
BGridDesc_BK0_N_K1
,
typename
BScaleGridDesc_BN_AK
,
typename
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
TailNumber
TailNum
=
TailNumber
::
Odd
>
__device__
static
void
Run_2Lds
(
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
CDataType
*
p_c_grid
,
const
BScaleType
*
p_b_scale_grid
,
void
*
p_shared_0
,
void
*
p_shared_1
,
const
Problem
&
problem
,
const
AGridDesc_AK0_M_K1
&
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_K1
&
b_grid_desc_bk0_n_bk1
,
const
BScaleGridDesc_BN_AK
&
b_scale_grid_desc_bn_ak
,
const
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
&
c_grid_desc_mblock_mperblock_nblock_nperblock
)
{
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_ak0_m_ak1
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
,
b_grid_desc_bk0_n_bk1
.
GetElementSpaceSize
());
auto
c_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_grid
,
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
// B Scale buffer
const
auto
b_scale_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_scale_grid
,
b_scale_grid_desc_bn_ak
.
GetElementSpaceSize
());
const
AElementwiseOperation
a_element_op
{};
const
BElementwiseOperation
b_element_op
{};
const
CElementwiseOperation
c_element_op
{};
// divide block work by [M, N]
const
auto
block_2_ctile_map
=
Block2CTileMap
{
problem
.
M
,
problem
.
N
,
4
};
const
auto
block_work_idx
=
block_2_ctile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
if
(
!
block_2_ctile_map
.
ValidCTileIndex
(
block_work_idx
,
make_tuple
(
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I0
),
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I2
))))
{
return
;
}
const
index_t
block_m_id
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]);
const
index_t
block_n_id
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I1
]);
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_m_id
*
MPerBlock
);
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_n_id
*
NPerBlock
);
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1Number
,
BK1Number
);
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
AK0Number
,
MPerBlock
,
AK1Number
>
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ADataType
,
ADataType
,
decltype
(
a_grid_desc_ak0_m_ak1
),
decltype
(
a_block_desc_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
0
,
1
,
2
>
,
ABlockTransferSrcVectorDim
,
2
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
1
,
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
,
BlockwiseGemmPipe
::
GlobalBufferNum
>
(
a_grid_desc_ak0_m_ak1
,
make_multi_index
(
0
,
m_block_data_idx_on_grid
,
0
),
a_element_op
,
a_block_desc_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// B matrix blockwise copy
auto
b_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
BK0Number
,
NPerBlock
,
BK1Number
>
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BDataType
,
BDataType
,
decltype
(
b_grid_desc_bk0_n_bk1
),
decltype
(
b_block_desc_bk0_n_bk1
),
BBlockTransferSrcAccessOrder
,
Sequence
<
0
,
1
,
2
>
,
BBlockTransferSrcVectorDim
,
2
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
1
,
1
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
,
BlockwiseGemmPipe
::
GlobalBufferNum
>
(
b_grid_desc_bk0_n_bk1
,
make_multi_index
(
0
,
n_block_data_idx_on_grid
,
0
),
b_element_op
,
b_block_desc_bk0_n_bk1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
auto
a_block_buf_ping
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
ADataType
*>
(
p_shared_0
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
auto
b_block_buf_ping
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
bit_cast
<
BDataType
*>
(
static_cast
<
char
*>
(
p_shared_0
)
+
a_block_space_size_aligned
*
sizeof
(
ADataType
)
/
APackedSize
),
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
auto
a_block_buf_pong
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
ADataType
*>
(
p_shared_1
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
auto
b_block_buf_pong
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
bit_cast
<
BDataType
*>
(
bit_cast
<
char
*>
(
p_shared_1
)
+
a_block_space_size_aligned
*
sizeof
(
ADataType
)
/
APackedSize
),
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
auto
a_block_bufs
=
make_tuple
(
a_block_buf_ping
,
a_block_buf_pong
);
auto
b_block_bufs
=
make_tuple
(
b_block_buf_ping
,
b_block_buf_pong
);
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
AK1Number
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
BK1Number
,
0
,
0
);
// Blockwise GEMM pipeline
static_assert
(
std
::
is_default_constructible_v
<
BlockwiseGemmPipe
>
);
auto
blockwise_gemm_pipeline
=
BlockwiseGemmPipe
{};
auto
c_thread_buf
=
blockwise_gemm_pipeline
.
GetCThreadBuffer
();
const
index_t
num_k_block_main_loop
=
__builtin_amdgcn_readfirstlane
(
(
a_grid_desc_ak0_m_ak1
.
GetLength
(
I0
)
*
a_grid_desc_ak0_m_ak1
.
GetLength
(
I2
))
/
KPerBlock
);
// B scale
static
constexpr
auto
mfma
=
MfmaSelector
<
ComputeTypeA
,
MPerXdl
,
NPerXdl
>
{};
static
constexpr
auto
KPerXdlops
=
mfma
.
GetKPerXdlops
();
static
constexpr
auto
K1PerXdlops
=
mfma
.
GetK1PerXdlops
();
static
constexpr
auto
K0PerXdlops
=
KPerXdlops
/
K1PerXdlops
;
static
constexpr
auto
KPerThread
=
KPerBlock
/
K0PerXdlops
;
const
index_t
ScaleSliceSizeN
=
NXdlPerWave
;
static
constexpr
auto
ScaleSliceSizeK
=
(
KPerThread
+
ScaleBlockK
-
1
)
/
ScaleBlockK
;
static
constexpr
auto
KBlockScaleSliceSizeK
=
(
KPerBlock
+
ScaleBlockK
-
1
)
/
ScaleBlockK
;
constexpr
auto
b_scale_thread_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
ScaleSliceSizeN
>
{},
Number
<
ScaleSliceSizeK
>
{}));
constexpr
index_t
NWaves
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
auto
b_thread_offset_n
=
get_thread_local_1d_id
()
%
NPerXdl
+
(
get_thread_local_1d_id
()
/
64
)
%
NWaves
*
NPerXdl
;
auto
b_thread_offset_k
=
(
get_thread_local_1d_id
()
%
64
)
/
NPerXdl
*
KPerThread
;
auto
b_scale_thread_copy
=
ThreadwiseTensorSliceTransfer_v2
<
BScaleType
,
BScaleType
,
decltype
(
b_scale_grid_desc_bn_ak
),
decltype
(
b_scale_thread_desc
),
Sequence
<
1
,
ScaleSliceSizeK
>
,
Sequence
<
0
,
1
>
,
1
,
ScaleSliceSizeK
,
1
,
false
>
(
b_scale_grid_desc_bn_ak
,
make_multi_index
(
block_n_id
*
NPerBlock
/
ScaleBlockN
+
b_thread_offset_n
,
b_thread_offset_k
/
ScaleBlockK
));
constexpr
auto
b_scale_thread_slice_copy_step
=
make_tuple
(
make_multi_index
(
NWaves
*
NPerXdl
,
0
),
make_multi_index
(
-
NPerBlock
,
0
),
make_multi_index
(
-
NPerBlock
,
KBlockScaleSliceSizeK
));
const
index_t
num_k_block_per_scale
=
(
ScaleBlockK
+
KPerBlock
-
1
)
/
KPerBlock
;
blockwise_gemm_pipeline
.
template
Run
<
HasMainKBlockLoop
,
TailNum
>(
a_grid_desc_ak0_m_ak1
,
a_block_desc_ak0_m_ak1
,
a_blockwise_copy
,
a_grid_buf
,
a_block_bufs
,
a_block_slice_copy_step
,
b_grid_desc_bk0_n_bk1
,
b_block_desc_bk0_n_bk1
,
b_blockwise_copy
,
b_grid_buf
,
b_block_bufs
,
b_block_slice_copy_step
,
c_thread_buf
,
b_scale_grid_desc_bn_ak
,
b_scale_thread_desc
,
b_scale_thread_copy
,
b_scale_grid_buf
,
b_scale_thread_slice_copy_step
,
num_k_block_main_loop
,
num_k_block_per_scale
);
// shuffle C and write out
{
static_assert
(
MXdlPerWave
%
CShuffleMXdlPerWavePerShuffle
==
0
&&
NXdlPerWave
%
CShuffleNXdlPerWavePerShuffle
==
0
,
"wrong!"
);
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
// TODO: hacky, fix it!
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
blockwise_gemm_pipeline
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
=
blockwise_gemm_pipeline
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I4
);
constexpr
auto
M3
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I5
);
constexpr
auto
M4
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I6
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I7
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
auto
c_shuffle_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
CShuffleDataType
*>
(
p_shared_0
),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleMXdlPerWavePerShuffle
>
{},
// M0 (MXdlPerWave) per shuffle
M1
,
// M1 = MWave
M2
,
// M2 * M3 * M4 = MPerXdl
M3
,
M4
)),
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleNXdlPerWavePerShuffle
>
{},
// N0 (NXdlPerWave) per shuffle
N1
,
// N1 = NWave
N2
))),
// N2 = NPerXdl
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
,
2
,
4
,
5
,
6
>
{},
Sequence
<>
{},
Sequence
<
1
,
3
,
7
>
{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm_pipeline
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
,
M3
,
M4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_to_n0_n1_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_n0_n1_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// shuffle: threadwise copy C from VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
CShuffleDataType
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
I1
,
I1
,
M2
,
I1
,
M4
,
I1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_multi_index
(
0
,
0
,
m_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
m_thread_data_on_block_idx
[
I3
],
m_thread_data_on_block_idx
[
I4
],
n_thread_data_on_block_idx
[
I2
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
// shuffle: blockwise copy C from LDS to global
auto
c_shuffle_block_copy_lds_to_global
=
ThreadGroupTensorSliceTransfer_v6r1
<
ThisThreadBlock
,
// ThreadGroup
CElementwiseOperation
,
// ElementwiseOperation,
CGlobalMemoryDataOperation
,
// DstInMemOp,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
,
// BlockSliceLengths,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename ThreadClusterArrangeOrder,
CShuffleDataType
,
// typename SrcData,
CDataType
,
// typename DstData,
decltype
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
),
decltype
(
c_grid_desc_mblock_mperblock_nblock_nperblock
),
Sequence
<
0
,
1
,
2
,
3
>
,
// typename DimAccessOrder,
3
,
// index_t VectorDim,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
// index_t ScalarPerVector,
true
,
// bool ThreadTransferSrcResetCoordinateAfterRun,
false
>
// bool ThreadTransferDstResetCoordinateAfterRun>
{
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
0
,
0
,
0
,
0
),
c_grid_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
block_m_id
,
0
,
block_n_id
,
0
),
c_element_op
};
// space filling curve for threadwise C in VGPR
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MXdlPerWave
,
NXdlPerWave
,
1
,
1
,
M2
,
1
,
M4
,
1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
1
,
1
,
M2
,
1
,
M4
,
1
>>
{};
// space filling curve for shuffled blockwise C in global mem
constexpr
auto
sfc_c_global
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>>
{};
constexpr
index_t
num_access
=
sfc_c_vgpr
.
GetNumOfAccess
();
static_assert
(
num_access
==
sfc_c_global
.
GetNumOfAccess
(),
"wrong!"
);
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
access_id
)
{
// make sure it's safe to write to LDS
block_sync_lds
();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
sfc_c_vgpr
.
GetIndexTupleOfNumber
(
access_id
),
c_thread_buf
,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
c_shuffle_block_buf
);
// make sure it's safe to read from LDS
block_sync_lds
();
// each block copy its data from LDS to global
c_shuffle_block_copy_lds_to_global
.
Run
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
c_shuffle_block_buf
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_grid_buf
);
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
c_global_step
=
sfc_c_global
.
GetForwardStep
(
access_id
);
// move on C
c_shuffle_block_copy_lds_to_global
.
MoveDstSliceWindow
(
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_global_step
);
}
});
}
}
template
<
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
TailNumber
TailNum
=
TailNumber
::
Odd
>
__device__
static
void
Run_2Lds
(
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
CDataType
*
p_c_grid
,
const
BScaleType
*
p_b_scale_grid
,
void
*
p_shared_0
,
void
*
p_shared_1
,
const
Problem
&
problem
)
{
const
auto
a_grid_desc_ak0_m_ak1
=
MakeAGridDescriptor_AK0_M_AK1
(
problem
.
M
,
problem
.
MPadded
,
problem
.
K
,
problem
.
KPadded
,
problem
.
StrideA
,
problem
.
AK0
);
const
auto
b_grid_desc_bk0_n_bk1
=
MakeBGridDescriptor_BK0_N_BK1
(
problem
.
K
,
problem
.
KPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideB
,
problem
.
BK0
);
const
auto
c_grid_desc_m_n
=
MakeCGridDescriptor_M_N
(
problem
.
M
,
problem
.
MPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideC
);
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
c_grid_desc_m_n
,
problem
.
MBlock
,
problem
.
NBlock
);
const
auto
b_scale_grid_desc_bn_ak
=
make_naive_tensor_descriptor
(
make_tuple
(
math
::
integer_divide_ceil
(
problem
.
N
,
ScaleBlockN
),
math
::
integer_divide_ceil
(
problem
.
K
,
ScaleBlockK
)),
make_tuple
(
problem
.
StrideScaleB
,
1
));
Run_2Lds
<
decltype
(
a_grid_desc_ak0_m_ak1
),
decltype
(
b_grid_desc_bk0_n_bk1
),
decltype
(
b_scale_grid_desc_bn_ak
),
decltype
(
c_grid_desc_mblock_mperblock_nblock_nperblock
),
HasMainKBlockLoop
,
CGlobalMemoryDataOperation
,
TailNum
>
(
p_a_grid
,
p_b_grid
,
p_c_grid
,
p_b_scale_grid
,
p_shared_0
,
p_shared_1
,
problem
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
b_scale_grid_desc_bn_ak
,
c_grid_desc_mblock_mperblock_nblock_nperblock
);
}
};
}
// namespace ck
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp
View file @
dd0188b3
...
...
@@ -1007,6 +1007,13 @@ struct ThreadwiseTensorSliceTransfer_v4
using
SrcCoordStep
=
decltype
(
make_tensor_coordinate_step
(
SrcDesc
{},
Index
{}));
static
constexpr
index_t
PackedSize
=
[]()
{
if
constexpr
(
is_same_v
<
remove_cvref_t
<
SrcData
>
,
pk_i4_t
>
)
return
2
;
else
return
1
;
}();
__device__
constexpr
ThreadwiseTensorSliceTransfer_v4
(
const
Index
&
src_ref_idx
)
:
src_ref_coord_
(
make_tensor_coordinate
(
SrcDesc
{},
src_ref_idx
))
{
...
...
@@ -1015,6 +1022,11 @@ struct ThreadwiseTensorSliceTransfer_v4
static_assert
(
SliceLengths
::
At
(
Number
<
SrcVectorDim
>
{})
%
SrcScalarPerVector
==
0
,
"wrong! Not divisible"
);
if
constexpr
(
is_same_v
<
remove_cvref_t
<
SrcData
>
,
pk_i4_t
>
)
{
static_assert
(
SrcScalarPerVector
%
PackedSize
==
0
,
"pk data N cannot be 1"
);
}
}
template
<
typename
SrcRefToOriginDisplacement
,
...
...
@@ -1109,7 +1121,7 @@ struct ThreadwiseTensorSliceTransfer_v4
move_tensor_coordinate
(
src_desc
,
src_data_coord
,
src_ref_to_data_disp_coord_step
);
vector_type_maker_t
<
SrcData
,
SrcScalarPerVector
>
src_tmp_vector
;
vector_type_maker_t
<
SrcData
,
SrcScalarPerVector
/
PackedSize
>
src_tmp_vector
;
using
src_vector_t
=
typename
decltype
(
src_tmp_vector
)
::
type
;
...
...
@@ -1120,7 +1132,8 @@ struct ThreadwiseTensorSliceTransfer_v4
if
constexpr
(
SrcBuffer
::
IsDynamicBuffer
())
{
src_tmp_vector
.
template
AsType
<
src_vector_t
>()(
Number
<
0
>
{})
=
src_buf
.
template
Get
<
src_vector_t
>(
src_data_coord
.
GetOffset
(),
is_src_valid
);
src_buf
.
template
Get
<
src_vector_t
>(
src_data_coord
.
GetOffset
()
/
PackedSize
,
is_src_valid
);
}
else
if
constexpr
(
SrcBuffer
::
IsStaticBuffer
())
{
...
...
@@ -1133,9 +1146,236 @@ struct ThreadwiseTensorSliceTransfer_v4
});
}
if
constexpr
(
is_same
<
remove_cvref_t
<
SrcData
>
,
f8_t
>::
value
&&
is_same
<
remove_cvref_t
<
DstData
>
,
half_t
>::
value
&&
SrcScalarPerVector
%
2
==
0
)
if
constexpr
(
is_same
<
remove_cvref_t
<
SrcData
>
,
pk_i4_t
>::
value
)
{
// copy data from src_tmp_vector to dst_tmp_vector (data cast data from SrcData to
// DstData)
vector_type_maker_t
<
DstData
,
SrcScalarPerVector
>
dst_tmp_vector
;
constexpr
index_t
pack_size
=
8
;
static_assert
(
SrcScalarPerVector
%
pack_size
==
0
,
""
);
using
src_v_t
=
typename
vector_type_maker_t
<
SrcData
,
pack_size
/
PackedSize
>::
type
;
using
dst_v_t
=
typename
vector_type_maker_t
<
DstData
,
pack_size
>::
type
;
static_for
<
0
,
SrcScalarPerVector
/
pack_size
,
1
>
{}([
&
](
auto
i
)
{
ck
::
tensor_operation
::
element_wise
::
PassThroughPack8
{}(
dst_tmp_vector
.
template
AsType
<
dst_v_t
>()(
i
),
src_tmp_vector
.
template
AsType
<
src_v_t
>()[
i
]);
});
// copy data from dst_tmp_vector into dst_buf
static_for
<
0
,
SrcScalarPerVector
,
1
>
{}([
&
](
auto
i
)
{
constexpr
index_t
dst_offset
=
dst_desc
.
CalculateOffset
(
dst_origin_idx
+
data_to_origin_disp_idx
+
i
*
src_scalar_step_in_vector
);
dst_buf
(
Number
<
dst_offset
>
{})
=
dst_tmp_vector
.
template
AsType
<
DstData
>()[
i
];
});
}
else
if
constexpr
(
is_same
<
remove_cvref_t
<
SrcData
>
,
f8_t
>::
value
&&
is_same
<
remove_cvref_t
<
DstData
>
,
half_t
>::
value
&&
SrcScalarPerVector
%
2
==
0
)
{
// copy data from src_tmp_vector to dst_tmp_vector (data cast data from SrcData to
// DstData)
vector_type_maker_t
<
DstData
,
SrcScalarPerVector
>
dst_tmp_vector
;
constexpr
index_t
pack_size
=
2
;
using
dst_v_t
=
typename
vector_type_maker_t
<
DstData
,
pack_size
>::
type
;
using
src_v_t
=
typename
vector_type_maker_t
<
SrcData
,
pack_size
>::
type
;
static_for
<
0
,
SrcScalarPerVector
/
pack_size
,
1
>
{}([
&
](
auto
i
)
{
ck
::
tensor_operation
::
element_wise
::
PassThroughPack2
{}(
dst_tmp_vector
.
template
AsType
<
dst_v_t
>()(
i
),
src_tmp_vector
.
template
AsType
<
src_v_t
>()[
i
]);
});
// copy data from dst_tmp_vector into dst_buf
static_for
<
0
,
SrcScalarPerVector
,
1
>
{}([
&
](
auto
i
)
{
constexpr
index_t
dst_offset
=
dst_desc
.
CalculateOffset
(
dst_origin_idx
+
data_to_origin_disp_idx
+
i
*
src_scalar_step_in_vector
);
dst_buf
(
Number
<
dst_offset
>
{})
=
dst_tmp_vector
.
template
AsType
<
DstData
>()[
i
];
});
}
else
{
// copy data from src_tmp_vector to dst_tmp_vector (data cast data from SrcData to
// DstData)
vector_type_maker_t
<
DstData
,
SrcScalarPerVector
>
dst_tmp_vector
;
// TODO: if SrcData and DstData are vetor type, then static_cast may not compile
static_for
<
0
,
SrcScalarPerVector
,
1
>
{}([
&
](
auto
i
)
{
dst_tmp_vector
.
template
AsType
<
DstData
>()(
i
)
=
type_convert
<
DstData
>
(
src_tmp_vector
.
template
AsType
<
SrcData
>()[
i
]);
});
// copy data from dst_tmp_vector into dst_buf
static_for
<
0
,
SrcScalarPerVector
,
1
>
{}([
&
](
auto
i
)
{
constexpr
index_t
dst_offset
=
dst_desc
.
CalculateOffset
(
dst_origin_idx
+
data_to_origin_disp_idx
+
i
*
src_scalar_step_in_vector
);
dst_buf
(
Number
<
dst_offset
>
{})
=
dst_tmp_vector
.
template
AsType
<
DstData
>()[
i
];
});
}
});
}
// Fuse scale
template
<
typename
SrcRefToOriginDisplacement
,
typename
DstOriginIdx
,
typename
SrcBuffer
,
typename
DstBuffer
>
__device__
void
Run
(
const
SrcDesc
&
,
const
SrcRefToOriginDisplacement
&
,
const
SrcBuffer
&
src_buf
,
const
DstData
&
scale
,
const
DstDesc
&
,
const
DstOriginIdx
&
,
DstBuffer
&
dst_buf
)
const
{
static_assert
(
SrcDesc
::
IsKnownAtCompileTime
()
&&
DstDesc
::
IsKnownAtCompileTime
(),
"wrong! SrcDesc and DstDesc need to known at compile-time"
);
static_assert
(
is_same
<
remove_cvref_t
<
typename
SrcBuffer
::
type
>
,
remove_cvref_t
<
SrcData
>>::
value
&&
is_same
<
remove_cvref_t
<
typename
DstBuffer
::
type
>
,
remove_cvref_t
<
DstData
>>::
value
,
"wrong! SrcBuffer or DstBuffer data type is wrong"
);
static_assert
(
DstBuffer
::
IsStaticBuffer
(),
"wrong! DstBuffer need to be StaticBuffer"
);
static_assert
(
is_known_at_compile_time
<
remove_cvref_t
<
SrcRefToOriginDisplacement
>>::
value
&&
is_known_at_compile_time
<
remove_cvref_t
<
DstOriginIdx
>>::
value
,
"wrong! SrcOriginToRefDistance and DstOriginToRefDistance need to be known "
"at compile-time"
);
// SrcDesc and DstDesc are known at compile-time
constexpr
auto
src_desc
=
remove_cvref_t
<
SrcDesc
>
{};
constexpr
auto
dst_desc
=
remove_cvref_t
<
DstDesc
>
{};
// SrcOriginToRefDisttance and DstOriginToRefDistance are known at compile-time
constexpr
auto
src_ref_to_origin_disp_idx
=
to_multi_index
(
SrcRefToOriginDisplacement
{});
constexpr
auto
dst_origin_idx
=
to_multi_index
(
DstOriginIdx
{});
// scalar per access of each dim
constexpr
auto
src_scalar_per_access
=
generate_sequence_v2
(
[
&
](
auto
i
)
constexpr
{
if
constexpr
(
i
==
SrcVectorDim
)
{
return
Number
<
SrcScalarPerVector
>
{};
}
else
{
return
Number
<
1
>
{};
}
},
Number
<
nDim
>
{});
// scalar step (if steping on SrcVectorDim) of each dim
constexpr
auto
src_scalar_step_in_vector
=
generate_sequence_v2
(
[
&
](
auto
i
)
constexpr
{
if
constexpr
(
i
==
SrcVectorDim
)
{
return
Number
<
1
>
{};
}
else
{
return
Number
<
0
>
{};
}
},
Number
<
nDim
>
{});
constexpr
auto
access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
constexpr
auto
dim_access_order
=
DimAccessOrder
{};
constexpr
auto
ordered_access_lengths
=
container_reorder_given_new2old
(
access_lengths
,
dim_access_order
);
static_ford
<
decltype
(
ordered_access_lengths
)
>
{}([
&
](
auto
ordered_access_idx
)
{
#if 0
// TODO: unable to compile
// position in slice window
constexpr auto data_to_origin_disp_idx =
container_reorder_given_old2new(ordered_access_idx, dim_access_order) *
src_scalar_per_access;
#else
// position in slice window
constexpr
auto
data_to_origin_disp_idx
=
ordered_access_idx
.
ReorderGivenOld2New
(
dim_access_order
)
*
src_scalar_per_access
;
#endif
// src coordinate
constexpr
auto
src_ref_to_data_disp_idx
=
src_ref_to_origin_disp_idx
+
data_to_origin_disp_idx
;
constexpr
auto
src_ref_to_data_disp_coord_step
=
make_tensor_coordinate_step
(
src_desc
,
src_ref_to_data_disp_idx
);
auto
src_data_coord
=
src_ref_coord_
;
move_tensor_coordinate
(
src_desc
,
src_data_coord
,
src_ref_to_data_disp_coord_step
);
vector_type_maker_t
<
SrcData
,
SrcScalarPerVector
/
PackedSize
>
src_tmp_vector
;
using
src_vector_t
=
typename
decltype
(
src_tmp_vector
)
::
type
;
const
bool
is_src_valid
=
coordinate_has_valid_offset_assuming_visible_index_is_valid
(
src_desc
,
src_data_coord
);
// copy data from src_buf into src_tmp_vector
if
constexpr
(
SrcBuffer
::
IsDynamicBuffer
())
{
src_tmp_vector
.
template
AsType
<
src_vector_t
>()(
Number
<
0
>
{})
=
src_buf
.
template
Get
<
src_vector_t
>(
src_data_coord
.
GetOffset
()
/
PackedSize
,
is_src_valid
);
}
else
if
constexpr
(
SrcBuffer
::
IsStaticBuffer
())
{
static_for
<
0
,
SrcScalarPerVector
,
1
>
{}([
&
](
auto
i
)
{
constexpr
index_t
src_offset
=
src_desc
.
CalculateOffset
(
src_ref_to_origin_disp_idx
+
data_to_origin_disp_idx
+
i
*
src_scalar_step_in_vector
);
src_tmp_vector
.
template
AsType
<
SrcData
>()(
i
)
=
src_buf
[
Number
<
src_offset
>
{}];
});
}
if
constexpr
(
is_same
<
remove_cvref_t
<
SrcData
>
,
pk_i4_t
>::
value
)
{
// copy data from src_tmp_vector to dst_tmp_vector (data cast data from SrcData to
// DstData)
vector_type_maker_t
<
DstData
,
SrcScalarPerVector
>
dst_tmp_vector
;
vector_type
<
DstData
,
2
>
scale_vector
;
scale_vector
.
template
AsType
<
DstData
>()(
Number
<
0
>
{})
=
scale
;
scale_vector
.
template
AsType
<
DstData
>()(
Number
<
1
>
{})
=
scale
;
constexpr
index_t
pack_size
=
8
;
static_assert
(
SrcScalarPerVector
%
pack_size
==
0
,
""
);
using
src_v_t
=
typename
vector_type_maker_t
<
SrcData
,
pack_size
/
PackedSize
>::
type
;
using
dst_v_t
=
typename
vector_type_maker_t
<
DstData
,
pack_size
>::
type
;
using
scale_v_t
=
typename
vector_type_maker_t
<
DstData
,
2
>::
type
;
static_for
<
0
,
SrcScalarPerVector
/
pack_size
,
1
>
{}([
&
](
auto
i
)
{
ck
::
tensor_operation
::
element_wise
::
DequantPack8
{}(
dst_tmp_vector
.
template
AsType
<
dst_v_t
>()(
i
),
src_tmp_vector
.
template
AsType
<
src_v_t
>()[
i
],
scale_vector
.
template
AsType
<
scale_v_t
>()[
Number
<
0
>
{}]);
});
// copy data from dst_tmp_vector into dst_buf
static_for
<
0
,
SrcScalarPerVector
,
1
>
{}([
&
](
auto
i
)
{
constexpr
index_t
dst_offset
=
dst_desc
.
CalculateOffset
(
dst_origin_idx
+
data_to_origin_disp_idx
+
i
*
src_scalar_step_in_vector
);
dst_buf
(
Number
<
dst_offset
>
{})
=
dst_tmp_vector
.
template
AsType
<
DstData
>()[
i
];
});
}
else
if
constexpr
(
is_same
<
remove_cvref_t
<
SrcData
>
,
f8_t
>::
value
&&
is_same
<
remove_cvref_t
<
DstData
>
,
half_t
>::
value
&&
SrcScalarPerVector
%
2
==
0
)
{
// copy data from src_tmp_vector to dst_tmp_vector (data cast data from SrcData to
// DstData)
...
...
@@ -1304,7 +1544,7 @@ struct ThreadwiseTensorSliceTransfer_StaticToStatic
ElementwiseOperation
element_op_
;
};
// Specilized for
WMMA-Navi3
// Speci
a
lized for
gfx11
// A single Wave32 is composed by double row
// Data exchange allowed between these two rows
// This RowLane Dst buf will be filled from two Src buf
...
...
@@ -1439,7 +1679,7 @@ struct ThreadwiseTensorSliceTransfer_StaticToStatic_InterRow
ElementwiseOperation
element_op_
{};
};
// Specilized for
WMMA-Navi4
// Speci
a
lized for
gfx12
template
<
typename
SrcData
,
typename
DstData
,
typename
SrcDesc
,
...
...
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v3r1.hpp
View file @
dd0188b3
...
...
@@ -31,8 +31,8 @@ template <typename SliceLengths,
typename
DstDimAccessOrder
,
index_t
SrcVectorDim
,
index_t
DstVectorDim
,
index_t
SrcScalarPerVector
,
index_t
DstScalarPerVector
,
index_t
SrcScalarPerVector
_
,
index_t
DstScalarPerVector
_
,
index_t
SrcScalarStrideInVector
,
index_t
DstScalarStrideInVector
,
bool
SrcResetCoordinateAfterRun
,
// control whether to move back src coordinate after each
...
...
@@ -55,6 +55,16 @@ struct ThreadwiseTensorSliceTransfer_v3r1
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
index_t
PackedSize
=
[]()
{
if
constexpr
(
is_same_v
<
remove_cvref_t
<
SrcData
>
,
pk_i4_t
>
)
return
2
;
else
return
1
;
}();
static
constexpr
auto
SrcScalarPerVector
=
Number
<
SrcScalarPerVector_
/
PackedSize
>
{};
static
constexpr
auto
DstScalarPerVector
=
Number
<
DstScalarPerVector_
/
PackedSize
>
{};
__device__
constexpr
ThreadwiseTensorSliceTransfer_v3r1
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_slice_origin
,
...
...
@@ -67,6 +77,17 @@ struct ThreadwiseTensorSliceTransfer_v3r1
src_element_op_
(
src_element_op
),
dst_element_op_
(
dst_element_op
)
{
if
constexpr
(
is_same_v
<
remove_cvref_t
<
SrcData
>
,
pk_i4_t
>
)
{
static_assert
(
is_same_v
<
remove_cvref_t
<
SrcData
>
,
remove_cvref_t
<
DstData
>>
,
"SrcData != DstData"
);
static_assert
(
SrcScalarPerVector_
%
PackedSize
==
0
&&
DstScalarPerVector_
%
PackedSize
==
0
,
"SrcScalarPerVector_ and DstScalarPerVector_ cannot be 1 for packed data type"
);
static_assert
(
SrcVectorDim
==
DstVectorDim
,
"pk_i4_t does not support transpose"
);
}
}
__device__
void
SetSrcSliceOrigin
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_slice_origin_idx
)
...
...
@@ -95,11 +116,11 @@ struct ThreadwiseTensorSliceTransfer_v3r1
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
_
>
{},
Number
<
nDim
>
{});
constexpr
auto
src_access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
static_assert
(
SliceLengths
::
At
(
SrcVectorDim
)
%
SrcScalarPerVector
==
0
,
static_assert
(
SliceLengths
::
At
(
SrcVectorDim
)
%
(
SrcScalarPerVector
_
)
==
0
,
"SliceLengths[SrcVectorDim] must be divisible by SrcScalarPerVector"
);
constexpr
auto
src_dim_access_order
=
SrcDimAccessOrder
{};
...
...
@@ -180,9 +201,6 @@ struct ThreadwiseTensorSliceTransfer_v3r1
using
src_vector_type
=
vector_type_maker_t
<
SrcData
,
SrcScalarPerVector
>
;
using
src_vector_t
=
typename
src_vector_type
::
type
;
auto
src_vector_container
=
src_vector_type
{
src_buf
.
template
Get
<
src_vector_t
>(
src_coord_
.
GetOffset
(),
true
)};
using
dst_vector_type
=
vector_type_maker_t
<
DstData
,
SrcScalarPerVector
>
;
using
dst_vector_t
=
typename
dst_vector_type
::
type
;
dst_vector_type
op_r_v
;
...
...
@@ -193,17 +211,22 @@ struct ThreadwiseTensorSliceTransfer_v3r1
if
constexpr
(
decltype
(
src_element_op_
)
::
is_pack8_invocable
)
return
math
::
min
(
8
,
SrcScalarPerVector
);
}
if
constexpr
(
is_detected
<
is_pack4_invocable_t
,
decltype
(
src_element_op_
)
>::
value
)
else
if
constexpr
(
is_detected
<
is_pack4_invocable_t
,
decltype
(
src_element_op_
)
>::
value
)
{
if
constexpr
(
decltype
(
src_element_op_
)
::
is_pack4_invocable
)
return
math
::
min
(
4
,
SrcScalarPerVector
);
}
if
constexpr
(
is_detected
<
is_pack2_invocable_t
,
decltype
(
src_element_op_
)
>::
value
)
else
if
constexpr
(
is_detected
<
is_pack2_invocable_t
,
decltype
(
src_element_op_
)
>::
value
)
{
if
constexpr
(
decltype
(
src_element_op_
)
::
is_pack2_invocable
)
return
math
::
min
(
2
,
SrcScalarPerVector
);
}
return
1
;
else
{
return
1
;
}
};
constexpr
index_t
elem_op_vec_len
=
get_elem_op_vec_len
();
...
...
@@ -211,6 +234,9 @@ struct ThreadwiseTensorSliceTransfer_v3r1
using
src_elem_op_vec_t
=
typename
vector_type
<
SrcData
,
elem_op_vec_len
>::
type
;
using
dst_elem_op_vec_t
=
typename
vector_type
<
DstData
,
elem_op_vec_len
>::
type
;
auto
src_vector_container
=
src_vector_type
{
src_buf
.
template
Get
<
src_vector_t
>(
src_coord_
.
GetOffset
()
/
PackedSize
,
true
)};
static_for
<
0
,
SrcScalarPerVector
/
elem_op_vec_len
,
1
>
{}([
&
](
auto
idx
)
{
// apply the src elementwise op and convert to DstData under the hood if needed
src_element_op_
(
op_r_v
.
template
AsType
<
dst_elem_op_vec_t
>()(
idx
),
...
...
@@ -276,10 +302,9 @@ struct ThreadwiseTensorSliceTransfer_v3r1
dst_thread_scratch_
(
idx
)
=
src_thread_scratch_tuple_
[
thread_scratch_id
][
idx
];
});
#else
// OOB Check
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
_
>
{},
Number
<
nDim
>
{});
constexpr
auto
src_access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
...
...
@@ -350,6 +375,8 @@ struct ThreadwiseTensorSliceTransfer_v3r1
(
is_same
<
f8_t
,
remove_cvref_t
<
DstData
>>::
value
&&
SrcScalarPerVector
%
4
==
0
&&
DstScalarPerVector
%
4
==
0
)))
{
static_assert
(
!
is_same_v
<
remove_cvref_t
<
SrcData
>
,
pk_i4_t
>
,
"in-register transpose is not supported for pk_i4_t"
);
// each transpose does
// DstScalarPerVector # of src vectors in src_thread_scratch_
// SrcScalarPerVector # of dst vectors in dst_thread_scratch_
...
...
@@ -410,7 +437,12 @@ struct ThreadwiseTensorSliceTransfer_v3r1
}
else
{
static_ford
<
SliceLengths
>
{}([
&
](
auto
idx
)
{
constexpr
auto
packed_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
PackedSize
>
{},
Number
<
nDim
>
{});
constexpr
auto
packed_access_lengths
=
SliceLengths
{}
/
packed_per_access
;
static_ford
<
decltype
(
packed_access_lengths
)
>
{}([
&
](
auto
idx
)
{
dst_thread_scratch_
(
idx
)
=
src_thread_scratch_tuple_
[
thread_scratch_id
][
idx
];
});
}
...
...
@@ -438,7 +470,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
// src scalar per access on each dim
// TODO: don't use this
constexpr
auto
dst_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
_
>
{},
Number
<
nDim
>
{});
constexpr
auto
dst_access_lengths
=
SliceLengths
{}
/
dst_scalar_per_access
;
...
...
@@ -526,13 +558,11 @@ struct ThreadwiseTensorSliceTransfer_v3r1
// apply DstElementwiseOperation
dst_element_op_
(
dst_v
,
dst_vector_container
.
template
AsType
<
DstData
>()[
i
]);
dst_vector_container
.
template
AsType
<
DstData
>()(
i
)
=
dst_v
;
});
// copy data from dst_vector_container to dst_buf
dst_buf
.
template
Set
<
dst_vector_t
>(
dst_coord_
.
GetOffset
(),
dst_coord_
.
GetOffset
()
/
PackedSize
,
is_dst_valid
,
dst_vector_container
.
template
AsType
<
dst_vector_t
>()[
I0
]);
...
...
@@ -586,7 +616,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
_
>
{},
Number
<
nDim
>
{});
constexpr
auto
src_access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
...
...
@@ -644,7 +674,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
dst_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
_
>
{},
Number
<
nDim
>
{});
constexpr
auto
dst_access_lengths
=
SliceLengths
{}
/
dst_scalar_per_access
;
...
...
@@ -730,7 +760,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
__device__
static
constexpr
auto
GetSrcThreadScratchDescriptor
()
{
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
_
>
{},
Number
<
nDim
>
{});
constexpr
auto
src_access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
...
...
@@ -779,7 +809,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
__device__
static
constexpr
auto
GetSrcOOBThreadScratchDescriptor
()
{
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
_
>
{},
Number
<
nDim
>
{});
constexpr
auto
src_access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
...
...
@@ -790,7 +820,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
{
// 1st stage of transforms
constexpr
auto
dst_scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
_
>
{},
Number
<
nDim
>
{});
constexpr
auto
dst_access_lengths
=
SliceLengths
{}
/
dst_scalar_per_access
;
...
...
include/ck/tensor_operation/gpu/warp/wmma_gemm.hpp
View file @
dd0188b3
...
...
@@ -307,7 +307,7 @@ struct wmma_type<WmmaInstr::wmma_f32_16x16x16_f16_gfx12,
// Wave mode dependent propety
static
constexpr
index_t
wave_size
=
Number
<
WaveSize
>
{};
// * Fixed
in Navi3x
, Will be wave mode dependent on
Navi4x
// * Fixed
for gfx11
, Will be wave mode dependent on
gfx12
// static constexpr index_t num_src_a_vgprs_per_wave = k_per_wmma / 2 * src_a_data_size / 4;
// static constexpr index_t num_src_b_vgprs_per_wave = k_per_wmma / 2 * src_b_data_size / 4;
// * num_acc_vgprs_per_wave alone M direction
...
...
include/ck/utility/amd_buffer_addressing.hpp
View file @
dd0188b3
...
...
@@ -429,7 +429,8 @@ __device__ typename vector_type<T, N>::type amd_buffer_load_impl(int32x4_t src_w
(
is_same
<
T
,
f8_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
bf8_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
int8_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
uint8_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
)),
(
is_same
<
T
,
uint8_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
pk_i4_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
)),
"wrong! not implemented"
);
using
r_t
=
typename
vector_type
<
T
,
N
>::
type
;
...
...
include/ck/utility/amd_inline_asm.hpp
View file @
dd0188b3
...
...
@@ -4,13 +4,34 @@
#ifndef CK_AMD_INLINE_ASM_HPP
#define CK_AMD_INLINE_ASM_HPP
#include "data_type.hpp"
#include "c_style_pointer_cast.hpp"
#include "data_type.hpp"
// TODO: deprecate all amd_assembly_outer_product_xxx
namespace
ck
{
inline
__device__
int
amd_assembly_and_or_b32
(
int
a
,
int
b
,
int
d
)
{
int
c
;
asm
volatile
(
"v_and_or_b32 %0, %1, %2, %3"
:
"=v"
(
c
)
:
"v"
(
a
),
"v"
(
b
),
"v"
(
d
));
return
c
;
}
inline
__device__
half2_t
amd_assembly_pk_fma_f16
(
half2_t
a
,
half2_t
b
,
half2_t
c
)
{
half2_t
d
;
asm
volatile
(
"v_pk_fma_f16 %0, %1, %2, %3"
:
"=v"
(
d
)
:
"v"
(
a
),
"v"
(
b
),
"v"
(
c
));
return
d
;
}
inline
__device__
half2_t
amd_assembly_pk_add_f16
(
half2_t
a
,
half2_t
b
)
{
half2_t
c
;
asm
volatile
(
"v_pk_add_f16 %0, %1, %2"
:
"=v"
(
c
)
:
"v"
(
a
),
"v"
(
b
));
return
c
;
}
// c0 += inner_product(a, b0)
// c1 += inner_product(a, b1)
__device__
void
amd_assembly_outer_product_1x2
(
float
a
,
float
b0
,
float
b1
,
float
&
c0
,
float
&
c1
)
...
...
include/ck/utility/data_type.hpp
View file @
dd0188b3
...
...
@@ -12,6 +12,17 @@ using bhalf_t = ushort;
using
half_t
=
_Float16
;
using
int4_t
=
_BitInt
(
4
);
// custom data type - pack int4 data
struct
pk_i4_t
{
using
type
=
int8_t
;
type
data
;
__host__
__device__
constexpr
pk_i4_t
()
:
data
{
type
{}}
{}
__host__
__device__
constexpr
pk_i4_t
(
type
init
)
:
data
{
init
}
{}
__host__
__device__
constexpr
operator
float
()
const
{
return
static_cast
<
int8_t
>
(
data
);
}
};
inline
constexpr
auto
next_pow2
(
uint32_t
x
)
{
// Precondition: x > 1.
...
...
@@ -165,6 +176,13 @@ struct scalar_type<int4_t>
};
#endif
template
<
>
struct
scalar_type
<
pk_i4_t
>
{
using
type
=
pk_i4_t
;
static
constexpr
index_t
vector_size
=
1
;
};
template
<
>
struct
scalar_type
<
f8_fnuz_t
>
{
...
...
@@ -1044,6 +1062,12 @@ struct nnvb_data_t_selector<bf8_ocp_t>
using
type
=
bf8_ocp_t
::
data_type
;
};
template
<
>
struct
nnvb_data_t_selector
<
pk_i4_t
>
{
using
type
=
pk_i4_t
::
type
;
};
template
<
typename
T
,
index_t
N
>
struct
non_native_vector_base
<
T
,
...
...
@@ -1163,6 +1187,14 @@ struct scalar_type<non_native_vector_base<bf8_ocp_t, N>>
static
constexpr
index_t
vector_size
=
N
;
};
template
<
index_t
N
>
struct
scalar_type
<
non_native_vector_base
<
pk_i4_t
,
N
>>
{
using
type
=
typename
non_native_vector_base
<
pk_i4_t
,
N
>::
data_t
;
static
constexpr
index_t
vector_size
=
N
;
};
// non-native vector_type implementation
template
<
typename
T
>
struct
vector_type
<
T
,
1
,
typename
std
::
enable_if_t
<!
is_native_type
<
T
>
()
>>
...
...
@@ -1871,6 +1903,11 @@ using uint8x16_t = typename vector_type<uint8_t, 16>::type;
using
uint8x32_t
=
typename
vector_type
<
uint8_t
,
32
>::
type
;
using
uint8x64_t
=
typename
vector_type
<
uint8_t
,
64
>::
type
;
// pack int4
using
pk_i4x2_t
=
typename
vector_type
<
pk_i4_t
,
2
>::
type
;
using
pk_i4x4_t
=
typename
vector_type
<
pk_i4_t
,
4
>::
type
;
using
pk_i4x8_t
=
typename
vector_type
<
pk_i4_t
,
8
>::
type
;
template
<
typename
T
>
struct
NumericLimits
{
...
...
include/ck/utility/dynamic_buffer.hpp
View file @
dd0188b3
...
...
@@ -54,7 +54,8 @@ struct DynamicBuffer
template
<
typename
X
,
typename
enable_if
<
is_same
<
typename
scalar_type
<
remove_cvref_t
<
X
>
>::
type
,
typename
scalar_type
<
remove_cvref_t
<
T
>>::
type
>::
value
,
typename
scalar_type
<
remove_cvref_t
<
T
>>::
type
>::
value
||
!
is_native_type
<
X
>
(),
bool
>::
type
=
false
>
__host__
__device__
constexpr
auto
Get
(
index_t
i
,
bool
is_valid_element
)
const
{
...
...
@@ -195,7 +196,8 @@ struct DynamicBuffer
template
<
typename
X
,
typename
enable_if
<
is_same
<
typename
scalar_type
<
remove_cvref_t
<
X
>
>::
type
,
typename
scalar_type
<
remove_cvref_t
<
T
>>::
type
>::
value
,
typename
scalar_type
<
remove_cvref_t
<
T
>>::
type
>::
value
||
!
is_native_type
<
X
>
(),
bool
>::
type
=
false
>
__host__
__device__
void
Set
(
index_t
i
,
bool
is_valid_element
,
const
X
&
x
)
{
...
...
include/ck/utility/static_buffer.hpp
View file @
dd0188b3
...
...
@@ -116,7 +116,8 @@ struct StaticBufferTupleOfVector
// i is offset of S, not X. i should be aligned to X
template
<
typename
X
,
index_t
I
,
typename
enable_if
<
has_same_scalar_type
<
S
,
X
>
::
value
,
bool
>::
type
=
false
>
typename
enable_if
<
has_same_scalar_type
<
S
,
X
>
::
value
||
!
is_native_type
<
S
>
(),
bool
>::
type
=
false
>
__host__
__device__
constexpr
auto
GetAsType
(
Number
<
I
>
i
)
const
{
constexpr
auto
s_per_x
=
Number
<
scalar_type
<
remove_cvref_t
<
X
>>::
vector_size
>
{};
...
...
@@ -134,7 +135,8 @@ struct StaticBufferTupleOfVector
// i is offset of S, not X. i should be aligned to X
template
<
typename
X
,
index_t
I
,
typename
enable_if
<
has_same_scalar_type
<
S
,
X
>
::
value
,
bool
>::
type
=
false
>
typename
enable_if
<
has_same_scalar_type
<
S
,
X
>
::
value
||
!
is_native_type
<
S
>
(),
bool
>::
type
=
false
>
__host__
__device__
constexpr
void
SetAsType
(
Number
<
I
>
i
,
X
x
)
{
constexpr
auto
s_per_x
=
Number
<
scalar_type
<
remove_cvref_t
<
X
>>::
vector_size
>
{};
...
...
include/ck/utility/type_convert.hpp
View file @
dd0188b3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
5
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -465,6 +465,19 @@ inline __host__ __device__ float2_t type_convert<float2_t, f8x2_ocp_t>(f8x2_ocp_
#endif
}
template
<
>
inline
__host__
__device__
float2_t
type_convert
<
float2_t
,
pk_i4_t
>
(
pk_i4_t
x
)
{
uint8_t
x_u8
=
ck
::
bit_cast
<
uint8_t
>
(
x
);
uint8_t
x_l
=
(
x_u8
&
0x0f
)
>>
0
;
uint8_t
x_h
=
(
x_u8
&
0xf0
)
>>
4
;
auto
l_f32
=
ck
::
type_convert
<
float
>
(
x_l
);
auto
h_f32
=
ck
::
type_convert
<
float
>
(
x_h
);
return
{
l_f32
,
h_f32
};
}
template
<
>
inline
__host__
__device__
half2_t
type_convert
<
half2_t
,
float2_t
>
(
float2_t
x
)
{
...
...
include/ck_tile/ops/epilogue/cshuffle_epilogue.hpp
View file @
dd0188b3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -56,6 +56,13 @@ struct CShuffleEpilogue
// No additional shared memory needed
CK_TILE_HOST_DEVICE
static
constexpr
index_t
GetSmemSize
()
{
return
0
;
}
CK_TILE_HOST_DEVICE
static
constexpr
bool
IsOutputTransposed
()
{
// TODO: At now CShuffle doesn't allow to vector store after permute.
// It should be fixed and this function should return true.
return
false
;
}
template
<
typename
OAccTile
>
CK_TILE_DEVICE
void
permute_tile_data
(
OAccTile
&
o_acc_tile
)
{
...
...
@@ -111,7 +118,9 @@ struct CShuffleEpilogue
}
}
template
<
typename
ODramWindowTmp
,
typename
OAccTile
>
template
<
typename
ODramWindowTmp
,
typename
OAccTile
,
memory_operation_enum
out_memory_data_op
=
memory_operation_enum
::
set
>
CK_TILE_DEVICE
auto
operator
()(
ODramWindowTmp
&
o_dram_window_tmp
,
OAccTile
&
o_acc_tile
)
{
const
auto
&
current_window_origin
=
o_dram_window_tmp
.
get_window_origin
();
...
...
@@ -158,12 +167,26 @@ struct CShuffleEpilogue
// Store the tile data to the permuted location
if
constexpr
(
kPadM
||
kPadN
)
{
store_tile_raw
(
o_dram_window_tmp
,
cast_tile
<
ODataType
>
(
o_acc_tile
));
if
constexpr
(
out_memory_data_op
==
memory_operation_enum
::
set
)
{
store_tile_raw
(
o_dram_window_tmp
,
cast_tile
<
ODataType
>
(
o_acc_tile
));
}
else
{
update_tile_raw
(
o_dram_window_tmp
,
cast_tile
<
ODataType
>
(
o_acc_tile
));
}
buffer_store_fence
();
}
else
{
store_tile
(
o_dram_window_tmp
,
cast_tile
<
ODataType
>
(
o_acc_tile
));
if
constexpr
(
out_memory_data_op
==
memory_operation_enum
::
set
)
{
store_tile
(
o_dram_window_tmp
,
cast_tile
<
ODataType
>
(
o_acc_tile
));
}
else
{
update_tile
(
o_dram_window_tmp
,
cast_tile
<
ODataType
>
(
o_acc_tile
));
}
}
}
};
...
...
include/ck_tile/ops/epilogue/default_2d_epilogue.hpp
View file @
dd0188b3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -35,21 +35,39 @@ struct Default2DEpilogue
CK_TILE_HOST_DEVICE
static
constexpr
index_t
GetSmemSize
()
{
return
0
;
}
CK_TILE_HOST_DEVICE
static
constexpr
bool
IsOutputTransposed
()
{
return
false
;
}
// TODO: this function assume store out vector size is the same as OAccTile last dimension size
// how do we fix this ?
template
<
typename
ODramWindowTmp
,
typename
OAccTile
>
template
<
typename
ODramWindowTmp
,
typename
OAccTile
,
memory_operation_enum
out_memory_data_op
=
memory_operation_enum
::
set
>
CK_TILE_DEVICE
auto
operator
()(
ODramWindowTmp
&
o_dram_window_tmp
,
const
OAccTile
&
o_acc_tile
)
{
// TODO: this is ugly
if
constexpr
(
UseRawStore
&&
(
kPadM
||
kPadN
))
{
store_tile_raw
(
o_dram_window_tmp
,
cast_tile
<
ODataType
>
(
o_acc_tile
));
if
constexpr
(
out_memory_data_op
==
memory_operation_enum
::
set
)
{
store_tile_raw
(
o_dram_window_tmp
,
cast_tile
<
ODataType
>
(
o_acc_tile
));
}
else
{
update_tile_raw
(
o_dram_window_tmp
,
cast_tile
<
ODataType
>
(
o_acc_tile
));
}
buffer_store_fence
();
}
else
{
store_tile
(
o_dram_window_tmp
,
cast_tile
<
ODataType
>
(
o_acc_tile
));
if
constexpr
(
out_memory_data_op
==
memory_operation_enum
::
set
)
{
store_tile
(
o_dram_window_tmp
,
cast_tile
<
ODataType
>
(
o_acc_tile
));
}
else
{
update_tile
(
o_dram_window_tmp
,
cast_tile
<
ODataType
>
(
o_acc_tile
));
}
}
}
};
...
...
include/ck_tile/ops/fmha.hpp
View file @
dd0188b3
...
...
@@ -14,10 +14,7 @@
#include "ck_tile/ops/fmha/kernel/fmha_fwd_appendkv_tile_partitioner.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_kernel.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_combine_kernel.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_combine_tile_partitioner.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_kernel.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_tile_partitioner.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_tile_partitioner.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_convert_dq.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_dot_do_o.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_dq_dk_dv_pipeline_kr_ktr_vr.hpp"
...
...
include/ck_tile/ops/fmha/kernel/fmha_fwd_appendkv_kernel.hpp
View file @
dd0188b3
...
...
@@ -10,10 +10,9 @@
namespace
ck_tile
{
template
<
typename
TilePartitioner_
,
typename
FmhaPipeline_
>
template
<
typename
FmhaPipeline_
>
struct
FmhaFwdAppendKVKernel
{
using
TilePartitioner
=
ck_tile
::
remove_cvref_t
<
TilePartitioner_
>
;
using
FmhaPipeline
=
ck_tile
::
remove_cvref_t
<
FmhaPipeline_
>
;
static
constexpr
ck_tile
::
index_t
kBlockSize
=
FmhaPipeline
::
kBlockSize
;
static
constexpr
ck_tile
::
index_t
kBlockPerCu
=
FmhaPipeline
::
kBlockPerCu
;
...
...
@@ -234,12 +233,25 @@ struct FmhaFwdAppendKVKernel
return
kargs
;
}
__host__
static
constexpr
auto
GridSize
(
ck_tile
::
index_t
batch_size
,
ck_tile
::
index_t
nhead
,
ck_tile
::
index_t
seqlen_q
,
ck_tile
::
index_t
seqlen_knew
)
CK_TILE_HOST
static
constexpr
auto
GridSize
(
ck_tile
::
index_t
batch_size
,
ck_tile
::
index_t
nhead
,
ck_tile
::
index_t
seqlen_q
,
ck_tile
::
index_t
seqlen_knew
)
{
return
TilePartitioner
::
GridSize
(
batch_size
,
nhead
,
seqlen_q
,
seqlen_knew
);
// TODO: this may need tuning
return
dim3
(
std
::
max
(
ck_tile
::
integer_divide_ceil
(
seqlen_q
,
FmhaPipeline
::
kM0
),
ck_tile
::
integer_divide_ceil
(
seqlen_knew
,
FmhaPipeline
::
kN0
)),
nhead
,
batch_size
);
}
CK_TILE_DEVICE
static
constexpr
auto
GetTileIndex
(
const
Kargs
&
/* kargs */
)
{
const
index_t
i_tile
=
blockIdx
.
x
;
const
index_t
i_nhead
=
blockIdx
.
y
;
const
index_t
i_batch
=
blockIdx
.
z
;
return
ck_tile
::
make_tuple
(
i_tile
,
i_nhead
,
i_batch
);
}
__host__
static
constexpr
auto
BlockSize
()
{
return
dim3
(
kBlockSize
);
}
...
...
@@ -247,7 +259,7 @@ struct FmhaFwdAppendKVKernel
CK_TILE_DEVICE
void
operator
()(
Kargs
kargs
)
const
{
// divide problem
const
auto
[
i_tile
,
i_nhead
,
i_batch
]
=
Tile
Partitioner
{}(
);
const
auto
[
i_tile
,
i_nhead
,
i_batch
]
=
Get
Tile
Index
(
kargs
);
const
index_t
i_m0
=
__builtin_amdgcn_readfirstlane
(
i_tile
*
FmhaPipeline
::
kM0
);
const
index_t
i_n0
=
__builtin_amdgcn_readfirstlane
(
i_tile
*
FmhaPipeline
::
kN0
);
...
...
Prev
1
2
3
4
5
6
7
8
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment