Commit dcd3d21a authored by illsilin's avatar illsilin
Browse files

merge from public repo

parents 9f2a6d43 8182976c
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include <fstream>
#include <variant>
// functions to return the corresponding structs based on generated template parameters
using layouts = std::variant<ck::tensor_layout::convolution::GNWK,
ck::tensor_layout::convolution::GNHWK,
ck::tensor_layout::convolution::NHWGK,
ck::tensor_layout::convolution::GNDHWK,
ck::tensor_layout::convolution::NDHWGK>;
// return the layout type: currently this is the only type supported in MIOpen
auto layout_type(std::string type)
{
if(type == "ck::tensor_layout::convolution::NHWGK")
{
return ck::tensor_layout::convolution::NHWGK{};
}
throw std::runtime_error("Incorrect layout");
}
// return the right gemm spec based on the generated template parameters
ck::tensor_operation::device::GemmSpecialization gemm_type(std::string type)
{
if(type == "ck::tensor_operation::device::GemmSpecialization::Default")
{
return ck::tensor_operation::device::GemmSpecialization::Default;
}
if(type == "ck::tensor_operation::device::GemmSpecialization::MNKPadding")
{
return ck::tensor_operation::device::GemmSpecialization::MNKPadding;
}
throw std::runtime_error("Incorrect gemm spec: " + type);
}
// return the type of convolution
ck::tensor_operation::device::ConvolutionForwardSpecialization conv_type(std::string type)
{
if(type == "ck::tensor_operation::device::ConvolutionForwardSpecialization::Default")
{
return ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
}
if(type == "ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0")
{
return ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0;
}
if(type ==
"ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0")
{
return ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0;
}
if(type == "ck::tensor_operation::device::ConvolutionForwardSpecialization::OddC")
{
return ck::tensor_operation::device::ConvolutionForwardSpecialization::OddC;
}
throw std::runtime_error("Incorrect conv spec: " + type);
}
// Function to call on MatrixPadder via a wrapper struct
// NOTE: CK only uses MNKPadding for forward convolution
template <typename CDesc_MRaw_NRaw>
auto pad(ck::index_t mpb,
ck::index_t npb,
ck::index_t kpb,
ck::tensor_operation::device::GemmSpecialization gemm,
CDesc_MRaw_NRaw conv)
{
if(gemm == ck::tensor_operation::device::GemmSpecialization::MNKPadding)
{
ck::tensor_operation::device::MatrixPadder<
ck::tensor_operation::device::GemmSpecialization::MNKPadding,
ck::index_t,
ck::index_t,
ck::index_t>
a;
a.MPerTile_ = mpb;
a.NPerTile_ = npb;
a.KPerTile_ = kpb;
auto tmp = grid_desc(a, conv);
return tmp;
}
throw std::runtime_error("Incorrect template parameters, check gemm spec");
}
// Functions to call on TransformConvFwdToGemm through wrapper: different functions based on num
// dims
// FIXME: add a way to properly pass in the layout
auto transform_conv(ck::index_t num_dim,
ck::tensor_operation::device::ConvolutionForwardSpecialization spec,
ck::Array<ck::index_t, 5> out_lengths,
ck::Array<ck::index_t, 5> out_strides)
{
if(num_dim == 2 &&
spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::Default)
{
ck::tensor_operation::TransformConvFwdToGemm<
2,
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
if(num_dim == 2 &&
spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0)
{
ck::tensor_operation::TransformConvFwdToGemm<
2,
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
if(num_dim == 2 &&
spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
ck::tensor_operation::TransformConvFwdToGemm<
2,
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
if(num_dim == 2 && spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::OddC)
{
ck::tensor_operation::TransformConvFwdToGemm<
2,
ck::tensor_operation::device::ConvolutionForwardSpecialization::OddC>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
throw std::runtime_error("Incorrect conv spec");
}
auto transform_conv_3d(ck::index_t num_dim,
ck::tensor_operation::device::ConvolutionForwardSpecialization spec,
ck::Array<ck::index_t, 6> out_lengths,
ck::Array<ck::index_t, 6> out_strides)
{
if(num_dim == 3 &&
spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::Default)
{
ck::tensor_operation::TransformConvFwdToGemm<
3,
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
if(num_dim == 3 &&
spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0)
{
ck::tensor_operation::TransformConvFwdToGemm<
3,
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
if(num_dim == 3 &&
spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
ck::tensor_operation::TransformConvFwdToGemm<
3,
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
if(num_dim == 3 && spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::OddC)
{
ck::tensor_operation::TransformConvFwdToGemm<
3,
ck::tensor_operation::device::ConvolutionForwardSpecialization::OddC>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
throw std::runtime_error("Incorrect conv spec");
}
auto transform_conv_1d(ck::index_t num_dim,
ck::tensor_operation::device::ConvolutionForwardSpecialization spec,
ck::Array<ck::index_t, 4> out_lengths,
ck::Array<ck::index_t, 4> out_strides)
{
if(num_dim == 1 &&
spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::Default)
{
ck::tensor_operation::TransformConvFwdToGemm<
1,
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
if(num_dim == 1 &&
spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0)
{
ck::tensor_operation::TransformConvFwdToGemm<
1,
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
if(num_dim == 1 &&
spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
ck::tensor_operation::TransformConvFwdToGemm<
1,
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
if(num_dim == 1 && spec == ck::tensor_operation::device::ConvolutionForwardSpecialization::OddC)
{
ck::tensor_operation::TransformConvFwdToGemm<
1,
ck::tensor_operation::device::ConvolutionForwardSpecialization::OddC>
conv_fwd;
auto res = ck::tensor_operation::TransformConv();
return res.transform_func(out_lengths, out_strides, conv_fwd);
}
throw std::runtime_error("Incorrect dims or conv spec");
}
template <typename CGridDesc_M_N>
auto block_2_etile(ck::index_t m_per_block, ck::index_t n_per_block, CGridDesc_M_N matrix_padder)
{
if(m_per_block == 32 && n_per_block == 64)
{
auto b2e = ck::BlockToCTileMap_M00_N0_M01Adapt<32, 64, CGridDesc_M_N>(matrix_padder);
return b2e.CalculateGridSize(matrix_padder);
}
if(m_per_block == 32 && n_per_block == 128)
{
ck::BlockToCTileMap_M00_N0_M01Adapt<32, 128, CGridDesc_M_N> b2e(matrix_padder);
return b2e.CalculateGridSize(matrix_padder);
}
if(m_per_block == 64 && n_per_block == 32)
{
ck::BlockToCTileMap_M00_N0_M01Adapt<64, 32, CGridDesc_M_N> b2e(matrix_padder);
return b2e.CalculateGridSize(matrix_padder);
}
if(m_per_block == 64 && n_per_block == 64)
{
ck::BlockToCTileMap_M00_N0_M01Adapt<64, 64, CGridDesc_M_N> b2e(matrix_padder);
return b2e.CalculateGridSize(matrix_padder);
}
if(m_per_block == 64 && n_per_block == 128)
{
ck::BlockToCTileMap_M00_N0_M01Adapt<64, 128, CGridDesc_M_N> b2e(matrix_padder);
return b2e.CalculateGridSize(matrix_padder);
}
if(m_per_block == 128 && n_per_block == 32)
{
ck::BlockToCTileMap_M00_N0_M01Adapt<128, 32, CGridDesc_M_N> b2e(matrix_padder);
return b2e.CalculateGridSize(matrix_padder);
}
if(m_per_block == 128 && n_per_block == 64)
{
ck::BlockToCTileMap_M00_N0_M01Adapt<128, 64, CGridDesc_M_N> b2e(matrix_padder);
return b2e.CalculateGridSize(matrix_padder);
}
if(m_per_block == 128 && n_per_block == 128)
{
ck::BlockToCTileMap_M00_N0_M01Adapt<128, 128, CGridDesc_M_N> b2e(matrix_padder);
return b2e.CalculateGridSize(matrix_padder);
}
if(m_per_block == 128 && n_per_block == 256)
{
ck::BlockToCTileMap_M00_N0_M01Adapt<128, 256, CGridDesc_M_N> b2e(matrix_padder);
return b2e.CalculateGridSize(matrix_padder);
}
if(m_per_block == 256 && n_per_block == 128)
{
ck::BlockToCTileMap_M00_N0_M01Adapt<256, 128, CGridDesc_M_N> b2e(matrix_padder);
return b2e.CalculateGridSize(matrix_padder);
}
throw std::runtime_error("Incorrect template parameters");
}
// wrapper functions by dims to get grid size - uses above 3 functions
// TODO: eventually remove the 1d/2d versions as CK will only support 3d convolutions
auto get_launch_params_1d(ck::host::Solution solution,
ck::Array<ck::index_t, 4> out_lengths,
ck::Array<ck::index_t, 4> out_strides)
{
auto num_dim = solution.GetTemplateParameter<ck::index_t>("NumDim");
auto m_per_block = solution.GetTemplateParameter<ck::index_t>("MPerBlock");
auto n_per_block = solution.GetTemplateParameter<ck::index_t>("NPerBlock");
auto k_per_block = solution.GetTemplateParameter<ck::index_t>("KPerBlock");
auto GemmType = solution.GetTemplateParameter<std::string>("GemmSpecialization");
auto ConvType = solution.GetTemplateParameter<std::string>("ConvSpecialization");
ck::tensor_operation::device::GemmSpecialization GemmSpec = gemm_type(GemmType);
ck::tensor_operation::device::ConvolutionForwardSpecialization ConvSpec = conv_type(ConvType);
auto conv_to_gemm_transformer = transform_conv_1d(num_dim, ConvSpec, out_lengths, out_strides);
auto matrix_padder =
pad(m_per_block, n_per_block, k_per_block, GemmSpec, conv_to_gemm_transformer);
auto b2e = block_2_etile(m_per_block, n_per_block, matrix_padder);
return b2e;
}
auto get_launch_params(ck::host::Solution solution,
ck::Array<ck::index_t, 5> out_lengths,
ck::Array<ck::index_t, 5> out_strides)
{
auto num_dim = solution.GetTemplateParameter<ck::index_t>("NumDim");
auto m_per_block = solution.GetTemplateParameter<ck::index_t>("MPerBlock");
auto n_per_block = solution.GetTemplateParameter<ck::index_t>("NPerBlock");
auto k_per_block = solution.GetTemplateParameter<ck::index_t>("KPerBlock");
auto GemmType = solution.GetTemplateParameter<std::string>("GemmSpecialization");
auto ConvType = solution.GetTemplateParameter<std::string>("ConvSpecialization");
ck::tensor_operation::device::GemmSpecialization GemmSpec = gemm_type(GemmType);
ck::tensor_operation::device::ConvolutionForwardSpecialization ConvSpec = conv_type(ConvType);
auto conv_to_gemm_transformer = transform_conv(num_dim, ConvSpec, out_lengths, out_strides);
auto matrix_padder =
pad(m_per_block, n_per_block, k_per_block, GemmSpec, conv_to_gemm_transformer);
auto b2e = block_2_etile(m_per_block, n_per_block, matrix_padder);
return b2e;
}
auto get_launch_params_3d(ck::host::Solution solution,
ck::Array<ck::index_t, 6> out_lengths,
ck::Array<ck::index_t, 6> out_strides)
{
auto num_dim = solution.GetTemplateParameter<ck::index_t>("NumDim");
auto m_per_block = solution.GetTemplateParameter<ck::index_t>("MPerBlock");
auto n_per_block = solution.GetTemplateParameter<ck::index_t>("NPerBlock");
auto k_per_block = solution.GetTemplateParameter<ck::index_t>("KPerBlock");
auto GemmType = solution.GetTemplateParameter<std::string>("GemmSpecialization");
auto ConvType = solution.GetTemplateParameter<std::string>("ConvSpecialization");
ck::tensor_operation::device::GemmSpecialization GemmSpec = gemm_type(GemmType);
ck::tensor_operation::device::ConvolutionForwardSpecialization ConvSpec = conv_type(ConvType);
auto conv_to_gemm_transformer = transform_conv_3d(num_dim, ConvSpec, out_lengths, out_strides);
auto matrix_padder =
pad(m_per_block, n_per_block, k_per_block, GemmSpec, conv_to_gemm_transformer);
auto b2e = block_2_etile(m_per_block, n_per_block, matrix_padder);
return b2e;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <functional>
#include <iostream>
#include <iterator>
#include <numeric>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/io.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace {
/*
* \brief Wrapper function of GridwiseGemm::Run to realize BatchedGEMM.
*
* \tparam ComputePtrOffsetOfBatch Class that computes the base pointer offsets of A, B, C matrix
* given the batch. For example, ComputePtrOffsetOfStridedBatch() computes the offsets of evenly
* strided batched, but we can easily extend to other layouts. The returned offset can be either \p
* index_t or \p long_index_t. If it returns \p long_index_t, we are not subject to the 2GB
* limitations.
*
* \tparam Block2ETileMap Block2ETileMap::CalculateBottomIndex() takes in id of a workgroup and
* returns the 2D index of the tile that it computes. \see
* GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3::Run().
*
* \note Using \p ComputePtrOffsetOfBatch gives us the flexibility that 2 workgroups can compute 2
* tiles from different matrices. Keep in mind that these 2 matrices can share the same grid
* descriptor (like in BatchedGEMM), or use their own grid descriptors (in GroupedGemm). \link
* impl/device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk.hpp kernel_gemm_xdlops_v2r3_for_conv3d \endlink for
* \link DeviceConv3d \endlink uses the same concept, but currently does NOT encapsulate the
* computing of pointer offset into \p ComputePtrOffsetOfStridedBatch.
*
* \note \p Block2ETileMap allows customized mapping between a workgroup and the C-tile it computes.
* Together with \p ComputePtrOffsetOfBatch, we can reuse GridwiseGemm (and GridwiseGemm fusion ) to
* realize BatchedGemm and GroupedGemm (and the corresponding GEMM fusion).
*
*/
template <typename GridwiseGemm,
typename AsPointer, // tuples if multi AB, pointers if no
typename BsPointer,
typename DsPointer,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename Block2ETileMap,
typename ComputePtrOffsetOfBatch,
bool HasMainKBlockLoop,
bool isMultiA,
bool isMultiB>
__device__ void device_grouped_conv_fwd_multiple_abd_xdl_cshuffle(
AsPointer p_as_grid,
BsPointer p_bs_grid,
DsPointer p_ds_grid,
EDataType* __restrict__ p_e_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op,
const index_t batch_count,
const AGridDesc_AK0_M_AK1 a_grid_desc_k0_m_k1,
const BGridDesc_BK0_N_BK1 b_grid_desc_k0_n_k1,
const DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock,
const EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_,
const Block2ETileMap block_2_ctile_map,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
// offset base pointer for each work-group
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t e_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const auto& ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
DsPointer p_ds_grid_grp;
static constexpr index_t NumDTensor =
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock::Size();
static_for<0, NumDTensor, 1>{}(
[&](auto i) { p_ds_grid_grp(i) = p_ds_grid[i] + ds_batch_offset[i]; });
if constexpr(isMultiA || isMultiB)
{
AsPointer p_as_grid_grp;
BsPointer p_bs_grid_grp;
const auto& as_batch_offset = compute_ptr_offset_of_batch.GetAsPtrOffset(g_idx);
static constexpr index_t NumATensor = AGridDesc_AK0_M_AK1::Size();
static_for<0, NumATensor, 1>{}(
[&](auto i) { p_as_grid_grp(i) = p_as_grid[i] + as_batch_offset[i]; });
const auto& bs_batch_offset = compute_ptr_offset_of_batch.GetBsPtrOffset(g_idx);
static constexpr index_t NumBTensor = BGridDesc_BK0_N_BK1::Size();
static_for<0, NumBTensor, 1>{}(
[&](auto i) { p_bs_grid_grp(i) = p_bs_grid[i] + bs_batch_offset[i]; });
GridwiseGemm::template Run<HasMainKBlockLoop>(
p_as_grid_grp,
p_bs_grid_grp,
p_ds_grid_grp,
p_e_grid + e_batch_offset,
p_shared,
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_k0_m_k1,
b_grid_desc_k0_n_k1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock_,
block_2_ctile_map);
}
else
{
const long_index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
GridwiseGemm::template Run<HasMainKBlockLoop>(
p_as_grid + a_batch_offset,
p_bs_grid + b_batch_offset,
p_ds_grid_grp,
p_e_grid + e_batch_offset,
p_shared,
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_k0_m_k1,
b_grid_desc_k0_n_k1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock_,
block_2_ctile_map);
}
#else
ignore = p_as_grid;
ignore = p_bs_grid;
ignore = p_ds_grid;
ignore = p_e_grid;
ignore = batch_count;
ignore = a_grid_desc_k0_m_k1;
ignore = b_grid_desc_k0_n_k1;
ignore = ds_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = e_grid_desc_mblock_mperblock_nblock_nperblock_;
ignore = a_element_op;
ignore = b_element_op;
ignore = cde_element_op;
ignore = compute_ptr_offset_of_batch;
ignore = block_2_ctile_map;
#endif
}
template <typename GridwiseGemm,
typename AsPointer, // tuples if multi AB, pointers if no
typename BsPointer,
typename DsPointer,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename Block2ETileMap,
typename ComputePtrOffsetOfBatch,
bool HasMainKBlockLoop,
bool isMultiA,
bool isMultiB>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_grouped_conv_fwd_multiple_abd_xdl_cshuffle(
AsPointer p_as_grid,
BsPointer p_bs_grid,
DsPointer p_ds_grid,
EDataType* __restrict__ p_e_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op,
const index_t batch_count,
const AGridDesc_AK0_M_AK1 a_grid_desc_k0_m_k1,
const BGridDesc_BK0_N_BK1 b_grid_desc_k0_n_k1,
const DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock,
const EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_,
const Block2ETileMap block_2_ctile_map,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
{
device_grouped_conv_fwd_multiple_abd_xdl_cshuffle<
GridwiseGemm,
AsPointer, // tuples if multi AB, pointers if no
BsPointer,
DsPointer,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1,
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
Block2ETileMap,
ComputePtrOffsetOfBatch,
HasMainKBlockLoop,
isMultiA,
isMultiB>(p_as_grid,
p_bs_grid,
p_ds_grid,
*p_e_grid,
a_element_op,
b_element_op,
cde_element_op,
batch_count,
a_grid_desc_k0_m_k1,
b_grid_desc_k0_n_k1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock_,
block_2_ctile_map,
compute_ptr_offset_of_batch);
}
} // namespace
template <typename T>
using is_tuple = decltype(std::declval<T&>().IsTuple());
//
// @brief Device Convolution operation.
//
// Supports:
// @li Forward convolution with up to 3 spatial dimentions
// @li Input tensor in GNWC data format
// @li Weight tensor in GKXC data format
// @li Output tensor in GNWK data format
//
// 1D:
// out[N, Wo, K] = in[N, Wi, C] * wei[K, X, C]
// 2D:
// out[N, Ho, Wo, K] = in[N, Hi, Wi, C] * wei[K, Y, X, C]
// 3D:
// out[N, Do, Ho, Wo, K] = in[N, Di, Hi, Wi, C] * wei[K, Z, Y, X, C]
//
template <index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
ConvolutionForwardSpecialization ConvForwardSpecialization,
GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1,
index_t BK1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
index_t ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
index_t BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEBlockTransferScalarPerVector_NPerBlock,
typename ComputeDataType =
decltype(UnpackDataType<is_detected<is_tuple, ADataType>::value,
Number<0>,
ADataType>()), // ComputeType is InputType by default (first
// in tuple for MultiAB), unpack if tuple was
// passed
LoopScheduler LoopSched = make_default_loop_scheduler()>
struct CodegenDeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
: public DeviceGroupedConvFwdMultipleABD<NDimSpatial,
ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
ComputeDataType>
{
using DeviceOp = CodegenDeviceGroupedConvFwdMultipleABD_Xdl_CShuffle;
static constexpr bool isMultiA = is_detected<is_tuple, ADataType>::value;
static constexpr bool isMultiB = is_detected<is_tuple, BDataType>::value;
static constexpr index_t NumATensor = GetNumABTensors<isMultiA, ADataType>();
static constexpr index_t NumBTensor = GetNumABTensors<isMultiB, BDataType>();
static constexpr index_t NumDTensor = DsDataType::Size();
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto conv_to_gemm_transformer =
TransformConvFwdToGemm<NDimSpatial, ConvForwardSpecialization>{};
static constexpr auto matrix_padder =
MatrixPadder<GemmSpec, index_t, index_t, index_t>{MPerBlock, NPerBlock, KPerBlock};
template <typename ALay>
__host__ __device__ static auto
MakeAGridDescriptor_M_K(const ck::Array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const ck::Array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const ck::Array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const ck::Array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const ck::Array<index_t, NDimSpatial>& conv_filter_strides,
const ck::Array<index_t, NDimSpatial>& conv_filter_dilations,
const ck::Array<index_t, NDimSpatial>& input_left_pads,
const ck::Array<index_t, NDimSpatial>& input_right_pads)
{
const auto in_gemmmraw_gemmkraw_desc =
conv_to_gemm_transformer.template MakeADescriptor_M_K<ALay>(a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
const auto in_gemmm_gemmk_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_desc);
return in_gemmm_gemmk_desc;
}
template <typename BLay>
__host__ __device__ static auto
MakeBGridDescriptor_N_K(const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides)
{
const auto wei_gemmnraw_gemmkraw_desc =
conv_to_gemm_transformer.template MakeBDescriptor_N_K<BLay>(b_g_k_c_xs_lengths,
b_g_k_c_xs_strides);
const auto wei_gemmn_gemmk_desc =
matrix_padder.PadBDescriptor_N_K(wei_gemmnraw_gemmkraw_desc);
return wei_gemmn_gemmk_desc;
}
template <typename ELay>
__host__ __device__ static auto
MakeEGridDescriptor_M_N(const ck::Array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const ck::Array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides)
{
const auto out_gemmmraw_gemmnraw_desc =
conv_to_gemm_transformer.template MakeCDescriptor_M_N<ELay>(e_g_n_k_wos_lengths,
e_g_n_k_wos_strides);
const auto out_gemmm_gemmn_desc =
matrix_padder.PadCDescriptor_M_N(out_gemmmraw_gemmnraw_desc);
return out_gemmm_gemmn_desc;
}
// Shape of Ds and E must be aligned. Strides can be different.
// Pass e_g_n_k_wos_lengths for logical broadcast.
__host__ __device__ static auto MakeDsGridDescriptor_M_N(
const ck::Array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const ck::Array<ck::Array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides)
{
return generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return DeviceOp::MakeEGridDescriptor_M_N<DLayout>(e_g_n_k_wos_lengths,
ds_g_n_k_wos_strides[i]);
},
Number<NumDTensor>{});
}
// desc for problem definition
using AGridDesc_M_K = remove_cvref_t<decltype(MakeAGridDescriptor_M_K<ALayout>(
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}))>;
using BGridDesc_N_K = remove_cvref_t<decltype(MakeBGridDescriptor_N_K<BLayout>({}, {}))>;
using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({}, {}))>;
using EGridDesc_M_N = remove_cvref_t<decltype(MakeEGridDescriptor_M_N<ELayout>({}, {}))>;
// If we are using multiAB and one of the template datatype parameters is not a tuple, convert
// it to it
using GemmADataType = std::conditional_t<!isMultiA && isMultiB, Tuple<ADataType>, ADataType>;
using GemmBDataType = std::conditional_t<!isMultiB && isMultiA, Tuple<BDataType>, BDataType>;
#define GridwiseGemmTemplateParameters \
GemmADataType, GemmBDataType, ComputeDataType, AccDataType, CShuffleDataType, DsDataType, \
EDataType, AElementwiseOperation, BElementwiseOperation, CDEElementwiseOperation, \
InMemoryDataOperationEnum::Set, NumGemmKPrefetchStage, BlockSize, MPerBlock, NPerBlock, \
KPerBlock, AK1, BK1, MPerXDL, NPerXDL, MXdlPerWave, NXdlPerWave, \
ABlockTransferThreadClusterLengths_AK0_M_AK1, ABlockTransferThreadClusterArrangeOrder, \
ABlockTransferSrcAccessOrder, ABlockTransferSrcVectorDim, \
ABlockTransferSrcScalarPerVector, ABlockTransferDstScalarPerVector_AK1, false, \
ABlockLdsExtraM, BBlockTransferThreadClusterLengths_BK0_N_BK1, \
BBlockTransferThreadClusterArrangeOrder, BBlockTransferSrcAccessOrder, \
BBlockTransferSrcVectorDim, BBlockTransferSrcScalarPerVector, \
BBlockTransferDstScalarPerVector_BK1, false, BBlockLdsExtraN, \
CShuffleMXdlPerWavePerShuffle, CShuffleNXdlPerWavePerShuffle, \
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock, \
CDEBlockTransferScalarPerVector_NPerBlock, LoopSched
// Use appropriate gridwise gemm
using GridwiseGemm =
std::conditional_t<isMultiA || isMultiB,
GridwiseGemmMultipleABD_xdl_cshuffle<GridwiseGemmTemplateParameters>,
GridwiseGemmMultipleD_xdl_cshuffle<GridwiseGemmTemplateParameters>>;
// If ADataTypes or BDataTypes is tuple, user has to pass ck::Array with pointers.
using APointers =
std::conditional_t<isMultiA, ck::Array<const void*, NumATensor>&, const void*>;
using BPointers =
std::conditional_t<isMultiB, ck::Array<const void*, NumBTensor>&, const void*>;
// Use Tuple for the both cases for GridPointer to initialize it in Argument constructor (not
// in initializer list what is required for single const pointer).
using AGridPointer = remove_cvref_t<
decltype(GetAGridPointer < isMultiA || isMultiB, GridwiseGemm, ADataType > ())>;
using BGridPointer = remove_cvref_t<
decltype(GetBGridPointer < isMultiA || isMultiB, GridwiseGemm, BDataType > ())>;
// desc for blockwise copy
using AGridDesc_AK0_M_AK1 =
remove_cvref_t<decltype(GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(
AGridDesc_M_K{}))>;
using BGridDesc_BK0_N_BK1 =
remove_cvref_t<decltype(GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(
BGridDesc_N_K{}))>;
using DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t<
decltype(GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
DsGridDesc_M_N{}))>;
using EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
remove_cvref_t<decltype(GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
EGridDesc_M_N{}))>;
// block-to-e-tile map
using Block2ETileMap =
remove_cvref_t<decltype(GridwiseGemm::MakeDefaultBlock2ETileMap(EGridDesc_M_N{}))>;
// Argument
struct Argument
{
__device__ __host__ Argument(
APointers p_as,
BPointers p_bs,
const ck::Array<const void*, NumDTensor>& p_ds,
void* p_e,
const ck::Array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const ck::Array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const ck::Array<ck::Array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_lengths,
const ck::Array<ck::Array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides,
const ck::Array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const ck::Array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const ck::Array<index_t, NDimSpatial>& conv_filter_strides,
const ck::Array<index_t, NDimSpatial>& conv_filter_dilations,
const ck::Array<index_t, NDimSpatial>& input_left_pads,
const ck::Array<index_t, NDimSpatial>& input_right_pads,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op)
: p_as_grid_{},
p_bs_grid_{},
p_ds_grid_{},
p_e_grid_{static_cast<EDataType*>(p_e)},
num_group_{a_g_n_c_wis_lengths[0]},
a_grid_desc_m_k_{DeviceOp::MakeAGridDescriptor_M_K<ALayout>(a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads)},
b_grid_desc_n_k_{DeviceOp::MakeBGridDescriptor_N_K<BLayout>(b_g_k_c_xs_lengths,
b_g_k_c_xs_strides)},
ds_grid_desc_m_n_{},
e_grid_desc_m_n_{DeviceOp::MakeEGridDescriptor_M_N<ELayout>(e_g_n_k_wos_lengths,
e_g_n_k_wos_strides)},
a_grid_desc_ak0_m_ak1_{
GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(a_grid_desc_m_k_)},
b_grid_desc_bk0_n_bk1_{
GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(b_grid_desc_n_k_)},
ds_grid_desc_mblock_mperblock_nblock_nperblock_{},
e_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_etile_map_{GridwiseGemm::MakeDefaultBlock2ETileMap(e_grid_desc_m_n_)},
compute_ptr_offset_of_batch_{},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op},
a_g_n_c_wis_lengths_{a_g_n_c_wis_lengths},
a_g_n_c_wis_strides_{a_g_n_c_wis_strides},
b_g_k_c_xs_lengths_{b_g_k_c_xs_lengths},
b_g_k_c_xs_strides_{b_g_k_c_xs_strides},
ds_g_n_k_wos_lengths_{ds_g_n_k_wos_lengths},
ds_g_n_k_wos_strides_{ds_g_n_k_wos_strides},
e_g_n_k_wos_lengths_{e_g_n_k_wos_lengths},
e_g_n_k_wos_strides_{e_g_n_k_wos_strides},
conv_filter_strides_{conv_filter_strides},
conv_filter_dilations_{conv_filter_dilations},
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads}
{
// A/B/E Batch Stride
if constexpr(isMultiA || isMultiB)
{
static_for<0, NumATensor, 1>{}([&](auto i) {
// Init compute_ptr_offset_of_batch_ for multiple AB
compute_ptr_offset_of_batch_.BatchStrideA_(i) = a_g_n_c_wis_strides[0];
// Use GemmADataType/GemmBDataType to iterate over tuple (even if passed data
// type is not tuple)
using DataType = remove_cvref_t<tuple_element_t<i.value, GemmADataType>>;
// It is possible that one of the AB is a pointer and one is a tuple.
// Then also use multiAB but we have to cast single pointer instead of tuple of
// pointer.
if constexpr(isMultiA)
{
// p_as is tuple
p_as_grid_(i) = static_cast<const DataType*>(p_as[i.value]);
}
else
{
// if MultiB and not MultiA then p_as is single pointer
p_as_grid_(i) = static_cast<const DataType*>(p_as);
}
});
static_for<0, NumBTensor, 1>{}([&](auto i) {
// Init compute_ptr_offset_of_batch_ for multiple AB
compute_ptr_offset_of_batch_.BatchStrideB_(i) = b_g_k_c_xs_strides[0];
using DataType = remove_cvref_t<tuple_element_t<i.value, GemmBDataType>>;
// It is possible that one of the AB is a pointer and one is a tuple.
// Then also use multiAB but we have to cast single pointer instead of tuple of
// pointer.
if constexpr(isMultiB)
{
// p_bs is tuple
p_bs_grid_(i) = static_cast<const DataType*>(p_bs[i.value]);
}
else
{
// if MultiA and not MultiB then p_bs is single pointer
p_bs_grid_(i) = static_cast<const DataType*>(p_bs);
}
});
}
else
{
compute_ptr_offset_of_batch_.BatchStrideA_ = a_g_n_c_wis_strides[0];
compute_ptr_offset_of_batch_.BatchStrideB_ = b_g_k_c_xs_strides[0];
// p_as and p_bs are pointers
p_as_grid_(I0) = static_cast<const ADataType*>(p_as);
p_bs_grid_(I0) = static_cast<const BDataType*>(p_bs);
}
// populate pointer, batch stride, desc for Ds
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
// D pointer
p_ds_grid_(i) = static_cast<const DDataType*>(p_ds[i]);
// D batch stride
compute_ptr_offset_of_batch_.BatchStrideDs_(i) = ds_g_n_k_wos_strides[i][0];
// D desc
ds_grid_desc_m_n_(i) = DeviceOp::MakeEGridDescriptor_M_N<DLayout>(
e_g_n_k_wos_lengths, ds_g_n_k_wos_strides[i]);
});
compute_ptr_offset_of_batch_.BatchStrideE_ = e_g_n_k_wos_strides[0];
// populate desc for Ds/E
if constexpr(isMultiA || isMultiB)
{
const auto as_grid_desc_ak0_m_ak1 =
generate_tuple([&](auto) { return a_grid_desc_m_k_; }, Number<NumATensor>{});
const auto bs_grid_desc_bk0_n_bk1 =
generate_tuple([&](auto) { return b_grid_desc_n_k_; }, Number<NumBTensor>{});
if(GridwiseGemm::CheckValidity(as_grid_desc_ak0_m_ak1,
bs_grid_desc_bk0_n_bk1,
ds_grid_desc_m_n_,
e_grid_desc_m_n_,
block_2_etile_map_))
{
e_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
e_grid_desc_m_n_);
ds_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
ds_grid_desc_m_n_);
}
}
else
{
if(GridwiseGemm::CheckValidity(a_grid_desc_m_k_,
b_grid_desc_n_k_,
ds_grid_desc_m_n_,
e_grid_desc_m_n_,
block_2_etile_map_))
{
e_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
e_grid_desc_m_n_);
ds_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
ds_grid_desc_m_n_);
}
}
}
// private:
// pointers (tuple if multi AB, pointer if no)
AGridPointer p_as_grid_;
BGridPointer p_bs_grid_;
typename GridwiseGemm::DsGridPointer p_ds_grid_;
EDataType* p_e_grid_;
// tensor descriptors for problem definiton
index_t num_group_;
AGridDesc_M_K a_grid_desc_m_k_;
BGridDesc_N_K b_grid_desc_n_k_;
DsGridDesc_M_N ds_grid_desc_m_n_;
EGridDesc_M_N e_grid_desc_m_n_;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_;
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock e_grid_desc_mblock_mperblock_nblock_nperblock_;
// block-to-e-tile map
Block2ETileMap block_2_etile_map_;
// for computing batch offset
ComputePtrOffsetOfStridedBatch<NumATensor, NumBTensor, NumDTensor>
compute_ptr_offset_of_batch_;
// element-wise op
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
// for checking IsSupportedArgument()
ck::Array<index_t, NDimSpatial + 3> a_g_n_c_wis_lengths_;
ck::Array<index_t, NDimSpatial + 3> a_g_n_c_wis_strides_;
ck::Array<index_t, NDimSpatial + 3> b_g_k_c_xs_lengths_;
ck::Array<index_t, NDimSpatial + 3> b_g_k_c_xs_strides_;
ck::Array<ck::Array<index_t, NDimSpatial + 3>, NumDTensor> ds_g_n_k_wos_lengths_;
ck::Array<ck::Array<index_t, NDimSpatial + 3>, NumDTensor> ds_g_n_k_wos_strides_;
ck::Array<index_t, NDimSpatial + 3> e_g_n_k_wos_lengths_;
ck::Array<index_t, NDimSpatial + 3> e_g_n_k_wos_strides_;
ck::Array<index_t, NDimSpatial> conv_filter_strides_;
ck::Array<index_t, NDimSpatial> conv_filter_dilations_;
ck::Array<index_t, NDimSpatial> input_left_pads_;
ck::Array<index_t, NDimSpatial> input_right_pads_;
};
static __device__ __host__ auto MakeArgument(
APointers p_as,
BPointers p_bs,
const ck::Array<const void*, NumDTensor>& p_ds,
void* p_e,
const ck::Array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const ck::Array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const ck::Array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const ck::Array<ck::Array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_lengths,
const ck::Array<ck::Array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides,
const ck::Array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const ck::Array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const ck::Array<index_t, NDimSpatial>& conv_filter_strides,
const ck::Array<index_t, NDimSpatial>& conv_filter_dilations,
const ck::Array<index_t, NDimSpatial>& input_left_pads,
const ck::Array<index_t, NDimSpatial>& input_right_pads,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op)
{
return Argument{p_as,
p_bs,
p_ds,
p_e,
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
ds_g_n_k_wos_lengths,
ds_g_n_k_wos_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
a_element_op,
b_element_op,
cde_element_op};
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -247,7 +247,8 @@ struct DeviceColumnToImageImpl
independent_filter_strides,
conv_filter_dilations,
input_left_pads_with_offset,
input_right_pads);
input_right_pads,
N);
const auto in_gemmm_gemmk_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_desc);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -501,29 +501,24 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
// for sanity check of vector memory access
for(index_t i = 0; i < NumATensor; ++i)
{
as_mz_consecutive_[i] = a_ms_ks_strides[i][NumDimM - 1] == 1;
as_kz_consecutive_[i] = a_ms_ks_strides[i][NumDimM + NumDimK - 1] == 1;
as_max_read_elems_[i] =
tie(as_continous_dim_[i], as_max_read_elems_[i]) =
CalculateMaxRead<NumDimM, NumDimK>(a_ms_ks_lengths[i], a_ms_ks_strides[i]);
}
for(index_t i = 0; i < NumBTensor; ++i)
{
bs_nz_consecutive_[i] = b_ns_ks_strides[i][NumDimN - 1] == 1;
bs_kz_consecutive_[i] = b_ns_ks_strides[i][NumDimN + NumDimK - 1] == 1;
bs_max_read_elems_[i] =
tie(bs_continous_dim_[i], bs_max_read_elems_[i]) =
CalculateMaxRead<NumDimN, NumDimK>(b_ns_ks_lengths[i], b_ns_ks_strides[i]);
}
for(index_t i = 0; i < NumDTensor; ++i)
{
ds_nz_consecutive_[i] = d_ms_ns_strides[i][NumDimM + NumDimN - 1] == 1;
ds_max_read_elems_[i] =
tie(ds_continous_dim_[i], ds_max_read_elems_[i]) =
CalculateMaxRead<NumDimM, NumDimN>(d_ms_ns_lengths[i], d_ms_ns_strides[i]);
}
e_nz_consecutive_ = e_ms_ns_stride[NumDimM + NumDimN - 1] == 1;
e_max_write_elems_ = CalculateMaxRead<NumDimM, NumDimN>(e_ms_ns_length, e_ms_ns_stride);
tie(e_continous_dim_, e_max_write_elems_) =
CalculateMaxRead<NumDimM, NumDimN>(e_ms_ns_length, e_ms_ns_stride);
}
// pointers
......@@ -553,14 +548,11 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
// Describe whether the last part of a given dimension of A/B/D/E is consecutive
// in the memory or not.
std::array<bool, NumATensor> as_mz_consecutive_;
std::array<bool, NumATensor> as_kz_consecutive_;
std::array<bool, NumBTensor> bs_nz_consecutive_;
std::array<bool, NumBTensor> bs_kz_consecutive_;
std::array<bool, NumDTensor> ds_nz_consecutive_;
bool e_nz_consecutive_;
// Describe whether the last part of a given dimension of A/B/D/E is continues dim.
std::array<index_t, NumATensor> as_continous_dim_;
std::array<index_t, NumATensor> bs_continous_dim_;
std::array<index_t, NumBTensor> ds_continous_dim_;
index_t e_continous_dim_;
std::array<index_t, NumATensor> as_max_read_elems_;
std::array<index_t, NumBTensor> bs_max_read_elems_;
......@@ -659,9 +651,9 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
const bool valid_a_vector_size =
arg.as_max_read_elems_[i] % ABlockTransferSrcScalarPerVector == 0;
const bool valid_a_access_dim_m =
ABlockTransferSrcVectorDim == 1 && arg.as_mz_consecutive_[i];
ABlockTransferSrcVectorDim == 1 && arg.as_continous_dim_[i] == 0;
const bool valid_a_access_dim_k =
ABlockTransferSrcVectorDim == 2 && arg.as_kz_consecutive_[i];
ABlockTransferSrcVectorDim == 2 && arg.as_continous_dim_[i] == 1;
const bool valid_a_access_dim = valid_a_access_dim_m || valid_a_access_dim_k;
if(!((valid_a_vector_size && valid_a_access_dim) ||
ABlockTransferSrcScalarPerVector == 1))
......@@ -679,9 +671,9 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
const bool valid_b_vector_size =
arg.bs_max_read_elems_[i] % BBlockTransferSrcScalarPerVector == 0;
const bool valid_b_access_dim_n =
BBlockTransferSrcVectorDim == 1 && arg.bs_nz_consecutive_[i];
BBlockTransferSrcVectorDim == 1 && arg.bs_continous_dim_[i] == 0;
const bool valid_b_access_dim_k =
BBlockTransferSrcVectorDim == 2 && arg.bs_kz_consecutive_[i];
BBlockTransferSrcVectorDim == 2 && arg.bs_continous_dim_[i] == 1;
const bool valid_b_access_dim = valid_b_access_dim_n || valid_b_access_dim_k;
if(!((valid_b_vector_size && valid_b_access_dim) ||
BBlockTransferSrcScalarPerVector == 1))
......@@ -699,7 +691,7 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
const bool valid_d_vector_size =
arg.ds_max_read_elems_[i] % CDEBlockTransferScalarPerVector_NPerBlock == 0;
// Vector read of Ds is always on N dimension.
const bool valid_d_access_dim = arg.ds_nz_consecutive_[i];
const bool valid_d_access_dim = arg.ds_continous_dim_[i] == 1;
if(!((valid_d_vector_size && valid_d_access_dim) ||
CDEBlockTransferScalarPerVector_NPerBlock == 1))
{
......@@ -714,7 +706,7 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
const bool valid_e_vector_size =
arg.e_max_write_elems_ % CDEBlockTransferScalarPerVector_NPerBlock == 0;
// Vector write of E is always on N dimension.
const bool valid_e_access_dim = arg.e_nz_consecutive_;
const bool valid_e_access_dim = arg.e_continous_dim_ == 1;
if(!((valid_e_vector_size && valid_e_access_dim) ||
CDEBlockTransferScalarPerVector_NPerBlock == 1))
{
......
......@@ -442,25 +442,19 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
}
// for sanity check of vector memory access
a_mz_consecutive_ = a_ms_ks_strides[NumDimM - 1] == 1;
a_kz_consecutive_ = a_ms_ks_strides[NumDimM + NumDimK - 1] == 1;
a_max_read_elems_ =
tie(a_continous_dim_, a_max_read_elems_) =
CalculateMaxRead<NumDimM, NumDimK>(a_ms_ks_lengths, a_ms_ks_strides);
b_nz_consecutive_ = b_ns_ks_strides[NumDimN - 1] == 1;
b_kz_consecutive_ = b_ns_ks_strides[NumDimN + NumDimK - 1] == 1;
b_max_read_elems_ =
tie(b_continous_dim_, b_max_read_elems_) =
CalculateMaxRead<NumDimN, NumDimK>(b_ns_ks_lengths, b_ns_ks_strides);
for(index_t i = 0; i < NumDTensor; ++i)
{
ds_nz_consecutive_[i] = ds_ms_ns_strides[i][NumDimM + NumDimN - 1] == 1;
ds_max_read_elems_[i] =
tie(ds_continous_dim_[i], ds_max_read_elems_[i]) =
CalculateMaxRead<NumDimM, NumDimN>(ds_ms_ns_lengths[i], ds_ms_ns_strides[i]);
}
e_nz_consecutive_ = e_ms_ns_strides[NumDimM + NumDimN - 1] == 1;
e_max_write_elems_ =
tie(e_continous_dim_, e_max_write_elems_) =
CalculateMaxRead<NumDimM, NumDimN>(e_ms_ns_lengths, e_ms_ns_strides);
}
......@@ -501,14 +495,11 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
// Describe whether the last part of a given dimension of A/B/D/E is consecutive
// in the memory or not.
bool a_mz_consecutive_;
bool a_kz_consecutive_;
bool b_nz_consecutive_;
bool b_kz_consecutive_;
std::array<bool, NumDTensor> ds_nz_consecutive_;
bool e_nz_consecutive_;
// Describe whether the last part of a given dimension of A/B/D/E is continues dim.
index_t a_continous_dim_;
index_t b_continous_dim_;
std::array<index_t, NumDTensor> ds_continous_dim_;
index_t e_continous_dim_;
index_t a_max_read_elems_;
index_t b_max_read_elems_;
......@@ -622,8 +613,10 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
const bool valid_a_vector_size =
arg.a_max_read_elems_ % ABlockTransferSrcScalarPerVector == 0;
const bool valid_a_access_dim_m = ABlockTransferSrcVectorDim == 1 && arg.a_mz_consecutive_;
const bool valid_a_access_dim_k = ABlockTransferSrcVectorDim == 2 && arg.a_kz_consecutive_;
const bool valid_a_access_dim_m =
ABlockTransferSrcVectorDim == 1 && arg.a_continous_dim_ == 0;
const bool valid_a_access_dim_k =
ABlockTransferSrcVectorDim == 2 && arg.a_continous_dim_ == 1;
const bool valid_a_access_dim =
valid_a_access_dim_m || valid_a_access_dim_k || ABlockTransferSrcScalarPerVector == 1;
if(!(valid_a_vector_size && valid_a_access_dim))
......@@ -633,8 +626,10 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
const bool valid_b_vector_size =
arg.b_max_read_elems_ % BBlockTransferSrcScalarPerVector == 0;
const bool valid_b_access_dim_n = BBlockTransferSrcVectorDim == 1 && arg.b_nz_consecutive_;
const bool valid_b_access_dim_k = BBlockTransferSrcVectorDim == 2 && arg.b_kz_consecutive_;
const bool valid_b_access_dim_n =
BBlockTransferSrcVectorDim == 1 && arg.b_continous_dim_ == 0;
const bool valid_b_access_dim_k =
BBlockTransferSrcVectorDim == 2 && arg.b_continous_dim_ == 1;
const bool valid_b_access_dim =
valid_b_access_dim_n || valid_b_access_dim_k || BBlockTransferSrcScalarPerVector == 1;
if(!(valid_b_vector_size && valid_b_access_dim))
......@@ -648,7 +643,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
arg.ds_max_read_elems_[i] % CDEBlockTransferScalarPerVector_NPerBlock == 0;
// Vector read of Ds is always on N dimension.
const bool valid_d_access_dim =
arg.ds_nz_consecutive_[i] || CDEBlockTransferScalarPerVector_NPerBlock == 1;
arg.ds_continous_dim_[i] == 1 || CDEBlockTransferScalarPerVector_NPerBlock == 1;
if(!(valid_d_vector_size && valid_d_access_dim))
{
valid_ds_access = false;
......@@ -663,7 +658,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
arg.e_max_write_elems_ % CDEBlockTransferScalarPerVector_NPerBlock == 0;
// Vector write of E is always on N dimension.
const bool valid_e_access_dim =
arg.e_nz_consecutive_ || CDEBlockTransferScalarPerVector_NPerBlock == 1;
arg.e_continous_dim_ == 1 || CDEBlockTransferScalarPerVector_NPerBlock == 1;
if(!(valid_e_vector_size && valid_e_access_dim))
{
return false;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -50,25 +50,53 @@ auto CalculateMaxRead(const std::vector<index_t>& lengths, const std::vector<ind
}
// Determine the beginning and end idx of the group representing the FCD.
index_t begin_idx, end_idx;
if(strides[NumDim1 - 1] == 1)
index_t begin_idx, end_idx, continous_dim, consecutive_stride = 1;
if(strides[NumDim1 - 1] == 1 && strides[NumDim1 + NumDim2 - 1] == 1)
{
// MZ or KZ are ones
bool dims1_are_ones = true;
for(index_t dim_idx = 0; dim_idx < NumDim1; dim_idx++)
{
if(lengths[dim_idx] != 1)
{
dims1_are_ones = false;
}
}
if(dims1_are_ones)
{
begin_idx = NumDim1;
end_idx = NumDim1 + NumDim2 - 1;
continous_dim = 1;
}
else
{
begin_idx = 0;
end_idx = NumDim1 - 1;
continous_dim = 0;
}
}
else if(strides[NumDim1 - 1] == 1)
{
begin_idx = 0;
end_idx = NumDim1 - 1;
continous_dim = 0;
}
else if(strides[NumDim1 + NumDim2 - 1] == 1)
{
begin_idx = NumDim1;
end_idx = NumDim1 + NumDim2 - 1;
continous_dim = 1;
}
else
{
// The dimension consecutive in memory is not the last dimension of any group, so only
// one element can be read/written at once.
return 1;
consecutive_stride = 1;
continous_dim = 0;
return make_tuple(continous_dim, consecutive_stride);
}
index_t consecutive_stride = 1;
for(index_t dim_idx = end_idx; dim_idx >= begin_idx; --dim_idx)
{
if(strides[dim_idx] == consecutive_stride)
......@@ -81,7 +109,7 @@ auto CalculateMaxRead(const std::vector<index_t>& lengths, const std::vector<ind
}
}
const index_t max_subsequent_elems = consecutive_stride;
return max_subsequent_elems;
return make_tuple(continous_dim, max_subsequent_elems);
}
} // namespace device
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v3_multi_d.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename DsDataType,
typename CDataType,
typename GemmAccDataType,
typename CShuffleDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
GemmSpecialization GemmSpec,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1,
index_t BK1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
typename CDEShuffleBlockTransferScalarPerVectors,
BlockGemmPipelineScheduler BlkGemmPipeSched = BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion BlkGemmPipelineVer = BlockGemmPipelineVersion::v1,
typename ComputeTypeA = CDataType,
typename ComputeTypeB = ComputeTypeA,
typename LDSTypeA = ComputeTypeA,
typename LDSTypeB = ComputeTypeB>
struct DeviceGemmMultiD_Xdl_CShuffle_V3 : public DeviceGemmMultipleD<ALayout,
BLayout,
DsLayout,
CLayout,
ADataType,
BDataType,
DsDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>
{
static constexpr index_t NumDTensor = DsDataType::Size();
// GridwiseGemm
using GridwiseGemm = GridwiseGemmMultiD_xdl_cshuffle_v3<
ALayout,
BLayout,
DsLayout,
CLayout,
ADataType,
BDataType,
GemmAccDataType,
CShuffleDataType,
DsDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
GemmSpec,
BlockSize,
MPerBlock,
NPerBlock,
KPerBlock,
AK1,
BK1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
false,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
false,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CDEShuffleBlockTransferScalarPerVectors,
BlkGemmPipeSched,
BlkGemmPipelineVer,
ComputeTypeA,
ComputeTypeB,
LDSTypeA,
LDSTypeB>;
using Argument = typename GridwiseGemm::Argument;
// Invoker
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(stream_config.log_level_ > 0)
{
arg.Print();
}
if(!GridwiseGemm::CheckValidity(arg))
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
index_t gdx, gdy, gdz;
std::tie(gdx, gdy, gdz) = GridwiseGemm::CalculateGridSize(arg.M, arg.N, arg.KBatch);
float ave_time = 0;
index_t k_grain = arg.KBatch * KPerBlock;
index_t K_split = (arg.K + k_grain - 1) / k_grain * KPerBlock;
const bool has_main_k_block_loop = GridwiseGemm::CalculateHasMainKBlockLoop(K_split);
const auto Run = [&](const auto& kernel) {
if(arg.KBatch > 1)
hipGetErrorString(hipMemsetAsync(arg.p_c_grid,
0,
arg.M * arg.N * sizeof(CDataType),
stream_config.stream_id_));
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(gdx, gdy, gdz), dim3(BlockSize), 0, arg);
};
constexpr index_t minimum_occupancy =
BlkGemmPipeSched == BlockGemmPipelineScheduler::Intrawave ? 1 : 2;
if(has_main_k_block_loop)
{
// Tail number always full
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1 ||
BlkGemmPipelineVer == BlockGemmPipelineVersion::v3)
{
#if 0
if(arg.KBatch > 1)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
}
else
#endif
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
}
// Tail number could be One to Seven
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2)
{
#if 0
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::One)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::One>;
Run(kernel);
}
else if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Full)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Full>;
Run(kernel);
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Two)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Two>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 3)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Three)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Three>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Four)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Four>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 5)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Five)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Five>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 6)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Six)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Six>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 7)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Seven)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Seven>;
Run(kernel);
}
}
}
else
#endif
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::One)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::One>;
Run(kernel);
}
else if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Full)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Full>;
Run(kernel);
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Two)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Two>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 3)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Three)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Three>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Four)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Four>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 5)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Five)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Five>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 6)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Six)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Six>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 7)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Seven)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Seven>;
Run(kernel);
}
}
}
}
// Tail number could be Odd or Even
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v4)
{
#if 0
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
else
#endif
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_2lds<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_2lds<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
else
{
#if 0
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
else
#endif
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
}
else
{
// Tail number always 1
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1)
{
#if 0
if(arg.KBatch > 1)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
false,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
}
else
#endif
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
false,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
}
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
if(!ck::is_xdl_supported())
{
return false;
}
if((arg.K % AK1 != 0 || arg.K % BK1 != 0) && !(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding ||
GemmSpec == GemmSpecialization::KPadding))
{
return false;
}
return GridwiseGemm::CheckValidity(arg);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
std::array<index_t, NumDTensor> StrideDs,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
return Argument{static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
p_ds,
static_cast<CDataType*>(p_c),
M,
N,
K,
StrideA,
StrideB,
StrideDs,
StrideC,
1,
a_element_op,
b_element_op,
c_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
std::array<ck::index_t, NumDTensor> StrideDs,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
p_ds,
static_cast<CDataType*>(p_c),
M,
N,
K,
StrideA,
StrideB,
StrideDs,
StrideC,
1,
a_element_op,
b_element_op,
c_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
std::map<BlockGemmPipelineScheduler, std::string> BlkGemmPipelineSchedulerToString{
{BlockGemmPipelineScheduler::Intrawave, "Intrawave"},
{BlockGemmPipelineScheduler::Interwave, "Interwave"}};
std::map<BlockGemmPipelineVersion, std::string> BlkGemmPipelineVersionToString{
{BlockGemmPipelineVersion::v1, "v1"},
{BlockGemmPipelineVersion::v2, "v2"},
{BlockGemmPipelineVersion::v3, "v3"},
{BlockGemmPipelineVersion::v4, "v4"},
{BlockGemmPipelineVersion::v5, "v5"}};
// clang-format off
str << "DeviceGemmXdlUniversal"
<< "<"
<< getGemmSpecializationString(GemmSpec) << ", "
<< std::string(ALayout::name)[0]
<< std::string(BLayout::name)[0]
<< std::string(CLayout::name)[0]
<< ">"
<< " BlkSize: "
<< BlockSize << ", "
<< "BlkTile: "
<< MPerBlock<<"x"<<NPerBlock<<"x"<<KPerBlock << ", "
<< "WaveTile: "
<< MPerXDL<<"x"<<NPerXDL << ", "
<< "WaveMap: "
<< MXdlPerWave<<"x" << NXdlPerWave<<", "
<< "VmemReadVec: "
<< ABlockTransferSrcScalarPerVector<<"x"<<BBlockTransferSrcScalarPerVector<<", "
<< "BlkGemmPipelineScheduler: "
<< BlkGemmPipelineSchedulerToString[BlkGemmPipeSched] << ", "
<< "BlkGemmPipelineVersion: "
<< BlkGemmPipelineVersionToString[BlkGemmPipelineVer] << ", "
<< "BlkGemmPipelinePrefetchStages: "
<< GridwiseGemm::BlockwiseGemmPipe::PrefetchStages;
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_streamk_v2.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_streamk_v3.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/flush_cache.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename CDataType,
typename GemmAccDataType,
typename CShuffleDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
GemmSpecialization GemmSpec,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1,
index_t BK1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
BlockGemmPipelineScheduler BlkGemmPipeSched = BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion BlkGemmPipelineVer = BlockGemmPipelineVersion::v1,
typename ComputeTypeA = CDataType,
typename ComputeTypeB = ComputeTypeA>
struct DeviceGemm_Xdl_CShuffle_Streamk_V3 : public DeviceGemm_Streamk_V2<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>
{
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_xdl_cshuffle_streamk_v3<
ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
GemmAccDataType,
CShuffleDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
GemmSpec,
BlockSize,
MPerBlock,
NPerBlock,
KPerBlock,
AK1,
BK1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
false,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
false,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock,
BlkGemmPipeSched,
BlkGemmPipelineVer,
ComputeTypeA,
ComputeTypeB>;
using Argument = typename GridwiseGemm::Argument;
// Invoker
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(stream_config.log_level_ > 0)
{
arg.Print();
}
if(!GridwiseGemm::CheckValidity(arg))
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
float ave_time = 0;
index_t k_grain = KPerBlock;
index_t K_split = (arg.K + k_grain - 1) / k_grain * KPerBlock;
const bool has_main_k_block_loop = GridwiseGemm::CalculateHasMainKBlockLoop(K_split);
hipGetErrorString(hipMemsetAsync(
arg.p_c_grid, 0, arg.M * arg.N * sizeof(CDataType), stream_config.stream_id_));
const auto Run = [&](const auto& kernel) {
dim3 grid_dim;
if(arg.Grid_size < 0)
{
int occupancy, num_cu;
hipError_t rtn;
rtn = hipOccupancyMaxActiveBlocksPerMultiprocessor(
&occupancy, kernel, BlockSize, 0);
hip_check_error(rtn);
hipDeviceProp_t dev_prop;
hipDevice_t dev;
rtn = hipGetDevice(&dev);
hip_check_error(rtn);
rtn = hipGetDeviceProperties(&dev_prop, dev);
hip_check_error(rtn);
num_cu = dev_prop.multiProcessorCount;
arg.Grid_size = num_cu * occupancy;
grid_dim = arg.Grid_size;
}
else
grid_dim = arg.Grid_size;
if(stream_config.flush_cache)
{
Argument arg_ = arg;
ck::utility::RotatingMemWrapper<Argument> rotating_mem(
arg_,
stream_config.rotating_count,
arg_.M * arg_.K * sizeof(ADataType),
arg_.K * arg_.N * sizeof(BDataType));
rotating_mem.Print();
auto run_flush_cache = [&]() {
// flush icache
ck::utility::flush_icache();
// rotating mem
rotating_mem.Next();
};
ave_time = ck::utility::launch_and_time_kernel_with_preprocess<false>(
stream_config, run_flush_cache, kernel, grid_dim, dim3(BlockSize), 0, arg_);
}
else
{
ave_time = launch_and_time_kernel(
stream_config, kernel, grid_dim, dim3(BlockSize), 0, arg);
}
};
constexpr index_t minimum_occupancy =
BlkGemmPipeSched == BlockGemmPipelineScheduler::Intrawave ? 1 : 2;
if(has_main_k_block_loop)
{
// Tail number always full
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1 ||
BlkGemmPipelineVer == BlockGemmPipelineVersion::v3)
{
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
}
// Tail number could be One to Seven
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2)
{
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::One)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::One>;
Run(kernel);
}
else if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Full)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Full>;
Run(kernel);
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Two)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Two>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 3)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Three)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Three>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Four)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Four>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 5)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Five)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Five>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 6)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Six)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Six>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 7)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Seven)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Seven>;
Run(kernel);
}
}
}
}
// Tail number could be Odd or Even
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v4)
{
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_2lds<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_2lds<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
else
{
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
}
else
{
// Tail number always 1
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1)
{
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
false,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
}
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
if(!ck::is_xdl_supported())
{
return false;
}
if((arg.K % AK1 != 0 || arg.K % BK1 != 0) && !(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding ||
GemmSpec == GemmSpecialization::KPadding))
{
return false;
}
return GridwiseGemm::CheckValidity(arg);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const ADataType* p_a,
const BDataType* p_b,
CDataType* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t streamk_sel,
index_t Grid_size,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation)
{
return Argument{
p_a, p_b, p_c, M, N, K, StrideA, StrideB, StrideC, streamk_sel, Grid_size}; // HS
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t streamk_sel,
index_t Grid_size,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c),
M,
N,
K,
StrideA,
StrideB,
StrideC,
streamk_sel,
Grid_size);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
std::map<BlockGemmPipelineScheduler, std::string> BlkGemmPipelineSchedulerToString{
{BlockGemmPipelineScheduler::Intrawave, "Intrawave"},
{BlockGemmPipelineScheduler::Interwave, "Interwave"}};
std::map<BlockGemmPipelineVersion, std::string> BlkGemmPipelineVersionToString{
{BlockGemmPipelineVersion::v1, "v1"},
{BlockGemmPipelineVersion::v2, "v2"},
{BlockGemmPipelineVersion::v3, "v3"},
{BlockGemmPipelineVersion::v4, "v4"},
{BlockGemmPipelineVersion::v5, "v5"}};
// clang-format off
str << "DeviceGemmXdlUniversal"
<< "<"
<< getGemmSpecializationString(GemmSpec) << ", "
<< std::string(ALayout::name)[0]
<< std::string(BLayout::name)[0]
<< std::string(CLayout::name)[0]
<< ">"
<< " BlkSize: "
<< BlockSize << ", "
<< "BlkTile: "
<< MPerBlock<<"x"<<NPerBlock<<"x"<<KPerBlock << ", "
<< "WaveTile: "
<< MPerXDL<<"x"<<NPerXDL << ", "
<< "WaveMap: "
<< MXdlPerWave<<"x" << NXdlPerWave<<", "
<< "VmemReadVec: "
<< ABlockTransferSrcScalarPerVector<<"x"<<BBlockTransferSrcScalarPerVector<<", "
<< "BlkGemmPipelineScheduler: "
<< BlkGemmPipelineSchedulerToString[BlkGemmPipeSched] << ", "
<< "BlkGemmPipelineVersion: "
<< BlkGemmPipelineVersionToString[BlkGemmPipelineVer] << ", "
<< "BlkGemmPipelinePrefetchStages: "
<< GridwiseGemm::BlockwiseGemmPipe::PrefetchStages;
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -93,12 +93,12 @@ __global__ void
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t e_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
const auto ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
......
......@@ -55,12 +55,12 @@ __global__ void
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t c_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetCPtrOffset(g_idx)));
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t c_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetCPtrOffset(g_idx));
__shared__ FloatAB p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(FloatAB)];
......
......@@ -66,12 +66,12 @@ __global__ void
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t c_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetCPtrOffset(g_idx)));
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t c_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetCPtrOffset(g_idx));
__shared__ FloatA p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(FloatA)];
......
......@@ -47,24 +47,24 @@ __global__ void
#endif
kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3(
typename GridwiseGemm::Argument karg,
const AGridDesc_AK0_M_K1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_K1 b_grid_desc_bk0_n_bk1,
const CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
[[maybe_unused]] const AGridDesc_AK0_M_K1 a_grid_desc_ak0_m_ak1,
[[maybe_unused]] const BGridDesc_BK0_N_K1 b_grid_desc_bk0_n_bk1,
[[maybe_unused]] const CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch,
const index_t num_k_per_block)
[[maybe_unused]] const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch,
[[maybe_unused]] const index_t num_k_per_block)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
const index_t g_idx = __builtin_amdgcn_readfirstlane(blockIdx.z * NumBatchToMerge);
const index_t k_idx = __builtin_amdgcn_readfirstlane(blockIdx.y * num_k_per_block);
const long_index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t e_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
......@@ -103,12 +103,12 @@ __global__ void
#endif
kernel_grouped_conv_bwd_weight_xdl_cshuffle_v3_2lds(
typename GridwiseGemm::Argument karg,
const AGridDesc_AK0_M_K1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_K1 b_grid_desc_bk0_n_bk1,
const CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
[[maybe_unused]] const AGridDesc_AK0_M_K1 a_grid_desc_ak0_m_ak1,
[[maybe_unused]] const BGridDesc_BK0_N_K1 b_grid_desc_bk0_n_bk1,
[[maybe_unused]] const CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch,
const index_t num_k_per_block)
[[maybe_unused]] const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch,
[[maybe_unused]] const index_t num_k_per_block)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) || defined(__gfx950__))
......@@ -116,12 +116,12 @@ __global__ void
const index_t g_idx = __builtin_amdgcn_readfirstlane(blockIdx.z * NumBatchToMerge);
const index_t k_idx = __builtin_amdgcn_readfirstlane(blockIdx.y * num_k_per_block);
const long_index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t e_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
// Pass two lds pointer is the key to tell compiler that ds_read/write
// operate on different lds chunk at same time without order dependecy
......@@ -674,7 +674,7 @@ struct DeviceGroupedConvBwdWeightTwoStage_Xdl_CShuffle
clear_workspace();
};
ave_time = ck::utility::launch_and_time_kernel_with_preprocess<false>(
ave_time += ck::utility::launch_and_time_kernel_with_preprocess<false>(
stream_config,
run_flush_cache,
kernel,
......@@ -690,7 +690,7 @@ struct DeviceGroupedConvBwdWeightTwoStage_Xdl_CShuffle
}
else
{
ave_time = launch_and_time_kernel_with_preprocess(
ave_time += launch_and_time_kernel_with_preprocess(
stream_config,
clear_workspace,
kernel,
......@@ -1268,7 +1268,7 @@ struct DeviceGroupedConvBwdWeightTwoStage_Xdl_CShuffle
arg.Conv_G_;
std::array<index_t, I1> in_out_batch_strides = {
arg.compute_ptr_offset_of_batch_.BatchStrideC_};
static_cast<index_t>(arg.compute_ptr_offset_of_batch_.BatchStrideC_)};
const auto kernel = kernel_batched_elementwise<GridwiseElementwise,
ck::Tuple<CElementwiseGridDesc_M_N>,
......
......@@ -61,12 +61,9 @@ __global__ void
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t c_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetCPtrOffset(g_idx)));
const long_index_t a_batch_offset = compute_ptr_offset_of_batch.GetAPtrOffset(g_idx);
const long_index_t b_batch_offset = compute_ptr_offset_of_batch.GetBPtrOffset(g_idx);
const long_index_t c_batch_offset = compute_ptr_offset_of_batch.GetCPtrOffset(g_idx);
__shared__ FloatA p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(FloatA)];
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -98,12 +98,12 @@ __global__ void
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t c_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t c_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
const auto ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
......@@ -267,7 +267,8 @@ struct DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
input_right_pads,
a_g_n_c_wis_lengths[I1]);
const auto in_gemmm_gemmk_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_desc);
......@@ -313,8 +314,8 @@ struct DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides)
{
const auto out_gemmmraw_gemmnraw_desc =
conv_to_gemm_transformer.template MakeCDescriptor_M_N<ELay>(e_g_n_k_wos_lengths,
e_g_n_k_wos_strides);
conv_to_gemm_transformer.template MakeCDescriptor_M_N<ELay>(
e_g_n_k_wos_lengths, e_g_n_k_wos_strides, e_g_n_k_wos_lengths[I1]);
const auto out_gemmm_gemmn_desc =
matrix_padder.PadCDescriptor_M_N(out_gemmmraw_gemmnraw_desc);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -263,7 +263,8 @@ struct DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK : public DeviceGroupedConvFwd<NDimS
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
input_right_pads,
a_g_n_c_wis_lengths[I1]);
const auto in_gemmm_gemmk_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_desc);
......@@ -310,8 +311,8 @@ struct DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK : public DeviceGroupedConvFwd<NDimS
const std::array<index_t, NDimSpatial + 3>& c_g_n_k_wos_strides)
{
const auto out_gemmmraw_gemmnraw_desc =
conv_to_gemm_transformer.template MakeCDescriptor_M_N<CLay>(c_g_n_k_wos_lengths,
c_g_n_k_wos_strides);
conv_to_gemm_transformer.template MakeCDescriptor_M_N<CLay>(
c_g_n_k_wos_lengths, c_g_n_k_wos_strides, c_g_n_k_wos_lengths[I1]);
const auto out_gemmm_gemmn_desc =
matrix_padder.PadCDescriptor_M_N(out_gemmmraw_gemmnraw_desc);
......
......@@ -69,7 +69,8 @@ template <typename GridwiseGemm,
typename DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename Block2ETileMap,
typename ComputePtrOffsetOfBatch,
typename ComputePtrOffsetOfG,
typename ComputePtrOffsetOfN,
bool HasMainKBlockLoop,
bool isMultiA,
bool isMultiB>
......@@ -85,7 +86,7 @@ __global__ void
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op,
const index_t batch_count,
const index_t groups_count,
const AGridDesc_AK0_M_AK1 a_grid_desc_k0_m_k1,
const BGridDesc_BK0_N_BK1 b_grid_desc_k0_n_k1,
const DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
......@@ -93,18 +94,24 @@ __global__ void
const EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_,
const Block2ETileMap block_2_ctile_map,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
const ComputePtrOffsetOfG compute_ptr_offset_of_groups,
const ComputePtrOffsetOfN compute_ptr_offset_of_n)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
// offset base pointer for each work-group
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const index_t num_blocks_per_batch = __builtin_amdgcn_readfirstlane(gridDim.y / groups_count);
const index_t& num_blocks_per_n = groups_count;
const index_t g_idx = __builtin_amdgcn_readfirstlane(blockIdx.y / num_blocks_per_batch);
const index_t n_idx = __builtin_amdgcn_readfirstlane(blockIdx.y / num_blocks_per_n);
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_groups.GetEPtrOffset(g_idx));
const auto& ds_batch_offset = compute_ptr_offset_of_groups.GetDsPtrOffset(g_idx);
const long_index_t e_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const auto& ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
const long_index_t e_n_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_n.GetEPtrOffset(n_idx));
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
......@@ -121,13 +128,28 @@ __global__ void
AsPointer p_as_grid_grp;
BsPointer p_bs_grid_grp;
const auto& as_batch_offset = compute_ptr_offset_of_batch.GetAsPtrOffset(g_idx);
const auto& as_batch_offset = compute_ptr_offset_of_groups.GetAsPtrOffset(g_idx);
// compute_ptr_offset_of_n_ not need BatchStrideB so
// in case of MultiA is false but isMultiB is true
// BatchStrideA_ is not tuple.
if constexpr(isMultiA)
{
const auto& as_n_offset = compute_ptr_offset_of_n.GetAsPtrOffset(n_idx);
static constexpr index_t NumATensor = AGridDesc_AK0_M_AK1::Size();
static_for<0, NumATensor, 1>{}(
[&](auto i) { p_as_grid_grp(i) = p_as_grid[i] + as_batch_offset[i]; });
static_for<0, NumATensor, 1>{}([&](auto i) {
p_as_grid_grp(i) = p_as_grid[i] + as_batch_offset[i] + as_n_offset[i];
});
}
else
{
const long_index_t a_n_offset = compute_ptr_offset_of_n.GetAPtrOffset(n_idx);
static_for<0, 1, 1>{}(
[&](auto i) { p_as_grid_grp(i) = p_as_grid[i] + as_batch_offset[i] + a_n_offset; });
}
const auto& bs_batch_offset = compute_ptr_offset_of_batch.GetBsPtrOffset(g_idx);
const auto& bs_batch_offset = compute_ptr_offset_of_groups.GetBsPtrOffset(g_idx);
static constexpr index_t NumBTensor = BGridDesc_BK0_N_BK1::Size();
static_for<0, NumBTensor, 1>{}(
......@@ -137,7 +159,7 @@ __global__ void
p_as_grid_grp,
p_bs_grid_grp,
p_ds_grid_grp,
p_e_grid + e_batch_offset,
p_e_grid + e_batch_offset + e_n_offset,
p_shared,
a_element_op,
b_element_op,
......@@ -150,16 +172,19 @@ __global__ void
}
else
{
const long_index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_groups.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_groups.GetBPtrOffset(g_idx));
const long_index_t a_n_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_n.GetAPtrOffset(n_idx));
GridwiseGemm::template Run<HasMainKBlockLoop>(
p_as_grid + a_batch_offset,
p_as_grid + a_batch_offset + a_n_offset,
p_bs_grid + b_batch_offset,
p_ds_grid_grp,
p_e_grid + e_batch_offset,
p_e_grid + e_batch_offset + e_n_offset,
p_shared,
a_element_op,
b_element_op,
......@@ -175,7 +200,7 @@ __global__ void
ignore = p_bs_grid;
ignore = p_ds_grid;
ignore = p_e_grid;
ignore = batch_count;
ignore = groups_count;
ignore = a_grid_desc_k0_m_k1;
ignore = b_grid_desc_k0_n_k1;
ignore = ds_grid_desc_mblock_mperblock_nblock_nperblock;
......@@ -183,7 +208,8 @@ __global__ void
ignore = a_element_op;
ignore = b_element_op;
ignore = cde_element_op;
ignore = compute_ptr_offset_of_batch;
ignore = compute_ptr_offset_of_groups;
ignore = compute_ptr_offset_of_n;
ignore = block_2_ctile_map;
#endif
}
......@@ -309,7 +335,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
const std::array<index_t, NDimSpatial>& input_right_pads,
const index_t Conv_N)
{
const auto in_gemmmraw_gemmkraw_desc =
conv_to_gemm_transformer.template MakeADescriptor_M_K<ALay>(a_g_n_c_wis_lengths,
......@@ -321,7 +348,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
input_right_pads,
Conv_N);
const auto in_gemmm_gemmk_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_desc);
......@@ -347,11 +375,12 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
template <typename ELay>
static auto
MakeEGridDescriptor_M_N(const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides)
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const index_t Conv_N)
{
const auto out_gemmmraw_gemmnraw_desc =
conv_to_gemm_transformer.template MakeCDescriptor_M_N<ELay>(e_g_n_k_wos_lengths,
e_g_n_k_wos_strides);
conv_to_gemm_transformer.template MakeCDescriptor_M_N<ELay>(
e_g_n_k_wos_lengths, e_g_n_k_wos_strides, Conv_N);
const auto out_gemmm_gemmn_desc =
matrix_padder.PadCDescriptor_M_N(out_gemmmraw_gemmnraw_desc);
......@@ -363,24 +392,25 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
// Pass e_g_n_k_wos_lengths for logical broadcast.
static auto MakeDsGridDescriptor_M_N(
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides)
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides,
const index_t Conv_N)
{
return generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return DeviceOp::MakeEGridDescriptor_M_N<DLayout>(e_g_n_k_wos_lengths,
ds_g_n_k_wos_strides[i]);
return DeviceOp::MakeEGridDescriptor_M_N<DLayout>(
e_g_n_k_wos_lengths, ds_g_n_k_wos_strides[i], Conv_N);
},
Number<NumDTensor>{});
}
// desc for problem definition
using AGridDesc_M_K = remove_cvref_t<decltype(MakeAGridDescriptor_M_K<ALayout>(
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}))>;
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, 1))>;
using BGridDesc_N_K = remove_cvref_t<decltype(MakeBGridDescriptor_N_K<BLayout>({}, {}))>;
using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({}, {}))>;
using EGridDesc_M_N = remove_cvref_t<decltype(MakeEGridDescriptor_M_N<ELayout>({}, {}))>;
using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({}, {}, 1))>;
using EGridDesc_M_N = remove_cvref_t<decltype(MakeEGridDescriptor_M_N<ELayout>({}, {}, 1))>;
// If we are using multiAB and one of the template datatype parameters is not a tuple, convert
// it to it
......@@ -468,6 +498,12 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
p_ds_grid_{},
p_e_grid_{static_cast<EDataType*>(p_e)},
num_group_{a_g_n_c_wis_lengths[0]},
conv_N_per_block_{
conv_to_gemm_transformer.template GetSplitedNSize<ADataType, EDataType>(
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides)},
a_grid_desc_m_k_{DeviceOp::MakeAGridDescriptor_M_K<ALayout>(a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
......@@ -477,12 +513,13 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads)},
input_right_pads,
conv_N_per_block_)},
b_grid_desc_n_k_{DeviceOp::MakeBGridDescriptor_N_K<BLayout>(b_g_k_c_xs_lengths,
b_g_k_c_xs_strides)},
ds_grid_desc_m_n_{},
e_grid_desc_m_n_{DeviceOp::MakeEGridDescriptor_M_N<ELayout>(e_g_n_k_wos_lengths,
e_g_n_k_wos_strides)},
e_grid_desc_m_n_{DeviceOp::MakeEGridDescriptor_M_N<ELayout>(
e_g_n_k_wos_lengths, e_g_n_k_wos_strides, conv_N_per_block_)},
a_grid_desc_ak0_m_ak1_{
GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(a_grid_desc_m_k_)},
b_grid_desc_bk0_n_bk1_{
......@@ -490,7 +527,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
ds_grid_desc_mblock_mperblock_nblock_nperblock_{},
e_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_etile_map_{GridwiseGemm::MakeDefaultBlock2ETileMap(e_grid_desc_m_n_)},
compute_ptr_offset_of_batch_{},
compute_ptr_offset_of_groups_{},
compute_ptr_offset_of_n_{},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op},
......@@ -511,8 +549,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
if constexpr(isMultiA || isMultiB)
{
static_for<0, NumATensor, 1>{}([&](auto i) {
// Init compute_ptr_offset_of_batch_ for multiple AB
compute_ptr_offset_of_batch_.BatchStrideA_(i) = a_g_n_c_wis_strides[0];
// Init compute_ptr_offset_of_groups_ for multiple AB
compute_ptr_offset_of_groups_.BatchStrideA_(i) = a_g_n_c_wis_strides[0];
// Use GemmADataType/GemmBDataType to iterate over tuple (even if passed data
// type is not tuple)
......@@ -524,16 +562,23 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
{
// p_as is tuple
p_as_grid_(i) = static_cast<const DataType*>(p_as[i.value]);
// compute_ptr_offset_of_n_ not need BatchStrideB so
// in case of MultiA is false but isMultiB is true
// BatchStrideA_ is not tuple.
compute_ptr_offset_of_n_.BatchStrideA_(i) =
a_g_n_c_wis_strides[1] * conv_N_per_block_;
}
else
{
// if MultiB and not MultiA then p_as is single pointer
p_as_grid_(i) = static_cast<const DataType*>(p_as);
compute_ptr_offset_of_n_.BatchStrideA_ =
a_g_n_c_wis_strides[1] * conv_N_per_block_;
}
});
static_for<0, NumBTensor, 1>{}([&](auto i) {
// Init compute_ptr_offset_of_batch_ for multiple AB
compute_ptr_offset_of_batch_.BatchStrideB_(i) = b_g_k_c_xs_strides[0];
// Init compute_ptr_offset_of_groups_ for multiple AB
compute_ptr_offset_of_groups_.BatchStrideB_(i) = b_g_k_c_xs_strides[0];
using DataType = remove_cvref_t<tuple_element_t<i.value, GemmBDataType>>;
// It is possible that one of the AB is a pointer and one is a tuple.
......@@ -553,8 +598,9 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
}
else
{
compute_ptr_offset_of_batch_.BatchStrideA_ = a_g_n_c_wis_strides[0];
compute_ptr_offset_of_batch_.BatchStrideB_ = b_g_k_c_xs_strides[0];
compute_ptr_offset_of_groups_.BatchStrideA_ = a_g_n_c_wis_strides[0];
compute_ptr_offset_of_groups_.BatchStrideB_ = b_g_k_c_xs_strides[0];
compute_ptr_offset_of_n_.BatchStrideA_ = a_g_n_c_wis_strides[1] * conv_N_per_block_;
// p_as and p_bs are pointers
p_as_grid_(I0) = static_cast<const ADataType*>(p_as);
......@@ -570,13 +616,16 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
p_ds_grid_(i) = static_cast<const DDataType*>(p_ds[i]);
// D batch stride
compute_ptr_offset_of_batch_.BatchStrideDs_(i) = ds_g_n_k_wos_strides[i][0];
compute_ptr_offset_of_groups_.BatchStrideDs_(i) = ds_g_n_k_wos_strides[i][0];
compute_ptr_offset_of_n_.BatchStrideDs_(i) =
ds_g_n_k_wos_strides[i][1] * conv_N_per_block_;
// D desc
ds_grid_desc_m_n_(i) = DeviceOp::MakeEGridDescriptor_M_N<DLayout>(
e_g_n_k_wos_lengths, ds_g_n_k_wos_strides[i]);
e_g_n_k_wos_lengths, ds_g_n_k_wos_strides[i], conv_N_per_block_);
});
compute_ptr_offset_of_batch_.BatchStrideE_ = e_g_n_k_wos_strides[0];
compute_ptr_offset_of_groups_.BatchStrideE_ = e_g_n_k_wos_strides[0];
compute_ptr_offset_of_n_.BatchStrideE_ = e_g_n_k_wos_strides[1] * conv_N_per_block_;
// populate desc for Ds/E
if constexpr(isMultiA || isMultiB)
......@@ -638,6 +687,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
// tensor descriptors for problem definiton
index_t num_group_;
index_t conv_N_per_block_;
AGridDesc_M_K a_grid_desc_m_k_;
BGridDesc_N_K b_grid_desc_n_k_;
DsGridDesc_M_N ds_grid_desc_m_n_;
......@@ -655,7 +706,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
// for computing batch offset
ComputePtrOffsetOfStridedBatch<NumATensor, NumBTensor, NumDTensor>
compute_ptr_offset_of_batch_;
compute_ptr_offset_of_groups_;
ComputePtrOffsetOfStridedBatch<NumATensor, I1, NumDTensor> compute_ptr_offset_of_n_;
// element-wise op
AElementwiseOperation a_element_op_;
......@@ -689,8 +741,12 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
arg.Print();
}
const index_t grid_size =
arg.block_2_etile_map_.CalculateGridSize(arg.e_grid_desc_m_n_) * arg.num_group_;
const index_t num_workgroups_per_Conv_N =
arg.a_g_n_c_wis_lengths_[I1] / arg.conv_N_per_block_;
const index_t gdx = arg.block_2_etile_map_.CalculateGridSize(arg.e_grid_desc_m_n_);
const index_t gdy = arg.num_group_ * num_workgroups_per_Conv_N;
const index_t gdz = 1;
const auto K =
arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
......@@ -721,6 +777,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
DeviceOp::EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
Block2ETileMap,
ComputePtrOffsetOfStridedBatch<NumATensor, NumBTensor, NumDTensor>,
ComputePtrOffsetOfStridedBatch<NumATensor, I1, NumDTensor>,
has_main_loop,
isMultiA,
isMultiB>;
......@@ -728,7 +785,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
return launch_and_time_kernel(
stream_config,
kernel,
dim3(grid_size),
dim3(gdx, gdy, gdz),
dim3(BlockSize),
0,
arg.p_as_grid_,
......@@ -744,7 +801,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
arg.ds_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.e_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_etile_map_,
arg.compute_ptr_offset_of_batch_);
arg.compute_ptr_offset_of_groups_,
arg.compute_ptr_offset_of_n_);
}
else
{
......@@ -763,6 +821,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
DeviceOp::EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
Block2ETileMap,
ComputePtrOffsetOfStridedBatch<NumATensor, NumBTensor, NumDTensor>,
ComputePtrOffsetOfStridedBatch<NumATensor, I1, NumDTensor>,
has_main_loop,
isMultiA,
isMultiB>;
......@@ -770,7 +829,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
return launch_and_time_kernel(
stream_config,
kernel,
dim3(grid_size),
dim3(gdx, gdy, gdz),
dim3(BlockSize),
0,
arg.p_as_grid_.At(I0), // Pass just A descriptor instead of tuple
......@@ -786,7 +845,8 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
arg.ds_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.e_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_etile_map_,
arg.compute_ptr_offset_of_batch_);
arg.compute_ptr_offset_of_groups_,
arg.compute_ptr_offset_of_n_);
}
};
......@@ -820,15 +880,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
return false;
}
}
else if(ck::is_lds_direct_load_supported())
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, float> ||
is_same_v<AccDataType, int32_t> || is_same_v<AccDataType, double>))
{
return false;
}
}
else
if(!ck::is_xdl_supported())
{
return false;
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <functional>
#include <iostream>
#include <iterator>
#include <numeric>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/flush_cache.hpp"
#include "ck/host_utility/io.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace {
/*
* \brief Wrapper function of GridwiseGemm::Run to realize BatchedGEMM.
*
* \tparam ComputePtrOffsetOfBatch Class that computes the base pointer offsets of A, B, C matrix
* given the batch. For example, ComputePtrOffsetOfStridedBatch() computes the offsets of evenly
* strided batched, but we can easily extend to other layouts. The returned offset can be either \p
* index_t or \p long_index_t. If it returns \p long_index_t, we are not subject to the 2GB
* limitations.
*
* \tparam Block2ETileMap Block2ETileMap::CalculateBottomIndex() takes in id of a workgroup and
* returns the 2D index of the tile that it computes. \see
* GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3::Run().
*
* \note Using \p ComputePtrOffsetOfBatch gives us the flexibility that 2 workgroups can compute 2
* tiles from different matrices. Keep in mind that these 2 matrices can share the same grid
* descriptor (like in BatchedGEMM), or use their own grid descriptors (in GroupedGemm). \link
* impl/device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk.hpp kernel_gemm_xdlops_v2r3_for_conv3d \endlink for
* \link DeviceConv3d \endlink uses the same concept, but currently does NOT encapsulate the
* computing of pointer offset into \p ComputePtrOffsetOfStridedBatch.
*
* \note \p Block2ETileMap allows customized mapping between a workgroup and the C-tile it computes.
* Together with \p ComputePtrOffsetOfBatch, we can reuse GridwiseGemm (and GridwiseGemm fusion ) to
* realize BatchedGemm and GroupedGemm (and the corresponding GEMM fusion).
*
*/
template <typename GridwiseGemm,
typename AGridDesc_AK0_M_K1,
typename BGridDesc_BK0_N_K1,
typename CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename ComputePtrOffset,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
index_t MinimumOccupancy = 1,
TailNumber TailNum = TailNumber::Full>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, MinimumOccupancy)
#endif
kernel_grouped_conv_fwd_xdl_cshuffle_v3(
typename GridwiseGemm::Argument karg,
[[maybe_unused]] const AGridDesc_AK0_M_K1 a_grid_desc_ak0_m_ak1,
[[maybe_unused]] const BGridDesc_BK0_N_K1 b_grid_desc_bk0_n_bk1,
[[maybe_unused]] const CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock,
[[maybe_unused]] const ComputePtrOffset compute_ptr_offset_of_groups,
[[maybe_unused]] const ComputePtrOffset compute_ptr_offset_of_n,
[[maybe_unused]] const index_t groups_count)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
// offset base pointer for each work-group
const index_t num_blocks_per_batch = __builtin_amdgcn_readfirstlane(gridDim.y / groups_count);
const index_t& num_blocks_per_n = groups_count;
const index_t g_idx = __builtin_amdgcn_readfirstlane(blockIdx.y / num_blocks_per_batch);
const index_t n_idx = __builtin_amdgcn_readfirstlane(blockIdx.y / num_blocks_per_n);
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_groups.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_groups.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_groups.GetEPtrOffset(g_idx));
const long_index_t a_n_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_n.GetAPtrOffset(n_idx));
const long_index_t e_n_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_n.GetEPtrOffset(n_idx));
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<AGridDesc_AK0_M_K1,
BGridDesc_BK0_N_K1,
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
HasMainKBlockLoop,
CGlobalMemoryDataOperation,
TailNum>(karg.p_a_grid + a_batch_offset + a_n_offset,
karg.p_b_grid + b_batch_offset,
karg.p_c_grid + e_batch_offset + e_n_offset,
p_shared,
karg,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock);
#else
ignore = karg;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template <typename GridwiseGemm,
typename AGridDesc_AK0_M_K1,
typename BGridDesc_BK0_N_K1,
typename CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename ComputePtrOffset,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
index_t MinimumOccupancy = 1,
TailNumber TailNum = TailNumber::Full>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, MinimumOccupancy)
#endif
kernel_grouped_conv_fwd_xdl_cshuffle_v3_2lds(
typename GridwiseGemm::Argument karg,
[[maybe_unused]] const AGridDesc_AK0_M_K1 a_grid_desc_ak0_m_ak1,
[[maybe_unused]] const BGridDesc_BK0_N_K1 b_grid_desc_bk0_n_bk1,
[[maybe_unused]] const CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock,
[[maybe_unused]] const ComputePtrOffset compute_ptr_offset_of_groups,
[[maybe_unused]] const ComputePtrOffset compute_ptr_offset_of_n,
[[maybe_unused]] const index_t groups_count)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
// offset base pointer for each work-group
const index_t num_blocks_per_batch = __builtin_amdgcn_readfirstlane(gridDim.y / groups_count);
const index_t& num_blocks_per_n = groups_count;
const index_t g_idx = __builtin_amdgcn_readfirstlane(blockIdx.y / num_blocks_per_batch);
const index_t n_idx = __builtin_amdgcn_readfirstlane(blockIdx.y / num_blocks_per_n);
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_groups.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_groups.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_groups.GetEPtrOffset(g_idx));
const long_index_t a_n_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_n.GetAPtrOffset(n_idx));
const long_index_t e_n_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_n.GetEPtrOffset(n_idx));
// Pass two lds pointer is the key to tell compiler that ds_read/write
// operate on different lds chunk at same time without order dependecy
__shared__ char p_shared_0[GridwiseGemm::GetSharedMemoryNumberOfByte()];
__shared__ char p_shared_1[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run_2Lds<AGridDesc_AK0_M_K1,
BGridDesc_BK0_N_K1,
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
HasMainKBlockLoop,
CGlobalMemoryDataOperation,
TailNum>(karg.p_a_grid + a_batch_offset + a_n_offset,
karg.p_b_grid + b_batch_offset,
karg.p_c_grid + e_batch_offset + e_n_offset,
p_shared_0,
p_shared_1,
karg,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock);
#else
ignore = karg;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
} // namespace
template <typename T>
using is_tuple = decltype(std::declval<T&>().IsTuple());
//
// @brief Device Convolution operation.
//
// Supports:
// @li Forward convolution with up to 3 spatial dimentions
// @li Input tensor in GNWC data format
// @li Weight tensor in GKXC data format
// @li Output tensor in GNWK data format
//
// 1D:
// out[N, Wo, K] = in[N, Wi, C] * wei[K, X, C]
// 2D:
// out[N, Ho, Wo, K] = in[N, Hi, Wi, C] * wei[K, Y, X, C]
// 3D:
// out[N, Do, Ho, Wo, K] = in[N, Di, Hi, Wi, C] * wei[K, Z, Y, X, C]
//
template <index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
ConvolutionForwardSpecialization ConvForwardSpecialization,
GemmSpecialization GemmSpec,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1,
index_t BK1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
index_t ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
index_t BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEBlockTransferScalarPerVector_NPerBlock,
BlockGemmPipelineScheduler BlkGemmPipeSched = BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion BlkGemmPipelineVer = BlockGemmPipelineVersion::v1,
typename AComputeDataType =
decltype(UnpackDataType<is_detected<is_tuple, ADataType>::value,
Number<0>,
ADataType>()), // ComputeType is InputType by default (first
// in tuple for MultiAB), unpack if tuple was
// passed
typename BComputeDataType = AComputeDataType>
struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3
: public DeviceGroupedConvFwdMultipleABD<NDimSpatial,
ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
AComputeDataType,
BComputeDataType>
{
using DeviceOp = DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3;
static constexpr bool isMultiA = is_detected<is_tuple, ADataType>::value;
static constexpr bool isMultiB = is_detected<is_tuple, BDataType>::value;
static constexpr bool isMultiD = DsDataType::Size() > 0;
static constexpr bool isMultiABD = isMultiA || isMultiB || isMultiD;
// multi ABD not supported
static_assert(!isMultiABD, "Multi A, Mutli B and Multi D are not supported");
static constexpr index_t NumATensor = GetNumABTensors<isMultiA, ADataType>();
static constexpr index_t NumBTensor = GetNumABTensors<isMultiB, BDataType>();
static constexpr index_t NumDTensor = DsDataType::Size();
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto conv_to_gemm_transformer =
TransformConvFwdToGemm<NDimSpatial, ConvForwardSpecialization>{};
static constexpr auto matrix_padder =
MatrixPadder<GemmSpec, index_t, index_t, index_t>{MPerBlock, NPerBlock, KPerBlock};
template <typename ALay>
static auto
MakeAGridDescriptor_AK0_M_AK1(const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const index_t Conv_N)
{
const auto in_gemmmraw_gemmkraw_desc =
conv_to_gemm_transformer.template MakeADescriptor_M_K<ALay>(a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
Conv_N);
const auto in_gemmm_gemmk_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_desc);
const auto M = in_gemmm_gemmk_desc.GetLength(I0);
const auto K = in_gemmm_gemmk_desc.GetLength(I1);
const auto AK0 = K / AK1;
return transform_tensor_descriptor(in_gemmm_gemmk_desc,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
template <typename BLay>
static auto
MakeBGridDescriptor_BK0_N_BK1(const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides)
{
const auto wei_gemmnraw_gemmkraw_desc =
conv_to_gemm_transformer.template MakeBDescriptor_N_K<BLay>(b_g_k_c_xs_lengths,
b_g_k_c_xs_strides);
const auto wei_gemmn_gemmk_desc =
matrix_padder.PadBDescriptor_N_K(wei_gemmnraw_gemmkraw_desc);
const auto N = wei_gemmn_gemmk_desc.GetLength(I0);
const auto K = wei_gemmn_gemmk_desc.GetLength(I1);
const auto BK0 = K / BK1;
return transform_tensor_descriptor(wei_gemmn_gemmk_desc,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
template <typename ELay>
static auto
MakeEGridDescriptor_M_N(const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const index_t Conv_N)
{
const auto out_gemmmraw_gemmnraw_desc =
conv_to_gemm_transformer.template MakeCDescriptor_M_N<ELay>(
e_g_n_k_wos_lengths, e_g_n_k_wos_strides, Conv_N);
const auto out_gemmm_gemmn_desc =
matrix_padder.PadCDescriptor_M_N(out_gemmmraw_gemmnraw_desc);
return out_gemmm_gemmn_desc;
}
// desc for problem definition
using EGridDesc_M_N = remove_cvref_t<decltype(MakeEGridDescriptor_M_N<ELayout>({}, {}, 1))>;
#define GridwiseGemmV3TemplateParams \
tensor_layout::gemm::RowMajor, tensor_layout::gemm::ColumnMajor, \
tensor_layout::gemm::RowMajor, ADataType, BDataType, AccDataType, CShuffleDataType, \
EDataType, AElementwiseOperation, BElementwiseOperation, CDEElementwiseOperation, \
GemmSpec, BlockSize, MPerBlock, NPerBlock, KPerBlock, AK1, BK1, MPerXDL, NPerXDL, \
MXdlPerWave, NXdlPerWave, ABlockTransferThreadClusterLengths_AK0_M_AK1, \
ABlockTransferThreadClusterArrangeOrder, ABlockTransferSrcAccessOrder, \
ABlockTransferSrcVectorDim, ABlockTransferSrcScalarPerVector, \
ABlockTransferDstScalarPerVector_AK1, false, ABlockLdsExtraM, \
BBlockTransferThreadClusterLengths_BK0_N_BK1, BBlockTransferThreadClusterArrangeOrder, \
BBlockTransferSrcAccessOrder, BBlockTransferSrcVectorDim, \
BBlockTransferSrcScalarPerVector, BBlockTransferDstScalarPerVector_BK1, false, \
BBlockLdsExtraN, CShuffleMXdlPerWavePerShuffle, CShuffleNXdlPerWavePerShuffle, \
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock, \
CDEBlockTransferScalarPerVector_NPerBlock, BlkGemmPipeSched, BlkGemmPipelineVer, \
AComputeDataType, BComputeDataType
// Use appropriate gridwise gemm
using GridwiseGemm = GridwiseGemm_xdl_cshuffle_v3<GridwiseGemmV3TemplateParams>;
static auto
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(const EGridDesc_M_N& e_grid_desc_m_n)
{
const index_t M = e_grid_desc_m_n.GetLength(I0);
const index_t N = e_grid_desc_m_n.GetLength(I1);
return GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
e_grid_desc_m_n, GridwiseGemm::CalculateMBlock(M), GridwiseGemm::CalculateNBlock(N));
}
// desc for blockwise copy
using AGridDesc_AK0_M_AK1 = remove_cvref_t<decltype(MakeAGridDescriptor_AK0_M_AK1<ALayout>(
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, 1))>;
using BGridDesc_BK0_N_BK1 =
remove_cvref_t<decltype(MakeBGridDescriptor_BK0_N_BK1<BLayout>({}, {}))>;
using EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
remove_cvref_t<decltype(MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
EGridDesc_M_N{}))>;
// Argument
struct Argument : public BaseArgument
{
Argument(const void* p_as,
const void* p_bs,
const std::array<const void*, NumDTensor>&,
void* p_e,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>&,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>&,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op)
: p_a_grid_{},
p_b_grid_{},
p_e_grid_{static_cast<EDataType*>(p_e)},
num_group_{a_g_n_c_wis_lengths[0]},
conv_N_per_block_{
conv_to_gemm_transformer.template GetSplitedNSize<ADataType, EDataType>(
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides)},
a_grid_desc_ak0_m_ak1_{MakeAGridDescriptor_AK0_M_AK1<ALayout>(a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
conv_N_per_block_)},
b_grid_desc_bk0_n_bk1_{
MakeBGridDescriptor_BK0_N_BK1<BLayout>(b_g_k_c_xs_lengths, b_g_k_c_xs_strides)},
e_grid_desc_m_n_{DeviceOp::MakeEGridDescriptor_M_N<ELayout>(
e_g_n_k_wos_lengths, e_g_n_k_wos_strides, conv_N_per_block_)},
e_grid_desc_mblock_mperblock_nblock_nperblock_{},
compute_ptr_offset_of_groups_{},
compute_ptr_offset_of_n_{},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op},
a_g_n_c_wis_lengths_{a_g_n_c_wis_lengths},
a_g_n_c_wis_strides_{a_g_n_c_wis_strides},
b_g_k_c_xs_lengths_{b_g_k_c_xs_lengths},
b_g_k_c_xs_strides_{b_g_k_c_xs_strides},
e_g_n_k_wos_lengths_{e_g_n_k_wos_lengths},
e_g_n_k_wos_strides_{e_g_n_k_wos_strides},
conv_filter_strides_{conv_filter_strides},
conv_filter_dilations_{conv_filter_dilations},
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads}
{
// A/B/E Batch/N Stride
compute_ptr_offset_of_groups_.BatchStrideA_ = a_g_n_c_wis_strides[0];
compute_ptr_offset_of_groups_.BatchStrideB_ = b_g_k_c_xs_strides[0];
compute_ptr_offset_of_n_.BatchStrideA_ = a_g_n_c_wis_strides[1] * conv_N_per_block_;
// p_as and p_bs are pointers
p_a_grid_ = static_cast<const ADataType*>(p_as);
p_b_grid_ = static_cast<const BDataType*>(p_bs);
compute_ptr_offset_of_groups_.BatchStrideE_ = e_g_n_k_wos_strides[0];
compute_ptr_offset_of_n_.BatchStrideE_ = e_g_n_k_wos_strides[1] * conv_N_per_block_;
e_grid_desc_mblock_mperblock_nblock_nperblock_ =
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(e_grid_desc_m_n_);
}
void Print() const
{
std::cout << "A[AK0, M, AK1]: " << a_grid_desc_ak0_m_ak1_ << std::endl;
std::cout << "B[BK0, N, BK1]: " << b_grid_desc_bk0_n_bk1_ << std::endl;
std::cout << "E[M, N]: " << e_grid_desc_m_n_ << std::endl;
}
// private:
// pointers (tuple if multi AB, pointer if no)
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
EDataType* p_e_grid_;
// tensor descriptors for problem definiton
index_t num_group_;
index_t conv_N_per_block_;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
EGridDesc_M_N e_grid_desc_m_n_;
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock e_grid_desc_mblock_mperblock_nblock_nperblock_;
// for computing batch offset
ComputePtrOffsetOfStridedBatch<I1, I1, I0> compute_ptr_offset_of_groups_;
ComputePtrOffsetOfStridedBatch<I1, I1, I0> compute_ptr_offset_of_n_;
// element-wise op
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
// for checking IsSupportedArgument()
std::array<index_t, NDimSpatial + 3> a_g_n_c_wis_lengths_;
std::array<index_t, NDimSpatial + 3> a_g_n_c_wis_strides_;
std::array<index_t, NDimSpatial + 3> b_g_k_c_xs_lengths_;
std::array<index_t, NDimSpatial + 3> b_g_k_c_xs_strides_;
std::array<index_t, NDimSpatial + 3> e_g_n_k_wos_lengths_;
std::array<index_t, NDimSpatial + 3> e_g_n_k_wos_strides_;
std::array<index_t, NDimSpatial> conv_filter_strides_;
std::array<index_t, NDimSpatial> conv_filter_dilations_;
std::array<index_t, NDimSpatial> input_left_pads_;
std::array<index_t, NDimSpatial> input_right_pads_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(stream_config.log_level_ > 0)
{
arg.Print();
}
float ave_time = 0;
constexpr index_t minimum_occupancy =
BlkGemmPipeSched == BlockGemmPipelineScheduler::Intrawave ? 1 : 2;
const index_t GemmM = arg.a_grid_desc_ak0_m_ak1_.GetLength(I1);
const index_t GemmN = arg.b_grid_desc_bk0_n_bk1_.GetLength(I1);
const index_t GemmK =
arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
const index_t num_workgroups_per_Conv_N =
arg.a_g_n_c_wis_lengths_[I1] / arg.conv_N_per_block_;
index_t gdx, gdy, gdz;
std::tie(gdx, gdy, gdz) =
GridwiseGemm::CalculateGridSize(GemmM, GemmN, I1 /*arg.KBatch*/);
gdy *= arg.num_group_ * num_workgroups_per_Conv_N;
index_t K_split = (GemmK + KPerBlock - 1) / KPerBlock * KPerBlock;
const bool has_main_k_block_loop = GridwiseGemm::CalculateHasMainKBlockLoop(K_split);
typename GridwiseGemm::Argument gemm_arg{
arg.p_a_grid_, arg.p_b_grid_, arg.p_e_grid_, GemmM, GemmN, GemmK, I0, I0, I0, I1};
const auto Run = [&](const auto& kernel) {
if(stream_config.flush_cache)
{
typename GridwiseGemm::Argument gemm_arg_ = gemm_arg;
ck::utility::RotatingMemWrapper<typename GridwiseGemm::Argument> rotating_mem(
gemm_arg_,
stream_config.rotating_count,
gemm_arg_.M * gemm_arg_.K * sizeof(ADataType),
gemm_arg_.K * gemm_arg_.N * sizeof(BDataType));
rotating_mem.Print();
auto run_flush_cache = [&]() {
// flush icache
ck::utility::flush_icache();
// rotating mem
rotating_mem.Next();
};
ave_time += ck::utility::launch_and_time_kernel_with_preprocess<false>(
stream_config,
run_flush_cache,
kernel,
dim3(gdx, gdy, gdz),
dim3(BlockSize),
0,
gemm_arg_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.e_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.compute_ptr_offset_of_groups_,
arg.compute_ptr_offset_of_n_,
arg.num_group_);
}
else
{
ave_time +=
launch_and_time_kernel(stream_config,
kernel,
dim3(gdx, gdy, gdz),
dim3(BlockSize),
0,
gemm_arg,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.e_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.compute_ptr_offset_of_groups_,
arg.compute_ptr_offset_of_n_,
arg.num_group_);
}
};
if(has_main_k_block_loop)
{
// Tail number always full
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1 ||
BlkGemmPipelineVer == BlockGemmPipelineVersion::v3)
{
const auto kernel = kernel_grouped_conv_fwd_xdl_cshuffle_v3<
GridwiseGemm,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
DeviceOp::EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
// Tail number could be One to Seven
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::One)
{
const auto kernel = kernel_grouped_conv_fwd_xdl_cshuffle_v3<
GridwiseGemm,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
DeviceOp::EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::One>;
Run(kernel);
}
else if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Full)
{
const auto kernel = kernel_grouped_conv_fwd_xdl_cshuffle_v3<
GridwiseGemm,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
DeviceOp::EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Full>;
Run(kernel);
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Two)
{
const auto kernel = kernel_grouped_conv_fwd_xdl_cshuffle_v3<
GridwiseGemm,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
DeviceOp::EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Two>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 3)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Three)
{
const auto kernel = kernel_grouped_conv_fwd_xdl_cshuffle_v3<
GridwiseGemm,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
DeviceOp::EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Three>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Four)
{
const auto kernel = kernel_grouped_conv_fwd_xdl_cshuffle_v3<
GridwiseGemm,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
DeviceOp::EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Four>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 5)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Five)
{
const auto kernel = kernel_grouped_conv_fwd_xdl_cshuffle_v3<
GridwiseGemm,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
DeviceOp::EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Five>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 6)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Six)
{
const auto kernel = kernel_grouped_conv_fwd_xdl_cshuffle_v3<
GridwiseGemm,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
DeviceOp::EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Six>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 7)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Seven)
{
const auto kernel = kernel_grouped_conv_fwd_xdl_cshuffle_v3<
GridwiseGemm,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
DeviceOp::EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Seven>;
Run(kernel);
}
}
}
// Tail number could be Odd or Even
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_grouped_conv_fwd_xdl_cshuffle_v3_2lds<
GridwiseGemm,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
DeviceOp::EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_grouped_conv_fwd_xdl_cshuffle_v3_2lds<
GridwiseGemm,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
DeviceOp::EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
else
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_grouped_conv_fwd_xdl_cshuffle_v3<
GridwiseGemm,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
DeviceOp::EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_grouped_conv_fwd_xdl_cshuffle_v3<
GridwiseGemm,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
DeviceOp::EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
else
{
// Tail number always 1
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1)
{
const auto kernel = kernel_grouped_conv_fwd_xdl_cshuffle_v3<
GridwiseGemm,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
DeviceOp::EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
false,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
}
return ave_time;
}
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static bool IsSupportedArgument(const Argument& arg)
{
namespace ctc = tensor_layout::convolution;
// check device
if(get_device_name() == "gfx908")
{
// FIXME: re-enable fp64 when SWDEV-335738 is fixed
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, int32_t>))
{
return false;
}
}
if(!ck::is_xdl_supported())
{
return false;
}
// check ConvolutionForwardSpecialization
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
// check if it's 1x1, stride=1 conv
for(index_t i = 0; i < NDimSpatial; ++i)
{
const index_t X = arg.b_g_k_c_xs_lengths_[i + 3];
const index_t ConvStride = arg.conv_filter_strides_[i];
const index_t LeftPad = arg.input_left_pads_[i];
const index_t RightPad = arg.input_right_pads_[i];
if(!(X == 1 && ConvStride == 1 && LeftPad == 0 && RightPad == 0))
{
return false;
}
}
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Pad0)
{
// check if it's 1x1 conv
for(index_t i = 0; i < NDimSpatial; ++i)
{
const index_t X = arg.b_g_k_c_xs_lengths_[i + 3];
const index_t LeftPad = arg.input_left_pads_[i];
const index_t RightPad = arg.input_right_pads_[i];
if(!(X == 1 && LeftPad == 0 && RightPad == 0))
{
return false;
}
}
}
// check vector access of A
// FIXME: layout
if constexpr(is_same_v<ALayout, ctc::G_NW_C> || is_same_v<ALayout, ctc::G_NHW_C> ||
is_same_v<ALayout, ctc::G_NDHW_C> || is_same_v<ALayout, ctc::GNWC> ||
is_same_v<ALayout, ctc::GNHWC> || is_same_v<ALayout, ctc::GNDHWC> ||
is_same_v<ALayout, ctc::NWGC> || is_same_v<ALayout, ctc::NHWGC> ||
is_same_v<ALayout, ctc::NDHWGC>)
{
const index_t C = arg.a_g_n_c_wis_lengths_[2];
if(!(ABlockTransferSrcVectorDim == 2 && C % ABlockTransferSrcScalarPerVector == 0))
{
return false;
}
}
else
{
return false;
}
// check vector access of B
// FIXME: layout
if constexpr(is_same_v<BLayout, ctc::G_K_X_C> || is_same_v<BLayout, ctc::G_K_YX_C> ||
is_same_v<BLayout, ctc::G_K_ZYX_C> || is_same_v<BLayout, ctc::GKXC> ||
is_same_v<BLayout, ctc::GKYXC> || is_same_v<BLayout, ctc::GKZYXC> ||
is_same_v<BLayout, ctc::KXGC> || is_same_v<BLayout, ctc::KYXGC> ||
is_same_v<BLayout, ctc::KZYXGC>)
{
const index_t C = arg.b_g_k_c_xs_lengths_[2];
if(!(BBlockTransferSrcVectorDim == 2 && C % BBlockTransferSrcScalarPerVector == 0))
{
return false;
}
}
else
{
return false;
}
// check vector access of E
if constexpr(is_same_v<ELayout, ctc::G_NW_K> || is_same_v<ELayout, ctc::G_NHW_K> ||
is_same_v<ELayout, ctc::G_NDHW_K> || is_same_v<ELayout, ctc::GNWK> ||
is_same_v<ELayout, ctc::GNHWK> || is_same_v<ELayout, ctc::GNDHWK> ||
is_same_v<ELayout, ctc::NWGK> || is_same_v<ELayout, ctc::NHWGK> ||
is_same_v<ELayout, ctc::NDHWGK>)
{
const index_t K = arg.e_g_n_k_wos_lengths_[2];
if(!(K % CDEBlockTransferScalarPerVector_NPerBlock == 0))
{
return false;
}
}
else
{
return false;
}
// check Gridwise GEMM
const index_t GemmM = arg.a_grid_desc_ak0_m_ak1_.GetLength(I1);
const index_t GemmN = arg.b_grid_desc_bk0_n_bk1_.GetLength(I1);
const index_t GemmK =
arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
typename GridwiseGemm::Argument gemm_arg{
nullptr, nullptr, nullptr, GemmM, GemmN, GemmK, I0, I0, I0, I1 /*KBatch*/};
return GridwiseGemm::CheckValidity(gemm_arg);
}
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(
const void* p_as,
const void* p_bs,
const std::array<const void*, NumDTensor>& p_ds,
void* p_e,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_lengths,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op)
{
return Argument{p_as,
p_bs,
p_ds,
p_e,
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
ds_g_n_k_wos_lengths,
ds_g_n_k_wos_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
a_element_op,
b_element_op,
cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
std::unique_ptr<BaseArgument> MakeArgumentPointer(
const void* p_a,
const void* p_b,
const std::array<const void*, NumDTensor>& p_ds,
void* p_e,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_lengths,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op) override
{
return std::make_unique<Argument>(p_a,
p_b,
p_ds,
p_e,
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
ds_g_n_k_wos_lengths,
ds_g_n_k_wos_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
a_element_op,
b_element_op,
cde_element_op);
}
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
std::map<BlockGemmPipelineScheduler, std::string> BlkGemmPipelineSchedulerToString{
{BlockGemmPipelineScheduler::Intrawave, "Intrawave"},
{BlockGemmPipelineScheduler::Interwave, "Interwave"}};
std::map<BlockGemmPipelineVersion, std::string> BlkGemmPipelineVersionToString{
{BlockGemmPipelineVersion::v1, "v1"},
{BlockGemmPipelineVersion::v2, "v2"},
{BlockGemmPipelineVersion::v3, "v3"},
{BlockGemmPipelineVersion::v4, "v4"},
{BlockGemmPipelineVersion::v5, "v5"}};
// clang-format off
str << "DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle_V3"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< getConvForwardSpecializationString(ConvForwardSpecialization) << ", "
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< CDEBlockTransferScalarPerVector_NPerBlock << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle << ", "
<< "BlkGemmPipelineScheduler: "
<< BlkGemmPipelineSchedulerToString[BlkGemmPipeSched] << ", "
<< "BlkGemmPipelineVersion: "
<< BlkGemmPipelineVersionToString[BlkGemmPipelineVer]
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -161,11 +161,11 @@ __global__ void
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
const long_index_t a_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = __builtin_amdgcn_readfirstlane(
const long_index_t b_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t e_batch_offset = __builtin_amdgcn_readfirstlane(
const long_index_t e_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const auto ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
......@@ -338,7 +338,8 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
input_right_pads,
a_g_n_c_wis_lengths[I1]);
const auto in_gemmm_gemmk_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_desc);
......@@ -367,8 +368,8 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides)
{
const auto out_gemmmraw_gemmnraw_desc =
conv_to_gemm_transformer.template MakeCDescriptor_M_N<ELay>(e_g_n_k_wos_lengths,
e_g_n_k_wos_strides);
conv_to_gemm_transformer.template MakeCDescriptor_M_N<ELay>(
e_g_n_k_wos_lengths, e_g_n_k_wos_strides, e_g_n_k_wos_lengths[I1]);
const auto out_gemmm_gemmn_desc =
matrix_padder.PadCDescriptor_M_N(out_gemmmraw_gemmnraw_desc);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -163,7 +163,8 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
input_right_pads,
a_g_n_c_wis_lengths[I1]);
const auto in_gemmm_gemmk_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_desc);
......@@ -255,8 +256,8 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides)
{
const auto out_gemmmraw_gemmnraw_desc =
conv_to_gemm_transformer.template MakeCDescriptor_M_N<ELay>(e_g_n_k_wos_lengths,
e_g_n_k_wos_strides);
conv_to_gemm_transformer.template MakeCDescriptor_M_N<ELay>(
e_g_n_k_wos_lengths, e_g_n_k_wos_strides, e_g_n_k_wos_lengths[I1]);
const auto out_gemmm_gemmn_desc =
matrix_padder.PadCDescriptor_M_N(out_gemmmraw_gemmnraw_desc);
......
......@@ -68,14 +68,14 @@ template <index_t NumATensor, index_t NumBTensor, index_t NumDTensor>
struct ComputePtrOffsetOfStridedBatch<NumATensor,
NumBTensor,
NumDTensor,
ck::enable_if_t<(NumATensor > 1 || NumBTensor > 1)>>
enable_if_t<(NumATensor > 1 || NumBTensor > 1)>>
{
ComputePtrOffsetOfStridedBatch() = default;
ComputePtrOffsetOfStridedBatch(Array<ck::index_t, NumATensor>& BatchStrideAs,
Array<ck::index_t, NumBTensor>& BatchStrideBs,
Array<ck::index_t, NumDTensor>& BatchStrideDs,
index_t BatchStrideE)
ComputePtrOffsetOfStridedBatch(Array<long_index_t, NumATensor>& BatchStrideAs,
Array<long_index_t, NumBTensor>& BatchStrideBs,
Array<long_index_t, NumDTensor>& BatchStrideDs,
long_index_t BatchStrideE)
: BatchStrideA_(BatchStrideAs),
BatchStrideB_(BatchStrideBs),
BatchStrideDs_(BatchStrideDs),
......@@ -87,7 +87,7 @@ struct ComputePtrOffsetOfStridedBatch<NumATensor,
{
Array<long_index_t, NumATensor> as_offset;
static_for<0, NumATensor, 1>{}(
[&](auto i) { as_offset(i) = g_idx * static_cast<long_index_t>(BatchStrideA_[i]); });
[&](auto i) { as_offset(i) = static_cast<long_index_t>(g_idx) * BatchStrideA_[i]; });
return as_offset;
}
......@@ -95,7 +95,7 @@ struct ComputePtrOffsetOfStridedBatch<NumATensor,
{
Array<long_index_t, NumBTensor> bs_offset;
static_for<0, NumBTensor, 1>{}(
[&](auto i) { bs_offset(i) = g_idx * static_cast<long_index_t>(BatchStrideB_[i]); });
[&](auto i) { bs_offset(i) = static_cast<long_index_t>(g_idx) * BatchStrideB_[i]; });
return bs_offset;
}
......@@ -103,40 +103,40 @@ struct ComputePtrOffsetOfStridedBatch<NumATensor,
{
Array<long_index_t, NumDTensor> ds_offset;
static_for<0, NumDTensor, 1>{}(
[&](auto i) { ds_offset(i) = g_idx * static_cast<long_index_t>(BatchStrideDs_[i]); });
[&](auto i) { ds_offset(i) = static_cast<long_index_t>(g_idx) * BatchStrideDs_[i]; });
return ds_offset;
}
[[maybe_unused]] __host__ __device__ constexpr long_index_t GetEPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideE_);
return static_cast<long_index_t>(g_idx) * BatchStrideE_;
}
// alias for kernels without multiple D
[[maybe_unused]] __host__ __device__ constexpr long_index_t GetCPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideE_);
return static_cast<long_index_t>(g_idx) * BatchStrideE_;
}
Array<ck::index_t, NumATensor> BatchStrideA_;
Array<ck::index_t, NumBTensor> BatchStrideB_;
Array<ck::index_t, NumDTensor> BatchStrideDs_;
index_t BatchStrideE_;
index_t& BatchStrideC_ = BatchStrideE_; // alias for kernels without multiple D
Array<long_index_t, NumATensor> BatchStrideA_;
Array<long_index_t, NumBTensor> BatchStrideB_;
Array<long_index_t, NumDTensor> BatchStrideDs_;
long_index_t BatchStrideE_;
long_index_t& BatchStrideC_ = BatchStrideE_; // alias for kernels without multiple D
};
template <index_t NumATensor, index_t NumBTensor, index_t NumDTensor>
struct ComputePtrOffsetOfStridedBatch<NumATensor,
NumBTensor,
NumDTensor,
ck::enable_if_t<(NumATensor == 1 && NumBTensor == 1)>>
enable_if_t<(NumATensor == 1 && NumBTensor == 1)>>
{
ComputePtrOffsetOfStridedBatch() = default;
ComputePtrOffsetOfStridedBatch(index_t BatchStrideA,
index_t BatchStrideB,
Array<ck::index_t, NumDTensor> BatchStrideDs,
index_t BatchStrideE)
ComputePtrOffsetOfStridedBatch(long_index_t BatchStrideA,
long_index_t BatchStrideB,
Array<long_index_t, NumDTensor> BatchStrideDs,
long_index_t BatchStrideE)
: BatchStrideA_(BatchStrideA),
BatchStrideB_(BatchStrideB),
BatchStrideDs_(BatchStrideDs),
......@@ -146,38 +146,38 @@ struct ComputePtrOffsetOfStridedBatch<NumATensor,
__host__ __device__ constexpr long_index_t GetAPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideA_);
return static_cast<long_index_t>(g_idx) * BatchStrideA_;
}
__host__ __device__ constexpr long_index_t GetBPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideB_);
return static_cast<long_index_t>(g_idx) * BatchStrideB_;
}
__host__ __device__ constexpr auto GetDsPtrOffset(index_t g_idx) const
{
Array<long_index_t, NumDTensor> ds_offset;
static_for<0, NumDTensor, 1>{}(
[&](auto i) { ds_offset(i) = g_idx * static_cast<long_index_t>(BatchStrideDs_[i]); });
[&](auto i) { ds_offset(i) = static_cast<long_index_t>(g_idx) * BatchStrideDs_[i]; });
return ds_offset;
}
[[maybe_unused]] __host__ __device__ constexpr long_index_t GetEPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideE_);
return static_cast<long_index_t>(g_idx) * BatchStrideE_;
}
// alias for kernels without multiple D
[[maybe_unused]] __host__ __device__ constexpr long_index_t GetCPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideE_);
return static_cast<long_index_t>(g_idx) * BatchStrideE_;
}
ck::index_t BatchStrideA_;
ck::index_t BatchStrideB_;
Array<ck::index_t, NumDTensor> BatchStrideDs_;
index_t BatchStrideE_;
index_t& BatchStrideC_ = BatchStrideE_; // alias for kernels without multiple D
long_index_t BatchStrideA_;
long_index_t BatchStrideB_;
Array<long_index_t, NumDTensor> BatchStrideDs_;
long_index_t BatchStrideE_;
long_index_t& BatchStrideC_ = BatchStrideE_; // alias for kernels without multiple D
};
template <bool isTuple, typename Tensors>
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment