Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
dcd3d21a
Commit
dcd3d21a
authored
Jul 08, 2024
by
illsilin
Browse files
merge from public repo
parents
9f2a6d43
8182976c
Changes
379
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
3880 additions
and
229 deletions
+3880
-229
include/ck/tensor_operation/gpu/device/helper.hpp
include/ck/tensor_operation/gpu/device/helper.hpp
+359
-0
include/ck/tensor_operation/gpu/device/impl/codegen_device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp
...gen_device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp
+781
-0
include/ck/tensor_operation/gpu/device/impl/device_column_to_image_impl.hpp
...operation/gpu/device/impl/device_column_to_image_impl.hpp
+3
-2
include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp
...ice/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp
+17
-25
include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp
...evice/impl/device_contraction_multiple_d_xdl_cshuffle.hpp
+19
-24
include/ck/tensor_operation/gpu/device/impl/device_contraction_utils.hpp
...or_operation/gpu/device/impl/device_contraction_utils.hpp
+38
-10
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3.hpp
...pu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3.hpp
+730
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp
...n/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp
+556
-0
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
...vice_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
+7
-7
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_dl.hpp
...ion/gpu/device/impl/device_grouped_conv_bwd_weight_dl.hpp
+6
-6
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_multiple_d_xdl_cshuffle.hpp
...evice_grouped_conv_bwd_weight_multiple_d_xdl_cshuffle.hpp
+6
-6
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_two_stage_xdl_cshuffle.hpp
...device_grouped_conv_bwd_weight_two_stage_xdl_cshuffle.hpp
+25
-25
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_xdl_cshuffle.hpp
...vice/impl/device_grouped_conv_bwd_weight_xdl_cshuffle.hpp
+3
-6
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp
.../device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp
+11
-10
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp
...device/impl/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp
+5
-4
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp
...mpl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp
+115
-63
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle_v3.hpp
.../device_grouped_conv_fwd_multiple_abd_xdl_cshuffle_v3.hpp
+1156
-0
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_multiple_r_xdl_cshuffle.hpp
...e_grouped_conv_fwd_multiple_d_multiple_r_xdl_cshuffle.hpp
+8
-7
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_wmma_cshuffle.hpp
...impl/device_grouped_conv_fwd_multiple_d_wmma_cshuffle.hpp
+5
-4
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp
...r_operation/gpu/device/impl/device_grouped_conv_utils.hpp
+30
-30
No files found.
include/ck/tensor_operation/gpu/device/helper.hpp
0 → 100644
View file @
dcd3d21a
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include <fstream>
#include <variant>
// functions to return the corresponding structs based on generated template parameters
using
layouts
=
std
::
variant
<
ck
::
tensor_layout
::
convolution
::
GNWK
,
ck
::
tensor_layout
::
convolution
::
GNHWK
,
ck
::
tensor_layout
::
convolution
::
NHWGK
,
ck
::
tensor_layout
::
convolution
::
GNDHWK
,
ck
::
tensor_layout
::
convolution
::
NDHWGK
>
;
// return the layout type: currently this is the only type supported in MIOpen
auto
layout_type
(
std
::
string
type
)
{
if
(
type
==
"ck::tensor_layout::convolution::NHWGK"
)
{
return
ck
::
tensor_layout
::
convolution
::
NHWGK
{};
}
throw
std
::
runtime_error
(
"Incorrect layout"
);
}
// return the right gemm spec based on the generated template parameters
ck
::
tensor_operation
::
device
::
GemmSpecialization
gemm_type
(
std
::
string
type
)
{
if
(
type
==
"ck::tensor_operation::device::GemmSpecialization::Default"
)
{
return
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
}
if
(
type
==
"ck::tensor_operation::device::GemmSpecialization::MNKPadding"
)
{
return
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
}
throw
std
::
runtime_error
(
"Incorrect gemm spec: "
+
type
);
}
// return the type of convolution
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
conv_type
(
std
::
string
type
)
{
if
(
type
==
"ck::tensor_operation::device::ConvolutionForwardSpecialization::Default"
)
{
return
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
}
if
(
type
==
"ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0"
)
{
return
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Pad0
;
}
if
(
type
==
"ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0"
)
{
return
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
;
}
if
(
type
==
"ck::tensor_operation::device::ConvolutionForwardSpecialization::OddC"
)
{
return
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
OddC
;
}
throw
std
::
runtime_error
(
"Incorrect conv spec: "
+
type
);
}
// Function to call on MatrixPadder via a wrapper struct
// NOTE: CK only uses MNKPadding for forward convolution
template
<
typename
CDesc_MRaw_NRaw
>
auto
pad
(
ck
::
index_t
mpb
,
ck
::
index_t
npb
,
ck
::
index_t
kpb
,
ck
::
tensor_operation
::
device
::
GemmSpecialization
gemm
,
CDesc_MRaw_NRaw
conv
)
{
if
(
gemm
==
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
{
ck
::
tensor_operation
::
device
::
MatrixPadder
<
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
,
ck
::
index_t
,
ck
::
index_t
,
ck
::
index_t
>
a
;
a
.
MPerTile_
=
mpb
;
a
.
NPerTile_
=
npb
;
a
.
KPerTile_
=
kpb
;
auto
tmp
=
grid_desc
(
a
,
conv
);
return
tmp
;
}
throw
std
::
runtime_error
(
"Incorrect template parameters, check gemm spec"
);
}
// Functions to call on TransformConvFwdToGemm through wrapper: different functions based on num
// dims
// FIXME: add a way to properly pass in the layout
auto
transform_conv
(
ck
::
index_t
num_dim
,
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
spec
,
ck
::
Array
<
ck
::
index_t
,
5
>
out_lengths
,
ck
::
Array
<
ck
::
index_t
,
5
>
out_strides
)
{
if
(
num_dim
==
2
&&
spec
==
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
)
{
ck
::
tensor_operation
::
TransformConvFwdToGemm
<
2
,
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
>
conv_fwd
;
auto
res
=
ck
::
tensor_operation
::
TransformConv
();
return
res
.
transform_func
(
out_lengths
,
out_strides
,
conv_fwd
);
}
if
(
num_dim
==
2
&&
spec
==
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Pad0
)
{
ck
::
tensor_operation
::
TransformConvFwdToGemm
<
2
,
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Pad0
>
conv_fwd
;
auto
res
=
ck
::
tensor_operation
::
TransformConv
();
return
res
.
transform_func
(
out_lengths
,
out_strides
,
conv_fwd
);
}
if
(
num_dim
==
2
&&
spec
==
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
)
{
ck
::
tensor_operation
::
TransformConvFwdToGemm
<
2
,
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
>
conv_fwd
;
auto
res
=
ck
::
tensor_operation
::
TransformConv
();
return
res
.
transform_func
(
out_lengths
,
out_strides
,
conv_fwd
);
}
if
(
num_dim
==
2
&&
spec
==
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
OddC
)
{
ck
::
tensor_operation
::
TransformConvFwdToGemm
<
2
,
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
OddC
>
conv_fwd
;
auto
res
=
ck
::
tensor_operation
::
TransformConv
();
return
res
.
transform_func
(
out_lengths
,
out_strides
,
conv_fwd
);
}
throw
std
::
runtime_error
(
"Incorrect conv spec"
);
}
auto
transform_conv_3d
(
ck
::
index_t
num_dim
,
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
spec
,
ck
::
Array
<
ck
::
index_t
,
6
>
out_lengths
,
ck
::
Array
<
ck
::
index_t
,
6
>
out_strides
)
{
if
(
num_dim
==
3
&&
spec
==
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
)
{
ck
::
tensor_operation
::
TransformConvFwdToGemm
<
3
,
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
>
conv_fwd
;
auto
res
=
ck
::
tensor_operation
::
TransformConv
();
return
res
.
transform_func
(
out_lengths
,
out_strides
,
conv_fwd
);
}
if
(
num_dim
==
3
&&
spec
==
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Pad0
)
{
ck
::
tensor_operation
::
TransformConvFwdToGemm
<
3
,
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Pad0
>
conv_fwd
;
auto
res
=
ck
::
tensor_operation
::
TransformConv
();
return
res
.
transform_func
(
out_lengths
,
out_strides
,
conv_fwd
);
}
if
(
num_dim
==
3
&&
spec
==
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
)
{
ck
::
tensor_operation
::
TransformConvFwdToGemm
<
3
,
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
>
conv_fwd
;
auto
res
=
ck
::
tensor_operation
::
TransformConv
();
return
res
.
transform_func
(
out_lengths
,
out_strides
,
conv_fwd
);
}
if
(
num_dim
==
3
&&
spec
==
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
OddC
)
{
ck
::
tensor_operation
::
TransformConvFwdToGemm
<
3
,
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
OddC
>
conv_fwd
;
auto
res
=
ck
::
tensor_operation
::
TransformConv
();
return
res
.
transform_func
(
out_lengths
,
out_strides
,
conv_fwd
);
}
throw
std
::
runtime_error
(
"Incorrect conv spec"
);
}
auto
transform_conv_1d
(
ck
::
index_t
num_dim
,
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
spec
,
ck
::
Array
<
ck
::
index_t
,
4
>
out_lengths
,
ck
::
Array
<
ck
::
index_t
,
4
>
out_strides
)
{
if
(
num_dim
==
1
&&
spec
==
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
)
{
ck
::
tensor_operation
::
TransformConvFwdToGemm
<
1
,
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
>
conv_fwd
;
auto
res
=
ck
::
tensor_operation
::
TransformConv
();
return
res
.
transform_func
(
out_lengths
,
out_strides
,
conv_fwd
);
}
if
(
num_dim
==
1
&&
spec
==
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Pad0
)
{
ck
::
tensor_operation
::
TransformConvFwdToGemm
<
1
,
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Pad0
>
conv_fwd
;
auto
res
=
ck
::
tensor_operation
::
TransformConv
();
return
res
.
transform_func
(
out_lengths
,
out_strides
,
conv_fwd
);
}
if
(
num_dim
==
1
&&
spec
==
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
)
{
ck
::
tensor_operation
::
TransformConvFwdToGemm
<
1
,
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
>
conv_fwd
;
auto
res
=
ck
::
tensor_operation
::
TransformConv
();
return
res
.
transform_func
(
out_lengths
,
out_strides
,
conv_fwd
);
}
if
(
num_dim
==
1
&&
spec
==
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
OddC
)
{
ck
::
tensor_operation
::
TransformConvFwdToGemm
<
1
,
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
OddC
>
conv_fwd
;
auto
res
=
ck
::
tensor_operation
::
TransformConv
();
return
res
.
transform_func
(
out_lengths
,
out_strides
,
conv_fwd
);
}
throw
std
::
runtime_error
(
"Incorrect dims or conv spec"
);
}
template
<
typename
CGridDesc_M_N
>
auto
block_2_etile
(
ck
::
index_t
m_per_block
,
ck
::
index_t
n_per_block
,
CGridDesc_M_N
matrix_padder
)
{
if
(
m_per_block
==
32
&&
n_per_block
==
64
)
{
auto
b2e
=
ck
::
BlockToCTileMap_M00_N0_M01Adapt
<
32
,
64
,
CGridDesc_M_N
>
(
matrix_padder
);
return
b2e
.
CalculateGridSize
(
matrix_padder
);
}
if
(
m_per_block
==
32
&&
n_per_block
==
128
)
{
ck
::
BlockToCTileMap_M00_N0_M01Adapt
<
32
,
128
,
CGridDesc_M_N
>
b2e
(
matrix_padder
);
return
b2e
.
CalculateGridSize
(
matrix_padder
);
}
if
(
m_per_block
==
64
&&
n_per_block
==
32
)
{
ck
::
BlockToCTileMap_M00_N0_M01Adapt
<
64
,
32
,
CGridDesc_M_N
>
b2e
(
matrix_padder
);
return
b2e
.
CalculateGridSize
(
matrix_padder
);
}
if
(
m_per_block
==
64
&&
n_per_block
==
64
)
{
ck
::
BlockToCTileMap_M00_N0_M01Adapt
<
64
,
64
,
CGridDesc_M_N
>
b2e
(
matrix_padder
);
return
b2e
.
CalculateGridSize
(
matrix_padder
);
}
if
(
m_per_block
==
64
&&
n_per_block
==
128
)
{
ck
::
BlockToCTileMap_M00_N0_M01Adapt
<
64
,
128
,
CGridDesc_M_N
>
b2e
(
matrix_padder
);
return
b2e
.
CalculateGridSize
(
matrix_padder
);
}
if
(
m_per_block
==
128
&&
n_per_block
==
32
)
{
ck
::
BlockToCTileMap_M00_N0_M01Adapt
<
128
,
32
,
CGridDesc_M_N
>
b2e
(
matrix_padder
);
return
b2e
.
CalculateGridSize
(
matrix_padder
);
}
if
(
m_per_block
==
128
&&
n_per_block
==
64
)
{
ck
::
BlockToCTileMap_M00_N0_M01Adapt
<
128
,
64
,
CGridDesc_M_N
>
b2e
(
matrix_padder
);
return
b2e
.
CalculateGridSize
(
matrix_padder
);
}
if
(
m_per_block
==
128
&&
n_per_block
==
128
)
{
ck
::
BlockToCTileMap_M00_N0_M01Adapt
<
128
,
128
,
CGridDesc_M_N
>
b2e
(
matrix_padder
);
return
b2e
.
CalculateGridSize
(
matrix_padder
);
}
if
(
m_per_block
==
128
&&
n_per_block
==
256
)
{
ck
::
BlockToCTileMap_M00_N0_M01Adapt
<
128
,
256
,
CGridDesc_M_N
>
b2e
(
matrix_padder
);
return
b2e
.
CalculateGridSize
(
matrix_padder
);
}
if
(
m_per_block
==
256
&&
n_per_block
==
128
)
{
ck
::
BlockToCTileMap_M00_N0_M01Adapt
<
256
,
128
,
CGridDesc_M_N
>
b2e
(
matrix_padder
);
return
b2e
.
CalculateGridSize
(
matrix_padder
);
}
throw
std
::
runtime_error
(
"Incorrect template parameters"
);
}
// wrapper functions by dims to get grid size - uses above 3 functions
// TODO: eventually remove the 1d/2d versions as CK will only support 3d convolutions
auto
get_launch_params_1d
(
ck
::
host
::
Solution
solution
,
ck
::
Array
<
ck
::
index_t
,
4
>
out_lengths
,
ck
::
Array
<
ck
::
index_t
,
4
>
out_strides
)
{
auto
num_dim
=
solution
.
GetTemplateParameter
<
ck
::
index_t
>
(
"NumDim"
);
auto
m_per_block
=
solution
.
GetTemplateParameter
<
ck
::
index_t
>
(
"MPerBlock"
);
auto
n_per_block
=
solution
.
GetTemplateParameter
<
ck
::
index_t
>
(
"NPerBlock"
);
auto
k_per_block
=
solution
.
GetTemplateParameter
<
ck
::
index_t
>
(
"KPerBlock"
);
auto
GemmType
=
solution
.
GetTemplateParameter
<
std
::
string
>
(
"GemmSpecialization"
);
auto
ConvType
=
solution
.
GetTemplateParameter
<
std
::
string
>
(
"ConvSpecialization"
);
ck
::
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
=
gemm_type
(
GemmType
);
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
ConvSpec
=
conv_type
(
ConvType
);
auto
conv_to_gemm_transformer
=
transform_conv_1d
(
num_dim
,
ConvSpec
,
out_lengths
,
out_strides
);
auto
matrix_padder
=
pad
(
m_per_block
,
n_per_block
,
k_per_block
,
GemmSpec
,
conv_to_gemm_transformer
);
auto
b2e
=
block_2_etile
(
m_per_block
,
n_per_block
,
matrix_padder
);
return
b2e
;
}
auto
get_launch_params
(
ck
::
host
::
Solution
solution
,
ck
::
Array
<
ck
::
index_t
,
5
>
out_lengths
,
ck
::
Array
<
ck
::
index_t
,
5
>
out_strides
)
{
auto
num_dim
=
solution
.
GetTemplateParameter
<
ck
::
index_t
>
(
"NumDim"
);
auto
m_per_block
=
solution
.
GetTemplateParameter
<
ck
::
index_t
>
(
"MPerBlock"
);
auto
n_per_block
=
solution
.
GetTemplateParameter
<
ck
::
index_t
>
(
"NPerBlock"
);
auto
k_per_block
=
solution
.
GetTemplateParameter
<
ck
::
index_t
>
(
"KPerBlock"
);
auto
GemmType
=
solution
.
GetTemplateParameter
<
std
::
string
>
(
"GemmSpecialization"
);
auto
ConvType
=
solution
.
GetTemplateParameter
<
std
::
string
>
(
"ConvSpecialization"
);
ck
::
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
=
gemm_type
(
GemmType
);
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
ConvSpec
=
conv_type
(
ConvType
);
auto
conv_to_gemm_transformer
=
transform_conv
(
num_dim
,
ConvSpec
,
out_lengths
,
out_strides
);
auto
matrix_padder
=
pad
(
m_per_block
,
n_per_block
,
k_per_block
,
GemmSpec
,
conv_to_gemm_transformer
);
auto
b2e
=
block_2_etile
(
m_per_block
,
n_per_block
,
matrix_padder
);
return
b2e
;
}
auto
get_launch_params_3d
(
ck
::
host
::
Solution
solution
,
ck
::
Array
<
ck
::
index_t
,
6
>
out_lengths
,
ck
::
Array
<
ck
::
index_t
,
6
>
out_strides
)
{
auto
num_dim
=
solution
.
GetTemplateParameter
<
ck
::
index_t
>
(
"NumDim"
);
auto
m_per_block
=
solution
.
GetTemplateParameter
<
ck
::
index_t
>
(
"MPerBlock"
);
auto
n_per_block
=
solution
.
GetTemplateParameter
<
ck
::
index_t
>
(
"NPerBlock"
);
auto
k_per_block
=
solution
.
GetTemplateParameter
<
ck
::
index_t
>
(
"KPerBlock"
);
auto
GemmType
=
solution
.
GetTemplateParameter
<
std
::
string
>
(
"GemmSpecialization"
);
auto
ConvType
=
solution
.
GetTemplateParameter
<
std
::
string
>
(
"ConvSpecialization"
);
ck
::
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
=
gemm_type
(
GemmType
);
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
ConvSpec
=
conv_type
(
ConvType
);
auto
conv_to_gemm_transformer
=
transform_conv_3d
(
num_dim
,
ConvSpec
,
out_lengths
,
out_strides
);
auto
matrix_padder
=
pad
(
m_per_block
,
n_per_block
,
k_per_block
,
GemmSpec
,
conv_to_gemm_transformer
);
auto
b2e
=
block_2_etile
(
m_per_block
,
n_per_block
,
matrix_padder
);
return
b2e
;
}
include/ck/tensor_operation/gpu/device/impl/codegen_device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp
0 → 100644
View file @
dcd3d21a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <functional>
#include <iostream>
#include <iterator>
#include <numeric>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/io.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
{
/*
* \brief Wrapper function of GridwiseGemm::Run to realize BatchedGEMM.
*
* \tparam ComputePtrOffsetOfBatch Class that computes the base pointer offsets of A, B, C matrix
* given the batch. For example, ComputePtrOffsetOfStridedBatch() computes the offsets of evenly
* strided batched, but we can easily extend to other layouts. The returned offset can be either \p
* index_t or \p long_index_t. If it returns \p long_index_t, we are not subject to the 2GB
* limitations.
*
* \tparam Block2ETileMap Block2ETileMap::CalculateBottomIndex() takes in id of a workgroup and
* returns the 2D index of the tile that it computes. \see
* GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3::Run().
*
* \note Using \p ComputePtrOffsetOfBatch gives us the flexibility that 2 workgroups can compute 2
* tiles from different matrices. Keep in mind that these 2 matrices can share the same grid
* descriptor (like in BatchedGEMM), or use their own grid descriptors (in GroupedGemm). \link
* impl/device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk.hpp kernel_gemm_xdlops_v2r3_for_conv3d \endlink for
* \link DeviceConv3d \endlink uses the same concept, but currently does NOT encapsulate the
* computing of pointer offset into \p ComputePtrOffsetOfStridedBatch.
*
* \note \p Block2ETileMap allows customized mapping between a workgroup and the C-tile it computes.
* Together with \p ComputePtrOffsetOfBatch, we can reuse GridwiseGemm (and GridwiseGemm fusion ) to
* realize BatchedGemm and GroupedGemm (and the corresponding GEMM fusion).
*
*/
template
<
typename
GridwiseGemm
,
typename
AsPointer
,
// tuples if multi AB, pointers if no
typename
BsPointer
,
typename
DsPointer
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
Block2ETileMap
,
typename
ComputePtrOffsetOfBatch
,
bool
HasMainKBlockLoop
,
bool
isMultiA
,
bool
isMultiB
>
__device__
void
device_grouped_conv_fwd_multiple_abd_xdl_cshuffle
(
AsPointer
p_as_grid
,
BsPointer
p_bs_grid
,
DsPointer
p_ds_grid
,
EDataType
*
__restrict__
p_e_grid
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
cde_element_op
,
const
index_t
batch_count
,
const
AGridDesc_AK0_M_AK1
a_grid_desc_k0_m_k1
,
const
BGridDesc_BK0_N_BK1
b_grid_desc_k0_n_k1
,
const
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
const
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
const
Block2ETileMap
block_2_ctile_map
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
// offset base pointer for each work-group
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
e_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
)));
const
auto
&
ds_batch_offset
=
compute_ptr_offset_of_batch
.
GetDsPtrOffset
(
g_idx
);
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
DsPointer
p_ds_grid_grp
;
static
constexpr
index_t
NumDTensor
=
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
::
Size
();
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
p_ds_grid_grp
(
i
)
=
p_ds_grid
[
i
]
+
ds_batch_offset
[
i
];
});
if
constexpr
(
isMultiA
||
isMultiB
)
{
AsPointer
p_as_grid_grp
;
BsPointer
p_bs_grid_grp
;
const
auto
&
as_batch_offset
=
compute_ptr_offset_of_batch
.
GetAsPtrOffset
(
g_idx
);
static
constexpr
index_t
NumATensor
=
AGridDesc_AK0_M_AK1
::
Size
();
static_for
<
0
,
NumATensor
,
1
>
{}(
[
&
](
auto
i
)
{
p_as_grid_grp
(
i
)
=
p_as_grid
[
i
]
+
as_batch_offset
[
i
];
});
const
auto
&
bs_batch_offset
=
compute_ptr_offset_of_batch
.
GetBsPtrOffset
(
g_idx
);
static
constexpr
index_t
NumBTensor
=
BGridDesc_BK0_N_BK1
::
Size
();
static_for
<
0
,
NumBTensor
,
1
>
{}(
[
&
](
auto
i
)
{
p_bs_grid_grp
(
i
)
=
p_bs_grid
[
i
]
+
bs_batch_offset
[
i
];
});
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_as_grid_grp
,
p_bs_grid_grp
,
p_ds_grid_grp
,
p_e_grid
+
e_batch_offset
,
p_shared
,
a_element_op
,
b_element_op
,
cde_element_op
,
a_grid_desc_k0_m_k1
,
b_grid_desc_k0_n_k1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
block_2_ctile_map
);
}
else
{
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
)));
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_as_grid
+
a_batch_offset
,
p_bs_grid
+
b_batch_offset
,
p_ds_grid_grp
,
p_e_grid
+
e_batch_offset
,
p_shared
,
a_element_op
,
b_element_op
,
cde_element_op
,
a_grid_desc_k0_m_k1
,
b_grid_desc_k0_n_k1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
block_2_ctile_map
);
}
#else
ignore
=
p_as_grid
;
ignore
=
p_bs_grid
;
ignore
=
p_ds_grid
;
ignore
=
p_e_grid
;
ignore
=
batch_count
;
ignore
=
a_grid_desc_k0_m_k1
;
ignore
=
b_grid_desc_k0_n_k1
;
ignore
=
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
cde_element_op
;
ignore
=
compute_ptr_offset_of_batch
;
ignore
=
block_2_ctile_map
;
#endif
}
template
<
typename
GridwiseGemm
,
typename
AsPointer
,
// tuples if multi AB, pointers if no
typename
BsPointer
,
typename
DsPointer
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
Block2ETileMap
,
typename
ComputePtrOffsetOfBatch
,
bool
HasMainKBlockLoop
,
bool
isMultiA
,
bool
isMultiB
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_grouped_conv_fwd_multiple_abd_xdl_cshuffle
(
AsPointer
p_as_grid
,
BsPointer
p_bs_grid
,
DsPointer
p_ds_grid
,
EDataType
*
__restrict__
p_e_grid
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
cde_element_op
,
const
index_t
batch_count
,
const
AGridDesc_AK0_M_AK1
a_grid_desc_k0_m_k1
,
const
BGridDesc_BK0_N_BK1
b_grid_desc_k0_n_k1
,
const
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
const
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
const
Block2ETileMap
block_2_ctile_map
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
)
{
device_grouped_conv_fwd_multiple_abd_xdl_cshuffle
<
GridwiseGemm
,
AsPointer
,
// tuples if multi AB, pointers if no
BsPointer
,
DsPointer
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
AGridDesc_AK0_M_AK1
,
BGridDesc_BK0_N_BK1
,
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
Block2ETileMap
,
ComputePtrOffsetOfBatch
,
HasMainKBlockLoop
,
isMultiA
,
isMultiB
>
(
p_as_grid
,
p_bs_grid
,
p_ds_grid
,
*
p_e_grid
,
a_element_op
,
b_element_op
,
cde_element_op
,
batch_count
,
a_grid_desc_k0_m_k1
,
b_grid_desc_k0_n_k1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
block_2_ctile_map
,
compute_ptr_offset_of_batch
);
}
}
// namespace
template
<
typename
T
>
using
is_tuple
=
decltype
(
std
::
declval
<
T
&>
().
IsTuple
());
//
// @brief Device Convolution operation.
//
// Supports:
// @li Forward convolution with up to 3 spatial dimentions
// @li Input tensor in GNWC data format
// @li Weight tensor in GKXC data format
// @li Output tensor in GNWK data format
//
// 1D:
// out[N, Wo, K] = in[N, Wi, C] * wei[K, X, C]
// 2D:
// out[N, Ho, Wo, K] = in[N, Hi, Wi, C] * wei[K, Y, X, C]
// 3D:
// out[N, Do, Ho, Wo, K] = in[N, Di, Hi, Wi, C] * wei[K, Z, Y, X, C]
//
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ConvolutionForwardSpecialization
ConvForwardSpecialization
,
GemmSpecialization
GemmSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
typename
ComputeDataType
=
decltype
(
UnpackDataType
<
is_detected
<
is_tuple
,
ADataType
>
::
value
,
Number
<
0
>
,
ADataType
>
()),
// ComputeType is InputType by default (first
// in tuple for MultiAB), unpack if tuple was
// passed
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()
>
struct
CodegenDeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
:
public
DeviceGroupedConvFwdMultipleABD
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
ComputeDataType
>
{
using
DeviceOp
=
CodegenDeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
;
static
constexpr
bool
isMultiA
=
is_detected
<
is_tuple
,
ADataType
>::
value
;
static
constexpr
bool
isMultiB
=
is_detected
<
is_tuple
,
BDataType
>::
value
;
static
constexpr
index_t
NumATensor
=
GetNumABTensors
<
isMultiA
,
ADataType
>
();
static
constexpr
index_t
NumBTensor
=
GetNumABTensors
<
isMultiB
,
BDataType
>
();
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
conv_to_gemm_transformer
=
TransformConvFwdToGemm
<
NDimSpatial
,
ConvForwardSpecialization
>
{};
static
constexpr
auto
matrix_padder
=
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
template
<
typename
ALay
>
__host__
__device__
static
auto
MakeAGridDescriptor_M_K
(
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
ck
::
Array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
ck
::
Array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
ck
::
Array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
ck
::
Array
<
index_t
,
NDimSpatial
>&
input_right_pads
)
{
const
auto
in_gemmmraw_gemmkraw_desc
=
conv_to_gemm_transformer
.
template
MakeADescriptor_M_K
<
ALay
>(
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
const
auto
in_gemmm_gemmk_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_desc
);
return
in_gemmm_gemmk_desc
;
}
template
<
typename
BLay
>
__host__
__device__
static
auto
MakeBGridDescriptor_N_K
(
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
)
{
const
auto
wei_gemmnraw_gemmkraw_desc
=
conv_to_gemm_transformer
.
template
MakeBDescriptor_N_K
<
BLay
>(
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
);
const
auto
wei_gemmn_gemmk_desc
=
matrix_padder
.
PadBDescriptor_N_K
(
wei_gemmnraw_gemmkraw_desc
);
return
wei_gemmn_gemmk_desc
;
}
template
<
typename
ELay
>
__host__
__device__
static
auto
MakeEGridDescriptor_M_N
(
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
)
{
const
auto
out_gemmmraw_gemmnraw_desc
=
conv_to_gemm_transformer
.
template
MakeCDescriptor_M_N
<
ELay
>(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
);
const
auto
out_gemmm_gemmn_desc
=
matrix_padder
.
PadCDescriptor_M_N
(
out_gemmmraw_gemmnraw_desc
);
return
out_gemmm_gemmn_desc
;
}
// Shape of Ds and E must be aligned. Strides can be different.
// Pass e_g_n_k_wos_lengths for logical broadcast.
__host__
__device__
static
auto
MakeDsGridDescriptor_M_N
(
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
ck
::
Array
<
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
e_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
[
i
]);
},
Number
<
NumDTensor
>
{});
}
// desc for problem definition
using
AGridDesc_M_K
=
remove_cvref_t
<
decltype
(
MakeAGridDescriptor_M_K
<
ALayout
>
(
{},
{},
{},
{},
{},
{},
{},
{},
{},
{}))
>
;
using
BGridDesc_N_K
=
remove_cvref_t
<
decltype
(
MakeBGridDescriptor_N_K
<
BLayout
>
({},
{}))
>
;
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({},
{}))
>
;
using
EGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeEGridDescriptor_M_N
<
ELayout
>
({},
{}))
>
;
// If we are using multiAB and one of the template datatype parameters is not a tuple, convert
// it to it
using
GemmADataType
=
std
::
conditional_t
<!
isMultiA
&&
isMultiB
,
Tuple
<
ADataType
>
,
ADataType
>
;
using
GemmBDataType
=
std
::
conditional_t
<!
isMultiB
&&
isMultiA
,
Tuple
<
BDataType
>
,
BDataType
>
;
#define GridwiseGemmTemplateParameters \
GemmADataType, GemmBDataType, ComputeDataType, AccDataType, CShuffleDataType, DsDataType, \
EDataType, AElementwiseOperation, BElementwiseOperation, CDEElementwiseOperation, \
InMemoryDataOperationEnum::Set, NumGemmKPrefetchStage, BlockSize, MPerBlock, NPerBlock, \
KPerBlock, AK1, BK1, MPerXDL, NPerXDL, MXdlPerWave, NXdlPerWave, \
ABlockTransferThreadClusterLengths_AK0_M_AK1, ABlockTransferThreadClusterArrangeOrder, \
ABlockTransferSrcAccessOrder, ABlockTransferSrcVectorDim, \
ABlockTransferSrcScalarPerVector, ABlockTransferDstScalarPerVector_AK1, false, \
ABlockLdsExtraM, BBlockTransferThreadClusterLengths_BK0_N_BK1, \
BBlockTransferThreadClusterArrangeOrder, BBlockTransferSrcAccessOrder, \
BBlockTransferSrcVectorDim, BBlockTransferSrcScalarPerVector, \
BBlockTransferDstScalarPerVector_BK1, false, BBlockLdsExtraN, \
CShuffleMXdlPerWavePerShuffle, CShuffleNXdlPerWavePerShuffle, \
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock, \
CDEBlockTransferScalarPerVector_NPerBlock, LoopSched
// Use appropriate gridwise gemm
using
GridwiseGemm
=
std
::
conditional_t
<
isMultiA
||
isMultiB
,
GridwiseGemmMultipleABD_xdl_cshuffle
<
GridwiseGemmTemplateParameters
>
,
GridwiseGemmMultipleD_xdl_cshuffle
<
GridwiseGemmTemplateParameters
>>
;
// If ADataTypes or BDataTypes is tuple, user has to pass ck::Array with pointers.
using
APointers
=
std
::
conditional_t
<
isMultiA
,
ck
::
Array
<
const
void
*
,
NumATensor
>&
,
const
void
*>
;
using
BPointers
=
std
::
conditional_t
<
isMultiB
,
ck
::
Array
<
const
void
*
,
NumBTensor
>&
,
const
void
*>
;
// Use Tuple for the both cases for GridPointer to initialize it in Argument constructor (not
// in initializer list what is required for single const pointer).
using
AGridPointer
=
remove_cvref_t
<
decltype
(
GetAGridPointer
<
isMultiA
||
isMultiB
,
GridwiseGemm
,
ADataType
>
())
>
;
using
BGridPointer
=
remove_cvref_t
<
decltype
(
GetBGridPointer
<
isMultiA
||
isMultiB
,
GridwiseGemm
,
BDataType
>
())
>
;
// desc for blockwise copy
using
AGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
AGridDesc_M_K
{}))
>
;
using
BGridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
BGridDesc_N_K
{}))
>
;
using
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
DsGridDesc_M_N
{}))
>
;
using
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
EGridDesc_M_N
{}))
>
;
// block-to-e-tile map
using
Block2ETileMap
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
EGridDesc_M_N
{}))
>
;
// Argument
struct
Argument
{
__device__
__host__
Argument
(
APointers
p_as
,
BPointers
p_bs
,
const
ck
::
Array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
ck
::
Array
<
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
ck
::
Array
<
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
ck
::
Array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
ck
::
Array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
ck
::
Array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
ck
::
Array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
:
p_as_grid_
{},
p_bs_grid_
{},
p_ds_grid_
{},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e
)},
num_group_
{
a_g_n_c_wis_lengths
[
0
]},
a_grid_desc_m_k_
{
DeviceOp
::
MakeAGridDescriptor_M_K
<
ALayout
>
(
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
)},
b_grid_desc_n_k_
{
DeviceOp
::
MakeBGridDescriptor_N_K
<
BLayout
>
(
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
)},
ds_grid_desc_m_n_
{},
e_grid_desc_m_n_
{
DeviceOp
::
MakeEGridDescriptor_M_N
<
ELayout
>
(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
)},
a_grid_desc_ak0_m_ak1_
{
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
a_grid_desc_m_k_
)},
b_grid_desc_bk0_n_bk1_
{
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
b_grid_desc_n_k_
)},
ds_grid_desc_mblock_mperblock_nblock_nperblock_
{},
e_grid_desc_mblock_mperblock_nblock_nperblock_
{},
block_2_etile_map_
{
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
e_grid_desc_m_n_
)},
compute_ptr_offset_of_batch_
{},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
},
a_g_n_c_wis_lengths_
{
a_g_n_c_wis_lengths
},
a_g_n_c_wis_strides_
{
a_g_n_c_wis_strides
},
b_g_k_c_xs_lengths_
{
b_g_k_c_xs_lengths
},
b_g_k_c_xs_strides_
{
b_g_k_c_xs_strides
},
ds_g_n_k_wos_lengths_
{
ds_g_n_k_wos_lengths
},
ds_g_n_k_wos_strides_
{
ds_g_n_k_wos_strides
},
e_g_n_k_wos_lengths_
{
e_g_n_k_wos_lengths
},
e_g_n_k_wos_strides_
{
e_g_n_k_wos_strides
},
conv_filter_strides_
{
conv_filter_strides
},
conv_filter_dilations_
{
conv_filter_dilations
},
input_left_pads_
{
input_left_pads
},
input_right_pads_
{
input_right_pads
}
{
// A/B/E Batch Stride
if
constexpr
(
isMultiA
||
isMultiB
)
{
static_for
<
0
,
NumATensor
,
1
>
{}([
&
](
auto
i
)
{
// Init compute_ptr_offset_of_batch_ for multiple AB
compute_ptr_offset_of_batch_
.
BatchStrideA_
(
i
)
=
a_g_n_c_wis_strides
[
0
];
// Use GemmADataType/GemmBDataType to iterate over tuple (even if passed data
// type is not tuple)
using
DataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
GemmADataType
>>
;
// It is possible that one of the AB is a pointer and one is a tuple.
// Then also use multiAB but we have to cast single pointer instead of tuple of
// pointer.
if
constexpr
(
isMultiA
)
{
// p_as is tuple
p_as_grid_
(
i
)
=
static_cast
<
const
DataType
*>
(
p_as
[
i
.
value
]);
}
else
{
// if MultiB and not MultiA then p_as is single pointer
p_as_grid_
(
i
)
=
static_cast
<
const
DataType
*>
(
p_as
);
}
});
static_for
<
0
,
NumBTensor
,
1
>
{}([
&
](
auto
i
)
{
// Init compute_ptr_offset_of_batch_ for multiple AB
compute_ptr_offset_of_batch_
.
BatchStrideB_
(
i
)
=
b_g_k_c_xs_strides
[
0
];
using
DataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
GemmBDataType
>>
;
// It is possible that one of the AB is a pointer and one is a tuple.
// Then also use multiAB but we have to cast single pointer instead of tuple of
// pointer.
if
constexpr
(
isMultiB
)
{
// p_bs is tuple
p_bs_grid_
(
i
)
=
static_cast
<
const
DataType
*>
(
p_bs
[
i
.
value
]);
}
else
{
// if MultiA and not MultiB then p_bs is single pointer
p_bs_grid_
(
i
)
=
static_cast
<
const
DataType
*>
(
p_bs
);
}
});
}
else
{
compute_ptr_offset_of_batch_
.
BatchStrideA_
=
a_g_n_c_wis_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideB_
=
b_g_k_c_xs_strides
[
0
];
// p_as and p_bs are pointers
p_as_grid_
(
I0
)
=
static_cast
<
const
ADataType
*>
(
p_as
);
p_bs_grid_
(
I0
)
=
static_cast
<
const
BDataType
*>
(
p_bs
);
}
// populate pointer, batch stride, desc for Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
p_ds
[
i
]);
// D batch stride
compute_ptr_offset_of_batch_
.
BatchStrideDs_
(
i
)
=
ds_g_n_k_wos_strides
[
i
][
0
];
// D desc
ds_grid_desc_m_n_
(
i
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
e_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
[
i
]);
});
compute_ptr_offset_of_batch_
.
BatchStrideE_
=
e_g_n_k_wos_strides
[
0
];
// populate desc for Ds/E
if
constexpr
(
isMultiA
||
isMultiB
)
{
const
auto
as_grid_desc_ak0_m_ak1
=
generate_tuple
([
&
](
auto
)
{
return
a_grid_desc_m_k_
;
},
Number
<
NumATensor
>
{});
const
auto
bs_grid_desc_bk0_n_bk1
=
generate_tuple
([
&
](
auto
)
{
return
b_grid_desc_n_k_
;
},
Number
<
NumBTensor
>
{});
if
(
GridwiseGemm
::
CheckValidity
(
as_grid_desc_ak0_m_ak1
,
bs_grid_desc_bk0_n_bk1
,
ds_grid_desc_m_n_
,
e_grid_desc_m_n_
,
block_2_etile_map_
))
{
e_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n_
);
ds_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n_
);
}
}
else
{
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_m_k_
,
b_grid_desc_n_k_
,
ds_grid_desc_m_n_
,
e_grid_desc_m_n_
,
block_2_etile_map_
))
{
e_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n_
);
ds_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n_
);
}
}
}
// private:
// pointers (tuple if multi AB, pointer if no)
AGridPointer
p_as_grid_
;
BGridPointer
p_bs_grid_
;
typename
GridwiseGemm
::
DsGridPointer
p_ds_grid_
;
EDataType
*
p_e_grid_
;
// tensor descriptors for problem definiton
index_t
num_group_
;
AGridDesc_M_K
a_grid_desc_m_k_
;
BGridDesc_N_K
b_grid_desc_n_k_
;
DsGridDesc_M_N
ds_grid_desc_m_n_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
// block-to-e-tile map
Block2ETileMap
block_2_etile_map_
;
// for computing batch offset
ComputePtrOffsetOfStridedBatch
<
NumATensor
,
NumBTensor
,
NumDTensor
>
compute_ptr_offset_of_batch_
;
// element-wise op
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
// for checking IsSupportedArgument()
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths_
;
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides_
;
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths_
;
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides_
;
ck
::
Array
<
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>
ds_g_n_k_wos_lengths_
;
ck
::
Array
<
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>
ds_g_n_k_wos_strides_
;
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths_
;
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides_
;
ck
::
Array
<
index_t
,
NDimSpatial
>
conv_filter_strides_
;
ck
::
Array
<
index_t
,
NDimSpatial
>
conv_filter_dilations_
;
ck
::
Array
<
index_t
,
NDimSpatial
>
input_left_pads_
;
ck
::
Array
<
index_t
,
NDimSpatial
>
input_right_pads_
;
};
static
__device__
__host__
auto
MakeArgument
(
APointers
p_as
,
BPointers
p_bs
,
const
ck
::
Array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
ck
::
Array
<
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
ck
::
Array
<
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
ck
::
Array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
ck
::
Array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
ck
::
Array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
ck
::
Array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
ck
::
Array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
{
return
Argument
{
p_as
,
p_bs
,
p_ds
,
p_e
,
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
ds_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_column_to_image_impl.hpp
View file @
dcd3d21a
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023
-2024
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -247,7 +247,8 @@ struct DeviceColumnToImageImpl
independent_filter_strides
,
conv_filter_dilations
,
input_left_pads_with_offset
,
input_right_pads
);
input_right_pads
,
N
);
const
auto
in_gemmm_gemmk_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_desc
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp
View file @
dcd3d21a
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023
-2024
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -501,29 +501,24 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
// for sanity check of vector memory access
for
(
index_t
i
=
0
;
i
<
NumATensor
;
++
i
)
{
as_mz_consecutive_
[
i
]
=
a_ms_ks_strides
[
i
][
NumDimM
-
1
]
==
1
;
as_kz_consecutive_
[
i
]
=
a_ms_ks_strides
[
i
][
NumDimM
+
NumDimK
-
1
]
==
1
;
as_max_read_elems_
[
i
]
=
tie
(
as_continous_dim_
[
i
],
as_max_read_elems_
[
i
])
=
CalculateMaxRead
<
NumDimM
,
NumDimK
>
(
a_ms_ks_lengths
[
i
],
a_ms_ks_strides
[
i
]);
}
for
(
index_t
i
=
0
;
i
<
NumBTensor
;
++
i
)
{
bs_nz_consecutive_
[
i
]
=
b_ns_ks_strides
[
i
][
NumDimN
-
1
]
==
1
;
bs_kz_consecutive_
[
i
]
=
b_ns_ks_strides
[
i
][
NumDimN
+
NumDimK
-
1
]
==
1
;
bs_max_read_elems_
[
i
]
=
tie
(
bs_continous_dim_
[
i
],
bs_max_read_elems_
[
i
])
=
CalculateMaxRead
<
NumDimN
,
NumDimK
>
(
b_ns_ks_lengths
[
i
],
b_ns_ks_strides
[
i
]);
}
for
(
index_t
i
=
0
;
i
<
NumDTensor
;
++
i
)
{
ds_nz_consecutive_
[
i
]
=
d_ms_ns_strides
[
i
][
NumDimM
+
NumDimN
-
1
]
==
1
;
ds_max_read_elems_
[
i
]
=
tie
(
ds_continous_dim_
[
i
],
ds_max_read_elems_
[
i
])
=
CalculateMaxRead
<
NumDimM
,
NumDimN
>
(
d_ms_ns_lengths
[
i
],
d_ms_ns_strides
[
i
]);
}
e_nz_consecutive_
=
e_ms_ns_stride
[
NumDimM
+
NumDimN
-
1
]
==
1
;
e_max_write_elems_
=
CalculateMaxRead
<
NumDimM
,
NumDimN
>
(
e_ms_ns_length
,
e_ms_ns_stride
);
tie
(
e_continous_dim_
,
e_max_write_elems_
)
=
CalculateMaxRead
<
NumDimM
,
NumDimN
>
(
e_ms_ns_length
,
e_ms_ns_stride
);
}
// pointers
...
...
@@ -553,14 +548,11 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
// Describe whether the last part of a given dimension of A/B/D/E is consecutive
// in the memory or not.
std
::
array
<
bool
,
NumATensor
>
as_mz_consecutive_
;
std
::
array
<
bool
,
NumATensor
>
as_kz_consecutive_
;
std
::
array
<
bool
,
NumBTensor
>
bs_nz_consecutive_
;
std
::
array
<
bool
,
NumBTensor
>
bs_kz_consecutive_
;
std
::
array
<
bool
,
NumDTensor
>
ds_nz_consecutive_
;
bool
e_nz_consecutive_
;
// Describe whether the last part of a given dimension of A/B/D/E is continues dim.
std
::
array
<
index_t
,
NumATensor
>
as_continous_dim_
;
std
::
array
<
index_t
,
NumATensor
>
bs_continous_dim_
;
std
::
array
<
index_t
,
NumBTensor
>
ds_continous_dim_
;
index_t
e_continous_dim_
;
std
::
array
<
index_t
,
NumATensor
>
as_max_read_elems_
;
std
::
array
<
index_t
,
NumBTensor
>
bs_max_read_elems_
;
...
...
@@ -659,9 +651,9 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
const
bool
valid_a_vector_size
=
arg
.
as_max_read_elems_
[
i
]
%
ABlockTransferSrcScalarPerVector
==
0
;
const
bool
valid_a_access_dim_m
=
ABlockTransferSrcVectorDim
==
1
&&
arg
.
as_
mz_consecutive_
[
i
]
;
ABlockTransferSrcVectorDim
==
1
&&
arg
.
as_
continous_dim_
[
i
]
==
0
;
const
bool
valid_a_access_dim_k
=
ABlockTransferSrcVectorDim
==
2
&&
arg
.
as_
kz_consecutive_
[
i
]
;
ABlockTransferSrcVectorDim
==
2
&&
arg
.
as_
continous_dim_
[
i
]
==
1
;
const
bool
valid_a_access_dim
=
valid_a_access_dim_m
||
valid_a_access_dim_k
;
if
(
!
((
valid_a_vector_size
&&
valid_a_access_dim
)
||
ABlockTransferSrcScalarPerVector
==
1
))
...
...
@@ -679,9 +671,9 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
const
bool
valid_b_vector_size
=
arg
.
bs_max_read_elems_
[
i
]
%
BBlockTransferSrcScalarPerVector
==
0
;
const
bool
valid_b_access_dim_n
=
BBlockTransferSrcVectorDim
==
1
&&
arg
.
bs_
nz_consecutive_
[
i
]
;
BBlockTransferSrcVectorDim
==
1
&&
arg
.
bs_
continous_dim_
[
i
]
==
0
;
const
bool
valid_b_access_dim_k
=
BBlockTransferSrcVectorDim
==
2
&&
arg
.
bs_
kz_consecutive_
[
i
]
;
BBlockTransferSrcVectorDim
==
2
&&
arg
.
bs_
continous_dim_
[
i
]
==
1
;
const
bool
valid_b_access_dim
=
valid_b_access_dim_n
||
valid_b_access_dim_k
;
if
(
!
((
valid_b_vector_size
&&
valid_b_access_dim
)
||
BBlockTransferSrcScalarPerVector
==
1
))
...
...
@@ -699,7 +691,7 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
const
bool
valid_d_vector_size
=
arg
.
ds_max_read_elems_
[
i
]
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
;
// Vector read of Ds is always on N dimension.
const
bool
valid_d_access_dim
=
arg
.
ds_
nz_consecutive_
[
i
]
;
const
bool
valid_d_access_dim
=
arg
.
ds_
continous_dim_
[
i
]
==
1
;
if
(
!
((
valid_d_vector_size
&&
valid_d_access_dim
)
||
CDEBlockTransferScalarPerVector_NPerBlock
==
1
))
{
...
...
@@ -714,7 +706,7 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
const
bool
valid_e_vector_size
=
arg
.
e_max_write_elems_
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
;
// Vector write of E is always on N dimension.
const
bool
valid_e_access_dim
=
arg
.
e_
nz_consecutive_
;
const
bool
valid_e_access_dim
=
arg
.
e_
continous_dim_
==
1
;
if
(
!
((
valid_e_vector_size
&&
valid_e_access_dim
)
||
CDEBlockTransferScalarPerVector_NPerBlock
==
1
))
{
...
...
include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp
View file @
dcd3d21a
...
...
@@ -442,25 +442,19 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
}
// for sanity check of vector memory access
a_mz_consecutive_
=
a_ms_ks_strides
[
NumDimM
-
1
]
==
1
;
a_kz_consecutive_
=
a_ms_ks_strides
[
NumDimM
+
NumDimK
-
1
]
==
1
;
a_max_read_elems_
=
tie
(
a_continous_dim_
,
a_max_read_elems_
)
=
CalculateMaxRead
<
NumDimM
,
NumDimK
>
(
a_ms_ks_lengths
,
a_ms_ks_strides
);
b_nz_consecutive_
=
b_ns_ks_strides
[
NumDimN
-
1
]
==
1
;
b_kz_consecutive_
=
b_ns_ks_strides
[
NumDimN
+
NumDimK
-
1
]
==
1
;
b_max_read_elems_
=
tie
(
b_continous_dim_
,
b_max_read_elems_
)
=
CalculateMaxRead
<
NumDimN
,
NumDimK
>
(
b_ns_ks_lengths
,
b_ns_ks_strides
);
for
(
index_t
i
=
0
;
i
<
NumDTensor
;
++
i
)
{
ds_nz_consecutive_
[
i
]
=
ds_ms_ns_strides
[
i
][
NumDimM
+
NumDimN
-
1
]
==
1
;
ds_max_read_elems_
[
i
]
=
tie
(
ds_continous_dim_
[
i
],
ds_max_read_elems_
[
i
])
=
CalculateMaxRead
<
NumDimM
,
NumDimN
>
(
ds_ms_ns_lengths
[
i
],
ds_ms_ns_strides
[
i
]);
}
e_nz_consecutive_
=
e_ms_ns_strides
[
NumDimM
+
NumDimN
-
1
]
==
1
;
e_max_write_elems_
=
tie
(
e_continous_dim_
,
e_max_write_elems_
)
=
CalculateMaxRead
<
NumDimM
,
NumDimN
>
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
}
...
...
@@ -501,14 +495,11 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
// Describe whether the last part of a given dimension of A/B/D/E is consecutive
// in the memory or not.
bool
a_mz_consecutive_
;
bool
a_kz_consecutive_
;
bool
b_nz_consecutive_
;
bool
b_kz_consecutive_
;
std
::
array
<
bool
,
NumDTensor
>
ds_nz_consecutive_
;
bool
e_nz_consecutive_
;
// Describe whether the last part of a given dimension of A/B/D/E is continues dim.
index_t
a_continous_dim_
;
index_t
b_continous_dim_
;
std
::
array
<
index_t
,
NumDTensor
>
ds_continous_dim_
;
index_t
e_continous_dim_
;
index_t
a_max_read_elems_
;
index_t
b_max_read_elems_
;
...
...
@@ -622,8 +613,10 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
const
bool
valid_a_vector_size
=
arg
.
a_max_read_elems_
%
ABlockTransferSrcScalarPerVector
==
0
;
const
bool
valid_a_access_dim_m
=
ABlockTransferSrcVectorDim
==
1
&&
arg
.
a_mz_consecutive_
;
const
bool
valid_a_access_dim_k
=
ABlockTransferSrcVectorDim
==
2
&&
arg
.
a_kz_consecutive_
;
const
bool
valid_a_access_dim_m
=
ABlockTransferSrcVectorDim
==
1
&&
arg
.
a_continous_dim_
==
0
;
const
bool
valid_a_access_dim_k
=
ABlockTransferSrcVectorDim
==
2
&&
arg
.
a_continous_dim_
==
1
;
const
bool
valid_a_access_dim
=
valid_a_access_dim_m
||
valid_a_access_dim_k
||
ABlockTransferSrcScalarPerVector
==
1
;
if
(
!
(
valid_a_vector_size
&&
valid_a_access_dim
))
...
...
@@ -633,8 +626,10 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
const
bool
valid_b_vector_size
=
arg
.
b_max_read_elems_
%
BBlockTransferSrcScalarPerVector
==
0
;
const
bool
valid_b_access_dim_n
=
BBlockTransferSrcVectorDim
==
1
&&
arg
.
b_nz_consecutive_
;
const
bool
valid_b_access_dim_k
=
BBlockTransferSrcVectorDim
==
2
&&
arg
.
b_kz_consecutive_
;
const
bool
valid_b_access_dim_n
=
BBlockTransferSrcVectorDim
==
1
&&
arg
.
b_continous_dim_
==
0
;
const
bool
valid_b_access_dim_k
=
BBlockTransferSrcVectorDim
==
2
&&
arg
.
b_continous_dim_
==
1
;
const
bool
valid_b_access_dim
=
valid_b_access_dim_n
||
valid_b_access_dim_k
||
BBlockTransferSrcScalarPerVector
==
1
;
if
(
!
(
valid_b_vector_size
&&
valid_b_access_dim
))
...
...
@@ -648,7 +643,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
arg
.
ds_max_read_elems_
[
i
]
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
;
// Vector read of Ds is always on N dimension.
const
bool
valid_d_access_dim
=
arg
.
ds_
nz_consecutive_
[
i
]
||
CDEBlockTransferScalarPerVector_NPerBlock
==
1
;
arg
.
ds_
continous_dim_
[
i
]
==
1
||
CDEBlockTransferScalarPerVector_NPerBlock
==
1
;
if
(
!
(
valid_d_vector_size
&&
valid_d_access_dim
))
{
valid_ds_access
=
false
;
...
...
@@ -663,7 +658,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
arg
.
e_max_write_elems_
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
;
// Vector write of E is always on N dimension.
const
bool
valid_e_access_dim
=
arg
.
e_
nz_consecutive_
||
CDEBlockTransferScalarPerVector_NPerBlock
==
1
;
arg
.
e_
continous_dim_
==
1
||
CDEBlockTransferScalarPerVector_NPerBlock
==
1
;
if
(
!
(
valid_e_vector_size
&&
valid_e_access_dim
))
{
return
false
;
...
...
include/ck/tensor_operation/gpu/device/impl/device_contraction_utils.hpp
View file @
dcd3d21a
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023
-2024
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -50,25 +50,53 @@ auto CalculateMaxRead(const std::vector<index_t>& lengths, const std::vector<ind
}
// Determine the beginning and end idx of the group representing the FCD.
index_t
begin_idx
,
end_idx
;
if
(
strides
[
NumDim1
-
1
]
==
1
)
index_t
begin_idx
,
end_idx
,
continous_dim
,
consecutive_stride
=
1
;
if
(
strides
[
NumDim1
-
1
]
==
1
&&
strides
[
NumDim1
+
NumDim2
-
1
]
==
1
)
{
// MZ or KZ are ones
bool
dims1_are_ones
=
true
;
for
(
index_t
dim_idx
=
0
;
dim_idx
<
NumDim1
;
dim_idx
++
)
{
if
(
lengths
[
dim_idx
]
!=
1
)
{
dims1_are_ones
=
false
;
}
}
if
(
dims1_are_ones
)
{
begin_idx
=
NumDim1
;
end_idx
=
NumDim1
+
NumDim2
-
1
;
continous_dim
=
1
;
}
else
{
begin_idx
=
0
;
end_idx
=
NumDim1
-
1
;
continous_dim
=
0
;
}
}
else
if
(
strides
[
NumDim1
-
1
]
==
1
)
{
begin_idx
=
0
;
end_idx
=
NumDim1
-
1
;
continous_dim
=
0
;
}
else
if
(
strides
[
NumDim1
+
NumDim2
-
1
]
==
1
)
{
begin_idx
=
NumDim1
;
end_idx
=
NumDim1
+
NumDim2
-
1
;
continous_dim
=
1
;
}
else
{
// The dimension consecutive in memory is not the last dimension of any group, so only
// one element can be read/written at once.
return
1
;
consecutive_stride
=
1
;
continous_dim
=
0
;
return
make_tuple
(
continous_dim
,
consecutive_stride
);
}
index_t
consecutive_stride
=
1
;
for
(
index_t
dim_idx
=
end_idx
;
dim_idx
>=
begin_idx
;
--
dim_idx
)
{
if
(
strides
[
dim_idx
]
==
consecutive_stride
)
...
...
@@ -81,7 +109,7 @@ auto CalculateMaxRead(const std::vector<index_t>& lengths, const std::vector<ind
}
}
const
index_t
max_subsequent_elems
=
consecutive_stride
;
return
max_subsequent_elems
;
return
make_tuple
(
continous_dim
,
max_subsequent_elems
)
;
}
}
// namespace device
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3.hpp
0 → 100644
View file @
dcd3d21a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v3_multi_d.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
CDataType
,
typename
GemmAccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
CDEShuffleBlockTransferScalarPerVectors
,
BlockGemmPipelineScheduler
BlkGemmPipeSched
=
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
BlkGemmPipelineVer
=
BlockGemmPipelineVersion
::
v1
,
typename
ComputeTypeA
=
CDataType
,
typename
ComputeTypeB
=
ComputeTypeA
,
typename
LDSTypeA
=
ComputeTypeA
,
typename
LDSTypeB
=
ComputeTypeB
>
struct
DeviceGemmMultiD_Xdl_CShuffle_V3
:
public
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
DsLayout
,
CLayout
,
ADataType
,
BDataType
,
DsDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultiD_xdl_cshuffle_v3
<
ALayout
,
BLayout
,
DsLayout
,
CLayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
DsDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
GemmSpec
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEShuffleBlockTransferScalarPerVectors
,
BlkGemmPipeSched
,
BlkGemmPipelineVer
,
ComputeTypeA
,
ComputeTypeB
,
LDSTypeA
,
LDSTypeB
>
;
using
Argument
=
typename
GridwiseGemm
::
Argument
;
// Invoker
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
stream_config
.
log_level_
>
0
)
{
arg
.
Print
();
}
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
index_t
gdx
,
gdy
,
gdz
;
std
::
tie
(
gdx
,
gdy
,
gdz
)
=
GridwiseGemm
::
CalculateGridSize
(
arg
.
M
,
arg
.
N
,
arg
.
KBatch
);
float
ave_time
=
0
;
index_t
k_grain
=
arg
.
KBatch
*
KPerBlock
;
index_t
K_split
=
(
arg
.
K
+
k_grain
-
1
)
/
k_grain
*
KPerBlock
;
const
bool
has_main_k_block_loop
=
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K_split
);
const
auto
Run
=
[
&
](
const
auto
&
kernel
)
{
if
(
arg
.
KBatch
>
1
)
hipGetErrorString
(
hipMemsetAsync
(
arg
.
p_c_grid
,
0
,
arg
.
M
*
arg
.
N
*
sizeof
(
CDataType
),
stream_config
.
stream_id_
));
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
gdx
,
gdy
,
gdz
),
dim3
(
BlockSize
),
0
,
arg
);
};
constexpr
index_t
minimum_occupancy
=
BlkGemmPipeSched
==
BlockGemmPipelineScheduler
::
Intrawave
?
1
:
2
;
if
(
has_main_k_block_loop
)
{
// Tail number always full
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v1
||
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v3
)
{
#if 0
if(arg.KBatch > 1)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
}
else
#endif
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
>
;
Run
(
kernel
);
}
}
// Tail number could be One to Seven
else
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v2
)
{
#if 0
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::One)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::One>;
Run(kernel);
}
else if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Full)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Full>;
Run(kernel);
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Two)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Two>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 3)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Three)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Three>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Four)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Four>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 5)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Five)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Five>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 6)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Six)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Six>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 7)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Seven)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Seven>;
Run(kernel);
}
}
}
else
#endif
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
One
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
One
>
;
Run
(
kernel
);
}
else
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Full
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Full
>
;
Run
(
kernel
);
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
2
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Two
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Two
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
3
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Three
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Three
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
4
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Four
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Four
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
5
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Five
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Five
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
6
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Six
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Six
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
7
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Seven
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Seven
>
;
Run
(
kernel
);
}
}
}
}
// Tail number could be Odd or Even
else
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v4
)
{
#if 0
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
else
#endif
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Odd
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3_2lds
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Odd
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3_2lds
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Even
>
;
Run
(
kernel
);
}
}
}
else
{
#if 0
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
else
#endif
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Odd
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Odd
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Even
>
;
Run
(
kernel
);
}
}
}
}
else
{
// Tail number always 1
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v1
)
{
#if 0
if(arg.KBatch > 1)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
false,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
}
else
#endif
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
false
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
>
;
Run
(
kernel
);
}
}
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
if
((
arg
.
K
%
AK1
!=
0
||
arg
.
K
%
BK1
!=
0
)
&&
!
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
||
GemmSpec
==
GemmSpecialization
::
KPadding
))
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
p_ds
,
static_cast
<
CDataType
*>
(
p_c
),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideC
,
1
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
p_ds
,
static_cast
<
CDataType
*>
(
p_c
),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideC
,
1
,
a_element_op
,
b_element_op
,
c_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
std
::
map
<
BlockGemmPipelineScheduler
,
std
::
string
>
BlkGemmPipelineSchedulerToString
{
{
BlockGemmPipelineScheduler
::
Intrawave
,
"Intrawave"
},
{
BlockGemmPipelineScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
BlockGemmPipelineVersion
,
std
::
string
>
BlkGemmPipelineVersionToString
{
{
BlockGemmPipelineVersion
::
v1
,
"v1"
},
{
BlockGemmPipelineVersion
::
v2
,
"v2"
},
{
BlockGemmPipelineVersion
::
v3
,
"v3"
},
{
BlockGemmPipelineVersion
::
v4
,
"v4"
},
{
BlockGemmPipelineVersion
::
v5
,
"v5"
}};
// clang-format off
str
<<
"DeviceGemmXdlUniversal"
<<
"<"
<<
getGemmSpecializationString
(
GemmSpec
)
<<
", "
<<
std
::
string
(
ALayout
::
name
)[
0
]
<<
std
::
string
(
BLayout
::
name
)[
0
]
<<
std
::
string
(
CLayout
::
name
)[
0
]
<<
">"
<<
" BlkSize: "
<<
BlockSize
<<
", "
<<
"BlkTile: "
<<
MPerBlock
<<
"x"
<<
NPerBlock
<<
"x"
<<
KPerBlock
<<
", "
<<
"WaveTile: "
<<
MPerXDL
<<
"x"
<<
NPerXDL
<<
", "
<<
"WaveMap: "
<<
MXdlPerWave
<<
"x"
<<
NXdlPerWave
<<
", "
<<
"VmemReadVec: "
<<
ABlockTransferSrcScalarPerVector
<<
"x"
<<
BBlockTransferSrcScalarPerVector
<<
", "
<<
"BlkGemmPipelineScheduler: "
<<
BlkGemmPipelineSchedulerToString
[
BlkGemmPipeSched
]
<<
", "
<<
"BlkGemmPipelineVersion: "
<<
BlkGemmPipelineVersionToString
[
BlkGemmPipelineVer
]
<<
", "
<<
"BlkGemmPipelinePrefetchStages: "
<<
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp
0 → 100644
View file @
dcd3d21a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_streamk_v2.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_streamk_v3.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/flush_cache.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
GemmAccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
BlockGemmPipelineScheduler
BlkGemmPipeSched
=
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
BlkGemmPipelineVer
=
BlockGemmPipelineVersion
::
v1
,
typename
ComputeTypeA
=
CDataType
,
typename
ComputeTypeB
=
ComputeTypeA
>
struct
DeviceGemm_Xdl_CShuffle_Streamk_V3
:
public
DeviceGemm_Streamk_V2
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemm_xdl_cshuffle_streamk_v3
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
GemmSpec
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
BlkGemmPipeSched
,
BlkGemmPipelineVer
,
ComputeTypeA
,
ComputeTypeB
>
;
using
Argument
=
typename
GridwiseGemm
::
Argument
;
// Invoker
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
stream_config
.
log_level_
>
0
)
{
arg
.
Print
();
}
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
float
ave_time
=
0
;
index_t
k_grain
=
KPerBlock
;
index_t
K_split
=
(
arg
.
K
+
k_grain
-
1
)
/
k_grain
*
KPerBlock
;
const
bool
has_main_k_block_loop
=
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K_split
);
hipGetErrorString
(
hipMemsetAsync
(
arg
.
p_c_grid
,
0
,
arg
.
M
*
arg
.
N
*
sizeof
(
CDataType
),
stream_config
.
stream_id_
));
const
auto
Run
=
[
&
](
const
auto
&
kernel
)
{
dim3
grid_dim
;
if
(
arg
.
Grid_size
<
0
)
{
int
occupancy
,
num_cu
;
hipError_t
rtn
;
rtn
=
hipOccupancyMaxActiveBlocksPerMultiprocessor
(
&
occupancy
,
kernel
,
BlockSize
,
0
);
hip_check_error
(
rtn
);
hipDeviceProp_t
dev_prop
;
hipDevice_t
dev
;
rtn
=
hipGetDevice
(
&
dev
);
hip_check_error
(
rtn
);
rtn
=
hipGetDeviceProperties
(
&
dev_prop
,
dev
);
hip_check_error
(
rtn
);
num_cu
=
dev_prop
.
multiProcessorCount
;
arg
.
Grid_size
=
num_cu
*
occupancy
;
grid_dim
=
arg
.
Grid_size
;
}
else
grid_dim
=
arg
.
Grid_size
;
if
(
stream_config
.
flush_cache
)
{
Argument
arg_
=
arg
;
ck
::
utility
::
RotatingMemWrapper
<
Argument
>
rotating_mem
(
arg_
,
stream_config
.
rotating_count
,
arg_
.
M
*
arg_
.
K
*
sizeof
(
ADataType
),
arg_
.
K
*
arg_
.
N
*
sizeof
(
BDataType
));
rotating_mem
.
Print
();
auto
run_flush_cache
=
[
&
]()
{
// flush icache
ck
::
utility
::
flush_icache
();
// rotating mem
rotating_mem
.
Next
();
};
ave_time
=
ck
::
utility
::
launch_and_time_kernel_with_preprocess
<
false
>
(
stream_config
,
run_flush_cache
,
kernel
,
grid_dim
,
dim3
(
BlockSize
),
0
,
arg_
);
}
else
{
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
grid_dim
,
dim3
(
BlockSize
),
0
,
arg
);
}
};
constexpr
index_t
minimum_occupancy
=
BlkGemmPipeSched
==
BlockGemmPipelineScheduler
::
Intrawave
?
1
:
2
;
if
(
has_main_k_block_loop
)
{
// Tail number always full
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v1
||
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v3
)
{
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
>
;
Run
(
kernel
);
}
}
// Tail number could be One to Seven
else
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v2
)
{
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
One
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
One
>
;
Run
(
kernel
);
}
else
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Full
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Full
>
;
Run
(
kernel
);
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
2
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Two
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Two
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
3
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Three
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Three
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
4
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Four
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Four
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
5
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Five
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Five
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
6
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Six
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Six
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
7
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Seven
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Seven
>
;
Run
(
kernel
);
}
}
}
}
// Tail number could be Odd or Even
else
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v4
)
{
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Odd
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3_2lds
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Odd
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3_2lds
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Even
>
;
Run
(
kernel
);
}
}
}
else
{
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Odd
)
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Odd
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Even
>
;
Run
(
kernel
);
}
}
}
}
else
{
// Tail number always 1
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v1
)
{
{
const
auto
kernel
=
kernel_gemm_xdl_cshuffle_v3
<
GridwiseGemm
,
false
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
>
;
Run
(
kernel
);
}
}
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
if
((
arg
.
K
%
AK1
!=
0
||
arg
.
K
%
BK1
!=
0
)
&&
!
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
||
GemmSpec
==
GemmSpecialization
::
KPadding
))
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
ADataType
*
p_a
,
const
BDataType
*
p_b
,
CDataType
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
index_t
streamk_sel
,
index_t
Grid_size
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
)
{
return
Argument
{
p_a
,
p_b
,
p_c
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
streamk_sel
,
Grid_size
};
// HS
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
index_t
streamk_sel
,
index_t
Grid_size
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
static_cast
<
CDataType
*>
(
p_c
),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
streamk_sel
,
Grid_size
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
std
::
map
<
BlockGemmPipelineScheduler
,
std
::
string
>
BlkGemmPipelineSchedulerToString
{
{
BlockGemmPipelineScheduler
::
Intrawave
,
"Intrawave"
},
{
BlockGemmPipelineScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
BlockGemmPipelineVersion
,
std
::
string
>
BlkGemmPipelineVersionToString
{
{
BlockGemmPipelineVersion
::
v1
,
"v1"
},
{
BlockGemmPipelineVersion
::
v2
,
"v2"
},
{
BlockGemmPipelineVersion
::
v3
,
"v3"
},
{
BlockGemmPipelineVersion
::
v4
,
"v4"
},
{
BlockGemmPipelineVersion
::
v5
,
"v5"
}};
// clang-format off
str
<<
"DeviceGemmXdlUniversal"
<<
"<"
<<
getGemmSpecializationString
(
GemmSpec
)
<<
", "
<<
std
::
string
(
ALayout
::
name
)[
0
]
<<
std
::
string
(
BLayout
::
name
)[
0
]
<<
std
::
string
(
CLayout
::
name
)[
0
]
<<
">"
<<
" BlkSize: "
<<
BlockSize
<<
", "
<<
"BlkTile: "
<<
MPerBlock
<<
"x"
<<
NPerBlock
<<
"x"
<<
KPerBlock
<<
", "
<<
"WaveTile: "
<<
MPerXDL
<<
"x"
<<
NPerXDL
<<
", "
<<
"WaveMap: "
<<
MXdlPerWave
<<
"x"
<<
NXdlPerWave
<<
", "
<<
"VmemReadVec: "
<<
ABlockTransferSrcScalarPerVector
<<
"x"
<<
BBlockTransferSrcScalarPerVector
<<
", "
<<
"BlkGemmPipelineScheduler: "
<<
BlkGemmPipelineSchedulerToString
[
BlkGemmPipeSched
]
<<
", "
<<
"BlkGemmPipelineVersion: "
<<
BlkGemmPipelineVersionToString
[
BlkGemmPipelineVer
]
<<
", "
<<
"BlkGemmPipelinePrefetchStages: "
<<
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
View file @
dcd3d21a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -93,12 +93,12 @@ __global__ void
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
))
)
;
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
))
)
;
const
long_index_t
e_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
))
)
;
const
long_index_t
a_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
));
const
long_index_t
b_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
));
const
long_index_t
e_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
));
const
auto
ds_batch_offset
=
compute_ptr_offset_of_batch
.
GetDsPtrOffset
(
g_idx
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_dl.hpp
View file @
dcd3d21a
...
...
@@ -55,12 +55,12 @@ __global__ void
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
))
)
;
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
))
)
;
const
long_index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetCPtrOffset
(
g_idx
))
)
;
const
long_index_t
a_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
));
const
long_index_t
b_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
));
const
long_index_t
c_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetCPtrOffset
(
g_idx
));
__shared__
FloatAB
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()
/
sizeof
(
FloatAB
)];
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_multiple_d_xdl_cshuffle.hpp
View file @
dcd3d21a
...
...
@@ -66,12 +66,12 @@ __global__ void
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
))
)
;
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
))
)
;
const
long_index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetCPtrOffset
(
g_idx
))
)
;
const
long_index_t
a_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
));
const
long_index_t
b_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
));
const
long_index_t
c_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetCPtrOffset
(
g_idx
));
__shared__
FloatA
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()
/
sizeof
(
FloatA
)];
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_two_stage_xdl_cshuffle.hpp
View file @
dcd3d21a
...
...
@@ -47,24 +47,24 @@ __global__ void
#endif
kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3
(
typename
GridwiseGemm
::
Argument
karg
,
const
AGridDesc_AK0_M_K1
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_K1
b_grid_desc_bk0_n_bk1
,
const
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
[[
maybe_unused
]]
const
AGridDesc_AK0_M_K1
a_grid_desc_ak0_m_ak1
,
[[
maybe_unused
]]
const
BGridDesc_BK0_N_K1
b_grid_desc_bk0_n_bk1
,
[[
maybe_unused
]]
const
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
,
const
index_t
num_k_per_block
)
[[
maybe_unused
]]
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
,
[[
maybe_unused
]]
const
index_t
num_k_per_block
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
z
*
NumBatchToMerge
);
const
index_t
k_idx
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
y
*
num_k_per_block
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
))
)
;
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
))
)
;
const
long_index_t
e_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
))
)
;
const
long_index_t
a_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
));
const
long_index_t
b_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
));
const
long_index_t
e_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
));
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
...
...
@@ -103,12 +103,12 @@ __global__ void
#endif
kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3_2lds
(
typename
GridwiseGemm
::
Argument
karg
,
const
AGridDesc_AK0_M_K1
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_K1
b_grid_desc_bk0_n_bk1
,
const
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
[[
maybe_unused
]]
const
AGridDesc_AK0_M_K1
a_grid_desc_ak0_m_ak1
,
[[
maybe_unused
]]
const
BGridDesc_BK0_N_K1
b_grid_desc_bk0_n_bk1
,
[[
maybe_unused
]]
const
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
,
const
index_t
num_k_per_block
)
[[
maybe_unused
]]
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
,
[[
maybe_unused
]]
const
index_t
num_k_per_block
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) || defined(__gfx950__))
...
...
@@ -116,12 +116,12 @@ __global__ void
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
z
*
NumBatchToMerge
);
const
index_t
k_idx
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
y
*
num_k_per_block
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
))
)
;
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
))
)
;
const
long_index_t
e_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
))
)
;
const
long_index_t
a_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
));
const
long_index_t
b_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
));
const
long_index_t
e_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
));
// Pass two lds pointer is the key to tell compiler that ds_read/write
// operate on different lds chunk at same time without order dependecy
...
...
@@ -674,7 +674,7 @@ struct DeviceGroupedConvBwdWeightTwoStage_Xdl_CShuffle
clear_workspace
();
};
ave_time
=
ck
::
utility
::
launch_and_time_kernel_with_preprocess
<
false
>
(
ave_time
+
=
ck
::
utility
::
launch_and_time_kernel_with_preprocess
<
false
>
(
stream_config
,
run_flush_cache
,
kernel
,
...
...
@@ -690,7 +690,7 @@ struct DeviceGroupedConvBwdWeightTwoStage_Xdl_CShuffle
}
else
{
ave_time
=
launch_and_time_kernel_with_preprocess
(
ave_time
+
=
launch_and_time_kernel_with_preprocess
(
stream_config
,
clear_workspace
,
kernel
,
...
...
@@ -1268,7 +1268,7 @@ struct DeviceGroupedConvBwdWeightTwoStage_Xdl_CShuffle
arg
.
Conv_G_
;
std
::
array
<
index_t
,
I1
>
in_out_batch_strides
=
{
arg
.
compute_ptr_offset_of_batch_
.
BatchStrideC_
};
static_cast
<
index_t
>
(
arg
.
compute_ptr_offset_of_batch_
.
BatchStrideC_
)
};
const
auto
kernel
=
kernel_batched_elementwise
<
GridwiseElementwise
,
ck
::
Tuple
<
CElementwiseGridDesc_M_N
>
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_xdl_cshuffle.hpp
View file @
dcd3d21a
...
...
@@ -61,12 +61,9 @@ __global__ void
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
)));
const
long_index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetCPtrOffset
(
g_idx
)));
const
long_index_t
a_batch_offset
=
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
);
const
long_index_t
b_batch_offset
=
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
);
const
long_index_t
c_batch_offset
=
compute_ptr_offset_of_batch
.
GetCPtrOffset
(
g_idx
);
__shared__
FloatA
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()
/
sizeof
(
FloatA
)];
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp
View file @
dcd3d21a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -98,12 +98,12 @@ __global__ void
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
))
)
;
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
))
)
;
const
long_index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
))
)
;
const
long_index_t
a_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
));
const
long_index_t
b_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
));
const
long_index_t
c_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
));
const
auto
ds_batch_offset
=
compute_ptr_offset_of_batch
.
GetDsPtrOffset
(
g_idx
);
...
...
@@ -267,7 +267,8 @@ struct DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
input_right_pads
,
a_g_n_c_wis_lengths
[
I1
]);
const
auto
in_gemmm_gemmk_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_desc
);
...
...
@@ -313,8 +314,8 @@ struct DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
)
{
const
auto
out_gemmmraw_gemmnraw_desc
=
conv_to_gemm_transformer
.
template
MakeCDescriptor_M_N
<
ELay
>(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
);
conv_to_gemm_transformer
.
template
MakeCDescriptor_M_N
<
ELay
>(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
e_g_n_k_wos_lengths
[
I1
]
);
const
auto
out_gemmm_gemmn_desc
=
matrix_padder
.
PadCDescriptor_M_N
(
out_gemmmraw_gemmnraw_desc
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp
View file @
dcd3d21a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -263,7 +263,8 @@ struct DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK : public DeviceGroupedConvFwd<NDimS
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
input_right_pads
,
a_g_n_c_wis_lengths
[
I1
]);
const
auto
in_gemmm_gemmk_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_desc
);
...
...
@@ -310,8 +311,8 @@ struct DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK : public DeviceGroupedConvFwd<NDimS
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
c_g_n_k_wos_strides
)
{
const
auto
out_gemmmraw_gemmnraw_desc
=
conv_to_gemm_transformer
.
template
MakeCDescriptor_M_N
<
CLay
>(
c_g_n_k_wos_lengths
,
c_g_n_k_wos_strides
);
conv_to_gemm_transformer
.
template
MakeCDescriptor_M_N
<
CLay
>(
c_g_n_k_wos_lengths
,
c_g_n_k_wos_strides
,
c_g_n_k_wos_lengths
[
I1
]
);
const
auto
out_gemmm_gemmn_desc
=
matrix_padder
.
PadCDescriptor_M_N
(
out_gemmmraw_gemmnraw_desc
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp
View file @
dcd3d21a
...
...
@@ -69,7 +69,8 @@ template <typename GridwiseGemm,
typename
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
Block2ETileMap
,
typename
ComputePtrOffsetOfBatch
,
typename
ComputePtrOffsetOfG
,
typename
ComputePtrOffsetOfN
,
bool
HasMainKBlockLoop
,
bool
isMultiA
,
bool
isMultiB
>
...
...
@@ -85,7 +86,7 @@ __global__ void
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
cde_element_op
,
const
index_t
batch
_count
,
const
index_t
groups
_count
,
const
AGridDesc_AK0_M_AK1
a_grid_desc_k0_m_k1
,
const
BGridDesc_BK0_N_BK1
b_grid_desc_k0_n_k1
,
const
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
...
...
@@ -93,18 +94,24 @@ __global__ void
const
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
const
Block2ETileMap
block_2_ctile_map
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
)
const
ComputePtrOffsetOfG
compute_ptr_offset_of_groups
,
const
ComputePtrOffsetOfN
compute_ptr_offset_of_n
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
// offset base pointer for each work-group
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
gridDim
.
y
/
groups_count
);
const
index_t
&
num_blocks_per_n
=
groups_count
;
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
y
/
num_blocks_per_batch
);
const
index_t
n_idx
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
y
/
num_blocks_per_n
);
const
long_index_t
e_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_groups
.
GetEPtrOffset
(
g_idx
));
const
auto
&
ds_batch_offset
=
compute_ptr_offset_of_groups
.
GetDsPtrOffset
(
g_idx
);
const
long_index_t
e_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
)));
const
auto
&
ds_batch_offset
=
compute_ptr_offset_of_batch
.
GetDsPtrOffset
(
g_idx
);
const
long_index_t
e_n_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_n
.
GetEPtrOffset
(
n_idx
));
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
...
...
@@ -121,13 +128,28 @@ __global__ void
AsPointer
p_as_grid_grp
;
BsPointer
p_bs_grid_grp
;
const
auto
&
as_batch_offset
=
compute_ptr_offset_of_batch
.
GetAsPtrOffset
(
g_idx
);
const
auto
&
as_batch_offset
=
compute_ptr_offset_of_groups
.
GetAsPtrOffset
(
g_idx
);
// compute_ptr_offset_of_n_ not need BatchStrideB so
// in case of MultiA is false but isMultiB is true
// BatchStrideA_ is not tuple.
if
constexpr
(
isMultiA
)
{
const
auto
&
as_n_offset
=
compute_ptr_offset_of_n
.
GetAsPtrOffset
(
n_idx
);
static
constexpr
index_t
NumATensor
=
AGridDesc_AK0_M_AK1
::
Size
();
static_for
<
0
,
NumATensor
,
1
>
{}(
[
&
](
auto
i
)
{
p_as_grid_grp
(
i
)
=
p_as_grid
[
i
]
+
as_batch_offset
[
i
];
});
static_for
<
0
,
NumATensor
,
1
>
{}([
&
](
auto
i
)
{
p_as_grid_grp
(
i
)
=
p_as_grid
[
i
]
+
as_batch_offset
[
i
]
+
as_n_offset
[
i
];
});
}
else
{
const
long_index_t
a_n_offset
=
compute_ptr_offset_of_n
.
GetAPtrOffset
(
n_idx
);
static_for
<
0
,
1
,
1
>
{}(
[
&
](
auto
i
)
{
p_as_grid_grp
(
i
)
=
p_as_grid
[
i
]
+
as_batch_offset
[
i
]
+
a_n_offset
;
});
}
const
auto
&
bs_batch_offset
=
compute_ptr_offset_of_
batch
.
GetBsPtrOffset
(
g_idx
);
const
auto
&
bs_batch_offset
=
compute_ptr_offset_of_
groups
.
GetBsPtrOffset
(
g_idx
);
static
constexpr
index_t
NumBTensor
=
BGridDesc_BK0_N_BK1
::
Size
();
static_for
<
0
,
NumBTensor
,
1
>
{}(
...
...
@@ -137,7 +159,7 @@ __global__ void
p_as_grid_grp
,
p_bs_grid_grp
,
p_ds_grid_grp
,
p_e_grid
+
e_batch_offset
,
p_e_grid
+
e_batch_offset
+
e_n_offset
,
p_shared
,
a_element_op
,
b_element_op
,
...
...
@@ -150,16 +172,19 @@ __global__ void
}
else
{
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
)));
const
long_index_t
a_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_groups
.
GetAPtrOffset
(
g_idx
));
const
long_index_t
b_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_groups
.
GetBPtrOffset
(
g_idx
));
const
long_index_t
a_n_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_n
.
GetAPtrOffset
(
n_idx
));
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_as_grid
+
a_batch_offset
,
p_as_grid
+
a_batch_offset
+
a_n_offset
,
p_bs_grid
+
b_batch_offset
,
p_ds_grid_grp
,
p_e_grid
+
e_batch_offset
,
p_e_grid
+
e_batch_offset
+
e_n_offset
,
p_shared
,
a_element_op
,
b_element_op
,
...
...
@@ -175,7 +200,7 @@ __global__ void
ignore
=
p_bs_grid
;
ignore
=
p_ds_grid
;
ignore
=
p_e_grid
;
ignore
=
batch
_count
;
ignore
=
groups
_count
;
ignore
=
a_grid_desc_k0_m_k1
;
ignore
=
b_grid_desc_k0_n_k1
;
ignore
=
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
...
...
@@ -183,7 +208,8 @@ __global__ void
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
cde_element_op
;
ignore
=
compute_ptr_offset_of_batch
;
ignore
=
compute_ptr_offset_of_groups
;
ignore
=
compute_ptr_offset_of_n
;
ignore
=
block_2_ctile_map
;
#endif
}
...
...
@@ -309,7 +335,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
)
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
index_t
Conv_N
)
{
const
auto
in_gemmmraw_gemmkraw_desc
=
conv_to_gemm_transformer
.
template
MakeADescriptor_M_K
<
ALay
>(
a_g_n_c_wis_lengths
,
...
...
@@ -321,7 +348,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
input_right_pads
,
Conv_N
);
const
auto
in_gemmm_gemmk_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_desc
);
...
...
@@ -347,11 +375,12 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
template
<
typename
ELay
>
static
auto
MakeEGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
)
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
index_t
Conv_N
)
{
const
auto
out_gemmmraw_gemmnraw_desc
=
conv_to_gemm_transformer
.
template
MakeCDescriptor_M_N
<
ELay
>(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
);
conv_to_gemm_transformer
.
template
MakeCDescriptor_M_N
<
ELay
>(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
Conv_N
);
const
auto
out_gemmm_gemmn_desc
=
matrix_padder
.
PadCDescriptor_M_N
(
out_gemmmraw_gemmnraw_desc
);
...
...
@@ -363,24 +392,25 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
// Pass e_g_n_k_wos_lengths for logical broadcast.
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
)
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
index_t
Conv_N
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
e_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
[
i
]);
return
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
e_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
[
i
]
,
Conv_N
);
},
Number
<
NumDTensor
>
{});
}
// desc for problem definition
using
AGridDesc_M_K
=
remove_cvref_t
<
decltype
(
MakeAGridDescriptor_M_K
<
ALayout
>
(
{},
{},
{},
{},
{},
{},
{},
{},
{},
{}))
>
;
{},
{},
{},
{},
{},
{},
{},
{},
{},
{}
,
1
))
>
;
using
BGridDesc_N_K
=
remove_cvref_t
<
decltype
(
MakeBGridDescriptor_N_K
<
BLayout
>
({},
{}))
>
;
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({},
{}))
>
;
using
EGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeEGridDescriptor_M_N
<
ELayout
>
({},
{}))
>
;
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({},
{}
,
1
))
>
;
using
EGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeEGridDescriptor_M_N
<
ELayout
>
({},
{}
,
1
))
>
;
// If we are using multiAB and one of the template datatype parameters is not a tuple, convert
// it to it
...
...
@@ -468,6 +498,12 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
p_ds_grid_
{},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e
)},
num_group_
{
a_g_n_c_wis_lengths
[
0
]},
conv_N_per_block_
{
conv_to_gemm_transformer
.
template
GetSplitedNSize
<
ADataType
,
EDataType
>(
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
)},
a_grid_desc_m_k_
{
DeviceOp
::
MakeAGridDescriptor_M_K
<
ALayout
>
(
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
...
...
@@ -477,12 +513,13 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
)},
input_right_pads
,
conv_N_per_block_
)},
b_grid_desc_n_k_
{
DeviceOp
::
MakeBGridDescriptor_N_K
<
BLayout
>
(
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
)},
ds_grid_desc_m_n_
{},
e_grid_desc_m_n_
{
DeviceOp
::
MakeEGridDescriptor_M_N
<
ELayout
>
(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
)},
e_grid_desc_m_n_
{
DeviceOp
::
MakeEGridDescriptor_M_N
<
ELayout
>
(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_N_per_block_
)},
a_grid_desc_ak0_m_ak1_
{
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
a_grid_desc_m_k_
)},
b_grid_desc_bk0_n_bk1_
{
...
...
@@ -490,7 +527,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
ds_grid_desc_mblock_mperblock_nblock_nperblock_
{},
e_grid_desc_mblock_mperblock_nblock_nperblock_
{},
block_2_etile_map_
{
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
e_grid_desc_m_n_
)},
compute_ptr_offset_of_batch_
{},
compute_ptr_offset_of_groups_
{},
compute_ptr_offset_of_n_
{},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
},
...
...
@@ -511,8 +549,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
if
constexpr
(
isMultiA
||
isMultiB
)
{
static_for
<
0
,
NumATensor
,
1
>
{}([
&
](
auto
i
)
{
// Init compute_ptr_offset_of_
batch
_ for multiple AB
compute_ptr_offset_of_
batch
_
.
BatchStrideA_
(
i
)
=
a_g_n_c_wis_strides
[
0
];
// Init compute_ptr_offset_of_
groups
_ for multiple AB
compute_ptr_offset_of_
groups
_
.
BatchStrideA_
(
i
)
=
a_g_n_c_wis_strides
[
0
];
// Use GemmADataType/GemmBDataType to iterate over tuple (even if passed data
// type is not tuple)
...
...
@@ -524,16 +562,23 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
{
// p_as is tuple
p_as_grid_
(
i
)
=
static_cast
<
const
DataType
*>
(
p_as
[
i
.
value
]);
// compute_ptr_offset_of_n_ not need BatchStrideB so
// in case of MultiA is false but isMultiB is true
// BatchStrideA_ is not tuple.
compute_ptr_offset_of_n_
.
BatchStrideA_
(
i
)
=
a_g_n_c_wis_strides
[
1
]
*
conv_N_per_block_
;
}
else
{
// if MultiB and not MultiA then p_as is single pointer
p_as_grid_
(
i
)
=
static_cast
<
const
DataType
*>
(
p_as
);
compute_ptr_offset_of_n_
.
BatchStrideA_
=
a_g_n_c_wis_strides
[
1
]
*
conv_N_per_block_
;
}
});
static_for
<
0
,
NumBTensor
,
1
>
{}([
&
](
auto
i
)
{
// Init compute_ptr_offset_of_
batch
_ for multiple AB
compute_ptr_offset_of_
batch
_
.
BatchStrideB_
(
i
)
=
b_g_k_c_xs_strides
[
0
];
// Init compute_ptr_offset_of_
groups
_ for multiple AB
compute_ptr_offset_of_
groups
_
.
BatchStrideB_
(
i
)
=
b_g_k_c_xs_strides
[
0
];
using
DataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
GemmBDataType
>>
;
// It is possible that one of the AB is a pointer and one is a tuple.
...
...
@@ -553,8 +598,9 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
}
else
{
compute_ptr_offset_of_batch_
.
BatchStrideA_
=
a_g_n_c_wis_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideB_
=
b_g_k_c_xs_strides
[
0
];
compute_ptr_offset_of_groups_
.
BatchStrideA_
=
a_g_n_c_wis_strides
[
0
];
compute_ptr_offset_of_groups_
.
BatchStrideB_
=
b_g_k_c_xs_strides
[
0
];
compute_ptr_offset_of_n_
.
BatchStrideA_
=
a_g_n_c_wis_strides
[
1
]
*
conv_N_per_block_
;
// p_as and p_bs are pointers
p_as_grid_
(
I0
)
=
static_cast
<
const
ADataType
*>
(
p_as
);
...
...
@@ -570,13 +616,16 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
p_ds
[
i
]);
// D batch stride
compute_ptr_offset_of_batch_
.
BatchStrideDs_
(
i
)
=
ds_g_n_k_wos_strides
[
i
][
0
];
compute_ptr_offset_of_groups_
.
BatchStrideDs_
(
i
)
=
ds_g_n_k_wos_strides
[
i
][
0
];
compute_ptr_offset_of_n_
.
BatchStrideDs_
(
i
)
=
ds_g_n_k_wos_strides
[
i
][
1
]
*
conv_N_per_block_
;
// D desc
ds_grid_desc_m_n_
(
i
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
e_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
[
i
]);
e_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
[
i
]
,
conv_N_per_block_
);
});
compute_ptr_offset_of_batch_
.
BatchStrideE_
=
e_g_n_k_wos_strides
[
0
];
compute_ptr_offset_of_groups_
.
BatchStrideE_
=
e_g_n_k_wos_strides
[
0
];
compute_ptr_offset_of_n_
.
BatchStrideE_
=
e_g_n_k_wos_strides
[
1
]
*
conv_N_per_block_
;
// populate desc for Ds/E
if
constexpr
(
isMultiA
||
isMultiB
)
...
...
@@ -638,6 +687,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
// tensor descriptors for problem definiton
index_t
num_group_
;
index_t
conv_N_per_block_
;
AGridDesc_M_K
a_grid_desc_m_k_
;
BGridDesc_N_K
b_grid_desc_n_k_
;
DsGridDesc_M_N
ds_grid_desc_m_n_
;
...
...
@@ -655,7 +706,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
// for computing batch offset
ComputePtrOffsetOfStridedBatch
<
NumATensor
,
NumBTensor
,
NumDTensor
>
compute_ptr_offset_of_batch_
;
compute_ptr_offset_of_groups_
;
ComputePtrOffsetOfStridedBatch
<
NumATensor
,
I1
,
NumDTensor
>
compute_ptr_offset_of_n_
;
// element-wise op
AElementwiseOperation
a_element_op_
;
...
...
@@ -689,8 +741,12 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
arg
.
Print
();
}
const
index_t
grid_size
=
arg
.
block_2_etile_map_
.
CalculateGridSize
(
arg
.
e_grid_desc_m_n_
)
*
arg
.
num_group_
;
const
index_t
num_workgroups_per_Conv_N
=
arg
.
a_g_n_c_wis_lengths_
[
I1
]
/
arg
.
conv_N_per_block_
;
const
index_t
gdx
=
arg
.
block_2_etile_map_
.
CalculateGridSize
(
arg
.
e_grid_desc_m_n_
);
const
index_t
gdy
=
arg
.
num_group_
*
num_workgroups_per_Conv_N
;
const
index_t
gdz
=
1
;
const
auto
K
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
...
...
@@ -721,6 +777,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
DeviceOp
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
Block2ETileMap
,
ComputePtrOffsetOfStridedBatch
<
NumATensor
,
NumBTensor
,
NumDTensor
>
,
ComputePtrOffsetOfStridedBatch
<
NumATensor
,
I1
,
NumDTensor
>
,
has_main_loop
,
isMultiA
,
isMultiB
>
;
...
...
@@ -728,7 +785,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
g
rid_size
),
dim3
(
g
dx
,
gdy
,
gdz
),
dim3
(
BlockSize
),
0
,
arg
.
p_as_grid_
,
...
...
@@ -744,7 +801,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
block_2_etile_map_
,
arg
.
compute_ptr_offset_of_batch_
);
arg
.
compute_ptr_offset_of_groups_
,
arg
.
compute_ptr_offset_of_n_
);
}
else
{
...
...
@@ -763,6 +821,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
DeviceOp
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
Block2ETileMap
,
ComputePtrOffsetOfStridedBatch
<
NumATensor
,
NumBTensor
,
NumDTensor
>
,
ComputePtrOffsetOfStridedBatch
<
NumATensor
,
I1
,
NumDTensor
>
,
has_main_loop
,
isMultiA
,
isMultiB
>
;
...
...
@@ -770,7 +829,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
g
rid_size
),
dim3
(
g
dx
,
gdy
,
gdz
),
dim3
(
BlockSize
),
0
,
arg
.
p_as_grid_
.
At
(
I0
),
// Pass just A descriptor instead of tuple
...
...
@@ -786,7 +845,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
block_2_etile_map_
,
arg
.
compute_ptr_offset_of_batch_
);
arg
.
compute_ptr_offset_of_groups_
,
arg
.
compute_ptr_offset_of_n_
);
}
};
...
...
@@ -820,15 +880,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
return
false
;
}
}
else
if
(
ck
::
is_lds_direct_load_supported
())
{
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
||
is_same_v
<
AccDataType
,
double
>
))
{
return
false
;
}
}
else
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle_v3.hpp
0 → 100644
View file @
dcd3d21a
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <functional>
#include <iostream>
#include <iterator>
#include <numeric>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/flush_cache.hpp"
#include "ck/host_utility/io.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
{
/*
* \brief Wrapper function of GridwiseGemm::Run to realize BatchedGEMM.
*
* \tparam ComputePtrOffsetOfBatch Class that computes the base pointer offsets of A, B, C matrix
* given the batch. For example, ComputePtrOffsetOfStridedBatch() computes the offsets of evenly
* strided batched, but we can easily extend to other layouts. The returned offset can be either \p
* index_t or \p long_index_t. If it returns \p long_index_t, we are not subject to the 2GB
* limitations.
*
* \tparam Block2ETileMap Block2ETileMap::CalculateBottomIndex() takes in id of a workgroup and
* returns the 2D index of the tile that it computes. \see
* GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3::Run().
*
* \note Using \p ComputePtrOffsetOfBatch gives us the flexibility that 2 workgroups can compute 2
* tiles from different matrices. Keep in mind that these 2 matrices can share the same grid
* descriptor (like in BatchedGEMM), or use their own grid descriptors (in GroupedGemm). \link
* impl/device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk.hpp kernel_gemm_xdlops_v2r3_for_conv3d \endlink for
* \link DeviceConv3d \endlink uses the same concept, but currently does NOT encapsulate the
* computing of pointer offset into \p ComputePtrOffsetOfStridedBatch.
*
* \note \p Block2ETileMap allows customized mapping between a workgroup and the C-tile it computes.
* Together with \p ComputePtrOffsetOfBatch, we can reuse GridwiseGemm (and GridwiseGemm fusion ) to
* realize BatchedGemm and GroupedGemm (and the corresponding GEMM fusion).
*
*/
template
<
typename
GridwiseGemm
,
typename
AGridDesc_AK0_M_K1
,
typename
BGridDesc_BK0_N_K1
,
typename
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
ComputePtrOffset
,
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
index_t
MinimumOccupancy
=
1
,
TailNumber
TailNum
=
TailNumber
::
Full
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
MinimumOccupancy
)
#endif
kernel_grouped_conv_fwd_xdl_cshuffle_v3
(
typename
GridwiseGemm
::
Argument
karg
,
[[
maybe_unused
]]
const
AGridDesc_AK0_M_K1
a_grid_desc_ak0_m_ak1
,
[[
maybe_unused
]]
const
BGridDesc_BK0_N_K1
b_grid_desc_bk0_n_bk1
,
[[
maybe_unused
]]
const
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock
,
[[
maybe_unused
]]
const
ComputePtrOffset
compute_ptr_offset_of_groups
,
[[
maybe_unused
]]
const
ComputePtrOffset
compute_ptr_offset_of_n
,
[[
maybe_unused
]]
const
index_t
groups_count
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
// offset base pointer for each work-group
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
gridDim
.
y
/
groups_count
);
const
index_t
&
num_blocks_per_n
=
groups_count
;
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
y
/
num_blocks_per_batch
);
const
index_t
n_idx
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
y
/
num_blocks_per_n
);
const
long_index_t
a_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_groups
.
GetAPtrOffset
(
g_idx
));
const
long_index_t
b_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_groups
.
GetBPtrOffset
(
g_idx
));
const
long_index_t
e_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_groups
.
GetEPtrOffset
(
g_idx
));
const
long_index_t
a_n_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_n
.
GetAPtrOffset
(
n_idx
));
const
long_index_t
e_n_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_n
.
GetEPtrOffset
(
n_idx
));
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
GridwiseGemm
::
template
Run
<
AGridDesc_AK0_M_K1
,
BGridDesc_BK0_N_K1
,
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
HasMainKBlockLoop
,
CGlobalMemoryDataOperation
,
TailNum
>(
karg
.
p_a_grid
+
a_batch_offset
+
a_n_offset
,
karg
.
p_b_grid
+
b_batch_offset
,
karg
.
p_c_grid
+
e_batch_offset
+
e_n_offset
,
p_shared
,
karg
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
c_grid_desc_mblock_mperblock_nblock_nperblock
);
#else
ignore
=
karg
;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template
<
typename
GridwiseGemm
,
typename
AGridDesc_AK0_M_K1
,
typename
BGridDesc_BK0_N_K1
,
typename
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
ComputePtrOffset
,
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
index_t
MinimumOccupancy
=
1
,
TailNumber
TailNum
=
TailNumber
::
Full
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
MinimumOccupancy
)
#endif
kernel_grouped_conv_fwd_xdl_cshuffle_v3_2lds
(
typename
GridwiseGemm
::
Argument
karg
,
[[
maybe_unused
]]
const
AGridDesc_AK0_M_K1
a_grid_desc_ak0_m_ak1
,
[[
maybe_unused
]]
const
BGridDesc_BK0_N_K1
b_grid_desc_bk0_n_bk1
,
[[
maybe_unused
]]
const
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock
,
[[
maybe_unused
]]
const
ComputePtrOffset
compute_ptr_offset_of_groups
,
[[
maybe_unused
]]
const
ComputePtrOffset
compute_ptr_offset_of_n
,
[[
maybe_unused
]]
const
index_t
groups_count
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
// offset base pointer for each work-group
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
gridDim
.
y
/
groups_count
);
const
index_t
&
num_blocks_per_n
=
groups_count
;
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
y
/
num_blocks_per_batch
);
const
index_t
n_idx
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
y
/
num_blocks_per_n
);
const
long_index_t
a_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_groups
.
GetAPtrOffset
(
g_idx
));
const
long_index_t
b_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_groups
.
GetBPtrOffset
(
g_idx
));
const
long_index_t
e_batch_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_groups
.
GetEPtrOffset
(
g_idx
));
const
long_index_t
a_n_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_n
.
GetAPtrOffset
(
n_idx
));
const
long_index_t
e_n_offset
=
amd_wave_read_first_lane
(
compute_ptr_offset_of_n
.
GetEPtrOffset
(
n_idx
));
// Pass two lds pointer is the key to tell compiler that ds_read/write
// operate on different lds chunk at same time without order dependecy
__shared__
char
p_shared_0
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
__shared__
char
p_shared_1
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
GridwiseGemm
::
template
Run_2Lds
<
AGridDesc_AK0_M_K1
,
BGridDesc_BK0_N_K1
,
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
HasMainKBlockLoop
,
CGlobalMemoryDataOperation
,
TailNum
>(
karg
.
p_a_grid
+
a_batch_offset
+
a_n_offset
,
karg
.
p_b_grid
+
b_batch_offset
,
karg
.
p_c_grid
+
e_batch_offset
+
e_n_offset
,
p_shared_0
,
p_shared_1
,
karg
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
c_grid_desc_mblock_mperblock_nblock_nperblock
);
#else
ignore
=
karg
;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
}
// namespace
template
<
typename
T
>
using
is_tuple
=
decltype
(
std
::
declval
<
T
&>
().
IsTuple
());
//
// @brief Device Convolution operation.
//
// Supports:
// @li Forward convolution with up to 3 spatial dimentions
// @li Input tensor in GNWC data format
// @li Weight tensor in GKXC data format
// @li Output tensor in GNWK data format
//
// 1D:
// out[N, Wo, K] = in[N, Wi, C] * wei[K, X, C]
// 2D:
// out[N, Ho, Wo, K] = in[N, Hi, Wi, C] * wei[K, Y, X, C]
// 3D:
// out[N, Do, Ho, Wo, K] = in[N, Di, Hi, Wi, C] * wei[K, Z, Y, X, C]
//
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ConvolutionForwardSpecialization
ConvForwardSpecialization
,
GemmSpecialization
GemmSpec
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
BlockGemmPipelineScheduler
BlkGemmPipeSched
=
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
BlkGemmPipelineVer
=
BlockGemmPipelineVersion
::
v1
,
typename
AComputeDataType
=
decltype
(
UnpackDataType
<
is_detected
<
is_tuple
,
ADataType
>
::
value
,
Number
<
0
>
,
ADataType
>
()),
// ComputeType is InputType by default (first
// in tuple for MultiAB), unpack if tuple was
// passed
typename
BComputeDataType
=
AComputeDataType
>
struct
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3
:
public
DeviceGroupedConvFwdMultipleABD
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
AComputeDataType
,
BComputeDataType
>
{
using
DeviceOp
=
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3
;
static
constexpr
bool
isMultiA
=
is_detected
<
is_tuple
,
ADataType
>::
value
;
static
constexpr
bool
isMultiB
=
is_detected
<
is_tuple
,
BDataType
>::
value
;
static
constexpr
bool
isMultiD
=
DsDataType
::
Size
()
>
0
;
static
constexpr
bool
isMultiABD
=
isMultiA
||
isMultiB
||
isMultiD
;
// multi ABD not supported
static_assert
(
!
isMultiABD
,
"Multi A, Mutli B and Multi D are not supported"
);
static
constexpr
index_t
NumATensor
=
GetNumABTensors
<
isMultiA
,
ADataType
>
();
static
constexpr
index_t
NumBTensor
=
GetNumABTensors
<
isMultiB
,
BDataType
>
();
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
conv_to_gemm_transformer
=
TransformConvFwdToGemm
<
NDimSpatial
,
ConvForwardSpecialization
>
{};
static
constexpr
auto
matrix_padder
=
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
template
<
typename
ALay
>
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
index_t
Conv_N
)
{
const
auto
in_gemmmraw_gemmkraw_desc
=
conv_to_gemm_transformer
.
template
MakeADescriptor_M_K
<
ALay
>(
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
Conv_N
);
const
auto
in_gemmm_gemmk_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_desc
);
const
auto
M
=
in_gemmm_gemmk_desc
.
GetLength
(
I0
);
const
auto
K
=
in_gemmm_gemmk_desc
.
GetLength
(
I1
);
const
auto
AK0
=
K
/
AK1
;
return
transform_tensor_descriptor
(
in_gemmm_gemmk_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
template
<
typename
BLay
>
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
)
{
const
auto
wei_gemmnraw_gemmkraw_desc
=
conv_to_gemm_transformer
.
template
MakeBDescriptor_N_K
<
BLay
>(
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
);
const
auto
wei_gemmn_gemmk_desc
=
matrix_padder
.
PadBDescriptor_N_K
(
wei_gemmnraw_gemmkraw_desc
);
const
auto
N
=
wei_gemmn_gemmk_desc
.
GetLength
(
I0
);
const
auto
K
=
wei_gemmn_gemmk_desc
.
GetLength
(
I1
);
const
auto
BK0
=
K
/
BK1
;
return
transform_tensor_descriptor
(
wei_gemmn_gemmk_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
template
<
typename
ELay
>
static
auto
MakeEGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
index_t
Conv_N
)
{
const
auto
out_gemmmraw_gemmnraw_desc
=
conv_to_gemm_transformer
.
template
MakeCDescriptor_M_N
<
ELay
>(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
Conv_N
);
const
auto
out_gemmm_gemmn_desc
=
matrix_padder
.
PadCDescriptor_M_N
(
out_gemmmraw_gemmnraw_desc
);
return
out_gemmm_gemmn_desc
;
}
// desc for problem definition
using
EGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeEGridDescriptor_M_N
<
ELayout
>
({},
{},
1
))
>
;
#define GridwiseGemmV3TemplateParams \
tensor_layout::gemm::RowMajor, tensor_layout::gemm::ColumnMajor, \
tensor_layout::gemm::RowMajor, ADataType, BDataType, AccDataType, CShuffleDataType, \
EDataType, AElementwiseOperation, BElementwiseOperation, CDEElementwiseOperation, \
GemmSpec, BlockSize, MPerBlock, NPerBlock, KPerBlock, AK1, BK1, MPerXDL, NPerXDL, \
MXdlPerWave, NXdlPerWave, ABlockTransferThreadClusterLengths_AK0_M_AK1, \
ABlockTransferThreadClusterArrangeOrder, ABlockTransferSrcAccessOrder, \
ABlockTransferSrcVectorDim, ABlockTransferSrcScalarPerVector, \
ABlockTransferDstScalarPerVector_AK1, false, ABlockLdsExtraM, \
BBlockTransferThreadClusterLengths_BK0_N_BK1, BBlockTransferThreadClusterArrangeOrder, \
BBlockTransferSrcAccessOrder, BBlockTransferSrcVectorDim, \
BBlockTransferSrcScalarPerVector, BBlockTransferDstScalarPerVector_BK1, false, \
BBlockLdsExtraN, CShuffleMXdlPerWavePerShuffle, CShuffleNXdlPerWavePerShuffle, \
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock, \
CDEBlockTransferScalarPerVector_NPerBlock, BlkGemmPipeSched, BlkGemmPipelineVer, \
AComputeDataType, BComputeDataType
// Use appropriate gridwise gemm
using
GridwiseGemm
=
GridwiseGemm_xdl_cshuffle_v3
<
GridwiseGemmV3TemplateParams
>
;
static
auto
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
EGridDesc_M_N
&
e_grid_desc_m_n
)
{
const
index_t
M
=
e_grid_desc_m_n
.
GetLength
(
I0
);
const
index_t
N
=
e_grid_desc_m_n
.
GetLength
(
I1
);
return
GridwiseGemm
::
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n
,
GridwiseGemm
::
CalculateMBlock
(
M
),
GridwiseGemm
::
CalculateNBlock
(
N
));
}
// desc for blockwise copy
using
AGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
MakeAGridDescriptor_AK0_M_AK1
<
ALayout
>
(
{},
{},
{},
{},
{},
{},
{},
{},
{},
{},
1
))
>
;
using
BGridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
MakeBGridDescriptor_BK0_N_BK1
<
BLayout
>
({},
{}))
>
;
using
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
EGridDesc_M_N
{}))
>
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
void
*
p_as
,
const
void
*
p_bs
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
:
p_a_grid_
{},
p_b_grid_
{},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e
)},
num_group_
{
a_g_n_c_wis_lengths
[
0
]},
conv_N_per_block_
{
conv_to_gemm_transformer
.
template
GetSplitedNSize
<
ADataType
,
EDataType
>(
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
)},
a_grid_desc_ak0_m_ak1_
{
MakeAGridDescriptor_AK0_M_AK1
<
ALayout
>
(
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
conv_N_per_block_
)},
b_grid_desc_bk0_n_bk1_
{
MakeBGridDescriptor_BK0_N_BK1
<
BLayout
>
(
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
)},
e_grid_desc_m_n_
{
DeviceOp
::
MakeEGridDescriptor_M_N
<
ELayout
>
(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_N_per_block_
)},
e_grid_desc_mblock_mperblock_nblock_nperblock_
{},
compute_ptr_offset_of_groups_
{},
compute_ptr_offset_of_n_
{},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
},
a_g_n_c_wis_lengths_
{
a_g_n_c_wis_lengths
},
a_g_n_c_wis_strides_
{
a_g_n_c_wis_strides
},
b_g_k_c_xs_lengths_
{
b_g_k_c_xs_lengths
},
b_g_k_c_xs_strides_
{
b_g_k_c_xs_strides
},
e_g_n_k_wos_lengths_
{
e_g_n_k_wos_lengths
},
e_g_n_k_wos_strides_
{
e_g_n_k_wos_strides
},
conv_filter_strides_
{
conv_filter_strides
},
conv_filter_dilations_
{
conv_filter_dilations
},
input_left_pads_
{
input_left_pads
},
input_right_pads_
{
input_right_pads
}
{
// A/B/E Batch/N Stride
compute_ptr_offset_of_groups_
.
BatchStrideA_
=
a_g_n_c_wis_strides
[
0
];
compute_ptr_offset_of_groups_
.
BatchStrideB_
=
b_g_k_c_xs_strides
[
0
];
compute_ptr_offset_of_n_
.
BatchStrideA_
=
a_g_n_c_wis_strides
[
1
]
*
conv_N_per_block_
;
// p_as and p_bs are pointers
p_a_grid_
=
static_cast
<
const
ADataType
*>
(
p_as
);
p_b_grid_
=
static_cast
<
const
BDataType
*>
(
p_bs
);
compute_ptr_offset_of_groups_
.
BatchStrideE_
=
e_g_n_k_wos_strides
[
0
];
compute_ptr_offset_of_n_
.
BatchStrideE_
=
e_g_n_k_wos_strides
[
1
]
*
conv_N_per_block_
;
e_grid_desc_mblock_mperblock_nblock_nperblock_
=
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n_
);
}
void
Print
()
const
{
std
::
cout
<<
"A[AK0, M, AK1]: "
<<
a_grid_desc_ak0_m_ak1_
<<
std
::
endl
;
std
::
cout
<<
"B[BK0, N, BK1]: "
<<
b_grid_desc_bk0_n_bk1_
<<
std
::
endl
;
std
::
cout
<<
"E[M, N]: "
<<
e_grid_desc_m_n_
<<
std
::
endl
;
}
// private:
// pointers (tuple if multi AB, pointer if no)
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
EDataType
*
p_e_grid_
;
// tensor descriptors for problem definiton
index_t
num_group_
;
index_t
conv_N_per_block_
;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
// for computing batch offset
ComputePtrOffsetOfStridedBatch
<
I1
,
I1
,
I0
>
compute_ptr_offset_of_groups_
;
ComputePtrOffsetOfStridedBatch
<
I1
,
I1
,
I0
>
compute_ptr_offset_of_n_
;
// element-wise op
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
// for checking IsSupportedArgument()
std
::
array
<
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides_
;
std
::
array
<
index_t
,
NDimSpatial
>
conv_filter_strides_
;
std
::
array
<
index_t
,
NDimSpatial
>
conv_filter_dilations_
;
std
::
array
<
index_t
,
NDimSpatial
>
input_left_pads_
;
std
::
array
<
index_t
,
NDimSpatial
>
input_right_pads_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
stream_config
.
log_level_
>
0
)
{
arg
.
Print
();
}
float
ave_time
=
0
;
constexpr
index_t
minimum_occupancy
=
BlkGemmPipeSched
==
BlockGemmPipelineScheduler
::
Intrawave
?
1
:
2
;
const
index_t
GemmM
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I1
);
const
index_t
GemmN
=
arg
.
b_grid_desc_bk0_n_bk1_
.
GetLength
(
I1
);
const
index_t
GemmK
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
const
index_t
num_workgroups_per_Conv_N
=
arg
.
a_g_n_c_wis_lengths_
[
I1
]
/
arg
.
conv_N_per_block_
;
index_t
gdx
,
gdy
,
gdz
;
std
::
tie
(
gdx
,
gdy
,
gdz
)
=
GridwiseGemm
::
CalculateGridSize
(
GemmM
,
GemmN
,
I1
/*arg.KBatch*/
);
gdy
*=
arg
.
num_group_
*
num_workgroups_per_Conv_N
;
index_t
K_split
=
(
GemmK
+
KPerBlock
-
1
)
/
KPerBlock
*
KPerBlock
;
const
bool
has_main_k_block_loop
=
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K_split
);
typename
GridwiseGemm
::
Argument
gemm_arg
{
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_e_grid_
,
GemmM
,
GemmN
,
GemmK
,
I0
,
I0
,
I0
,
I1
};
const
auto
Run
=
[
&
](
const
auto
&
kernel
)
{
if
(
stream_config
.
flush_cache
)
{
typename
GridwiseGemm
::
Argument
gemm_arg_
=
gemm_arg
;
ck
::
utility
::
RotatingMemWrapper
<
typename
GridwiseGemm
::
Argument
>
rotating_mem
(
gemm_arg_
,
stream_config
.
rotating_count
,
gemm_arg_
.
M
*
gemm_arg_
.
K
*
sizeof
(
ADataType
),
gemm_arg_
.
K
*
gemm_arg_
.
N
*
sizeof
(
BDataType
));
rotating_mem
.
Print
();
auto
run_flush_cache
=
[
&
]()
{
// flush icache
ck
::
utility
::
flush_icache
();
// rotating mem
rotating_mem
.
Next
();
};
ave_time
+=
ck
::
utility
::
launch_and_time_kernel_with_preprocess
<
false
>
(
stream_config
,
run_flush_cache
,
kernel
,
dim3
(
gdx
,
gdy
,
gdz
),
dim3
(
BlockSize
),
0
,
gemm_arg_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
compute_ptr_offset_of_groups_
,
arg
.
compute_ptr_offset_of_n_
,
arg
.
num_group_
);
}
else
{
ave_time
+=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
gdx
,
gdy
,
gdz
),
dim3
(
BlockSize
),
0
,
gemm_arg
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
compute_ptr_offset_of_groups_
,
arg
.
compute_ptr_offset_of_n_
,
arg
.
num_group_
);
}
};
if
(
has_main_k_block_loop
)
{
// Tail number always full
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v1
||
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v3
)
{
const
auto
kernel
=
kernel_grouped_conv_fwd_xdl_cshuffle_v3
<
GridwiseGemm
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
DeviceOp
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
ComputePtrOffsetOfStridedBatch
<
I1
,
I1
,
I0
>
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
>
;
Run
(
kernel
);
}
// Tail number could be One to Seven
else
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v2
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
One
)
{
const
auto
kernel
=
kernel_grouped_conv_fwd_xdl_cshuffle_v3
<
GridwiseGemm
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
DeviceOp
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
ComputePtrOffsetOfStridedBatch
<
I1
,
I1
,
I0
>
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
One
>
;
Run
(
kernel
);
}
else
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Full
)
{
const
auto
kernel
=
kernel_grouped_conv_fwd_xdl_cshuffle_v3
<
GridwiseGemm
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
DeviceOp
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
ComputePtrOffsetOfStridedBatch
<
I1
,
I1
,
I0
>
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Full
>
;
Run
(
kernel
);
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
2
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Two
)
{
const
auto
kernel
=
kernel_grouped_conv_fwd_xdl_cshuffle_v3
<
GridwiseGemm
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
DeviceOp
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
ComputePtrOffsetOfStridedBatch
<
I1
,
I1
,
I0
>
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Two
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
3
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Three
)
{
const
auto
kernel
=
kernel_grouped_conv_fwd_xdl_cshuffle_v3
<
GridwiseGemm
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
DeviceOp
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
ComputePtrOffsetOfStridedBatch
<
I1
,
I1
,
I0
>
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Three
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
4
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Four
)
{
const
auto
kernel
=
kernel_grouped_conv_fwd_xdl_cshuffle_v3
<
GridwiseGemm
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
DeviceOp
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
ComputePtrOffsetOfStridedBatch
<
I1
,
I1
,
I0
>
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Four
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
5
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Five
)
{
const
auto
kernel
=
kernel_grouped_conv_fwd_xdl_cshuffle_v3
<
GridwiseGemm
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
DeviceOp
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
ComputePtrOffsetOfStridedBatch
<
I1
,
I1
,
I0
>
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Five
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
6
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Six
)
{
const
auto
kernel
=
kernel_grouped_conv_fwd_xdl_cshuffle_v3
<
GridwiseGemm
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
DeviceOp
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
ComputePtrOffsetOfStridedBatch
<
I1
,
I1
,
I0
>
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Six
>
;
Run
(
kernel
);
}
}
if
constexpr
(
GridwiseGemm
::
BlockwiseGemmPipe
::
PrefetchStages
>
7
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Seven
)
{
const
auto
kernel
=
kernel_grouped_conv_fwd_xdl_cshuffle_v3
<
GridwiseGemm
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
DeviceOp
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
ComputePtrOffsetOfStridedBatch
<
I1
,
I1
,
I0
>
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Seven
>
;
Run
(
kernel
);
}
}
}
// Tail number could be Odd or Even
else
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v4
)
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Odd
)
{
const
auto
kernel
=
kernel_grouped_conv_fwd_xdl_cshuffle_v3_2lds
<
GridwiseGemm
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
DeviceOp
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
ComputePtrOffsetOfStridedBatch
<
I1
,
I1
,
I0
>
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Odd
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_grouped_conv_fwd_xdl_cshuffle_v3_2lds
<
GridwiseGemm
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
DeviceOp
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
ComputePtrOffsetOfStridedBatch
<
I1
,
I1
,
I0
>
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Even
>
;
Run
(
kernel
);
}
}
else
{
if
(
GridwiseGemm
::
CalculateKBlockLoopTailNum
(
K_split
)
==
TailNumber
::
Odd
)
{
const
auto
kernel
=
kernel_grouped_conv_fwd_xdl_cshuffle_v3
<
GridwiseGemm
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
DeviceOp
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
ComputePtrOffsetOfStridedBatch
<
I1
,
I1
,
I0
>
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Odd
>
;
Run
(
kernel
);
}
else
{
const
auto
kernel
=
kernel_grouped_conv_fwd_xdl_cshuffle_v3
<
GridwiseGemm
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
DeviceOp
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
ComputePtrOffsetOfStridedBatch
<
I1
,
I1
,
I0
>
,
true
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
,
TailNumber
::
Even
>
;
Run
(
kernel
);
}
}
}
else
{
// Tail number always 1
if
constexpr
(
BlkGemmPipelineVer
==
BlockGemmPipelineVersion
::
v1
)
{
const
auto
kernel
=
kernel_grouped_conv_fwd_xdl_cshuffle_v3
<
GridwiseGemm
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
DeviceOp
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
ComputePtrOffsetOfStridedBatch
<
I1
,
I1
,
I0
>
,
false
,
InMemoryDataOperationEnum
::
Set
,
minimum_occupancy
>
;
Run
(
kernel
);
}
}
return
ave_time
;
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
namespace
ctc
=
tensor_layout
::
convolution
;
// check device
if
(
get_device_name
()
==
"gfx908"
)
{
// FIXME: re-enable fp64 when SWDEV-335738 is fixed
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
))
{
return
false
;
}
}
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
// check ConvolutionForwardSpecialization
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
)
{
// check if it's 1x1, stride=1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
3
];
const
index_t
ConvStride
=
arg
.
conv_filter_strides_
[
i
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
if
(
!
(
X
==
1
&&
ConvStride
==
1
&&
LeftPad
==
0
&&
RightPad
==
0
))
{
return
false
;
}
}
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Pad0
)
{
// check if it's 1x1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
3
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
if
(
!
(
X
==
1
&&
LeftPad
==
0
&&
RightPad
==
0
))
{
return
false
;
}
}
}
// check vector access of A
// FIXME: layout
if
constexpr
(
is_same_v
<
ALayout
,
ctc
::
G_NW_C
>
||
is_same_v
<
ALayout
,
ctc
::
G_NHW_C
>
||
is_same_v
<
ALayout
,
ctc
::
G_NDHW_C
>
||
is_same_v
<
ALayout
,
ctc
::
GNWC
>
||
is_same_v
<
ALayout
,
ctc
::
GNHWC
>
||
is_same_v
<
ALayout
,
ctc
::
GNDHWC
>
||
is_same_v
<
ALayout
,
ctc
::
NWGC
>
||
is_same_v
<
ALayout
,
ctc
::
NHWGC
>
||
is_same_v
<
ALayout
,
ctc
::
NDHWGC
>
)
{
const
index_t
C
=
arg
.
a_g_n_c_wis_lengths_
[
2
];
if
(
!
(
ABlockTransferSrcVectorDim
==
2
&&
C
%
ABlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
else
{
return
false
;
}
// check vector access of B
// FIXME: layout
if
constexpr
(
is_same_v
<
BLayout
,
ctc
::
G_K_X_C
>
||
is_same_v
<
BLayout
,
ctc
::
G_K_YX_C
>
||
is_same_v
<
BLayout
,
ctc
::
G_K_ZYX_C
>
||
is_same_v
<
BLayout
,
ctc
::
GKXC
>
||
is_same_v
<
BLayout
,
ctc
::
GKYXC
>
||
is_same_v
<
BLayout
,
ctc
::
GKZYXC
>
||
is_same_v
<
BLayout
,
ctc
::
KXGC
>
||
is_same_v
<
BLayout
,
ctc
::
KYXGC
>
||
is_same_v
<
BLayout
,
ctc
::
KZYXGC
>
)
{
const
index_t
C
=
arg
.
b_g_k_c_xs_lengths_
[
2
];
if
(
!
(
BBlockTransferSrcVectorDim
==
2
&&
C
%
BBlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
else
{
return
false
;
}
// check vector access of E
if
constexpr
(
is_same_v
<
ELayout
,
ctc
::
G_NW_K
>
||
is_same_v
<
ELayout
,
ctc
::
G_NHW_K
>
||
is_same_v
<
ELayout
,
ctc
::
G_NDHW_K
>
||
is_same_v
<
ELayout
,
ctc
::
GNWK
>
||
is_same_v
<
ELayout
,
ctc
::
GNHWK
>
||
is_same_v
<
ELayout
,
ctc
::
GNDHWK
>
||
is_same_v
<
ELayout
,
ctc
::
NWGK
>
||
is_same_v
<
ELayout
,
ctc
::
NHWGK
>
||
is_same_v
<
ELayout
,
ctc
::
NDHWGK
>
)
{
const
index_t
K
=
arg
.
e_g_n_k_wos_lengths_
[
2
];
if
(
!
(
K
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
))
{
return
false
;
}
}
else
{
return
false
;
}
// check Gridwise GEMM
const
index_t
GemmM
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I1
);
const
index_t
GemmN
=
arg
.
b_grid_desc_bk0_n_bk1_
.
GetLength
(
I1
);
const
index_t
GemmK
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
typename
GridwiseGemm
::
Argument
gemm_arg
{
nullptr
,
nullptr
,
nullptr
,
GemmM
,
GemmN
,
GemmK
,
I0
,
I0
,
I0
,
I1
/*KBatch*/
};
return
GridwiseGemm
::
CheckValidity
(
gemm_arg
);
}
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_as
,
const
void
*
p_bs
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
{
return
Argument
{
p_as
,
p_bs
,
p_ds
,
p_e
,
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
ds_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_a
,
p_b
,
p_ds
,
p_e
,
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
ds_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
a_element_op
,
b_element_op
,
cde_element_op
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
std
::
map
<
BlockGemmPipelineScheduler
,
std
::
string
>
BlkGemmPipelineSchedulerToString
{
{
BlockGemmPipelineScheduler
::
Intrawave
,
"Intrawave"
},
{
BlockGemmPipelineScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
BlockGemmPipelineVersion
,
std
::
string
>
BlkGemmPipelineVersionToString
{
{
BlockGemmPipelineVersion
::
v1
,
"v1"
},
{
BlockGemmPipelineVersion
::
v2
,
"v2"
},
{
BlockGemmPipelineVersion
::
v3
,
"v3"
},
{
BlockGemmPipelineVersion
::
v4
,
"v4"
},
{
BlockGemmPipelineVersion
::
v5
,
"v5"
}};
// clang-format off
str
<<
"DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
getConvForwardSpecializationString
(
ConvForwardSpecialization
)
<<
", "
<<
MPerXDL
<<
", "
<<
NPerXDL
<<
", "
<<
MXdlPerWave
<<
", "
<<
NXdlPerWave
<<
", "
<<
ABlockTransferSrcScalarPerVector
<<
", "
<<
BBlockTransferSrcScalarPerVector
<<
", "
<<
CDEBlockTransferScalarPerVector_NPerBlock
<<
", "
<<
CShuffleMXdlPerWavePerShuffle
<<
", "
<<
CShuffleNXdlPerWavePerShuffle
<<
", "
<<
"BlkGemmPipelineScheduler: "
<<
BlkGemmPipelineSchedulerToString
[
BlkGemmPipeSched
]
<<
", "
<<
"BlkGemmPipelineVersion: "
<<
BlkGemmPipelineVersionToString
[
BlkGemmPipelineVer
]
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_multiple_r_xdl_cshuffle.hpp
View file @
dcd3d21a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -161,11 +161,11 @@ __global__ void
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn
_readfirstlane
(
const
long_index_t
a_batch_offset
=
amd_wave
_read
_
first
_
lane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn
_readfirstlane
(
const
long_index_t
b_batch_offset
=
amd_wave
_read
_
first
_
lane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
)));
const
long_index_t
e_batch_offset
=
__builtin_amdgcn
_readfirstlane
(
const
long_index_t
e_batch_offset
=
amd_wave
_read
_
first
_
lane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
)));
const
auto
ds_batch_offset
=
compute_ptr_offset_of_batch
.
GetDsPtrOffset
(
g_idx
);
...
...
@@ -338,7 +338,8 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
input_right_pads
,
a_g_n_c_wis_lengths
[
I1
]);
const
auto
in_gemmm_gemmk_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_desc
);
...
...
@@ -367,8 +368,8 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
)
{
const
auto
out_gemmmraw_gemmnraw_desc
=
conv_to_gemm_transformer
.
template
MakeCDescriptor_M_N
<
ELay
>(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
);
conv_to_gemm_transformer
.
template
MakeCDescriptor_M_N
<
ELay
>(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
e_g_n_k_wos_lengths
[
I1
]
);
const
auto
out_gemmm_gemmn_desc
=
matrix_padder
.
PadCDescriptor_M_N
(
out_gemmmraw_gemmnraw_desc
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_wmma_cshuffle.hpp
View file @
dcd3d21a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -163,7 +163,8 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
input_right_pads
,
a_g_n_c_wis_lengths
[
I1
]);
const
auto
in_gemmm_gemmk_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_desc
);
...
...
@@ -255,8 +256,8 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
)
{
const
auto
out_gemmmraw_gemmnraw_desc
=
conv_to_gemm_transformer
.
template
MakeCDescriptor_M_N
<
ELay
>(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
);
conv_to_gemm_transformer
.
template
MakeCDescriptor_M_N
<
ELay
>(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
e_g_n_k_wos_lengths
[
I1
]
);
const
auto
out_gemmm_gemmn_desc
=
matrix_padder
.
PadCDescriptor_M_N
(
out_gemmmraw_gemmnraw_desc
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp
View file @
dcd3d21a
...
...
@@ -68,14 +68,14 @@ template <index_t NumATensor, index_t NumBTensor, index_t NumDTensor>
struct
ComputePtrOffsetOfStridedBatch
<
NumATensor
,
NumBTensor
,
NumDTensor
,
ck
::
enable_if_t
<
(
NumATensor
>
1
||
NumBTensor
>
1
)
>>
enable_if_t
<
(
NumATensor
>
1
||
NumBTensor
>
1
)
>>
{
ComputePtrOffsetOfStridedBatch
()
=
default
;
ComputePtrOffsetOfStridedBatch
(
Array
<
ck
::
index_t
,
NumATensor
>&
BatchStrideAs
,
Array
<
ck
::
index_t
,
NumBTensor
>&
BatchStrideBs
,
Array
<
ck
::
index_t
,
NumDTensor
>&
BatchStrideDs
,
index_t
BatchStrideE
)
ComputePtrOffsetOfStridedBatch
(
Array
<
long_
index_t
,
NumATensor
>&
BatchStrideAs
,
Array
<
long_
index_t
,
NumBTensor
>&
BatchStrideBs
,
Array
<
long_
index_t
,
NumDTensor
>&
BatchStrideDs
,
long_
index_t
BatchStrideE
)
:
BatchStrideA_
(
BatchStrideAs
),
BatchStrideB_
(
BatchStrideBs
),
BatchStrideDs_
(
BatchStrideDs
),
...
...
@@ -87,7 +87,7 @@ struct ComputePtrOffsetOfStridedBatch<NumATensor,
{
Array
<
long_index_t
,
NumATensor
>
as_offset
;
static_for
<
0
,
NumATensor
,
1
>
{}(
[
&
](
auto
i
)
{
as_offset
(
i
)
=
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideA_
[
i
]
)
;
});
[
&
](
auto
i
)
{
as_offset
(
i
)
=
static_cast
<
long_index_t
>
(
g_idx
)
*
BatchStrideA_
[
i
];
});
return
as_offset
;
}
...
...
@@ -95,7 +95,7 @@ struct ComputePtrOffsetOfStridedBatch<NumATensor,
{
Array
<
long_index_t
,
NumBTensor
>
bs_offset
;
static_for
<
0
,
NumBTensor
,
1
>
{}(
[
&
](
auto
i
)
{
bs_offset
(
i
)
=
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideB_
[
i
]
)
;
});
[
&
](
auto
i
)
{
bs_offset
(
i
)
=
static_cast
<
long_index_t
>
(
g_idx
)
*
BatchStrideB_
[
i
];
});
return
bs_offset
;
}
...
...
@@ -103,40 +103,40 @@ struct ComputePtrOffsetOfStridedBatch<NumATensor,
{
Array
<
long_index_t
,
NumDTensor
>
ds_offset
;
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
ds_offset
(
i
)
=
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideDs_
[
i
]
)
;
});
[
&
](
auto
i
)
{
ds_offset
(
i
)
=
static_cast
<
long_index_t
>
(
g_idx
)
*
BatchStrideDs_
[
i
];
});
return
ds_offset
;
}
[[
maybe_unused
]]
__host__
__device__
constexpr
long_index_t
GetEPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideE_
)
;
return
static_cast
<
long_index_t
>
(
g_idx
)
*
BatchStrideE_
;
}
// alias for kernels without multiple D
[[
maybe_unused
]]
__host__
__device__
constexpr
long_index_t
GetCPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideE_
)
;
return
static_cast
<
long_index_t
>
(
g_idx
)
*
BatchStrideE_
;
}
Array
<
ck
::
index_t
,
NumATensor
>
BatchStrideA_
;
Array
<
ck
::
index_t
,
NumBTensor
>
BatchStrideB_
;
Array
<
ck
::
index_t
,
NumDTensor
>
BatchStrideDs_
;
index_t
BatchStrideE_
;
index_t
&
BatchStrideC_
=
BatchStrideE_
;
// alias for kernels without multiple D
Array
<
long_
index_t
,
NumATensor
>
BatchStrideA_
;
Array
<
long_
index_t
,
NumBTensor
>
BatchStrideB_
;
Array
<
long_
index_t
,
NumDTensor
>
BatchStrideDs_
;
long_
index_t
BatchStrideE_
;
long_
index_t
&
BatchStrideC_
=
BatchStrideE_
;
// alias for kernels without multiple D
};
template
<
index_t
NumATensor
,
index_t
NumBTensor
,
index_t
NumDTensor
>
struct
ComputePtrOffsetOfStridedBatch
<
NumATensor
,
NumBTensor
,
NumDTensor
,
ck
::
enable_if_t
<
(
NumATensor
==
1
&&
NumBTensor
==
1
)
>>
enable_if_t
<
(
NumATensor
==
1
&&
NumBTensor
==
1
)
>>
{
ComputePtrOffsetOfStridedBatch
()
=
default
;
ComputePtrOffsetOfStridedBatch
(
index_t
BatchStrideA
,
index_t
BatchStrideB
,
Array
<
ck
::
index_t
,
NumDTensor
>
BatchStrideDs
,
index_t
BatchStrideE
)
ComputePtrOffsetOfStridedBatch
(
long_
index_t
BatchStrideA
,
long_
index_t
BatchStrideB
,
Array
<
long_
index_t
,
NumDTensor
>
BatchStrideDs
,
long_
index_t
BatchStrideE
)
:
BatchStrideA_
(
BatchStrideA
),
BatchStrideB_
(
BatchStrideB
),
BatchStrideDs_
(
BatchStrideDs
),
...
...
@@ -146,38 +146,38 @@ struct ComputePtrOffsetOfStridedBatch<NumATensor,
__host__
__device__
constexpr
long_index_t
GetAPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideA_
)
;
return
static_cast
<
long_index_t
>
(
g_idx
)
*
BatchStrideA_
;
}
__host__
__device__
constexpr
long_index_t
GetBPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideB_
)
;
return
static_cast
<
long_index_t
>
(
g_idx
)
*
BatchStrideB_
;
}
__host__
__device__
constexpr
auto
GetDsPtrOffset
(
index_t
g_idx
)
const
{
Array
<
long_index_t
,
NumDTensor
>
ds_offset
;
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
ds_offset
(
i
)
=
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideDs_
[
i
]
)
;
});
[
&
](
auto
i
)
{
ds_offset
(
i
)
=
static_cast
<
long_index_t
>
(
g_idx
)
*
BatchStrideDs_
[
i
];
});
return
ds_offset
;
}
[[
maybe_unused
]]
__host__
__device__
constexpr
long_index_t
GetEPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideE_
)
;
return
static_cast
<
long_index_t
>
(
g_idx
)
*
BatchStrideE_
;
}
// alias for kernels without multiple D
[[
maybe_unused
]]
__host__
__device__
constexpr
long_index_t
GetCPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideE_
)
;
return
static_cast
<
long_index_t
>
(
g_idx
)
*
BatchStrideE_
;
}
ck
::
index_t
BatchStrideA_
;
ck
::
index_t
BatchStrideB_
;
Array
<
ck
::
index_t
,
NumDTensor
>
BatchStrideDs_
;
index_t
BatchStrideE_
;
index_t
&
BatchStrideC_
=
BatchStrideE_
;
// alias for kernels without multiple D
long_
index_t
BatchStrideA_
;
long_
index_t
BatchStrideB_
;
Array
<
long_
index_t
,
NumDTensor
>
BatchStrideDs_
;
long_
index_t
BatchStrideE_
;
long_
index_t
&
BatchStrideC_
=
BatchStrideE_
;
// alias for kernels without multiple D
};
template
<
bool
isTuple
,
typename
Tensors
>
...
...
Prev
1
…
3
4
5
6
7
8
9
10
11
…
19
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment