Commit dd0188b3 authored by Mateusz Ozga's avatar Mateusz Ozga
Browse files

Merge remote-tracking branch 'origin/develop' into mozga-amd/universal_gemm_weight

parents 7ff4d613 888317e6
......@@ -46,9 +46,7 @@ using fmha_pipeline_problem_{F_idx} = ck_tile::BlockFmhaFwdAppendKVPipelineProbl
using fmha_pipeline_{F_idx} = ck_tile::BlockFmhaFwdAppendKVPipeline<
fmha_pipeline_problem_{F_idx}>;
using fmha_kernel_{F_idx} =
ck_tile::FmhaFwdAppendKVKernel<ck_tile::FmhaFwdAppendKVTilePartitioner<{F_bs}, {F_bsk}, {F_bd}, {F_bdv}>,
fmha_pipeline_{F_idx}>;
using fmha_kernel_{F_idx} = ck_tile::FmhaFwdAppendKVKernel<fmha_pipeline_{F_idx}>;
using trait_{F_idx} = fmha_fwd_appendkv_traits_<{F_hdim}, {F_dtype}, {F_bs}, {F_bsk}, {F_bd}, {F_bdv}, {F_vlayout},
{F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}, {F_rope}, {F_pagedkv}>;
......@@ -355,4 +353,4 @@ def list_blobs(file_path : Path, kernel_filter : Optional[str], receipt, mask_im
_, kernels = get_fwd_appendkv_blobs(kernel_filter, receipt, mask_impl)
for kernel in kernels:
f.write(str(file_path.parent / GEN_DIR / kernel.filename) + "\n")
f.write(str(file_path.parent / GEN_DIR / FMHA_FWD_APPENDKV_API_FILENAME) + "\n")
\ No newline at end of file
f.write(str(file_path.parent / GEN_DIR / FMHA_FWD_APPENDKV_API_FILENAME) + "\n")
......@@ -96,9 +96,7 @@ using fmha_epilogue =
{F_spad}, {F_dvpad}>>;
using fmha_kernel =
ck_tile::FmhaFwdSplitKVKernel<ck_tile::FmhaFwdSplitKVTilePartitioner<fmha_shape>,
fmha_pipeline,
fmha_epilogue>;
ck_tile::FmhaFwdSplitKVKernel<fmha_pipeline, fmha_epilogue>;
static void run(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a)
{{
......@@ -176,11 +174,7 @@ using fmha_epilogue =
false, false>>;
using fmha_kernel =
ck_tile::FmhaFwdSplitKVCombineKernel<
ck_tile::FmhaFwdSplitKVCombineTilePartitioner<
fmha_pipeline_problem::kM0, fmha_pipeline_problem::kN1>,
fmha_pipeline,
fmha_epilogue>;
ck_tile::FmhaFwdSplitKVCombineKernel<fmha_pipeline, fmha_epilogue>;
static void run(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a)
{{
......@@ -261,7 +255,7 @@ FMHA_FWD_SPLITKV_API_INNER_DISPATCH=""" {F_if}((t.is_group_mode == {F
static_assert({F_bn1} % 32 == 0);
if (t.has_lse) {{
if constexpr (std::is_same_v<{F_dtype}, ck_tile::fp8_t>) {{
if constexpr (std::is_same_v<{F_dtype}, FmhaFwdFp8>) {{
return -1;
}} else {{
using traits2_ = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_mode}, /*F_bn1=*/32, true, {F_squant}, {F_spad}, {F_dvpad}>;
......@@ -614,7 +608,7 @@ def get_fmha_fwd_splitkv_combine_tile_dict_from_dtype(dtype : str) -> Optional[d
}
elif dtype == 'fp8' or dtype == 'bf8':
return {
'64' : FmhaFwdSplitKVCombineTileSize(32, -1),
'64' : FmhaFwdSplitKVCombineTileSize(32, -1),
'128' : FmhaFwdSplitKVCombineTileSize(32, -1),
'256' : FmhaFwdSplitKVCombineTileSize(32, -1),
}
......
......@@ -1131,15 +1131,16 @@ bool run(const ck_tile::ArgParser& arg_parser)
{
// NOTE: use gpu to do validation
ck_tile::naive_attention_fwd_traits naive_t;
naive_t.q_type = data_type;
naive_t.k_type = data_type;
naive_t.v_type = data_type;
naive_t.o_type = data_type;
naive_t.q_layout = i_perm == 1 ? "bhsd" : "bshd";
naive_t.k_layout = i_perm == 1 ? "bhsd" : "bshd";
naive_t.v_layout = i_perm == 1 ? "bhsd" : "bshd";
naive_t.o_layout = o_perm == 1 ? "bhsd" : "bshd";
naive_t.variation = 0; // TODO?
naive_t.q_type = data_type;
naive_t.k_type = data_type;
naive_t.v_type = data_type;
naive_t.o_type = data_type;
naive_t.q_layout = i_perm == 1 ? "bhsd" : "bshd";
naive_t.k_layout = i_perm == 1 ? "bhsd" : "bshd";
naive_t.v_layout = i_perm == 1 ? "bhsd" : "bshd";
naive_t.o_layout = o_perm == 1 ? "bhsd" : "bshd";
naive_t.variation = 0; // TODO?
naive_t.quant_algo = 0;
ck_tile::DeviceMem o_naive_buf(o_host.get_element_space_size_in_bytes());
......
......@@ -400,8 +400,18 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
}
}();
dim3 grids = FmhaKernel::GridSize(args.batch, args.nhead_q, args.max_seqlen_q, args.hdim_v);
return ck_tile::make_tuple(kargs, grids);
if constexpr(FmhaKernel::kIsGroupMode)
{
dim3 grids = FmhaKernel::GridSize(
args.batch, args.nhead_q, args.max_seqlen_q, args.hdim_v, args.seqlen_k_ptr != nullptr);
return ck_tile::make_tuple(kargs, grids);
}
else
{
dim3 grids =
FmhaKernel::GridSize(args.batch, args.nhead_q, args.max_seqlen_q, args.hdim_v, false);
return ck_tile::make_tuple(kargs, grids);
}
}
template <typename Kernel>
......
......@@ -58,6 +58,7 @@ template <typename XDataType_,
bool kPadN_,
bool kSaveMeanInvStd_,
bool kFastFDiv_,
bool kWelford_,
bool kTwoPass_,
ck_tile::index_t kFusedAdd_ = 0,
ck_tile::index_t kFusedQuant_ = 0>
......@@ -120,6 +121,7 @@ struct layernorm2d_fwd_traits_
static constexpr bool kPadN = kPadN_;
static constexpr bool kSaveMeanInvStd = kSaveMeanInvStd_;
static constexpr bool kFastFDiv = kFastFDiv_;
static constexpr bool kWelford = kWelford_;
static constexpr bool kTwoPass = kTwoPass_;
static constexpr ck_tile::index_t kFusedAdd = kFusedAdd_;
static constexpr ck_tile::index_t kFusedQuant = kFusedQuant_;
......@@ -137,6 +139,7 @@ template <typename XDataType_,
bool kPadN_,
bool kSaveMeanInvStd_,
bool kFastFDiv_,
bool kWelford_,
bool kTwoPass_,
int kFusedAdd_,
int kFusedQuant_>
......@@ -152,6 +155,7 @@ using traits_ = layernorm2d_fwd_traits_<XDataType_,
kPadN_,
kSaveMeanInvStd_,
kFastFDiv_,
kWelford_,
kTwoPass_,
kFusedAdd_,
kFusedQuant_>;
......@@ -184,6 +188,7 @@ float layernorm2d_fwd_(const S& s, A a)
using PipelineTraits = ck_tile::Layernorm2dFwdTraits<Traits_::kPadN,
Traits_::kSaveMeanInvStd,
Traits_::kFastFDiv,
Traits_::kWelford,
Traits_::kTwoPass,
static_cast<ck_tile::Layernorm2dFusedAddEnum>(Traits_::kFusedAdd),
static_cast<ck_tile::Layernorm2dFusedQuantEnum>(Traits_::kFusedQuant)>;
......@@ -204,12 +209,13 @@ float layernorm2d_fwd_(const S& s, A a)
using TwoPassPipeline = ck_tile::Layernorm2dFwdPipelineTwoPass<PipelineProblem>;
using Pipeline = std::conditional_t<Traits_::kTwoPass, TwoPassPipeline, OnePassPipeline>;
using Default2DEpilogueProblem = ck_tile::Default2DEpilogueProblem<ComputeDataType, YDataType, false, Traits_::kPadN, false>;
using Default2DEpilogueProblem = ck_tile::Default2DEpilogueProblem<ComputeDataType, YDataType, false, Traits_::kPadN, true>;
using Default2DEpilogue = ck_tile::Default2DEpilogue<Default2DEpilogueProblem>;
static constexpr bool UseSmoothInputScale = Traits_::kFusedQuant == 1;
static constexpr bool UseRawStore = sizeof(YDataType) == 4;
using DynamicQuantEpilogueProblem = ck_tile::DynamicQuantEpilogueProblem<ComputeDataType, XScaleDataType, YScaleDataType, YDataType, typename Traits_::Shape,
ck_tile::DynamicQuantEpilogueTraits<false, Traits_::kPadN, UseSmoothInputScale, false, true/*max3*/>>;
ck_tile::DynamicQuantEpilogueTraits<false, Traits_::kPadN, UseSmoothInputScale, UseRawStore, true/*max3*/>>;
using DynamicQuantEpilogue = ck_tile::DynamicQuantEpilogue<DynamicQuantEpilogueProblem>;
......@@ -274,7 +280,7 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
#include "layernorm2d_fwd_api_common.hpp"
// clang-format off
// prec_i prec_o prec_sy rm rn tm tn vn pd mv rpcf 2p add sweep
// prec_i prec_o prec_sy rm rn tm tn vn pd mv rpcf welford 2p add sweep
{F_instance_def}
// clang-format on
......@@ -362,6 +368,7 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
F_kPadN : bool
F_kSaveMeanInvStd_ : bool
F_kFastFDiv_ : bool
F_kWelford_ : bool
F_kTwoPass_ : bool
F_kFusedAdd : int
F_kFusedQuant : int
......@@ -369,7 +376,7 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
@property
def trait_name(self) ->str:
t_ = f'{DATA_TYPE_MAP[self.F_XDataType]}, {DATA_TYPE_MAP[self.F_YDataType]}, {DATA_TYPE_MAP[self.F_XScaleDataType]}, {DATA_TYPE_MAP[self.F_YScaleDataType]}, {self.F_Repeat_M:2}, {self.F_Repeat_N:2}, {self.F_ThreadPerBlock_M:2}, {self.F_ThreadPerBlock_N:4}'
t_ += f', {self.F_Vector_N:2}, {BOOL_MAP(self.F_kPadN):5}, {BOOL_MAP(self.F_kSaveMeanInvStd_):5}, {BOOL_MAP(self.F_kFastFDiv_):5}'
t_ += f', {self.F_Vector_N:2}, {BOOL_MAP(self.F_kPadN):5}, {BOOL_MAP(self.F_kSaveMeanInvStd_):5}, {BOOL_MAP(self.F_kFastFDiv_):5}, {BOOL_MAP(self.F_kWelford_):5}'
t_ += f', {BOOL_MAP(self.F_kTwoPass_):5}, {self.F_kFusedAdd:4}, {self.F_kFusedQuant:4}'
return t_
......@@ -422,11 +429,10 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
def name_common_header(self) -> str:
return 'layernorm2d_fwd_api_common'
@property
def content_api(self) -> str:
def content_api(self, args) -> str:
# 1 sort based on dtype
t_dtype_dict = dict()
blobs = self.get_blobs()
blobs = self.get_blobs(args)
for blob in blobs:
if blob.F_DataTypePair not in t_dtype_dict:
t_dtype_dict[blob.F_DataTypePair] = {}
......@@ -462,8 +468,8 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
inner_str += self.API_INNER_CASE.format(F_if = get_if_str(idx_in_n, len_in_n, False),
F_VEC_COND = _cond, F_instance_func=ins.call_name)
#inner_str = inner_str + vec_str
n_cnd = f'(a.n <= {n_})' if (i_n < len(blob_per_t) - 1) else ''
n_str += self.API_PER_N_CASE.format(F_if = get_if_str(i_n, len(blob_per_t)), F_N_COND=n_cnd, F_inner_dispatch=inner_str)
n_cnd = f'(a.n <= {n_})' if isinstance(n_, int) else ''
n_str += self.API_PER_N_CASE.format(F_if = get_if_str(i_n, len(blob_per_t), not isinstance(n_, int)), F_N_COND=n_cnd, F_inner_dispatch=inner_str)
prec_i, prec_o = dtype_.split(',')
d_str += self.API_PER_DTYPE.format(F_if = get_if_str(i_d, len(t_dtype_dict), False), F_i_type=prec_i, F_o_type=prec_o, F_per_n_case=n_str)
......@@ -474,7 +480,7 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
def content_common_header(self) -> str:
return self.API_COMMON_HEADER.format(F_traits_define=self.API_TRAITS_DEFINE)
def get_blobs(self):
def get_blobs(self, args):
h_traits = layernorm_fwd_codegen.h_traits
h_instance = layernorm_fwd_codegen.h_instance
......@@ -484,60 +490,61 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
scale_list = [('fp32,fp32')]
dtype_list = [('fp16,fp16'), ('bf16,bf16'),
('fp16,int8'), ('bf16,int8')] # NOTE: only fused-dynamic-quant use int8 out
types_8bit = ('int8', 'fp8')
types_16bit = ('int16', 'fp16', 'bf16')
#fused_add_list = [0, 1, 2]
#fused_sweep_list = [0, 1, 2] # NOTE: only single pass can use fused dynamic quant
fused_add_list = [0, 1]
fused_sweep_list = [0, 1] # NOTE: only single pass can use fused dynamic quant
# rm rn tm tn vn pd mv fdiv 2p add sweep
h_trait_dict = {'64' : [ h_traits('x', 'y', 'xs', 'ys', 1, 1, 8, 8, 8, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 16, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 64, 1, True, False, True, False, 0, 0)],
'128' : [ h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 16, 8, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 64, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 4, 64, 1, True, False, True, False, 0, 0)],
'256' : [ h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 64, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 4, 64, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 4, 64, 1, True, False, True, False, 0, 0)],
'512' : [ h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 64, 8, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 4, 64, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 4, 64, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 8, 4, 64, 1, True, False, True, False, 0, 0)],
'768' : [ h_traits('x', 'y', 'xs', 'ys', 1, 3, 4, 64, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 6, 4, 64, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 12, 4, 64, 1, True, False, True, False, 0, 0)],
'1024' :[ h_traits('x', 'y', 'xs', 'ys', 1, 1, 2, 128, 8, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 2, 128, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 2, 128, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 1, True, False, True, False, 0, 0)],
'1536' :[ h_traits('x', 'y', 'xs', 'ys', 1, 3, 4, 64, 8, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 2, 128, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 256, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 6, 1, 256, 1, True, False, True, False, 0, 0)],
'2048' :[ h_traits('x', 'y', 'xs', 'ys', 1, 1, 1, 256, 8, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 1, 256, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 8, 1, 256, 1, True, False, True, False, 0, 0)],
'3072' :[ h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 128, 8, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 256, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 6, 1, 256, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1,1024, 1, True, False, True, False, 0, 0)],
'4096' :[ h_traits('x', 'y', 'xs', 'ys', 1, 2, 1, 256, 8, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 1,1024, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1,1024, 1, True, False, True, False, 0, 0)],
'6144' :[ h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 256, 8, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 512, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1,1024, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 6, 1,1024, 1, True, False, True, False, 0, 0)],
'8192' :[ h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 8, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 512, 4, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1,1024, 2, True, False, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 8, 1,1024, 1, True, False, True, False, 0, 0)],
'big' :[ h_traits('x', 'y', 'xs', 'ys', 1, 2, 1, 256, 8, True, False, True, True, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 4, True, False, True, True, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 1,1024, 2, True, False, True, True, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1,1024, 1, True, False, True, True, 0, 0)]}
# rm rn tm tn vn pd mv fdiv welford 2p add sweep
h_trait_dict = {'64' : [ h_traits('x', 'y', 'xs', 'ys', 1, 1, 8, 8, 8, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 16, 4, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 64, 1, True, False, True, True, False, 0, 0)],
'128' : [ h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 16, 8, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 64, 2, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 4, 64, 1, True, False, True, True, False, 0, 0)],
'256' : [ h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 64, 4, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 4, 64, 2, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 4, 64, 1, True, False, True, True, False, 0, 0)],
'512' : [ h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 64, 8, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 4, 64, 4, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 4, 64, 2, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 8, 4, 64, 1, True, False, True, True, False, 0, 0)],
'768' : [ h_traits('x', 'y', 'xs', 'ys', 1, 3, 4, 64, 4, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 6, 4, 64, 2, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 12, 4, 64, 1, True, False, True, True, False, 0, 0)],
'1024' :[ h_traits('x', 'y', 'xs', 'ys', 1, 1, 2, 128, 8, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 2, 128, 4, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 2, 128, 2, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 1, True, False, True, True, False, 0, 0)],
'1536' :[ h_traits('x', 'y', 'xs', 'ys', 1, 3, 4, 64, 8, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 2, 128, 4, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 256, 2, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 6, 1, 256, 1, True, False, True, True, False, 0, 0)],
'2048' :[ h_traits('x', 'y', 'xs', 'ys', 1, 1, 1, 256, 8, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 1, 256, 4, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 2, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 8, 1, 256, 1, True, False, True, True, False, 0, 0)],
'3072' :[ h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 128, 8, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 256, 4, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 6, 1, 256, 2, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1,1024, 1, True, False, True, True, False, 0, 0)],
'4096' :[ h_traits('x', 'y', 'xs', 'ys', 1, 2, 1, 256, 8, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 4, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 1,1024, 2, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1,1024, 1, True, False, True, True, False, 0, 0)],
'6144' :[ h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 256, 8, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 512, 4, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1,1024, 2, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 6, 1,1024, 1, True, False, True, True, False, 0, 0)],
'8192' :[ h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 8, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 512, 4, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1,1024, 2, True, False, True, True, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 8, 1,1024, 1, True, False, True, True, False, 0, 0)],
'big' :[ h_traits('x', 'y', 'xs', 'ys', 1, 2, 1, 256, 8, True, False, True, True, True, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 4, True, False, True, True, True, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 1,1024, 2, True, False, True, True, True, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1,1024, 1, True, False, True, True, True, 0, 0)]}
total_blob = list()
for hs_key in h_trait_dict:
hs = h_trait_dict[hs_key]
......@@ -558,16 +565,27 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
h_.F_YScaleDataType = scale_x
h_.F_kFusedAdd = fused_add
h_.F_kFusedQuant = fused_quant
# disable welford update for 8bit and 16 bit smallN
if not h_.F_kTwoPass_:
#disable 16 bit when set args disable_16b_welford
if args.disable_16b_welford and prec_i in types_16bit:
h_.F_kWelford_ = False
#disable 8bit by default
elif prec_i in types_8bit or prec_o in types_8bit:
h_.F_kWelford_ = False
#disable 16bit small N
elif prec_i in types_16bit and hs_key == '64':
h_.F_kWelford_ = False
current_hs.append(h_) # + "\n"
#f.write(str(f.parent / GEN_DIR / (blobs.api_common_header_
current_n_str = 'big' if hs_key == 'big' else current_n
total_blob.append(h_instance(dtype, current_n_str, fused_add, fused_quant, current_hs))
return total_blob
def list_blobs(self) -> None:
def list_blobs(self, args) -> None:
w_p = Path(self.working_path)
list_p = w_p / 'layernorm2d_fwd_blobs.txt'
blobs = self.get_blobs()
blobs = self.get_blobs(args)
with list_p.open('w') as list_f:
# api related file
list_f.write(str(w_p / (self.name_api + ".cpp")) + "\n")
......@@ -576,11 +594,12 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
for b in blobs:
list_f.write(str(w_p / (b.name + ".cpp")) + "\n")
def gen_blobs(self) -> None:
def gen_blobs(self, args) -> None:
w_p = Path(self.working_path)
(w_p / (self.name_api + ".cpp")).write_text(self.content_api)
w_str = self.content_api(args)
(w_p / (self.name_api + ".cpp")).write_text(w_str)
(w_p / (self.name_common_header + ".hpp")).write_text(self.content_common_header)
blobs = self.get_blobs()
blobs = self.get_blobs(args)
for b in blobs:
(w_p / (b.name + ".cpp")).write_text(b.content)
......@@ -588,14 +607,14 @@ def list_blobs(args):
api_list = args.api.split(',')
for api in api_list:
if api == 'fwd':
layernorm_fwd_codegen(args.working_path, args.filter).list_blobs()
layernorm_fwd_codegen(args.working_path, args.filter).list_blobs(args)
def gen_blobs(args):
api_list = args.api.split(',')
for api in api_list:
if api == 'fwd':
layernorm_fwd_codegen(args.working_path, args.filter).gen_blobs()
layernorm_fwd_codegen(args.working_path, args.filter).gen_blobs(args)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
......@@ -663,6 +682,13 @@ if __name__ == "__main__":
help="codegen receipt."
)
parser.add_argument(
"--disable_16b_welford",
default=False,
required=False,
help="enable/disable welford for 16bit datatype n > 64"
)
args = parser.parse_args()
# print(f'{args.list_blobs}-{args.gen_blobs}')
......
......@@ -27,7 +27,8 @@ $EXE -prec_i=$pr_i -fadd=$fadd $fquant -m=7 -n=2734
$EXE -prec_i=$pr_i -fadd=$fadd $fquant -m=1 -n=3182
$EXE -prec_i=$pr_i -fadd=$fadd $fquant -m=9 -n=4096
$EXE -prec_i=$pr_i -fadd=$fadd $fquant -m=3 -n=8192
#$EXE -prec_i=$pr_i -fadd=$fadd $fquant -m=1 -n=10547
$EXE -prec_i=$pr_i -fadd=$fadd $fquant -m=3 -n=9120
$EXE -prec_i=$pr_i -fadd=$fadd $fquant -m=1 -n=10547
#$EXE -prec_i=$pr_i -fadd=$fadd $fquant -m=3 -n=17134
done
done
......
......@@ -54,8 +54,7 @@ using CDataType = Types::CDataType;
auto create_args(int argc, char* argv[])
{
ck_tile::ArgParser arg_parser;
arg_parser.insert("b", "1", "batch size")
.insert("m", "3840", "m dimension")
arg_parser.insert("m", "3840", "m dimension")
.insert("n", "4096", "n dimension")
.insert("k", "2048", "k dimension")
.insert("a_layout", "R", "A tensor data layout - Row by default")
......@@ -68,7 +67,8 @@ auto create_args(int argc, char* argv[])
.insert("prec", "fp16", "data type. fp16/bf16/fp8/bf8")
.insert("warmup", "50", "number of iterations before benchmark the kernel")
.insert("repeat", "100", "number of iterations to benchmark the kernel")
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer");
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer")
.insert("split_k", "1", "splitK value");
bool result = arg_parser.parse(argc, argv);
return std::make_tuple(result, arg_parser);
......
......@@ -64,9 +64,9 @@ int run_gemm_example_with_layouts(int argc,
ck_tile::index_t stride_B = arg_parser.get_int("stride_b");
ck_tile::index_t stride_C = arg_parser.get_int("stride_c");
ck_tile::index_t batch_size = arg_parser.get_int("b");
int n_warmup = arg_parser.get_int("warmup");
int n_repeat = arg_parser.get_int("repeat");
ck_tile::index_t kbatch = arg_parser.get_int("split_k");
int n_warmup = arg_parser.get_int("warmup");
int n_repeat = arg_parser.get_int("repeat");
using namespace ck_tile::literals;
......@@ -133,7 +133,7 @@ int run_gemm_example_with_layouts(int argc,
stride_A,
stride_B,
stride_C,
batch_size,
kbatch,
n_warmup,
n_repeat);
......
......@@ -22,7 +22,7 @@
#endif
template <typename ALayout, typename BLayout, typename CLayout>
float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s)
float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config& s)
{
#if(CK_TILE_PIPELINE_DEFAULT == CK_TILE_PIPELINE_MEMORY)
// Memory friendly for Interwave scheduler
......@@ -78,7 +78,9 @@ float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s)
#endif
ck_tile::GemmPipelineProblem<ADataType, BDataType, AccDataType, GemmShape, Traits>>;
const ck_tile::index_t num_loop = TilePartitioner::GetLoopNum(args.K);
const ck_tile::index_t k_grain = args.k_batch * K_Tile;
const ck_tile::index_t K_split = (args.K + k_grain - 1) / k_grain * K_Tile;
const ck_tile::index_t num_loop = TilePartitioner::GetLoopNum(K_split);
const bool has_hot_loop = BaseGemmPipeline::BlockHasHotloop(num_loop);
const ck_tile::TailNumber tail_num = BaseGemmPipeline::GetBlockLoopTailNum(num_loop);
......@@ -106,17 +108,9 @@ float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s)
has_hot_loop_v,
tail_number_v>>;
using Kernel = ck_tile::GemmKernel<TilePartitioner, GemmPipeline, GemmEpilogue>;
auto kargs = Kernel::MakeKargs(args.p_a,
args.p_b,
args.p_c,
args.M,
args.N,
args.K,
args.stride_A,
args.stride_B,
args.stride_C);
const dim3 grids = Kernel::GridSize(args.M, args.N, args.kbatch);
auto kargs = Kernel::MakeKernelArgs(args);
const dim3 grids = Kernel::GridSize(args.M, args.N, args.k_batch);
constexpr dim3 blocks = Kernel::BlockSize();
if(!Kernel::IsSupportedArgument(kargs))
......
......@@ -70,20 +70,25 @@ float batched_gemm(const ck_tile::BatchedGemmHostArgs& args, const ck_tile::stre
using CodegenGemmTraits =
ck_tile::TileGemmTraits<kPadM, kPadN, kPadK, ALayout, BLayout, CLayout>;
using CodegenPipelineProblem = ck_tile::
GemmPipelineProblem<ADataType, BDataType, AccDataType, CodegenGemmShape, CodegenGemmTraits>;
using CodegenGemmPipeline = ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem>;
using CodegenGemmPolicy = ck_tile::UniversalGemmPipelineAgBgCrPolicy;
using CodegenGemmPipeline =
ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem, CodegenGemmPolicy>;
// ToDo: Will add the codegen part to test different pipeline policies in GEMM.
// Now we only use the BlockGemmASmemBSmemCRegV1DefaultPolicy.
using Kernel = ck_tile::BatchedGemmKernel<TilePartitioner, CodegenGemmPipeline, GemmEpilogue>;
auto kargs = Kernel::MakeKernelArgs(args);
const dim3 grids = Kernel::GridSize(args.M, args.N, args.batch_count);
const dim3 grids = Kernel::GridSize(args.M, args.N, args.k_batch, args.batch_count);
constexpr dim3 blocks = Kernel::BlockSize();
if(!Kernel::IsSupportedArgument(kargs))
{
throw std::runtime_error("Wrong! Arguments not supported! Skipping gemm!\n");
}
if(s.log_level_ > 0)
{
std::cout << "Launching kernel with args:"
......
......@@ -49,7 +49,8 @@ auto create_args(int argc, char* argv[])
.insert("prec", "fp16", "data type. fp16/bf16/fp8/bf8")
.insert("warmup", "50", "number of iterations before benchmark the kernel")
.insert("repeat", "100", "number of iterations to benchmark the kernel")
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer");
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer")
.insert("split_k", "1", "splitK value");
bool result = arg_parser.parse(argc, argv);
return std::make_tuple(result, arg_parser);
......
......@@ -17,6 +17,7 @@ float invoke_batched_gemm(ck_tile::DeviceMem& a_m_k_dev_buf,
ck_tile::index_t batch_stride_B,
ck_tile::index_t batch_stride_C,
ck_tile::index_t batch_count,
ck_tile::index_t kbatch,
int n_warmup,
int n_repeat)
{
......@@ -24,6 +25,7 @@ float invoke_batched_gemm(ck_tile::DeviceMem& a_m_k_dev_buf,
args.a_ptr = a_m_k_dev_buf.GetDeviceBuffer();
args.b_ptr = b_k_n_dev_buf.GetDeviceBuffer();
args.c_ptr = c_m_n_dev_buf.GetDeviceBuffer();
args.k_batch = kbatch;
args.M = M;
args.N = N;
args.K = K;
......@@ -79,6 +81,7 @@ int run_batched_gemm_example_with_layouts(int argc,
ck_tile::index_t batch_stride_B = arg_parser.get_int("batch_stride_b");
ck_tile::index_t batch_stride_C = arg_parser.get_int("batch_stride_c");
ck_tile::index_t batch_count = arg_parser.get_int("batch_count");
ck_tile::index_t kbatch = arg_parser.get_int("split_k");
int n_warmup = arg_parser.get_int("warmup");
int n_repeat = arg_parser.get_int("repeat");
......@@ -159,6 +162,7 @@ int run_batched_gemm_example_with_layouts(int argc,
batch_stride_B,
batch_stride_C,
batch_count,
kbatch,
n_warmup,
n_repeat);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -44,10 +44,19 @@ std::ostream& LogRangeAsType(std::ostream& os, Range&& range, std::string delim)
else
os << delim;
if constexpr(std::is_same_v<T, ck::f8_t> || std::is_same_v<T, ck::bf8_t>)
using RangeType = ck::remove_cvref_t<decltype(v)>;
if constexpr(std::is_same_v<RangeType, ck::f8_t> || std::is_same_v<RangeType, ck::bf8_t> ||
std::is_same_v<RangeType, ck::bhalf_t>)
{
os << ck::type_convert<float>(v);
}
else if constexpr(std::is_same_v<RangeType, ck::pk_i4_t>)
{
const auto packed_floats = ck::type_convert<ck::float2_t>(v);
const ck::vector_type<float, 2> vector_of_floats{packed_floats};
os << vector_of_floats.template AsType<float>()[ck::Number<0>{}] << delim
<< vector_of_floats.template AsType<float>()[ck::Number<1>{}];
}
else
{
os << static_cast<T>(v);
......@@ -266,18 +275,18 @@ struct Tensor
using Data = std::vector<T>;
template <typename X>
Tensor(std::initializer_list<X> lens) : mDesc(lens), mData(mDesc.GetElementSpaceSize())
Tensor(std::initializer_list<X> lens) : mDesc(lens), mData(GetElementSpaceSize())
{
}
template <typename X, typename Y>
Tensor(std::initializer_list<X> lens, std::initializer_list<Y> strides)
: mDesc(lens, strides), mData(mDesc.GetElementSpaceSize())
: mDesc(lens, strides), mData(GetElementSpaceSize())
{
}
template <typename Lengths>
Tensor(const Lengths& lens) : mDesc(lens), mData(mDesc.GetElementSpaceSize())
Tensor(const Lengths& lens) : mDesc(lens), mData(GetElementSpaceSize())
{
}
......@@ -287,7 +296,7 @@ struct Tensor
{
}
Tensor(const Descriptor& desc) : mDesc(desc), mData(mDesc.GetElementSpaceSize()) {}
Tensor(const Descriptor& desc) : mDesc(desc), mData(GetElementSpaceSize()) {}
template <typename OutT>
Tensor<OutT> CopyAsType() const
......@@ -322,7 +331,17 @@ struct Tensor
std::size_t GetElementSize() const { return mDesc.GetElementSize(); }
std::size_t GetElementSpaceSize() const { return mDesc.GetElementSpaceSize(); }
std::size_t GetElementSpaceSize() const
{
if constexpr(ck::is_same_v<ck::remove_cvref_t<T>, ck::pk_i4_t>)
{
return (mDesc.GetElementSpaceSize() + 1) / 2;
}
else
{
return mDesc.GetElementSpaceSize();
}
}
std::size_t GetElementSpaceSizeInBytes() const { return sizeof(T) * GetElementSpaceSize(); }
......@@ -469,29 +488,64 @@ struct Tensor
template <typename... Is>
std::size_t GetOffsetFromMultiIndex(Is... is) const
{
return mDesc.GetOffsetFromMultiIndex(is...);
if constexpr(ck::is_same_v<ck::remove_cvref_t<T>, ck::pk_i4_t>)
{
return mDesc.GetOffsetFromMultiIndex(is...) / 2;
}
else
{
return mDesc.GetOffsetFromMultiIndex(is...);
}
}
template <typename... Is>
T& operator()(Is... is)
{
return mData[mDesc.GetOffsetFromMultiIndex(is...)];
if constexpr(ck::is_same_v<ck::remove_cvref_t<T>, ck::pk_i4_t>)
{
return mData[mDesc.GetOffsetFromMultiIndex(is...) / 2];
}
else
{
return mData[mDesc.GetOffsetFromMultiIndex(is...)];
}
}
template <typename... Is>
const T& operator()(Is... is) const
{
return mData[mDesc.GetOffsetFromMultiIndex(is...)];
if constexpr(ck::is_same_v<ck::remove_cvref_t<T>, ck::pk_i4_t>)
{
return mData[mDesc.GetOffsetFromMultiIndex(is...) / 2];
}
else
{
return mData[mDesc.GetOffsetFromMultiIndex(is...)];
}
}
T& operator()(std::vector<std::size_t> idx)
{
return mData[mDesc.GetOffsetFromMultiIndex(idx)];
if constexpr(ck::is_same_v<ck::remove_cvref_t<T>, ck::pk_i4_t>)
{
return mData[mDesc.GetOffsetFromMultiIndex(idx) / 2];
}
else
{
return mData[mDesc.GetOffsetFromMultiIndex(idx)];
}
}
const T& operator()(std::vector<std::size_t> idx) const
{
return mData[mDesc.GetOffsetFromMultiIndex(idx)];
if constexpr(ck::is_same_v<ck::remove_cvref_t<T>, ck::pk_i4_t>)
{
return mData[mDesc.GetOffsetFromMultiIndex(idx) / 2];
}
else
{
return mData[mDesc.GetOffsetFromMultiIndex(idx)];
}
}
typename Data::iterator begin() { return mData.begin(); }
......
......@@ -81,6 +81,20 @@ struct GeneratorTensor_1<int8_t>
}
};
template <>
struct GeneratorTensor_1<ck::pk_i4_t>
{
int8_t value = 1;
template <typename... Is>
ck::pk_i4_t operator()(Is...)
{
int t = value + 8;
ck::pk_i4_t r = ((t << 4) + t) & 0xff;
return r;
}
};
template <typename T>
struct GeneratorTensor_2
{
......@@ -121,6 +135,22 @@ struct GeneratorTensor_2<int8_t>
}
};
template <>
struct GeneratorTensor_2<ck::pk_i4_t>
{
int min_value = 0;
int max_value = 1;
template <typename... Is>
ck::pk_i4_t operator()(Is...)
{
int hi = std::rand() % (max_value - min_value) + min_value + 8;
int lo = std::rand() % (max_value - min_value) + min_value + 8;
ck::pk_i4_t r = ((hi << 4) + lo) & 0xff;
return r;
}
};
#if defined CK_ENABLE_FP8
template <>
struct GeneratorTensor_2<ck::f8_t>
......
......@@ -167,7 +167,7 @@ struct StaticTensorTupleOfVectorBuffer
// Idx is for S, not X. Idx should be aligned with X
template <typename X,
typename Idx,
typename enable_if<has_same_scalar_type<S, X>::value &&
typename enable_if<(has_same_scalar_type<S, X>::value || !is_native_type<S>()) &&
is_known_at_compile_time<Idx>::value && Idx::Size() == ndim_,
bool>::type = false>
__host__ __device__ constexpr X GetAsType(Idx) const
......@@ -201,7 +201,7 @@ struct StaticTensorTupleOfVectorBuffer
// Idx is for S, not X. Idx should be aligned with X
template <typename X,
typename Idx,
typename enable_if<has_same_scalar_type<S, X>::value &&
typename enable_if<(has_same_scalar_type<S, X>::value || !is_native_type<S>()) &&
is_known_at_compile_time<Idx>::value && Idx::Size() == ndim_,
bool>::type = false>
__host__ __device__ constexpr void SetAsType(Idx, X x)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_v1_b_scale.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_v2_b_scale.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_v3_b_scale.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_v4_b_scale.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_v5.hpp"
namespace ck {
enum struct BlockGemmPipelineVersion
{
v1, // Naive
v2, // Mem
v3, // Comp
v4, // Comp, double lds buffer
v5, // Comp, double global prefetch register buffer
};
template <BlockGemmPipelineVersion BlkGemmPipelineVer,
BlockGemmPipelineScheduler BlkGemmPipeSche,
index_t BlockSize,
typename ADataType,
typename BDataType,
typename ComputeDataType,
typename AccDataType,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t ABlockTransferSrcScalarPerVector,
index_t BBlockTransferSrcScalarPerVector,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPack>
constexpr auto BlockGemmPipeline_Selector()
{
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1)
{
return BlockwiseGemmXdlops_pipeline_v1_b_scale<BlkGemmPipeSche,
BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>{};
}
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2)
{
return BlockwiseGemmXdlops_pipeline_v2_b_scale<BlkGemmPipeSche,
BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>{};
}
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v3)
{
return BlockwiseGemmXdlops_pipeline_v3_b_scale<BlkGemmPipeSche,
BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>{};
}
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v4)
{
return BlockwiseGemmXdlops_pipeline_v4_b_scale<BlkGemmPipeSche,
BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>{};
}
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v5)
{
return BlockwiseGemmXdlops_pipeline_v5<BlkGemmPipeSche,
BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>{};
}
else
{
std::cerr << "BlockGemmPipeline configuration is not available" << std::endl;
}
}
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_base.hpp"
namespace ck {
// Naive pipeline with lowest resource request per WGP
// GlobalPrefetchStages: 1
// LocalPreFillStages: 1
// LocalPreFetchStages: 0
// LocalSharedMemoryBuffer: 1
template <BlockGemmPipelineScheduler BlkGemmPipelineVer,
index_t BlockSize,
typename ADataType,
typename BDataType,
typename ComputeDataType,
typename AccDataType,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t ABlockTransferSrcScalarPerVector,
index_t BBlockTransferSrcScalarPerVector,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPacks>
struct BlockwiseGemmXdlops_pipeline_v1_b_scale
{
};
template <index_t BlockSize,
typename ADataType,
typename BDataType,
typename ComputeDataType,
typename AccDataType,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t ABlockTransferSrcScalarPerVector,
index_t BBlockTransferSrcScalarPerVector,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPack
// ,bool TransposeC //disable transposec right now...
>
struct BlockwiseGemmXdlops_pipeline_v1_b_scale<BlockGemmPipelineScheduler::Intrawave,
BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>
: BlockwiseGemmXdlops_pipeline_base<BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>
{
using Base = BlockwiseGemmXdlops_pipeline_base<BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>;
using Base::I0;
using Base::KRepeat;
using Base::xdlops_gemm;
using Base::CalculateCThreadOriginDataIndex;
using Base::CalculateCThreadOriginDataIndex8D;
using Base::GetCBlockDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4;
using Base::GetCThreadBuffer;
using Base::GetCThreadDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4;
using Base::MakeCGridDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::a_block_desc_m0_m1_m2_k;
using Base::b_block_desc_n0_n1_n2_k;
using Base::AMmaKStride;
using Base::BMmaKStride;
static constexpr index_t PrefetchStages = 1;
static constexpr index_t PrefillStages = 1;
static constexpr index_t GlobalBufferNum = 1;
__host__ static constexpr bool BlockHasHotloop(index_t num_loop)
{
return num_loop > PrefetchStages;
}
__host__ static constexpr TailNumber BlockLoopTailNum(index_t num_loop)
{
ignore = num_loop;
return TailNumber::Full;
}
template <bool HasMainLoop,
TailNumber TailNum,
typename AGridDesc,
typename ABlockDesc,
typename ABlockTransfer,
typename AGridBuffer,
typename ABlockBuffer,
typename ABlockTransferStep,
typename BGridDesc,
typename BBlockDesc,
typename BBlockTransfer,
typename BGridBuffer,
typename BBlockBuffer,
typename BBlockTransferStep,
typename CThreadBuffer,
// BScale Thread Copy
typename BScaleGridBuffer,
typename BScaleGridDesc,
typename BScaleThreadDesc,
typename BScaleThreadTransfer,
typename BScaleThreadTransferStep>
__device__ void Run(
// ABlockCopy
const AGridDesc& a_grid_desc,
const ABlockDesc& a_block_desc,
ABlockTransfer& a_blockwise_copy,
const AGridBuffer& a_grid_buf,
ABlockBuffer& a_block_buf,
const ABlockTransferStep& a_block_copy_step,
// BBlockCopy
const BGridDesc& b_grid_desc,
const BBlockDesc& b_block_desc,
BBlockTransfer& b_blockwise_copy,
const BGridBuffer& b_grid_buf,
BBlockBuffer& b_block_buf,
const BBlockTransferStep& b_block_copy_step,
// CThread
CThreadBuffer& c_thread_buf,
// BScaleThreadCopy
const BScaleGridDesc& b_scale_grid_desc,
const BScaleThreadDesc& b_scale_thread_desc,
BScaleThreadTransfer& b_scale_thread_copy,
const BScaleGridBuffer& b_scale_grid_buf,
const BScaleThreadTransferStep& b_scale_thread_copy_step,
// num_loop
index_t num_loop,
index_t num_loop_per_scale) const
{
// assume kperblock = scaleblockk
ignore = num_loop_per_scale;
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
b_thread_desc_.GetElementSpaceSize());
auto b_scale_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
b_scale_thread_desc.GetElementSpaceSize());
// Global prefetch 1
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_scale_thread_copy.Run(b_scale_grid_desc,
b_scale_grid_buf,
b_scale_thread_desc,
make_tuple(n0, I0),
b_scale_thread_buf);
b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
b_scale_thread_copy_step.At(Number<0>{}));
});
b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
b_scale_thread_copy_step.At(Number<1>{}));
// Local prefill 1
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf);
// Initialize C
c_thread_buf.Clear();
auto c_thread_buf_per_scale = remove_cvref_t<decltype(c_thread_buf)>();
// main body
if constexpr(HasMainLoop)
{
index_t i = 0;
do
{
// -------------------------------------------------------------------------------------------
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_buf);
});
});
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
c_thread_buf_per_scale.Clear();
static_for<0, KRepeat, 1>{}([&](auto k0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
xdlops_gemm.template Run<>(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf_per_scale.GetVectorTypeReference(I0));
});
static_for<0, xdlops_gemm.GetRegSizePerXdlops(), 1>{}([&](auto t) {
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, t));
c_thread_buf(Number<c_offset>{}) +=
c_thread_buf_per_scale[Number<t>{}] *
type_convert<AccDataType>(b_scale_thread_buf[n0]);
});
});
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_scale_thread_copy.Run(b_scale_grid_desc,
b_scale_grid_buf,
b_scale_thread_desc,
make_tuple(n0, I0),
b_scale_thread_buf);
b_scale_thread_copy.MoveSrcSliceWindow(
b_scale_grid_desc, b_scale_thread_copy_step.At(Number<0>{}));
});
b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
b_scale_thread_copy_step.At(Number<1>{}));
block_sync_lds();
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf);
i += 1;
} while(i < (num_loop - 1));
}
// tail
if constexpr(TailNum == TailNumber::Full)
{
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_buf);
});
});
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
c_thread_buf_per_scale.Clear();
static_for<0, KRepeat, 1>{}([&](auto k0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
xdlops_gemm.template Run<>(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf_per_scale.GetVectorTypeReference(I0));
});
static_for<0, xdlops_gemm.GetRegSizePerXdlops(), 1>{}([&](auto t) {
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, t));
c_thread_buf(Number<c_offset>{}) +=
c_thread_buf_per_scale[Number<t>{}] *
type_convert<AccDataType>(b_scale_thread_buf[n0]);
});
});
});
}
}
protected:
using Base::a_thread_copy_;
using Base::a_thread_desc_;
using Base::b_thread_copy_;
using Base::b_thread_desc_;
using Base::c_thread_desc_;
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_base.hpp"
namespace ck {
// Maximum Global Memory throughput pipeline with >=32KB data in fly
// GlobalPrefetchStages: >=2
// LocalPreFillStages: 1
// LocalPreFetchStages: 0
// LocalSharedMemoryBuffer: 1
template <BlockGemmPipelineScheduler BlkGemmPipelineVer,
index_t BlockSize,
typename ADataType,
typename BDataType,
typename ComputeDataType,
typename AccDataType,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t ABlockTransferSrcScalarPerVector,
index_t BBlockTransferSrcScalarPerVector,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPacks>
struct BlockwiseGemmXdlops_pipeline_v2_b_scale
{
};
template <index_t BlockSize,
typename ADataType,
typename BDataType,
typename ComputeDataType,
typename AccDataType,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t ABlockTransferSrcScalarPerVector,
index_t BBlockTransferSrcScalarPerVector,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPack
// ,bool TransposeC //disable transposec right now...
>
struct BlockwiseGemmXdlops_pipeline_v2_b_scale<BlockGemmPipelineScheduler::Intrawave,
BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>
: BlockwiseGemmXdlops_pipeline_base<BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>
{
using Base = BlockwiseGemmXdlops_pipeline_base<BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>;
using Base::I0;
using Base::KRepeat;
using Base::xdlops_gemm;
using Base::CalculateCThreadOriginDataIndex;
using Base::CalculateCThreadOriginDataIndex8D;
using Base::GetCBlockDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4;
using Base::GetCThreadBuffer;
using Base::GetCThreadDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4;
using Base::MakeCGridDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::a_block_desc_m0_m1_m2_k;
using Base::b_block_desc_n0_n1_n2_k;
using Base::AMmaKStride;
using Base::BMmaKStride;
static constexpr index_t WgpPerCU =
(4 * warpSize / BlockSize) >= 1 ? 4 * warpSize / BlockSize : 1;
static constexpr index_t FullMemBandPrefetchStages = math::integer_divide_ceil(
32768 / WgpPerCU,
(MPerBlock * sizeof(ADataType) + NPerBlock * sizeof(BDataType)) * KPerBlock);
static constexpr index_t PrefetchStages =
FullMemBandPrefetchStages >= 2
? FullMemBandPrefetchStages <= 8 ? FullMemBandPrefetchStages : 8
: 2;
static constexpr index_t PrefillStages = 1;
static constexpr index_t GlobalBufferNum = PrefetchStages;
__host__ __device__ static constexpr bool BlockHasHotloop(index_t num_loop)
{
return num_loop > PrefetchStages;
}
__host__ __device__ static constexpr TailNumber BlockLoopTailNum(index_t num_loop)
{
if(num_loop % PrefetchStages == 1)
{
return TailNumber::One;
}
else if(num_loop % PrefetchStages == 2)
{
return TailNumber::Two;
}
else if(num_loop % PrefetchStages == 3)
{
return TailNumber::Three;
}
else if(num_loop % PrefetchStages == 4)
{
return TailNumber::Four;
}
else if(num_loop % PrefetchStages == 5)
{
return TailNumber::Five;
}
else if(num_loop % PrefetchStages == 6)
{
return TailNumber::Six;
}
else if(num_loop % PrefetchStages == 7)
{
return TailNumber::Seven;
}
else
{
return TailNumber::Full;
}
}
template <bool HasMainLoop,
TailNumber TailNum,
typename AGridDesc,
typename ABlockDesc,
typename ABlockTransfer,
typename AGridBuffer,
typename ABlockBuffer,
typename ABlockTransferStep,
typename BGridDesc,
typename BBlockDesc,
typename BBlockTransfer,
typename BGridBuffer,
typename BBlockBuffer,
typename BBlockTransferStep,
typename CThreadBuffer>
__device__ void Run(const AGridDesc& a_grid_desc,
const ABlockDesc& a_block_desc,
ABlockTransfer& a_blockwise_copy,
const AGridBuffer& a_grid_buf,
ABlockBuffer& a_block_buf,
const ABlockTransferStep& a_block_copy_step,
const BGridDesc& b_grid_desc,
const BBlockDesc& b_block_desc,
BBlockTransfer& b_blockwise_copy,
const BGridBuffer& b_grid_buf,
BBlockBuffer& b_block_buf,
const BBlockTransferStep& b_block_copy_step,
CThreadBuffer& c_thread_buf,
index_t num_loop) const
{
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
b_thread_desc_.GetElementSpaceSize());
// Global prefetch 1
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf, I0);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf, I0);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
// Initialize C
c_thread_buf.Clear();
// Local prefill 1
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf, I0);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf, I0);
// Global prefetch [2, PrefetchStages]
static_for<1, PrefetchStages, 1>{}([&](auto iprefetch) {
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf, iprefetch);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf, iprefetch);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
});
// main body
if constexpr(HasMainLoop)
{
index_t i = 0;
do
{
static_for<0, PrefetchStages, 1>{}([&](auto iprefetch) {
// -------------------------------------------------------------------------------------------
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(
b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_buf);
});
});
});
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
block_sync_lds();
a_blockwise_copy.RunWrite(
a_block_desc, a_block_buf, Number<(iprefetch + 1) % PrefetchStages>{});
b_blockwise_copy.RunWrite(
b_block_desc, b_block_buf, Number<(iprefetch + 1) % PrefetchStages>{});
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf, iprefetch);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf, iprefetch);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
});
i += PrefetchStages;
} while(i < (num_loop - PrefetchStages));
}
// tail
auto LoopTailFunc = [&](auto tail_num) {
static_for<1, tail_num, 1>{}([&](auto iprefetch) {
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_buf);
});
});
});
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
block_sync_lds();
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf, iprefetch);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf, iprefetch);
});
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_buf);
});
});
});
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
};
if constexpr(TailNum == TailNumber::One)
{
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_buf);
});
});
});
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
}
else if constexpr(TailNum == TailNumber::Two)
{
LoopTailFunc(Number<2>{});
}
else if constexpr(TailNum == TailNumber::Three)
{
LoopTailFunc(Number<3>{});
}
else if constexpr(TailNum == TailNumber::Four)
{
LoopTailFunc(Number<4>{});
}
else if constexpr(TailNum == TailNumber::Five)
{
LoopTailFunc(Number<5>{});
}
else if constexpr(TailNum == TailNumber::Six)
{
LoopTailFunc(Number<6>{});
}
else if constexpr(TailNum == TailNumber::Seven)
{
LoopTailFunc(Number<7>{});
}
else if constexpr(TailNum == TailNumber::Full)
{
LoopTailFunc(Number<PrefetchStages>{});
}
}
protected:
using Base::a_thread_copy_;
using Base::a_thread_desc_;
using Base::b_thread_copy_;
using Base::b_thread_desc_;
using Base::c_thread_desc_;
};
template <index_t BlockSize,
typename ADataType,
typename BDataType,
typename ComputeDataType,
typename AccDataType,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t ABlockTransferSrcScalarPerVector,
index_t BBlockTransferSrcScalarPerVector,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPack
// ,bool TransposeC //disable transposec right now...
>
struct BlockwiseGemmXdlops_pipeline_v2_b_scale<BlockGemmPipelineScheduler::Interwave,
BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>
: BlockwiseGemmXdlops_pipeline_base<BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>
{
using Base = BlockwiseGemmXdlops_pipeline_base<BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>;
using Base::A_K1;
using Base::B_K1;
using Base::I0;
using Base::I1;
using Base::KPerThread;
using Base::xdlops_gemm;
using Base::CalculateCThreadOriginDataIndex;
using Base::CalculateCThreadOriginDataIndex8D;
using Base::GetCBlockDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4;
using Base::GetCThreadBuffer;
using Base::GetCThreadDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4;
using Base::MakeCGridDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::a_block_desc_m0_m1_m2_k;
using Base::b_block_desc_n0_n1_n2_k;
static constexpr index_t NumMacClusters = CK_EXPERIMENTAL_INTER_WAVE_SCHEDULING_MAC_CLUSTERS;
static constexpr index_t KPerInnerLoop = math::max(KPerThread / NumMacClusters, KPack);
static constexpr index_t KRepeat = KPerThread / KPerInnerLoop;
static constexpr index_t WgpPerCU =
(4 * warpSize / BlockSize) >= 1 ? 4 * warpSize / BlockSize : 1;
static constexpr index_t FullMemBandPrefetchStages = math::integer_divide_ceil(
32768 / WgpPerCU,
(MPerBlock * sizeof(ADataType) + NPerBlock * sizeof(BDataType)) * KPerBlock);
static constexpr index_t PrefetchStages =
FullMemBandPrefetchStages >= 2
? FullMemBandPrefetchStages <= 8 ? FullMemBandPrefetchStages : 8
: 2;
static constexpr index_t PrefillStages = 1;
static constexpr index_t GlobalBufferNum = PrefetchStages;
__host__ __device__ static constexpr bool BlockHasHotloop(index_t num_loop)
{
return num_loop > PrefetchStages;
}
__host__ __device__ static constexpr TailNumber BlockLoopTailNum(index_t num_loop)
{
if(num_loop % PrefetchStages == 1)
{
return TailNumber::One;
}
else if(num_loop % PrefetchStages == 2)
{
return TailNumber::Two;
}
else if(num_loop % PrefetchStages == 3)
{
return TailNumber::Three;
}
else if(num_loop % PrefetchStages == 4)
{
return TailNumber::Four;
}
else if(num_loop % PrefetchStages == 5)
{
return TailNumber::Five;
}
else if(num_loop % PrefetchStages == 6)
{
return TailNumber::Six;
}
else if(num_loop % PrefetchStages == 7)
{
return TailNumber::Seven;
}
else
{
return TailNumber::Full;
}
}
template <bool HasMainLoop,
TailNumber TailNum,
typename AGridDesc,
typename ABlockDesc,
typename ABlockTransfer,
typename AGridBuffer,
typename ABlockBuffer,
typename ABlockTransferStep,
typename BGridDesc,
typename BBlockDesc,
typename BBlockTransfer,
typename BGridBuffer,
typename BBlockBuffer,
typename BBlockTransferStep,
typename CThreadBuffer,
typename BScaleGridBuffer,
typename BScaleGridDesc,
typename BScaleThreadDesc,
typename BScaleThreadTransfer,
typename BScaleThreadTransferStep>
__device__ void Run(const AGridDesc& a_grid_desc,
const ABlockDesc& a_block_desc,
ABlockTransfer& a_blockwise_copy,
const AGridBuffer& a_grid_buf,
ABlockBuffer& a_block_buf,
const ABlockTransferStep& a_block_copy_step,
const BGridDesc& b_grid_desc,
const BBlockDesc& b_block_desc,
BBlockTransfer& b_blockwise_copy,
const BGridBuffer& b_grid_buf,
BBlockBuffer& b_block_buf,
const BBlockTransferStep& b_block_copy_step,
CThreadBuffer& c_thread_buf,
const BScaleGridDesc& b_scale_grid_desc,
// BScaleThreadCopy
const BScaleThreadDesc& b_scale_thread_desc,
BScaleThreadTransfer& b_scale_thread_copy,
const BScaleGridBuffer& b_scale_grid_buf,
const BScaleThreadTransferStep& b_scale_thread_copy_step,
// num loop
index_t num_loop,
index_t num_loop_per_scale) const
{
ignore = num_loop_per_scale;
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
b_thread_desc_.GetElementSpaceSize());
auto b_scale_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
b_scale_thread_desc.GetElementSpaceSize());
// Global prefetch 1
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf, I0);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf, I0);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_scale_thread_copy.Run(b_scale_grid_desc,
b_scale_grid_buf,
b_scale_thread_desc,
make_tuple(n0, I0),
b_scale_thread_buf);
b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
b_scale_thread_copy_step.At(Number<0>{}));
});
b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
b_scale_thread_copy_step.At(Number<1>{}));
// Initialize C
c_thread_buf.Clear();
// Local prefill 1
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf, I0);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf, I0);
// Global prefetch [2, PrefetchStages]
static_for<1, PrefetchStages, 1>{}([&](auto iprefetch) {
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf, iprefetch);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf, iprefetch);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
});
auto c_thread_buf_per_scale = remove_cvref_t<decltype(c_thread_buf)>(); // need?
// main body
if constexpr(HasMainLoop)
{
index_t i = 0;
do
{
static_for<0, PrefetchStages, 1>{}([&](auto iprefetch) {
// -------------------------------------------------------------------------------------------
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k0 * KPerInnerLoop>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(
b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * KPerInnerLoop>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
});
__builtin_amdgcn_sched_barrier(0);
// NOTE: Synchronize threads in a workgroup at the start of each MAC
// cluster, but except the first, as we can shorten non-MAC cluster a bit
// and there's no observable negative impact. The desired effect is waves in
// a workgroup executing MAC in sync. This avoids some out-of-sync waves
// hijacking MAC resource from other workgroups and reducing the chance of
// latency hiding by waiting for the rest of the workgroup at the eventual
// sync point.
if constexpr(k0.value != 0 || KRepeat == 1)
{
__builtin_amdgcn_s_barrier();
__builtin_amdgcn_sched_barrier(0);
}
static_for<0, KPerInnerLoop, KPack>{}([&](auto k_) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, k_ + ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, k_ + ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
// The block_sync_lds() here performs double duty:
// A) safeguard against data hazard because barrier from
// blockwise_gemm is moved here B) reduce VMEM FIFO congestion
// by applying small delays to different wavefronts It is
// performed near the end of MAC cluster to minimize lgkmcnt
// penalty
if constexpr(k0.value == KRepeat - 1 &&
k_.value == KPerInnerLoop - KPack &&
m0.value == MRepeat - 1 && n0.value == NRepeat - 1)
{
__builtin_amdgcn_sched_barrier(0);
block_sync_lds();
__builtin_amdgcn_sched_barrier(0);
}
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
if constexpr(k_.value == 0 && m0.value == 0 && n0.value == 0)
{
__builtin_amdgcn_sched_barrier(0);
__builtin_amdgcn_s_setprio(1);
__builtin_amdgcn_sched_barrier(0);
}
});
// static_for<0, xdlops_gemm.GetRegSizePerXdlops(), 1>{}([&](auto t)
// {
// constexpr index_t c_offset =
// c_thread_desc_.CalculateOffset(make_tuple(m0, n0, t));
// c_thread_buf(Number<c_offset>{}) +=
// c_thread_buf_per_scale[Number<t>{}] *
// type_convert<AccDataType>(b_scale_thread_buf[n0]);
// });
});
});
__builtin_amdgcn_sched_barrier(0);
__builtin_amdgcn_s_setprio(0);
__builtin_amdgcn_sched_barrier(0);
});
// static_for<0, NRepeat, 1>{}([&](auto n0) {
// b_scale_thread_copy.Run(b_scale_grid_desc,
// b_scale_grid_buf,
// b_scale_thread_desc,
// make_tuple(n0, I0),
// b_scale_thread_buf);
// b_scale_thread_copy.MoveSrcSliceWindow(
// b_scale_grid_desc, b_scale_thread_copy_step.At(Number<0>{}));
// });
// b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
// b_scale_thread_copy_step.At(Number<1>{}));
// block_sync_lds();
a_blockwise_copy.RunWrite(
a_block_desc, a_block_buf, Number<(iprefetch + 1) % PrefetchStages>{});
b_blockwise_copy.RunWrite(
b_block_desc, b_block_buf, Number<(iprefetch + 1) % PrefetchStages>{});
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf, iprefetch);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf, iprefetch);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
});
i += PrefetchStages;
} while(i < (num_loop - PrefetchStages));
}
// tail
auto LoopTailFunc = [&](auto tail_num) {
static_for<1, tail_num, 1>{}([&](auto iprefetch) {
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k0 * KPerInnerLoop>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * KPerInnerLoop>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
});
__builtin_amdgcn_sched_barrier(0);
if constexpr(k0.value != 0 || KRepeat == 1)
{
__builtin_amdgcn_s_barrier();
__builtin_amdgcn_sched_barrier(0);
}
static_for<0, KPerInnerLoop, KPack>{}([&](auto k_) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, k_ + ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, k_ + ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
if constexpr(k0.value == KRepeat - 1 &&
k_.value == KPerInnerLoop - KPack &&
m0.value == MRepeat - 1 && n0.value == NRepeat - 1)
{
__builtin_amdgcn_sched_barrier(0);
block_sync_lds();
__builtin_amdgcn_sched_barrier(0);
}
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
if constexpr(k_.value == 0 && m0.value == 0 && n0.value == 0)
{
__builtin_amdgcn_sched_barrier(0);
__builtin_amdgcn_s_setprio(1);
__builtin_amdgcn_sched_barrier(0);
}
});
// static_for<0, xdlops_gemm.GetRegSizePerXdlops(), 1>{}([&](auto t) {
// constexpr index_t c_offset =
// c_thread_desc_.CalculateOffset(make_tuple(m0, n0, t));
// c_thread_buf(Number<c_offset>{}) +=
// c_thread_buf_per_scale[Number<t>{}] *
// type_convert<AccDataType>(b_scale_thread_buf[n0]);
// });
});
});
__builtin_amdgcn_sched_barrier(0);
__builtin_amdgcn_s_setprio(0);
__builtin_amdgcn_sched_barrier(0);
});
// static_for<0, NRepeat, 1>{}([&](auto n0) {
// b_scale_thread_copy.Run(b_scale_grid_desc,
// b_scale_grid_buf,
// b_scale_thread_desc,
// make_tuple(n0, I0),
// b_scale_thread_buf);
// b_scale_thread_copy.MoveSrcSliceWindow(
// b_scale_grid_desc, b_scale_thread_copy_step.At(Number<0>{}));
// });
// b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
// b_scale_thread_copy_step.At(Number<1>{}));
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf, iprefetch);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf, iprefetch);
});
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k0 * KPerInnerLoop>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * KPerInnerLoop>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
});
__builtin_amdgcn_sched_barrier(0);
if constexpr(k0.value != 0 || KRepeat == 1)
{
__builtin_amdgcn_s_barrier();
__builtin_amdgcn_sched_barrier(0);
}
static_for<0, KPerInnerLoop, KPack>{}([&](auto k_) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, k_ + ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, k_ + ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
if constexpr(k0.value == KRepeat - 1 &&
k_.value == KPerInnerLoop - KPack &&
m0.value == MRepeat - 1 && n0.value == NRepeat - 1)
{
__builtin_amdgcn_sched_barrier(0);
block_sync_lds();
__builtin_amdgcn_sched_barrier(0);
}
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
if constexpr(k_.value == 0 && m0.value == 0 && n0.value == 0)
{
__builtin_amdgcn_sched_barrier(0);
__builtin_amdgcn_s_setprio(1);
__builtin_amdgcn_sched_barrier(0);
}
});
// static_for<0, xdlops_gemm.GetRegSizePerXdlops(), 1>{}([&](auto t) {
// constexpr index_t c_offset =
// c_thread_desc_.CalculateOffset(make_tuple(m0, n0, t));
// c_thread_buf(Number<c_offset>{}) +=
// c_thread_buf_per_scale[Number<t>{}] *
// type_convert<AccDataType>(b_scale_thread_buf[n0]);
// });
});
});
__builtin_amdgcn_sched_barrier(0);
__builtin_amdgcn_s_setprio(0);
__builtin_amdgcn_sched_barrier(0);
});
};
if constexpr(TailNum == TailNumber::One)
{
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k0 * KPerInnerLoop>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * KPerInnerLoop>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
});
__builtin_amdgcn_sched_barrier(0);
if constexpr(k0.value != 0 || KRepeat == 1)
{
__builtin_amdgcn_s_barrier();
__builtin_amdgcn_sched_barrier(0);
}
static_for<0, KPerInnerLoop, KPack>{}([&](auto k_) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, k_ + ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, k_ + ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
if constexpr(k0.value == KRepeat - 1 &&
k_.value == KPerInnerLoop - KPack &&
m0.value == MRepeat - 1 && n0.value == NRepeat - 1)
{
__builtin_amdgcn_sched_barrier(0);
block_sync_lds();
__builtin_amdgcn_sched_barrier(0);
}
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
if constexpr(k_.value == 0 && m0.value == 0 && n0.value == 0)
{
__builtin_amdgcn_sched_barrier(0);
__builtin_amdgcn_s_setprio(1);
__builtin_amdgcn_sched_barrier(0);
}
});
// static_for<0, xdlops_gemm.GetRegSizePerXdlops(), 1>{}([&](auto t) {
// constexpr index_t c_offset =
// c_thread_desc_.CalculateOffset(make_tuple(m0, n0, t));
// c_thread_buf(Number<c_offset>{}) +=
// c_thread_buf_per_scale[Number<t>{}] *
// type_convert<AccDataType>(b_scale_thread_buf[n0]);
// });
});
});
__builtin_amdgcn_sched_barrier(0);
__builtin_amdgcn_s_setprio(0);
__builtin_amdgcn_sched_barrier(0);
});
}
else if constexpr(TailNum == TailNumber::Two)
{
LoopTailFunc(Number<2>{});
}
else if constexpr(TailNum == TailNumber::Three)
{
LoopTailFunc(Number<3>{});
}
else if constexpr(TailNum == TailNumber::Four)
{
LoopTailFunc(Number<4>{});
}
else if constexpr(TailNum == TailNumber::Five)
{
LoopTailFunc(Number<5>{});
}
else if constexpr(TailNum == TailNumber::Six)
{
LoopTailFunc(Number<6>{});
}
else if constexpr(TailNum == TailNumber::Seven)
{
LoopTailFunc(Number<7>{});
}
else if constexpr(TailNum == TailNumber::Full)
{
LoopTailFunc(Number<PrefetchStages>{});
}
}
protected:
// K->M loopover
static constexpr auto a_thread_desc_ = make_naive_tensor_descriptor(
make_tuple(Number<MRepeat>{}, I1, Number<KRepeat>{}, Number<KPerInnerLoop>{}),
make_tuple(Number<KPerInnerLoop>{},
Number<KRepeat * MRepeat * KPerInnerLoop>{},
Number<MRepeat * KPerInnerLoop>{},
I1));
static constexpr auto b_thread_desc_ = make_naive_tensor_descriptor(
make_tuple(Number<NRepeat>{}, I1, Number<KRepeat>{}, Number<KPerInnerLoop>{}),
make_tuple(Number<KPerInnerLoop>{},
Number<KRepeat * NRepeat * KPerInnerLoop>{},
Number<NRepeat * KPerInnerLoop>{},
I1));
using AThreadCopy = ThreadwiseTensorSliceTransfer_v4<ADataType,
ComputeDataType,
decltype(a_block_desc_m0_m1_m2_k),
decltype(a_thread_desc_),
Sequence<1, 1, 1, KPerInnerLoop>,
Sequence<0, 1, 2, 3>,
3,
A_K1,
A_K1>;
using BThreadCopy = ThreadwiseTensorSliceTransfer_v4<BDataType,
ComputeDataType,
decltype(b_block_desc_n0_n1_n2_k),
decltype(b_thread_desc_),
Sequence<1, 1, 1, KPerInnerLoop>,
Sequence<0, 1, 2, 3>,
3,
B_K1,
B_K1>;
AThreadCopy a_thread_copy_{Base::CalculateAThreadOriginDataIndex()};
BThreadCopy b_thread_copy_{Base::CalculateBThreadOriginDataIndex()};
using Base::c_thread_desc_;
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_base.hpp"
namespace ck {
// Compute optimized pipeline
// GlobalPrefetchStages: 2
// LocalPreFillStages: 1
// LocalPreFetchStages: 1
// LocalSharedMemoryBuffer: 1
template <BlockGemmPipelineScheduler BlkGemmPipelineVer,
index_t BlockSize,
typename ADataType,
typename BDataType,
typename ComputeDataType,
typename AccDataType,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t ABlockTransferSrcScalarPerVector,
index_t BBlockTransferSrcScalarPerVector,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPacks>
struct BlockwiseGemmXdlops_pipeline_v3_b_scale
{
};
template <index_t BlockSize,
typename ADataType,
typename BDataType,
typename ComputeDataType,
typename AccDataType,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t ABlockTransferSrcScalarPerVector,
index_t BBlockTransferSrcScalarPerVector,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPack
// ,bool TransposeC //disable transposec right now...
>
struct BlockwiseGemmXdlops_pipeline_v3_b_scale<BlockGemmPipelineScheduler::Intrawave,
BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>
: BlockwiseGemmXdlops_pipeline_base<BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>
{
using Base = BlockwiseGemmXdlops_pipeline_base<BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>;
using Base::I0;
using Base::I1;
using Base::KRepeat;
using Base::xdlops_gemm;
using typename Base::HotLoopInstList;
using Base::CalculateCThreadOriginDataIndex;
using Base::CalculateCThreadOriginDataIndex8D;
using Base::GetCBlockDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4;
using Base::GetCThreadBuffer;
using Base::GetCThreadDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4;
using Base::MakeCGridDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::a_block_desc_m0_m1_m2_k;
using Base::b_block_desc_n0_n1_n2_k;
using Base::AMmaKStride;
using Base::BMmaKStride;
static constexpr index_t PrefetchStages = 2;
static constexpr index_t PrefillStages = 1;
static constexpr index_t GlobalBufferNum = 1;
__host__ __device__ static constexpr bool BlockHasHotloop(index_t num_loop)
{
return num_loop > PrefetchStages;
}
__host__ __device__ static constexpr TailNumber BlockLoopTailNum(index_t num_loop)
{
ignore = num_loop;
return TailNumber::Full;
}
__device__ static constexpr auto HotLoopScheduler()
{
// A/B split schedule
// compiler is likely to use ds_read2 when instruction width smaller than 16bytes
constexpr auto num_ds_read_inst_a =
HotLoopInstList::A_LDS_Read_Width * sizeof(ADataType) == 16
? HotLoopInstList::A_LDS_Read_Inst_Num
: HotLoopInstList::A_LDS_Read_Inst_Num / 2;
constexpr auto num_ds_read_inst_b =
HotLoopInstList::B_LDS_Read_Width * sizeof(BDataType) == 16
? HotLoopInstList::B_LDS_Read_Inst_Num
: HotLoopInstList::B_LDS_Read_Inst_Num / 2;
constexpr auto num_ds_write_inst_a = HotLoopInstList::A_LDS_Write_Inst_Num;
constexpr auto num_ds_write_inst_b = HotLoopInstList::B_LDS_Write_Inst_Num;
constexpr auto num_buffer_load_inst_a = HotLoopInstList::A_Buffer_Load_Inst_Num;
constexpr auto num_buffer_load_inst_b = HotLoopInstList::B_Buffer_Load_Inst_Num;
constexpr auto num_mfma_inst = HotLoopInstList::C_MFMA_Inst_Num;
constexpr auto mfma_cycle = NPerXDL == 16 ? 16 : 32;
constexpr auto ds_read_a_issue_cycle =
HotLoopInstList::A_LDS_Read_Width * sizeof(ADataType) == 16 ? 8 : 4;
constexpr auto ds_read_b_issue_cycle =
HotLoopInstList::B_LDS_Read_Width * sizeof(BDataType) == 16 ? 8 : 4;
constexpr auto ds_read_a_mfma_rate =
(mfma_cycle - 4 + 2 * ds_read_a_issue_cycle - 1) / (2 * ds_read_a_issue_cycle);
constexpr auto ds_read_b_mfma_rate =
(mfma_cycle - 4 + 2 * ds_read_b_issue_cycle - 1) / (2 * ds_read_b_issue_cycle);
constexpr auto num_dsread_a_mfma =
(num_ds_read_inst_a + ds_read_a_mfma_rate - 1) / ds_read_a_mfma_rate;
constexpr auto num_dsread_b_mfma =
(num_ds_read_inst_b + ds_read_b_mfma_rate - 1) / ds_read_b_mfma_rate;
// stage 1
// Separate this part?
// constexpr auto num_mfma_per_ds_read = sizeof(ComputeDataType) / sizeof(ADataType) >
// sizeof(ComputeDataType) / sizeof(BDataType)
// ? sizeof(ComputeDataType) / sizeof(ADataType)
// : sizeof(ComputeDataType) / sizeof(BDataType);
constexpr auto num_mfma_stage1 = num_mfma_inst - (num_dsread_a_mfma + num_dsread_b_mfma);
constexpr auto num_mfma_per_issue =
num_mfma_stage1 / (num_buffer_load_inst_a + num_buffer_load_inst_b);
constexpr auto num_dswrite_per_issue_a = num_ds_write_inst_a / num_buffer_load_inst_a;
constexpr auto num_dswrite_per_issue_b = num_ds_write_inst_b / num_buffer_load_inst_b;
static_for<0, num_buffer_load_inst_a, 1>{}([&](auto i) {
ignore = i;
static_for<0, num_dswrite_per_issue_a, 1>{}([&](auto idswrite) {
ignore = idswrite;
__builtin_amdgcn_sched_group_barrier(0x200, 1, 0); // DS write
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
});
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
__builtin_amdgcn_sched_group_barrier(
0x008, num_mfma_per_issue - num_dswrite_per_issue_a, 0); // MFMA
});
static_for<0, num_buffer_load_inst_b, 1>{}([&](auto i) {
ignore = i;
static_for<0, num_dswrite_per_issue_b, 1>{}([&](auto idswrite) {
ignore = idswrite;
__builtin_amdgcn_sched_group_barrier(0x200, 1, 0); // DS write
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
});
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
__builtin_amdgcn_sched_group_barrier(
0x008, num_mfma_per_issue - num_dswrite_per_issue_b, 0); // MFMA
});
// stage 2
static_for<0, num_dsread_a_mfma, 1>{}([&](auto i) {
if constexpr((num_ds_read_inst_a - (i + 1) * ds_read_a_mfma_rate) >=
ds_read_a_mfma_rate)
{
__builtin_amdgcn_sched_group_barrier(0x100, ds_read_a_mfma_rate, 0); // DS read
}
else
{
__builtin_amdgcn_sched_group_barrier(0x100,
num_ds_read_inst_a - (num_dsread_a_mfma - 1) *
ds_read_a_mfma_rate,
0); // DS read
}
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
});
static_for<0, num_dsread_b_mfma, 1>{}([&](auto i) {
if constexpr((num_ds_read_inst_b - (i + 1) * ds_read_b_mfma_rate) >=
ds_read_b_mfma_rate)
{
__builtin_amdgcn_sched_group_barrier(0x100, ds_read_b_mfma_rate, 0); // DS read
}
else
{
__builtin_amdgcn_sched_group_barrier(0x100,
num_ds_read_inst_b - (num_dsread_b_mfma - 1) *
ds_read_b_mfma_rate,
0); // DS read
}
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
});
}
template <bool HasMainLoop,
TailNumber TailNum,
typename AGridDesc,
typename ABlockDesc,
typename ABlockTransfer,
typename AGridBuffer,
typename ABlockBuffer,
typename ABlockTransferStep,
typename BGridDesc,
typename BBlockDesc,
typename BBlockTransfer,
typename BGridBuffer,
typename BBlockBuffer,
typename BBlockTransferStep,
typename CThreadBuffer,
typename BScaleGridBuffer,
typename BScaleGridDesc,
typename BScaleThreadDesc,
typename BScaleThreadTransfer,
typename BScaleThreadTransferStep>
__device__ void Run(const AGridDesc& a_grid_desc,
const ABlockDesc& a_block_desc,
ABlockTransfer& a_blockwise_copy,
const AGridBuffer& a_grid_buf,
ABlockBuffer& a_block_buf,
const ABlockTransferStep& a_block_copy_step,
const BGridDesc& b_grid_desc,
const BBlockDesc& b_block_desc,
BBlockTransfer& b_blockwise_copy,
const BGridBuffer& b_grid_buf,
BBlockBuffer& b_block_buf,
const BBlockTransferStep& b_block_copy_step,
CThreadBuffer& c_thread_buf,
// BScaleThreadCopy
const BScaleGridDesc& b_scale_grid_desc,
const BScaleThreadDesc& b_scale_thread_desc,
BScaleThreadTransfer& b_scale_thread_copy,
const BScaleGridBuffer& b_scale_grid_buf,
const BScaleThreadTransferStep& b_scale_thread_copy_step,
// num loop
index_t num_loop,
index_t num_loop_per_scale) const
{
__builtin_amdgcn_sched_barrier(0);
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
b_thread_desc_.GetElementSpaceSize());
// B scale buffer
auto b_scale_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
b_scale_thread_desc.GetElementSpaceSize());
// Global prefetch 1
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_scale_thread_copy.Run(b_scale_grid_desc,
b_scale_grid_buf,
b_scale_thread_desc,
make_tuple(n0, I0),
b_scale_thread_buf);
b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
b_scale_thread_copy_step.At(Number<0>{}));
});
if(num_loop_per_scale == 1)
{
b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
b_scale_thread_copy_step.At(Number<2>{}));
}
else
{
b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
b_scale_thread_copy_step.At(Number<1>{}));
}
constexpr auto num_scale_k_block = BScaleThreadDesc{}.GetLength(I1);
constexpr auto num_scale_krepeat = KRepeat / num_scale_k_block;
// Local prefill 1
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf);
// Global prefetch 2
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
// Initialize C
c_thread_buf.Clear();
// Local prefetch 1
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k0 * AMmaKStride>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(
b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * BMmaKStride>{}),
b_block_buf,
b_scale_thread_buf[Number<n0 * num_scale_k_block + k0 / num_scale_krepeat>{}],
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
});
__builtin_amdgcn_sched_barrier(0);
// main body
if constexpr(HasMainLoop)
{
index_t i = 0;
do
{
block_sync_lds();
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf);
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_scale_thread_copy.Run(b_scale_grid_desc,
b_scale_grid_buf,
b_scale_thread_desc,
make_tuple(n0, I0),
b_scale_thread_buf);
b_scale_thread_copy.MoveSrcSliceWindow(
b_scale_grid_desc, b_scale_thread_copy_step.At(Number<0>{}));
});
if((i + 2) % num_loop_per_scale == 0)
{
b_scale_thread_copy.MoveSrcSliceWindow(
b_scale_grid_desc, b_scale_thread_copy_step.At(Number<2>{}));
}
else
{
b_scale_thread_copy.MoveSrcSliceWindow(
b_scale_grid_desc, b_scale_thread_copy_step.At(Number<1>{}));
}
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k0 * AMmaKStride>{}),
a_block_buf,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * BMmaKStride>{}),
b_block_buf,
b_scale_thread_buf[Number<n0 * num_scale_k_block +
k0 / num_scale_krepeat>{}],
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
});
HotLoopScheduler();
__builtin_amdgcn_sched_barrier(0);
i += 1;
} while(i < (num_loop - 1));
}
// tail
if constexpr(TailNum == TailNumber::Full)
{
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
__builtin_amdgcn_sched_barrier(0);
}
}
protected:
using Base::a_thread_copy_;
using Base::a_thread_desc_;
using Base::b_thread_copy_;
using Base::b_thread_desc_;
using Base::c_thread_desc_;
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_base.hpp"
namespace ck {
// Compute optimimal pipeline with highest resource request
// GlobalPrefetchStages: 4
// LocalPreFillStages: 2
// LocalPreFetchStages: 1
// LocalSharedMemoryBuffer: 2
template <BlockGemmPipelineScheduler BlkGemmPipelineVer,
index_t BlockSize,
typename ADataType,
typename BDataType,
typename ComputeDataType,
typename AccDataType,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t ABlockTransferSrcScalarPerVector,
index_t BBlockTransferSrcScalarPerVector,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPacks>
struct BlockwiseGemmXdlops_pipeline_v4_b_scale
{
};
template <index_t BlockSize,
typename ADataType,
typename BDataType,
typename ComputeDataType,
typename AccDataType,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t ABlockTransferSrcScalarPerVector,
index_t BBlockTransferSrcScalarPerVector,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPack
// ,bool TransposeC //disable transposec right now...
>
struct BlockwiseGemmXdlops_pipeline_v4_b_scale<BlockGemmPipelineScheduler::Intrawave,
BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>
: BlockwiseGemmXdlops_pipeline_base<BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>
{
using Base = BlockwiseGemmXdlops_pipeline_base<BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>;
using Base::I0;
using Base::I1;
using Base::KRepeat;
using Base::xdlops_gemm;
using typename Base::HotLoopInstList;
using Base::CalculateCThreadOriginDataIndex;
using Base::CalculateCThreadOriginDataIndex8D;
using Base::GetCBlockDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4;
using Base::GetCThreadBuffer;
using Base::GetCThreadDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4;
using Base::MakeCGridDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::a_block_desc_m0_m1_m2_k;
using Base::b_block_desc_n0_n1_n2_k;
using Base::AMmaKStride;
using Base::BMmaKStride;
static constexpr index_t PrefetchStages = 3;
static constexpr index_t PrefillStages = 2;
static constexpr index_t GlobalBufferNum = 1;
static constexpr index_t HotloopUnroll = 2;
__host__ __device__ static constexpr bool BlockHasHotloop(index_t num_loop)
{
return num_loop > PrefetchStages;
}
__host__ __device__ static constexpr TailNumber BlockLoopTailNum(index_t num_loop)
{
if(num_loop % HotloopUnroll == 1)
{
return TailNumber::Odd;
}
else
{
return TailNumber::Even;
}
}
__device__ static constexpr void HotLoopScheduler()
{
// TODO: Take data type into consideration as pipe ver 3
// A-B splited schedule
constexpr auto num_ds_read_inst_a =
HotLoopInstList::A_LDS_Read_Width * sizeof(ADataType) == 16
? HotLoopInstList::A_LDS_Read_Inst_Num
: HotLoopInstList::A_LDS_Read_Inst_Num / 2;
constexpr auto num_ds_read_inst_b =
HotLoopInstList::B_LDS_Read_Width * sizeof(BDataType) == 16
? HotLoopInstList::B_LDS_Read_Inst_Num
: HotLoopInstList::B_LDS_Read_Inst_Num / 2;
constexpr auto num_issue_a = HotLoopInstList::A_Buffer_Load_Inst_Num;
constexpr auto num_dswrite_per_issue_a =
(HotLoopInstList::A_LDS_Write_Inst_Num + num_issue_a - 1) / num_issue_a;
constexpr auto num_dsread_per_issue_a = num_ds_read_inst_a / num_issue_a;
constexpr auto num_issue_b = HotLoopInstList::B_Buffer_Load_Inst_Num;
constexpr auto num_dswrite_per_issue_b =
(HotLoopInstList::B_LDS_Write_Inst_Num + num_issue_b - 1) / num_issue_b;
constexpr auto num_dsread_per_issue_b = num_ds_read_inst_b / num_issue_b;
constexpr auto num_mfma_per_issue =
HotLoopInstList::C_MFMA_Inst_Num / (num_issue_a + num_issue_b);
static_for<0, num_issue_a, 1>{}([&](auto i) {
ignore = i;
static_for<0, num_dsread_per_issue_a, 1>{}([&](auto idsread) {
ignore = idsread;
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
});
static_for<0, num_dswrite_per_issue_a, 1>{}([&](auto idswrite) {
ignore = idswrite;
__builtin_amdgcn_sched_group_barrier(0x200, 1, 0); // DS write
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
});
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
__builtin_amdgcn_sched_group_barrier(0x008,
num_mfma_per_issue - num_dsread_per_issue_a -
num_dswrite_per_issue_a,
0); // MFMA
});
static_for<0, num_issue_b, 1>{}([&](auto i) {
ignore = i;
static_for<0, num_dsread_per_issue_b, 1>{}([&](auto idsread) {
ignore = idsread;
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
});
static_for<0, num_dswrite_per_issue_b, 1>{}([&](auto idswrite) {
ignore = idswrite;
__builtin_amdgcn_sched_group_barrier(0x200, 1, 0); // DS write
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
});
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
__builtin_amdgcn_sched_group_barrier(0x008,
num_mfma_per_issue - num_dsread_per_issue_a -
num_dswrite_per_issue_b,
0); // MFMA
});
__builtin_amdgcn_sched_barrier(0);
}
template <bool HasMainLoop,
TailNumber TailNum,
typename AGridDesc,
typename ABlockDesc,
typename ABlockTransfer,
typename AGridBuffer,
typename ABlockBuffer,
typename ABlockTransferStep,
typename BGridDesc,
typename BBlockDesc,
typename BBlockTransfer,
typename BGridBuffer,
typename BBlockBuffer,
typename BBlockTransferStep,
typename CThreadBuffer,
typename BScaleGridBuffer,
typename BScaleGridDesc,
typename BScaleThreadDesc,
typename BScaleThreadTransfer,
typename BScaleThreadTransferStep>
__device__ void Run(const AGridDesc& a_grid_desc,
const ABlockDesc& a_block_desc,
ABlockTransfer& a_blockwise_copy,
const AGridBuffer& a_grid_buf,
ABlockBuffer& a_block_buf,
const ABlockTransferStep& a_block_copy_step,
const BGridDesc& b_grid_desc,
const BBlockDesc& b_block_desc,
BBlockTransfer& b_blockwise_copy,
const BGridBuffer& b_grid_buf,
BBlockBuffer& b_block_buf,
const BBlockTransferStep& b_block_copy_step,
CThreadBuffer& c_thread_buf,
// BScaleThreadCopy
const BScaleGridDesc& b_scale_grid_desc,
const BScaleThreadDesc& b_scale_thread_desc,
BScaleThreadTransfer& b_scale_thread_copy,
const BScaleGridBuffer& b_scale_grid_buf,
const BScaleThreadTransferStep& b_scale_thread_copy_step,
// num loop
index_t num_loop,
index_t num_loop_per_scale) const
{
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
b_thread_desc_.GetElementSpaceSize());
// B scale buffer
auto b_scale_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
b_scale_thread_desc.GetElementSpaceSize());
StaticallyIndexedArray<decltype(a_thread_buf), Number<2>{}> a_thread_bufs;
StaticallyIndexedArray<decltype(b_thread_buf), Number<2>{}> b_thread_bufs;
StaticallyIndexedArray<decltype(b_scale_thread_buf), Number<2>{}> b_scale_thread_bufs;
// Global prefetch 1
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_scale_thread_copy.Run(b_scale_grid_desc,
b_scale_grid_buf,
b_scale_thread_desc,
make_tuple(n0, I0),
b_scale_thread_bufs(I0));
b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
b_scale_thread_copy_step.At(Number<0>{}));
});
if(num_loop_per_scale == 1)
{
b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
b_scale_thread_copy_step.At(Number<2>{}));
}
else
{
b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
b_scale_thread_copy_step.At(Number<1>{}));
}
// Local prefill 1
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(I0));
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf.At(I0));
// Global prefetch 2
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_scale_thread_copy.Run(b_scale_grid_desc,
b_scale_grid_buf,
b_scale_thread_desc,
make_tuple(n0, I0),
b_scale_thread_bufs(I1));
b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
b_scale_thread_copy_step.At(Number<0>{}));
});
if(2 % num_loop_per_scale == 0)
{
b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
b_scale_thread_copy_step.At(Number<2>{}));
}
else
{
b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
b_scale_thread_copy_step.At(Number<1>{}));
}
// Local prefetch 1
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf.At(I0),
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(I0));
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(I0),
b_scale_thread_bufs(I0)[n0],
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(I0));
});
});
});
// Local prefill 2
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(I1));
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf.At(I1));
// Global prefetch 3
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_scale_thread_copy.Run(b_scale_grid_desc,
b_scale_grid_buf,
b_scale_thread_desc,
make_tuple(n0, I0),
b_scale_thread_bufs(I0));
b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
b_scale_thread_copy_step.At(Number<0>{}));
});
if(3 % num_loop_per_scale == 0)
{
b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
b_scale_thread_copy_step.At(Number<2>{}));
}
else
{
b_scale_thread_copy.MoveSrcSliceWindow(b_scale_grid_desc,
b_scale_thread_copy_step.At(Number<1>{}));
}
// Initialize C
c_thread_buf.Clear();
// main body
if constexpr(HasMainLoop)
{
index_t i = 0;
// This hot loop has two legacy loopover, to implement the double local buffer strategy
do
{
auto LoopFunc = [&](auto lds_read_buf,
auto lds_read_reg_buf,
auto lds_write_buf,
auto mfma_reg_buf) {
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf.At(lds_read_buf),
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(lds_read_reg_buf));
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(lds_read_buf),
b_scale_thread_bufs(lds_read_buf)[n0],
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(lds_read_reg_buf));
});
});
// B scale copy
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_scale_thread_copy.Run(b_scale_grid_desc,
b_scale_grid_buf,
b_scale_thread_desc,
make_tuple(n0, I0),
b_scale_thread_bufs(lds_read_reg_buf));
b_scale_thread_copy.MoveSrcSliceWindow(
b_scale_grid_desc, b_scale_thread_copy_step.At(Number<0>{}));
});
if((i + 4 + mfma_reg_buf.value) % num_loop_per_scale == 0)
{
b_scale_thread_copy.MoveSrcSliceWindow(
b_scale_grid_desc, b_scale_thread_copy_step.At(Number<2>{}));
}
else
{
b_scale_thread_copy.MoveSrcSliceWindow(
b_scale_grid_desc, b_scale_thread_copy_step.At(Number<1>{}));
}
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(lds_write_buf));
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf.At(lds_write_buf));
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_bufs[mfma_reg_buf]
[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_bufs[mfma_reg_buf]
[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
HotLoopScheduler();
};
LoopFunc(I1, I1, I0, I0);
LoopFunc(I0, I0, I1, I1);
i += HotloopUnroll;
} while(i < (num_loop - PrefetchStages));
}
auto ReadWriteCompFunc = [&](auto lds_read_buf,
auto lds_read_reg_buf,
auto lds_write_buf,
auto mfma_reg_buf) {
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf.At(lds_read_buf),
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(lds_read_reg_buf));
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(lds_read_buf),
b_scale_thread_bufs(lds_read_buf)[n0],
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(lds_read_reg_buf));
});
});
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(lds_write_buf));
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf.At(lds_write_buf));
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_bufs[mfma_reg_buf][Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_bufs[mfma_reg_buf][Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
HotLoopScheduler();
};
auto ReadCompFunc = [&](auto lds_read_buf, auto lds_read_reg_buf, auto mfma_reg_buf) {
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf.At(lds_read_buf),
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(lds_read_reg_buf));
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(lds_read_buf),
b_scale_thread_bufs(lds_read_buf)[n0],
b_thread_desc_,
make_tuple(n0, I0, k, I0),
b_thread_bufs(lds_read_reg_buf));
});
});
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_bufs[mfma_reg_buf][Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_bufs[mfma_reg_buf][Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
HotLoopScheduler();
};
auto CompFunc = [&](auto mfma_reg_buf) {
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_bufs[mfma_reg_buf][Number<a_thread_desc_.CalculateOffset(
make_tuple(m0, I0, k0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_bufs[mfma_reg_buf][Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
};
// tail
if constexpr(TailNum == TailNumber::Odd)
{
ReadWriteCompFunc(I1, I1, I0, I0);
ReadCompFunc(I0, I0, I1);
CompFunc(I0);
}
else if constexpr(TailNum == TailNumber::Even)
{
ReadCompFunc(I1, I1, I0);
CompFunc(I1);
}
}
protected:
using Base::a_thread_copy_;
using Base::a_thread_desc_;
using Base::b_thread_copy_;
using Base::b_thread_desc_;
using Base::c_thread_desc_;
};
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment