Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
dcd3d21a
Commit
dcd3d21a
authored
Jul 08, 2024
by
illsilin
Browse files
merge from public repo
parents
9f2a6d43
8182976c
Changes
379
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
4173 additions
and
680 deletions
+4173
-680
example/65_gemm_multiply_multiply/CMakeLists.txt
example/65_gemm_multiply_multiply/CMakeLists.txt
+1
-0
example/65_gemm_multiply_multiply/gemm_multiply_multiply_xdl_fp16.cpp
...emm_multiply_multiply/gemm_multiply_multiply_xdl_fp16.cpp
+274
-0
example/CMakeLists.txt
example/CMakeLists.txt
+1
-1
example/ck_tile/01_fmha/CMakeLists.txt
example/ck_tile/01_fmha/CMakeLists.txt
+35
-4
example/ck_tile/01_fmha/README.md
example/ck_tile/01_fmha/README.md
+1
-0
example/ck_tile/01_fmha/codegen/__init__.py
example/ck_tile/01_fmha/codegen/__init__.py
+0
-0
example/ck_tile/01_fmha/codegen/cmake_config.py
example/ck_tile/01_fmha/codegen/cmake_config.py
+5
-0
example/ck_tile/01_fmha/codegen/cpp_symbol_map.py
example/ck_tile/01_fmha/codegen/cpp_symbol_map.py
+92
-0
example/ck_tile/01_fmha/codegen/ops/__init__.py
example/ck_tile/01_fmha/codegen/ops/__init__.py
+0
-0
example/ck_tile/01_fmha/codegen/ops/fmha_bwd.py
example/ck_tile/01_fmha/codegen/ops/fmha_bwd.py
+613
-0
example/ck_tile/01_fmha/codegen/ops/fmha_fwd.py
example/ck_tile/01_fmha/codegen/ops/fmha_fwd.py
+501
-0
example/ck_tile/01_fmha/codegen/ops/fmha_fwd_splitkv.py
example/ck_tile/01_fmha/codegen/ops/fmha_fwd_splitkv.py
+674
-0
example/ck_tile/01_fmha/fmha_bwd.cpp
example/ck_tile/01_fmha/fmha_bwd.cpp
+932
-0
example/ck_tile/01_fmha/fmha_bwd.hpp
example/ck_tile/01_fmha/fmha_bwd.hpp
+359
-0
example/ck_tile/01_fmha/fmha_fwd.cpp
example/ck_tile/01_fmha/fmha_fwd.cpp
+304
-78
example/ck_tile/01_fmha/fmha_fwd.hpp
example/ck_tile/01_fmha/fmha_fwd.hpp
+287
-42
example/ck_tile/01_fmha/generate.py
example/ck_tile/01_fmha/generate.py
+40
-555
example/ck_tile/01_fmha/script/benchmark_bwd.sh
example/ck_tile/01_fmha/script/benchmark_bwd.sh
+21
-0
example/ck_tile/01_fmha/script/benchmark_fwd.sh
example/ck_tile/01_fmha/script/benchmark_fwd.sh
+0
-0
example/ck_tile/01_fmha/script/smoke_test_bwd.sh
example/ck_tile/01_fmha/script/smoke_test_bwd.sh
+33
-0
No files found.
example/65_gemm_multiply_multiply/CMakeLists.txt
0 → 100644
View file @
dcd3d21a
add_example_executable
(
example_gemm_multiply_multiply_xdl_fp16 gemm_multiply_multiply_xdl_fp16.cpp
)
example/65_gemm_multiply_multiply/gemm_multiply_multiply_xdl_fp16.cpp
0 → 100644
View file @
dcd3d21a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
FP8
=
ck
::
f8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
FP8
;
using
B0DataType
=
FP8
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
F32
;
using
D1DataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
,
D1DataType
>
;
using
EDataType
=
F16
;
using
A0Layout
=
Row
;
using
B0Layout
=
Col
;
using
D0Layout
=
Row
;
using
D1Layout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
,
D1Layout
>
;
using
ELayout
=
Row
;
struct
MultiplyMultiply
{
template
<
typename
E
,
typename
C
,
typename
D0
,
typename
D1
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D0
&
d0
,
const
D1
&
d1
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
ck
::
half_t
,
float
,
float
,
float
>
(
ck
::
half_t
&
e
,
const
float
&
c
,
const
float
&
d0
,
const
float
&
d1
)
const
{
const
float
x0_f
=
c
*
d0
*
d1
;
e
=
ck
::
type_convert
<
ck
::
half_t
>
(
x0_f
);
}
};
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
MultiplyMultiply
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultiD_Xdl_CShuffle_V3
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | S<C, D0, D1>|
///###### RRR
///< Row, Row, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 256, 256, 128, 64, 16, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v1, FP8>;
///###### RCR
<
Row
,
Col
,
DsLayout
,
ELayout
,
A0DataType
,
B0DataType
,
DsDataType
,
EDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
0
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
S
<
8
,
8
,
1
>
,
ck
::
BlockGemmPipelineScheduler
::
Interwave
,
ck
::
BlockGemmPipelineVersion
::
v1
,
FP8
>
;
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
K
;
ck
::
index_t
StrideD
=
0
;
ck
::
index_t
StrideE
=
N
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
11
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideD
=
std
::
stoi
(
argv
[
9
]);
StrideE
=
std
::
stoi
(
argv
[
10
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
A0DataType
>
a0_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
A0Layout
{}));
Tensor
<
B0DataType
>
b0_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
B0Layout
{}));
Tensor
<
D0DataType
>
d0_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD
,
D0Layout
{}));
Tensor
<
D1DataType
>
d1_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD
,
D1Layout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a0_m_k: "
<<
a0_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_k_n: "
<<
b0_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_m_n: "
<<
d1_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_m_n: "
<<
d0_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
2
,
2
});
b0_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
0
,
2
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
0
,
2
});
d1_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D1DataType
>
{
0
,
2
});
break
;
default:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
b0_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
-
0.5
,
0.5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
-
0.5
,
0.5
});
d1_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
a0_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
b0_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
d0_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_device_buf
.
ToDevice
(
a0_m_k
.
mData
.
data
());
b0_device_buf
.
ToDevice
(
b0_k_n
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_m_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_m_n
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_m_n_device_result
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
constexpr
ck
::
index_t
NumDTensor
=
DsDataType
::
Size
();
constexpr
auto
I0
=
ck
::
Number
<
0
>
{};
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a0_device_buf
.
GetDeviceBuffer
(),
b0_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
NumDTensor
>
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
I0
,
I0
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
,
20
,
50
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_m_n
({
M
,
N
});
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
A0DataType
,
B0DataType
,
CShuffleDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a0_m_k
,
b0_k_n
,
c_m_n
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d0_m_n
(
m
,
n
),
d1_m_n
(
m
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
)
?
0
:
1
;
}
return
0
;
}
example/CMakeLists.txt
View file @
dcd3d21a
...
@@ -181,7 +181,7 @@ endfunction(add_example_executable_no_testing EXAMPLE_NAME)
...
@@ -181,7 +181,7 @@ endfunction(add_example_executable_no_testing EXAMPLE_NAME)
# add all example subdir
# add all example subdir
file
(
GLOB dir_list LIST_DIRECTORIES true *
)
file
(
GLOB dir_list LIST_DIRECTORIES true *
)
FOREACH
(
subdir
${
dir_list
}
)
FOREACH
(
subdir
${
dir_list
}
)
IF
(
IS_DIRECTORY
"
${
subdir
}
"
)
if
(
IS_DIRECTORY
"
${
subdir
}
"
AND EXISTS
"
${
subdir
}
/CMakeLists.txt"
)
add_subdirectory
(
${
subdir
}
)
add_subdirectory
(
${
subdir
}
)
ENDIF
()
ENDIF
()
ENDFOREACH
()
ENDFOREACH
()
example/ck_tile/01_fmha/CMakeLists.txt
View file @
dcd3d21a
# generate a list of kernels, but not actually emit files at config stage
# generate a list of kernels, but not actually emit files at config stage
execute_process
(
execute_process
(
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
--list_blobs
${
CMAKE_CURRENT_BINARY_DIR
}
/blob_list.txt
--api fwd,fwd_splitkv
--list_blobs
${
CMAKE_CURRENT_BINARY_DIR
}
/
fwd_
blob_list.txt
)
)
# NOTE: for cmake, the FMHA_FWD_GEN_BLOBS files must be in the same directory
execute_process
(
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
--api bwd --list_blobs
${
CMAKE_CURRENT_BINARY_DIR
}
/bwd_blob_list.txt
)
# NOTE: for cmake, the FMHA_FWD_GEN_BLOBS/FMHA_BWD_GEN_BLOBS files must be in the same directory
# as current cmake list, otherwise will not figure out the dependency properly
# as current cmake list, otherwise will not figure out the dependency properly
file
(
STRINGS
${
CMAKE_CURRENT_BINARY_DIR
}
/blob_list.txt FMHA_FWD_GEN_BLOBS
)
file
(
STRINGS
${
CMAKE_CURRENT_BINARY_DIR
}
/fwd_blob_list.txt FMHA_FWD_GEN_BLOBS
)
file
(
STRINGS
${
CMAKE_CURRENT_BINARY_DIR
}
/bwd_blob_list.txt FMHA_BWD_GEN_BLOBS
)
add_custom_command
(
add_custom_command
(
OUTPUT
${
FMHA_FWD_GEN_BLOBS
}
OUTPUT
${
FMHA_FWD_GEN_BLOBS
}
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
--output_dir
${
CMAKE_CURRENT_BINARY_DIR
}
--api fwd,fwd_splitkv --output_dir
${
CMAKE_CURRENT_BINARY_DIR
}
)
add_custom_command
(
OUTPUT
${
FMHA_BWD_GEN_BLOBS
}
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
--api bwd --output_dir
${
CMAKE_CURRENT_BINARY_DIR
}
)
)
set
(
EXAMPLE_FMHA_FWD
"tile_example_fmha_fwd"
)
set
(
EXAMPLE_FMHA_FWD
"tile_example_fmha_fwd"
)
...
@@ -22,6 +34,14 @@ add_executable(${EXAMPLE_FMHA_FWD} EXCLUDE_FROM_ALL fmha_fwd.cpp)
...
@@ -22,6 +34,14 @@ add_executable(${EXAMPLE_FMHA_FWD} EXCLUDE_FROM_ALL fmha_fwd.cpp)
target_include_directories
(
${
EXAMPLE_FMHA_FWD
}
PRIVATE
${
CMAKE_CURRENT_LIST_DIR
}
)
target_include_directories
(
${
EXAMPLE_FMHA_FWD
}
PRIVATE
${
CMAKE_CURRENT_LIST_DIR
}
)
target_sources
(
${
EXAMPLE_FMHA_FWD
}
PRIVATE
${
FMHA_FWD_GEN_BLOBS
}
)
target_sources
(
${
EXAMPLE_FMHA_FWD
}
PRIVATE
${
FMHA_FWD_GEN_BLOBS
}
)
set
(
EXAMPLE_FMHA_BWD
"tile_example_fmha_bwd"
)
# not using add_example_executable() to add this target, since we don't want this to have
# to be included in "make all/install/check"
message
(
"adding example
${
EXAMPLE_FMHA_BWD
}
"
)
add_executable
(
${
EXAMPLE_FMHA_BWD
}
EXCLUDE_FROM_ALL fmha_bwd.cpp
)
target_include_directories
(
${
EXAMPLE_FMHA_BWD
}
PRIVATE
${
CMAKE_CURRENT_LIST_DIR
}
)
target_sources
(
${
EXAMPLE_FMHA_BWD
}
PRIVATE
${
FMHA_BWD_GEN_BLOBS
}
)
# NOTE: this is dangerous since will change the whole kernel to flush denormals
# NOTE: this is dangerous since will change the whole kernel to flush denormals
# WIP with compiler team for an exp2 intrinsic..., then remove this
# WIP with compiler team for an exp2 intrinsic..., then remove this
if
(
NOT DEFINED FMHA_FWD_FAST_EXP2
)
if
(
NOT DEFINED FMHA_FWD_FAST_EXP2
)
...
@@ -29,16 +49,27 @@ if(NOT DEFINED FMHA_FWD_FAST_EXP2)
...
@@ -29,16 +49,27 @@ if(NOT DEFINED FMHA_FWD_FAST_EXP2)
endif
()
endif
()
set
(
EXAMPLE_FMHA_FWD_COMPILE_OPTIONS
)
set
(
EXAMPLE_FMHA_FWD_COMPILE_OPTIONS
)
set
(
EXAMPLE_FMHA_BWD_COMPILE_OPTIONS
)
# NOTE: we turn off undefined-func-template to let source compile without explicit declare function specializations
# NOTE: we turn off undefined-func-template to let source compile without explicit declare function specializations
# ... because they are auto-generated
# ... because they are auto-generated
if
(
FMHA_FWD_FAST_EXP2
)
if
(
FMHA_FWD_FAST_EXP2
)
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=1 -fgpu-flush-denormals-to-zero
)
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=1 -fgpu-flush-denormals-to-zero
)
list
(
APPEND EXAMPLE_FMHA_BWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=1 -fgpu-flush-denormals-to-zero
)
else
()
else
()
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=0
)
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=0
)
list
(
APPEND EXAMPLE_FMHA_BWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=0
)
endif
()
endif
()
# Allow comparing floating points directly in order to check sentinel values
# Allow comparing floating points directly in order to check sentinel values
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-float-equal
)
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-float-equal
)
list
(
APPEND EXAMPLE_FMHA_BWD_COMPILE_OPTIONS -Wno-float-equal
)
target_compile_options
(
${
EXAMPLE_FMHA_FWD
}
PRIVATE
${
EXAMPLE_FMHA_FWD_COMPILE_OPTIONS
}
)
target_compile_options
(
${
EXAMPLE_FMHA_FWD
}
PRIVATE
${
EXAMPLE_FMHA_FWD_COMPILE_OPTIONS
}
)
target_compile_options
(
${
EXAMPLE_FMHA_BWD
}
PRIVATE
${
EXAMPLE_FMHA_BWD_COMPILE_OPTIONS
}
)
# TODO: we have to turn off this global prop, otherwise the progress bar generated
# by cmake will print too many files, execvp: /bin/sh: Argument list too long
# however, this property may affect global
# TODO: consider codegen a makefile by us
set_property
(
GLOBAL PROPERTY RULE_MESSAGES OFF
)
example/ck_tile/01_fmha/README.md
View file @
dcd3d21a
...
@@ -34,6 +34,7 @@ args:
...
@@ -34,6 +34,7 @@ args:
if not equal to h, then this is GQA/MQA case
if not equal to h, then this is GQA/MQA case
-s seqlen_q. if group-mode, means the average value of seqlen_q (default:3328)
-s seqlen_q. if group-mode, means the average value of seqlen_q (default:3328)
total_seqlen_q = seqlen_q * batch, and seqlen_q per batch may vary
total_seqlen_q = seqlen_q * batch, and seqlen_q per batch may vary
also with "-s=s0,s1,s2..." comma seperated int to set per batch seqlen(group-mode)
-s_k seqlen_k, -1 means equal to s (default:-1)
-s_k seqlen_k, -1 means equal to s (default:-1)
-d head dim for q, k (default:128)
-d head dim for q, k (default:128)
-d_v head dim for v, -1 means equal to d (default:-1)
-d_v head dim for v, -1 means equal to d (default:-1)
...
...
example/ck_tile/01_fmha/codegen/__init__.py
0 → 100644
View file @
dcd3d21a
example/ck_tile/01_fmha/codegen/cmake_config.py
0 → 100644
View file @
dcd3d21a
# SPDX-License-Identifier: MIT
# Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
# generate kernel instances to speed up compilation
GEN_DIR
=
""
# in Cmake, have to generate files in same folder
\ No newline at end of file
example/ck_tile/01_fmha/codegen/cpp_symbol_map.py
0 → 100644
View file @
dcd3d21a
# SPDX-License-Identifier: MIT
# Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
# generate kernel instances to speed up compilation
DTYPE_MAP
=
{
"fp16"
:
"ck_tile::fp16_t"
,
"bf16"
:
"ck_tile::bf16_t"
,
"fp8"
:
"ck_tile::fp8_t"
}
MASK_IMPL
=
{
"generic"
:
"ck_tile::GenericAttentionMask"
,
"simplified"
:
"ck_tile::SimplifiedGenericAttentionMask"
}
_MASK_SIMPLIFIED_MAP
=
{
"s_no"
:
"ck_tile::SimplifiedGenericAttentionMask<false>"
,
"s_mask"
:
"ck_tile::SimplifiedGenericAttentionMask<true>"
,
}
_MASK_MAP
=
{
"no"
:
"FmhaMasks::NoMask"
,
"causal"
:
"FmhaMasks::CausalMask"
,
"generic"
:
"FmhaMasks::GenericMask"
}
def
get_mask_map
(
mask
:
str
):
if
mask
==
"generic"
:
return
_MASK_MAP
elif
mask
==
"simplified"
:
return
_MASK_SIMPLIFIED_MAP
else
:
assert
False
return
None
_MASK_CHECK_MAP
=
{
"no"
:
"t.mask_type == mask_enum::no_mask"
,
"causal"
:
"t.mask_type == mask_enum::mask_top_left || t.mask_type == mask_enum::mask_bottom_right"
,
"generic"
:
"t.mask_type == mask_enum::window_generic"
,
}
_MASK_SIMPLIFIED_CHECK_MAP
=
{
"s_no"
:
"t.mask_type == mask_enum::no_mask"
,
"s_mask"
:
"t.mask_type != mask_enum::no_mask"
,
}
def
get_mask_check_map
(
mask
:
str
):
if
mask
==
"generic"
:
return
_MASK_CHECK_MAP
elif
mask
==
"simplified"
:
return
_MASK_SIMPLIFIED_CHECK_MAP
else
:
assert
False
return
None
BIAS_MAP
=
{
"no"
:
"ck_tile::BlockAttentionBiasEnum::NO_BIAS"
,
"bias"
:
"ck_tile::BlockAttentionBiasEnum::ELEMENTWISE_BIAS"
,
"alibi"
:
"ck_tile::BlockAttentionBiasEnum::ALIBI"
}
# TODO: this is ugly
BIAS_CHECK_MAP
=
{
"no"
:
"bias_enum::no_bias"
,
"bias"
:
"bias_enum::elementwise_bias"
,
"alibi"
:
"bias_enum::alibi"
}
MODE_MAP
=
{
"batch"
:
"false"
,
"group"
:
"true"
}
LAYOUT_MAP
=
{
"row"
:
"true"
,
"col"
:
"false"
}
PIPELINE_MAP
=
{
"qr"
:
"ck_tile::BlockFmhaPipelineQRKSVS"
,
"qr_async"
:
"ck_tile::BlockFmhaPipelineQRKSVSAsync"
,
}
PIPELINE_ENUM_MAP
=
{
"qr"
:
"ck_tile::BlockFmhaPipelineEnum::QRKSVS"
,
"qr_async"
:
"ck_tile::BlockFmhaPipelineEnum::QRKSVS_ASYNC"
,
}
BOOL_MAP
=
{
"t"
:
"true"
,
"f"
:
"false"
}
\ No newline at end of file
example/ck_tile/01_fmha/codegen/ops/__init__.py
0 → 100644
View file @
dcd3d21a
example/ck_tile/01_fmha/codegen/ops/fmha_bwd.py
0 → 100644
View file @
dcd3d21a
# SPDX-License-Identifier: MIT
# Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
# generate kernel instances to speed up compilation
import
copy
from
dataclasses
import
dataclass
import
fnmatch
import
itertools
from
pathlib
import
Path
from
typing
import
List
,
Optional
,
Tuple
from
codegen.cmake_config
import
*
from
codegen.cpp_symbol_map
import
*
BWD_DQDKDV_PIPELINE_MAP
=
{
"ks_kts_vr"
:
"ck_tile::BlockFmhaBwdDQDKDVPipelineKSKTSVR"
,
"qs_ks_vr_dos"
:
"ck_tile::BlockFmhaBwdDQDKDVPipelineQSKSVROGradS"
,
"ks_vr"
:
"ck_tile::BlockFmhaBwdDQDKDVPipelineKSVR"
,
}
BWD_DQDKDV_PIPELINE_ENUM_MAP
=
{
"ks_kts_vr"
:
"ck_tile::BlockFmhaBwdPipelineEnum::KSKTSVR"
,
"qs_ks_vr_dos"
:
"ck_tile::BlockFmhaBwdPipelineEnum::QSKSVROGradS"
,
"ks_vr"
:
"ck_tile::BlockFmhaBwdPipelineEnum::KSVR"
,
}
FMHA_BWD_KERNEL_HEADER
=
"""// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
\n
// auto generated by generate.py
#include "fmha_bwd.hpp"
"""
FMHA_BWD_DQ_DK_DV_KERNEL_BODY
=
"""
using fmha_dtype_{F_idx} = {F_dtype};
using fmha_block_tile_{F_idx} = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bk1}, {F_bk2}, {F_bk3}, {F_bk4}, {F_bhdq}, {F_bhdv}>;
using fmha_block_warps0_{F_idx} = ck_tile::sequence<{F_rm0}, {F_rn0}, {F_rk0}>;
using fmha_block_warps1_{F_idx} = ck_tile::sequence<{F_rm1}, {F_rn1}, {F_rk1}>;
using fmha_block_warps2_{F_idx} = ck_tile::sequence<{F_rm2}, {F_rn2}, {F_rk2}>;
using fmha_warp_tile_{F_idx} = ck_tile::sequence<{F_wm}, {F_wn}, {F_wk}>;
// TODO: simplify Gemm0~4BlockWarps in TileFmhaBwdShape
// G0&G2 -> GSdP
// G1&G3 -> GdKV
// G4 -> GdQ
using fmha_bwd_shape_{F_idx} = ck_tile::TileFmhaBwdShape<fmha_block_tile_{F_idx},
fmha_block_warps0_{F_idx},
fmha_warp_tile_{F_idx},
fmha_block_warps1_{F_idx},
fmha_warp_tile_{F_idx},
fmha_block_warps0_{F_idx},
fmha_warp_tile_{F_idx},
fmha_block_warps1_{F_idx},
fmha_warp_tile_{F_idx},
fmha_block_warps2_{F_idx},
fmha_warp_tile_{F_idx}>;
using fmha_bwd_trait_{F_idx} = ck_tile::TileFmhaTraits<{F_spad},
{F_skpad},
{F_dpad},
{F_dvpad},
{F_bias},
{F_dbias},
false,
{F_dropout},
false,
{F_occupancy}>;
using fmha_mask_{F_idx} = {F_mask};
using fmha_bwd_pipeline_problem_{F_idx} = ck_tile::BlockFmhaBwdPipelineProblem<
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::QDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::KDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::VDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::GemmDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::LSEDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::AccDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::DDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::BiasDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::RandValOutputDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::ODataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::OGradDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::QGradDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::KGradDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::VGradDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::BiasGradDataType,
fmha_bwd_shape_{F_idx},
{F_mode},
fmha_mask_{F_idx},
fmha_bwd_trait_{F_idx}>;
using fmha_bwd_pipeline_{F_idx} = {F_pipeline}<
fmha_bwd_pipeline_problem_{F_idx}>;
using fmha_bwd_dk_epilogue_{F_idx} =
ck_tile::Default2DEpilogue<ck_tile::Default2DEpilogueProblem<typename FmhaBwdTypeConfig<{F_dtype}>::AccDataType,
typename FmhaBwdTypeConfig<{F_dtype}>::KGradDataType,
false, false>>;
using fmha_bwd_dv_epilogue_{F_idx} =
ck_tile::Default2DEpilogue<ck_tile::Default2DEpilogueProblem<typename FmhaBwdTypeConfig<{F_dtype}>::AccDataType,
typename FmhaBwdTypeConfig<{F_dtype}>::VGradDataType,
false, false>>;
using fmha_bwd_dq_dk_dv_kernel_{F_idx} =
ck_tile::FmhaBwdDQDKDVKernel<ck_tile::FmhaBwdTilePartitioner<fmha_bwd_shape_{F_idx}>,
fmha_bwd_pipeline_{F_idx},
fmha_bwd_dk_epilogue_{F_idx},
fmha_bwd_dv_epilogue_{F_idx}>;
using dq_dk_dv_trait_{F_idx} = fmha_bwd_dq_dk_dv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_pipeline_enum}, fmha_mask_{F_idx}, {F_bias}, {F_dbias}, {F_dropout}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
#include <iostream>
template<>
float fmha_bwd_dq_dk_dv_<dq_dk_dv_trait_{F_idx}>(const ck_tile::stream_config& s, fmha_bwd_args a)
{{
using k_ = fmha_bwd_dq_dk_dv_kernel_{F_idx};
if(s.log_level_ > 0)
std::cout << ", " << k_::GetName() << std::flush;
auto [kargs, grids] = fmha_bwd_dq_dk_dv_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks = k_::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
return ck_tile::launch_kernel(s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs));
}}
template<>
void fmha_bwd_dq_dk_dv_oneshot_<dq_dk_dv_trait_{F_idx}>(const ck_tile::stream_config& s, fmha_bwd_args a)
{{
using k_ = fmha_bwd_dq_dk_dv_kernel_{F_idx};
auto [kargs, grids] = fmha_bwd_dq_dk_dv_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks = k_::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs)(ck_tile::stream_config{{s.stream_id_}});
}}
template<>
std::string fmha_bwd_dq_dk_dv_get_name_<dq_dk_dv_trait_{F_idx}>()
{{
using k_ = fmha_bwd_dq_dk_dv_kernel_{F_idx};
return k_::GetName();
}}
"""
FMHA_BWD_API_FILENAME
=
"fmha_bwd_api.cpp"
FMHA_BWD_API
=
"""
#include <iostream>
template<typename dot_do_o_trait_, typename dq_dk_dv_trait_>
float fmha_bwd_(const ck_tile::stream_config& s, fmha_bwd_args a)
{{
if(s.log_level_ > 0)
std::cout << ", " << fmha_bwd_dot_do_o_get_name_<dot_do_o_trait_>() << ", " << fmha_bwd_dq_dk_dv_get_name_<dq_dk_dv_trait_>() << std::flush;
return ck_tile::launch_kernel(s,
[=](const ck_tile::stream_config& s_){{ fmha_bwd_dot_do_o_oneshot_<dot_do_o_trait_>(s_, a); }},
[=](const ck_tile::stream_config& s_){{ fmha_bwd_dq_dk_dv_oneshot_<dq_dk_dv_trait_>(s_, a); }}
);
}}
float fmha_bwd(fmha_bwd_traits t, fmha_bwd_args a, const ck_tile::stream_config& s){{
float r = -1;
{F_dispatch}
return r;
}}
"""
FMHA_BWD_API_PER_DTYPE
=
""" {F_if}(t.data_type.compare(
\"
{F_dtype}
\"
) == 0){{
{F_hdim_case}
}}
"""
FMHA_BWD_API_PER_HDIM_CASE
=
""" {F_if} (t.hdim_q <= {F_hdim} && t.hdim_v <= {F_hdim}) {{
{F_inner_dispatch}
}}
"""
FMHA_BWD_API_INNER_DISPATCH
=
""" {F_if}((t.is_group_mode == {F_mode}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.has_dbias == {F_dbias}) && (t.has_dropout == {F_dropout}) &&
({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck})) {{
using dq_dk_dv_trait_ = fmha_bwd_dq_dk_dv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_pipeline_enum}, {F_mask}, {F_bias}, {F_dbias}, {F_dropout}, {F_spad0}, {F_skpad}, {F_dpad}, {F_dvpad}>;
using dot_do_o_trait_ = fmha_bwd_dot_do_o_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_spad1}, {F_dvpad}>;
r = fmha_bwd_<dot_do_o_trait_, dq_dk_dv_trait_>(s, a);
return r;
}}
"""
@
dataclass
class
FmhaBwdDQDKDVApiTrait
:
pipeline
:
str
# sync with fmha_bwd_traits<>, to generate fallback calls
hdim
:
str
dtype
:
str
# data type
mode
:
str
# value from MODE_MAP
bm0
:
int
# tile size along q seqlen (block size)
bn0
:
int
# tile size along k seqlen
bhdq
:
int
# q head_dim
bhdv
:
int
# v head_dim
mask
:
str
bias
:
str
dbias
:
str
dropout
:
str
spad
:
str
skpad
:
str
dpad
:
str
dvpad
:
str
@
property
def
name
(
self
)
->
str
:
return
f
'
{
self
.
pipeline
}
-
{
self
.
hdim
}
-
{
self
.
dtype
}
-
{
self
.
mode
}
-
{
self
.
mask
}
-
{
self
.
bias
}
-
{
self
.
dbias
}
-
{
self
.
dropout
}
-
{
self
.
spad
}
-
{
self
.
skpad
}
-
{
self
.
dpad
}
-
{
self
.
dvpad
}
'
def
scheck
(
self
,
spad1
:
str
)
->
str
:
if
self
.
mode
==
'group'
:
return
'true'
# always support
elif
self
.
spad
==
't'
and
spad1
==
't'
:
return
f
'a.seqlen_q %
{
self
.
bm0
}
!= 0'
elif
self
.
spad
==
'f'
and
spad1
==
't'
:
return
f
'a.seqlen_q %
{
self
.
bm0
}
== 0 and a.seqlen_q % 256 != 0'
# BlockSize
else
:
# self.skpad == 'f' and skpad1 == 'f'
return
f
'a.seqlen_q % 256 == 0'
# BlockSize
@
property
def
skcheck
(
self
)
->
str
:
if
self
.
mode
==
'group'
:
return
'true'
# always support
elif
self
.
skpad
==
't'
:
return
f
'a.seqlen_k %
{
self
.
bn0
}
!= 0'
else
:
return
f
'a.seqlen_k %
{
self
.
bn0
}
== 0'
@
property
def
dcheck
(
self
)
->
str
:
if
self
.
dpad
==
't'
:
return
f
'a.hdim_q %
{
self
.
bhdq
}
!= 0'
else
:
return
f
'a.hdim_q %
{
self
.
bhdq
}
== 0'
@
property
def
dvcheck
(
self
)
->
str
:
if
self
.
dvpad
==
't'
:
return
f
'a.hdim_v %
{
self
.
bhdv
}
!= 0'
else
:
return
f
'a.hdim_v %
{
self
.
bhdv
}
== 0'
class
FmhaBwdApiPool
:
def
__init__
(
self
,
mask_impl
):
self
.
dq_dk_dv_pool
=
dict
()
self
.
mask_impl
=
mask_impl
def
register_dq_dk_dv_traits
(
self
,
trait
:
FmhaBwdDQDKDVApiTrait
)
->
None
:
# TODO: do we need to check duplication?
if
trait
.
dtype
not
in
self
.
dq_dk_dv_pool
.
keys
():
self
.
dq_dk_dv_pool
[
trait
.
dtype
]
=
dict
()
if
trait
.
hdim
not
in
self
.
dq_dk_dv_pool
[
trait
.
dtype
].
keys
():
self
.
dq_dk_dv_pool
[
trait
.
dtype
][
trait
.
hdim
]
=
list
()
self
.
dq_dk_dv_pool
[
trait
.
dtype
][
trait
.
hdim
].
append
(
copy
.
copy
(
trait
))
@
property
def
api
(
self
)
->
str
:
per_dtypes
=
str
()
for
i
,
dtype
in
enumerate
(
self
.
dq_dk_dv_pool
.
keys
()):
per_hdim_case
=
str
()
for
j
,
hdim
in
enumerate
(
self
.
dq_dk_dv_pool
[
dtype
].
keys
()):
traits
=
self
.
dq_dk_dv_pool
[
dtype
][
hdim
]
inners
=
str
()
for
k
,
trait
in
enumerate
(
traits
):
if_k
=
'if'
if
k
==
0
else
'else if'
for
spad1
in
[
"t"
,
"f"
]:
if
((
spad1
==
"f"
and
trait
.
spad
==
"t"
)
or
(
trait
.
mode
==
"group"
and
spad1
==
"f"
)):
continue
inners
=
inners
+
FMHA_BWD_API_INNER_DISPATCH
.
format
(
F_if
=
if_k
,
F_mode
=
MODE_MAP
[
trait
.
mode
],
F_mask
=
get_mask_map
(
self
.
mask_impl
)[
trait
.
mask
],
F_pipeline_enum
=
BWD_DQDKDV_PIPELINE_ENUM_MAP
[
trait
.
pipeline
],
F_mask_check
=
get_mask_check_map
(
self
.
mask_impl
)[
trait
.
mask
],
F_bias_check
=
BIAS_CHECK_MAP
[
trait
.
bias
],
F_bias
=
BIAS_MAP
[
trait
.
bias
],
F_dbias
=
BOOL_MAP
[
trait
.
dbias
],
F_dropout
=
BOOL_MAP
[
trait
.
dropout
],
F_scheck
=
trait
.
scheck
(
spad1
=
spad1
),
F_skcheck
=
trait
.
skcheck
,
F_dcheck
=
trait
.
dcheck
,
F_dvcheck
=
trait
.
dvcheck
,
F_hdim
=
hdim
,
F_dtype
=
DTYPE_MAP
[
dtype
],
F_spad0
=
BOOL_MAP
[
trait
.
spad
],
F_spad1
=
BOOL_MAP
[
spad1
],
F_skpad
=
BOOL_MAP
[
trait
.
skpad
],
F_dpad
=
BOOL_MAP
[
trait
.
dpad
],
F_dvpad
=
BOOL_MAP
[
trait
.
dvpad
])
if_j
=
'if'
if
j
==
0
else
'else if'
per_hdim_case
=
per_hdim_case
+
FMHA_BWD_API_PER_HDIM_CASE
.
format
(
F_if
=
if_j
,
F_hdim
=
hdim
,
F_inner_dispatch
=
inners
)
if_i
=
'if'
if
i
==
0
else
'else if'
per_dtypes
=
per_dtypes
+
FMHA_BWD_API_PER_DTYPE
.
format
(
F_if
=
if_i
,
F_dtype
=
dtype
,
F_hdim_case
=
per_hdim_case
)
if
not
per_dtypes
:
# empty string we add some ignore to suppress warning in api
per_dtypes
+=
' (void)t ; (void)s ; (void)a;'
return
FMHA_BWD_KERNEL_HEADER
+
FMHA_BWD_API
.
format
(
F_dispatch
=
per_dtypes
)
# GEMM0: Q@K=S^T
# GEMM1: P^T@dO^T=dV(This was chosen as G1 to match fwd, but N1 must be equal to headdim_v)
# GEMM2: dO@V=dP^T(This was chosen as G2 because of the calculation order)
# GEMM3: dS^T@Q^T=dK(Similar to G1, but N3 must be equal to headdim_qk)
# GEMM4: dS@K^T=dQ(N4 must be equal to headdim_qk)
# Is it necessary to distinguish between K0~K4?
@
dataclass
class
FmhaBwdDQDKDVTileSize
:
F_bm0
:
int
# tile size along q seqlen (block size)
F_bn0
:
int
# tile size along k seqlen
F_bk0
:
int
# tile size along gemm0 unroll(F_bhdq)
F_bk1
:
int
# tile size along gemm1 unroll(F_bm0)
F_bk2
:
int
# tile size along gemm2 unroll(F_bhdv)
F_bk3
:
int
# tile size along gemm3 unroll(F_bm0)
F_bk4
:
int
# tile size along gemm4 unroll(F_bn0)
F_bhdq
:
int
# q head_dim
F_bhdv
:
int
# v head_dim
F_rm0
:
int
# number of warps along q seqlen (block warps) in gemm0/gemm2
F_rn0
:
int
# number of warps along k seqlen (block warps) in gemm0/gemm2
F_rk0
:
int
# number of warps along gemm-k (not used) in gemm0/gemm2
F_rm1
:
int
# number of warps along k seqlen (block warps) in gemm1/gemm3
F_rn1
:
int
# number of warps along q seqlen (block warps) in gemm1/gemm3
F_rk1
:
int
# number of warps along gemm-k (not used) in gemm1/gemm3
F_rm2
:
int
# number of warps along k seqlen (block warps) in gemm4
F_rn2
:
int
# number of warps along q seqlen (block warps) in gemm4
F_rk2
:
int
# number of warps along gemm-k (not used) in gemm4
F_wm
:
int
# warp size along m (warp size)
F_wn
:
int
# warp size along n
F_wk
:
int
# warp size along k
F_occupancy
:
int
# occupancy
@
property
def
name
(
self
)
->
str
:
return
f
"b
{
self
.
F_bm0
}
x
{
self
.
F_bn0
}
x
{
self
.
F_bk0
}
x
{
self
.
F_bk1
}
x
{
self
.
F_bk2
}
x
{
self
.
F_bk3
}
x
{
self
.
F_bk4
}
x
{
self
.
F_bhdq
}
x
{
self
.
F_bhdv
}
"
+
\
f
"_r
{
self
.
F_rm0
}
x
{
self
.
F_rn0
}
x
{
self
.
F_rk0
}
_r
{
self
.
F_rm1
}
x
{
self
.
F_rn1
}
x
{
self
.
F_rk1
}
_r
{
self
.
F_rm2
}
x
{
self
.
F_rn2
}
x
{
self
.
F_rk2
}
"
+
\
f
"_w
{
self
.
F_wm
}
x
{
self
.
F_wn
}
x
{
self
.
F_wk
}
_o
{
self
.
F_occupancy
}
"
@
dataclass
class
FmhaBwdDQDKDVKernel
:
F_idx
:
int
# this is not a tunable, but a counter to differentiate symbol
F_hdim
:
int
# hdim
F_dtype
:
str
# data type
F_tile
:
FmhaBwdDQDKDVTileSize
F_spad
:
str
# true/false
F_skpad
:
str
#
F_dpad
:
str
#
F_dvpad
:
str
#
F_bias
:
str
#
F_dbias
:
str
#
F_dropout
:
str
#
F_mask
:
str
# value from MASK_MAP
F_mode
:
str
# value from MODE_MAP
F_pipeline
:
str
mask_impl
:
str
@
property
def
template
(
self
)
->
str
:
return
FMHA_BWD_KERNEL_HEADER
+
\
FMHA_BWD_DQ_DK_DV_KERNEL_BODY
.
format
(
F_idx
=
self
.
F_idx
,
F_hdim
=
self
.
F_hdim
,
F_dtype
=
DTYPE_MAP
[
self
.
F_dtype
],
F_bm0
=
self
.
F_tile
.
F_bm0
,
F_bn0
=
self
.
F_tile
.
F_bn0
,
F_bk0
=
self
.
F_tile
.
F_bk0
,
F_bk1
=
self
.
F_tile
.
F_bk1
,
F_bk2
=
self
.
F_tile
.
F_bk2
,
F_bk3
=
self
.
F_tile
.
F_bk3
,
F_bk4
=
self
.
F_tile
.
F_bk4
,
F_bhdq
=
self
.
F_tile
.
F_bhdq
,
F_bhdv
=
self
.
F_tile
.
F_bhdv
,
F_rm0
=
self
.
F_tile
.
F_rm0
,
F_rn0
=
self
.
F_tile
.
F_rn0
,
F_rk0
=
self
.
F_tile
.
F_rk0
,
F_rm1
=
self
.
F_tile
.
F_rm1
,
F_rn1
=
self
.
F_tile
.
F_rn1
,
F_rk1
=
self
.
F_tile
.
F_rk1
,
F_rm2
=
self
.
F_tile
.
F_rm2
,
F_rn2
=
self
.
F_tile
.
F_rn2
,
F_rk2
=
self
.
F_tile
.
F_rk2
,
F_wm
=
self
.
F_tile
.
F_wm
,
F_wn
=
self
.
F_tile
.
F_wn
,
F_wk
=
self
.
F_tile
.
F_wk
,
F_spad
=
BOOL_MAP
[
self
.
F_spad
],
F_skpad
=
BOOL_MAP
[
self
.
F_skpad
],
F_dpad
=
BOOL_MAP
[
self
.
F_dpad
],
F_dvpad
=
BOOL_MAP
[
self
.
F_dvpad
],
F_bias
=
BIAS_MAP
[
self
.
F_bias
],
F_dbias
=
BOOL_MAP
[
self
.
F_dbias
],
F_dropout
=
BOOL_MAP
[
self
.
F_dropout
],
F_occupancy
=
self
.
F_tile
.
F_occupancy
,
F_mask
=
get_mask_map
(
self
.
mask_impl
)[
self
.
F_mask
],
F_mode
=
MODE_MAP
[
self
.
F_mode
],
F_pipeline_enum
=
BWD_DQDKDV_PIPELINE_ENUM_MAP
[
self
.
F_pipeline
],
F_pipeline
=
BWD_DQDKDV_PIPELINE_MAP
[
self
.
F_pipeline
])
@
property
def
name
(
self
)
->
str
:
def
pad_name
()
->
str
:
n
=
''
if
self
.
F_spad
==
't'
:
n
+=
's'
if
self
.
F_skpad
==
't'
:
n
+=
'sk'
if
self
.
F_dpad
==
't'
:
n
+=
'd'
if
self
.
F_dvpad
==
't'
:
n
+=
'dv'
if
n
!=
''
:
n
=
'p'
+
n
return
n
pn
=
pad_name
()
n
=
f
"fmha_bwd_d
{
self
.
F_hdim
}
_
{
self
.
F_dtype
}
_
{
self
.
F_mode
}
_"
+
self
.
F_tile
.
name
if
pn
!=
''
:
n
+=
f
'_
{
pn
}
'
if
self
.
F_bias
!=
'no'
:
n
+=
f
'_
{
self
.
F_bias
}
'
if
self
.
F_dbias
==
't'
:
n
+=
'_dbias'
if
self
.
F_mask
[
0
:
2
]
==
's_'
:
if
self
.
F_mask
==
's_mask'
:
n
+=
f
'_mask'
else
:
if
self
.
F_mask
!=
'no'
:
n
+=
f
'_m
{
self
.
F_mask
[
0
]
}
'
if
self
.
F_dropout
==
't'
:
n
+=
'_dropout'
return
n
@
property
def
filename
(
self
)
->
str
:
return
self
.
name
+
".cpp"
def
api_trait
(
self
)
->
FmhaBwdDQDKDVApiTrait
:
return
FmhaBwdDQDKDVApiTrait
(
pipeline
=
self
.
F_pipeline
,
hdim
=
str
(
self
.
F_hdim
),
dtype
=
self
.
F_dtype
,
mode
=
self
.
F_mode
,
bm0
=
self
.
F_tile
.
F_bm0
,
bn0
=
self
.
F_tile
.
F_bn0
,
bhdq
=
self
.
F_tile
.
F_bhdq
,
bhdv
=
self
.
F_tile
.
F_bhdv
,
mask
=
self
.
F_mask
,
bias
=
self
.
F_bias
,
dbias
=
self
.
F_dbias
,
dropout
=
self
.
F_dropout
,
spad
=
self
.
F_spad
,
skpad
=
self
.
F_skpad
,
dpad
=
self
.
F_dpad
,
dvpad
=
self
.
F_dvpad
)
# TODO: design a more practical way to do it
# this is current supported tile size & pipeline.
def
get_fmha_bwd_dq_dk_dv_tile_ppl_dict_from_dtype
(
dtype
:
str
)
->
Optional
[
dict
]:
if
dtype
==
'fp16'
or
dtype
==
'bf16'
:
return
{
'32'
:
[
FmhaBwdDQDKDVTileSize
(
128
,
128
,
32
,
32
,
32
,
32
,
32
,
32
,
32
,
1
,
4
,
1
,
4
,
1
,
1
,
4
,
1
,
1
,
32
,
32
,
16
,
1
),
"qs_ks_vr_dos"
],
'64'
:
[
FmhaBwdDQDKDVTileSize
(
64
,
128
,
32
,
32
,
32
,
32
,
32
,
64
,
64
,
1
,
4
,
1
,
4
,
1
,
1
,
2
,
2
,
1
,
32
,
32
,
16
,
1
),
"qs_ks_vr_dos"
],
'128'
:
[
FmhaBwdDQDKDVTileSize
(
64
,
128
,
32
,
32
,
32
,
32
,
32
,
128
,
128
,
1
,
4
,
1
,
4
,
1
,
1
,
2
,
2
,
1
,
32
,
32
,
16
,
1
),
"ks_vr"
]
}
else
:
return
None
def
get_bwd_dq_dk_dv_blobs
(
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
Tuple
[
FmhaBwdApiPool
,
List
[
FmhaBwdDQDKDVKernel
]]:
# TODO: we don't support tuning yet, so pick up one value for pad
# support this in future
gen
=
list
()
api_pool
=
FmhaBwdApiPool
(
mask_impl
)
for
dtype
in
DTYPE_MAP
.
keys
():
d
=
get_fmha_bwd_dq_dk_dv_tile_ppl_dict_from_dtype
(
dtype
)
if
d
==
None
:
continue
for
hdim_str
,
mode
,
mask
,
bias
,
dbias
,
dropout
,
spad
,
skpad
,
dpad
,
dvpad
in
itertools
.
product
(
d
.
keys
(),
MODE_MAP
.
keys
(),
get_mask_map
(
mask_impl
).
keys
(),
BIAS_MAP
.
keys
(),
[
"t"
,
"f"
],
[
"t"
,
"f"
],
[
"t"
,
"f"
],
[
"t"
,
"f"
],
[
"t"
,
"f"
],
[
"t"
,
"f"
]):
tile
=
d
[
hdim_str
][
0
]
ppl
=
d
[
hdim_str
][
1
]
hdim
=
int
(
hdim_str
)
if
(
mode
==
"group"
)
and
(
spad
==
"f"
or
skpad
==
"f"
):
continue
if
((
bias
==
"no"
or
bias
==
"alibi"
)
and
dbias
==
"t"
):
continue
k
=
FmhaBwdDQDKDVKernel
(
F_idx
=
0
,
F_hdim
=
hdim
,
F_dtype
=
dtype
,
F_tile
=
tile
,
F_spad
=
spad
,
F_skpad
=
skpad
,
F_dpad
=
dpad
,
F_dvpad
=
dvpad
,
F_bias
=
bias
,
F_dbias
=
dbias
,
F_dropout
=
dropout
,
F_mask
=
mask
,
F_mode
=
mode
,
F_pipeline
=
ppl
,
mask_impl
=
mask_impl
)
if
kernel_filter
!=
None
:
if
not
fnmatch
.
fnmatch
(
k
.
name
,
kernel_filter
):
continue
if
receipt
==
2
:
cond
=
dtype
in
[
'fp16'
,
'bf16'
]
cond
&=
bias
in
[
'no'
,
'alibi'
]
if
not
cond
:
continue
api_pool
.
register_dq_dk_dv_traits
(
k
.
api_trait
())
gen
.
append
(
k
)
return
(
api_pool
,
gen
)
FMHA_BWD_DOT_DO_O_KERNEL_BODY
=
"""
using fmha_dtype_{F_idx} = {F_dtype};
using fmha_bwd_dot_do_o_trait_{F_idx} = ck_tile::TileFmhaBwdOGradDotOTraits<{F_spad},
{F_dvpad},
{F_occupancy}>;
using fmha_bwd_dot_do_o_pipeline_problem_{F_idx} = ck_tile::BlockFmhaBwdOGradDotOPipelineProblem<
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::ODataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::OGradDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::DDataType,
/* BlockSize = */ 256,
{F_hdim},
{F_mode},
fmha_bwd_dot_do_o_trait_{F_idx}>;
using fmha_bwd_dot_do_o_{F_idx} = typename ck_tile::BlockFmhaBwdOGradDotO<
fmha_bwd_dot_do_o_pipeline_problem_{F_idx}>;
using fmha_bwd_dot_do_o_kernel_{F_idx} =
ck_tile::FmhaBwdOGradDotOKernel<ck_tile::FmhaBwdOGradDotOTilePartitioner</* BlockSize = */ 256>,
fmha_bwd_dot_do_o_{F_idx}>;
using dot_do_o_trait_{F_idx} = fmha_bwd_dot_do_o_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_spad}, {F_dvpad}>;
#include <iostream>
template<>
float fmha_bwd_dot_do_o_<dot_do_o_trait_{F_idx}>(const ck_tile::stream_config& s, fmha_bwd_args a)
{{
using k_ = fmha_bwd_dot_do_o_kernel_{F_idx};
if(s.log_level_ > 0)
std::cout << ", " << k_::GetName() << std::flush;
auto [kargs, grids] = fmha_bwd_dot_do_o_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks = k_::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
return ck_tile::launch_kernel(s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs));
}}
template<>
void fmha_bwd_dot_do_o_oneshot_<dot_do_o_trait_{F_idx}>(const ck_tile::stream_config& s, fmha_bwd_args a)
{{
using k_ = fmha_bwd_dot_do_o_kernel_{F_idx};
auto [kargs, grids] = fmha_bwd_dot_do_o_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks = k_::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs)(ck_tile::stream_config{{s.stream_id_}});
}}
template<>
std::string fmha_bwd_dot_do_o_get_name_<dot_do_o_trait_{F_idx}>()
{{
using k_ = fmha_bwd_dot_do_o_kernel_{F_idx};
return k_::GetName();
}}
"""
@
dataclass
class
FmhaBwdOGradDotOKernel
:
F_idx
:
int
# this is not a tunable, but a counter to differentiate symbol
F_hdim
:
int
# hdim
F_dtype
:
str
# data type
F_spad
:
str
# true/false
F_dvpad
:
str
#
F_mode
:
str
# value from MODE_MAP
F_occupancy
:
int
@
property
def
template
(
self
)
->
str
:
return
FMHA_BWD_KERNEL_HEADER
+
\
FMHA_BWD_DOT_DO_O_KERNEL_BODY
.
format
(
F_idx
=
self
.
F_idx
,
F_hdim
=
self
.
F_hdim
,
F_dtype
=
DTYPE_MAP
[
self
.
F_dtype
],
F_spad
=
BOOL_MAP
[
self
.
F_spad
],
F_dvpad
=
BOOL_MAP
[
self
.
F_dvpad
],
F_mode
=
MODE_MAP
[
self
.
F_mode
],
F_occupancy
=
self
.
F_occupancy
)
@
property
def
name
(
self
)
->
str
:
def
pad_name
()
->
str
:
n
=
''
if
self
.
F_spad
==
't'
:
n
+=
's'
if
self
.
F_dvpad
==
't'
:
n
+=
'dv'
if
n
!=
''
:
n
=
'p'
+
n
return
n
pn
=
pad_name
()
n
=
f
"fmha_bwd_dot_do_o_d
{
self
.
F_hdim
}
_
{
self
.
F_dtype
}
_
{
self
.
F_mode
}
_o
{
self
.
F_occupancy
}
"
if
pn
!=
''
:
n
+=
f
'_
{
pn
}
'
return
n
@
property
def
filename
(
self
)
->
str
:
return
self
.
name
+
".cpp"
def
get_bwd_dot_do_o_blobs
()
->
List
[
FmhaBwdOGradDotOKernel
]:
# TODO: we don't support tuning yet, so pick up one value for pad/occupancy
# support this in future
def
get_occupancy
(
dtype
,
hdim
):
return
2
gen
=
list
()
for
dtype
in
DTYPE_MAP
.
keys
():
d
=
get_fmha_bwd_dq_dk_dv_tile_ppl_dict_from_dtype
(
dtype
)
if
d
==
None
:
continue
for
hdim_str
,
mode
,
spad
,
dvpad
in
itertools
.
product
(
d
.
keys
(),
MODE_MAP
.
keys
(),
[
"t"
,
"f"
],
[
"t"
,
"f"
]):
hdim
=
int
(
hdim_str
)
if
(
mode
==
"group"
and
spad
==
"f"
):
continue
k
=
FmhaBwdOGradDotOKernel
(
F_idx
=
0
,
F_hdim
=
hdim
,
F_dtype
=
dtype
,
F_spad
=
spad
,
F_dvpad
=
dvpad
,
F_mode
=
mode
,
F_occupancy
=
get_occupancy
(
dtype
,
hdim
))
gen
.
append
(
k
)
return
gen
def
write_single_bwd_dq_dk_dv_kernel
(
kernel
:
FmhaBwdDQDKDVKernel
,
autogen_dir
:
Path
)
->
None
:
(
autogen_dir
/
kernel
.
filename
).
write_text
(
kernel
.
template
)
def
write_single_bwd_dot_do_o_kernel
(
kernel
:
FmhaBwdOGradDotOKernel
,
autogen_dir
:
Path
)
->
None
:
(
autogen_dir
/
kernel
.
filename
).
write_text
(
kernel
.
template
)
def
write_bwd_api
(
api_pool
:
FmhaBwdApiPool
,
autogen_dir
:
Path
)
->
None
:
(
autogen_dir
/
FMHA_BWD_API_FILENAME
).
write_text
(
api_pool
.
api
)
def
write_blobs
(
output_dir
:
Path
,
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
None
:
kernels
=
get_bwd_dot_do_o_blobs
()
for
kernel
in
kernels
:
write_single_bwd_dot_do_o_kernel
(
kernel
,
output_dir
)
api_pool
,
kernels
=
get_bwd_dq_dk_dv_blobs
(
kernel_filter
,
receipt
,
mask_impl
)
for
kernel
in
kernels
:
write_single_bwd_dq_dk_dv_kernel
(
kernel
,
output_dir
)
write_bwd_api
(
api_pool
,
output_dir
)
def
list_blobs
(
file_path
:
Path
,
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
None
:
with
file_path
.
open
(
'a'
)
as
f
:
kernels
=
get_bwd_dot_do_o_blobs
()
for
kernel
in
kernels
:
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
kernel
.
filename
)
+
"
\n
"
)
_
,
kernels
=
get_bwd_dq_dk_dv_blobs
(
kernel_filter
,
receipt
,
mask_impl
)
for
kernel
in
kernels
:
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
kernel
.
filename
)
+
"
\n
"
)
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
FMHA_BWD_API_FILENAME
)
+
"
\n
"
)
\ No newline at end of file
example/ck_tile/01_fmha/codegen/ops/fmha_fwd.py
0 → 100644
View file @
dcd3d21a
# SPDX-License-Identifier: MIT
# Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
# generate kernel instances to speed up compilation
import
copy
from
dataclasses
import
dataclass
import
fnmatch
import
itertools
from
pathlib
import
Path
from
typing
import
List
,
Optional
,
Tuple
from
codegen.cmake_config
import
*
from
codegen.cpp_symbol_map
import
*
DTYPE_BITS
=
{
"fp32"
:
32
,
"fp16"
:
16
,
"bf16"
:
16
,
"fp8"
:
8
,
"bf8"
:
8
}
TILE_PARTITIONER_MAP
=
{
"shb"
:
"ck_tile::FmhaFwdTilePartitioner_SHB"
,
"hbs"
:
"ck_tile::FmhaFwdTilePartitioner_HBS"
,
}
FMHA_FWD_KERNEL_HEADER
=
"""// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
\n
// auto generated by generate.py
#include "fmha_fwd.hpp"
"""
FMHA_FWD_KERNEL_BODY
=
"""
using fmha_dtype_{F_idx} = {F_dtype};
using fmha_block_tile_{F_idx} = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}>;
using fmha_block_warps_{F_idx} = ck_tile::sequence<{F_rm}, {F_rn}, {F_rk}>;
using fmha_warp_tile_{F_idx} = ck_tile::sequence<{F_wm}, {F_wn}, {F_wk}>;
using fmha_shape_{F_idx} = ck_tile::TileFmhaShape<fmha_block_tile_{F_idx},
fmha_block_warps_{F_idx},
fmha_warp_tile_{F_idx},
fmha_block_warps_{F_idx},
fmha_warp_tile_{F_idx},
{F_vlayout}>;
using fmha_trait_{F_idx} = ck_tile::TileFmhaTraits<{F_spad},
{F_skpad},
{F_dpad},
{F_dvpad},
{F_bias},
false,
{F_lse},
{F_dropout},
{F_squant},
{F_occupancy}>;
using fmha_mask_{F_idx} = {F_mask};
using fmha_pipeline_problem_{F_idx} = ck_tile::BlockFmhaPipelineProblem<
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::QDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::KDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::VDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::SaccDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::SMPLComputeDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::BiasDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::RandValOutputDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::LSEDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::PDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::OaccDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::ODataType,
fmha_shape_{F_idx},
{F_mode},
fmha_mask_{F_idx},
fmha_trait_{F_idx}>;
using fmha_pipeline_{F_idx} = {F_pipeline}<
fmha_pipeline_problem_{F_idx}>;
using fmha_epilogue_{F_idx} =
ck_tile::Default2DEpilogue<ck_tile::Default2DEpilogueProblem<typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType,
typename FmhaFwdTypeConfig<{F_dtype}>::ODataType,
{F_spad}, {F_dvpad}>>;
using fmha_kernel_{F_idx} =
ck_tile::FmhaFwdKernel<{F_tile_partitioner}<fmha_shape_{F_idx}>,
fmha_pipeline_{F_idx},
fmha_epilogue_{F_idx}>;
using trait_{F_idx} = fmha_fwd_traits_<{F_hdim}, {F_dtype}, {F_mode},{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}, {F_vlayout},
{F_pipeline_enum}, fmha_mask_{F_idx}, {F_bias}, {F_lse}, {F_dropout}, {F_squant}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
#include <iostream>
template<>
float fmha_fwd_<trait_{F_idx}>(const ck_tile::stream_config& s, fmha_fwd_args a)
{{
using k_ = fmha_kernel_{F_idx};
if(s.log_level_ > 0)
std::cout << ", " << k_::GetName() << std::flush;
auto [kargs, grids] = fmha_fwd_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks = k_::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
return ck_tile::launch_kernel(s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs));
}}
"""
FMHA_FWD_API_FILENAME
=
"fmha_fwd_api.cpp"
FMHA_FWD_API
=
"""
float fmha_fwd(fmha_fwd_traits t, fmha_fwd_args a, const ck_tile::stream_config& s){{
float r = -1;
{F_dispatch}
return r;
}}
"""
FMHA_FWD_API_PER_DTYPE
=
""" {F_if}(t.data_type.compare(
\"
{F_dtype}
\"
) == 0){{
{F_hdim_case}
}}
"""
FMHA_FWD_API_PER_HDIM_CASE
=
""" {F_if} (t.hdim_q <= {F_hdim} && t.hdim_v <= {F_hdim}) {{
{F_inner_dispatch}
}}
"""
FMHA_FWD_API_INNER_DISPATCH
=
""" {F_if}((t.is_group_mode == {F_mode}) && (t.is_v_rowmajor == {F_vlayout}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.has_lse == {F_lse}) && (t.has_dropout == {F_dropout}) && (t.do_fp8_static_quant == {F_squant}) &&
({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck})) {{
using trait_ = fmha_fwd_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, {F_lse}, {F_dropout}, {F_squant}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
return fmha_fwd_<trait_>(s, a);
}}
"""
@
dataclass
class
FmhaFwdApiTrait
:
pipeline_tag
:
str
# sync with fmha_fwd_traits<>, to generate fallback calls
hdim
:
str
dtype
:
str
# data type
mode
:
str
# value from MODE_MAP
bm0
:
int
# tile size along q seqlen (block size)
bn0
:
int
# tile size along qk seqlen
bk0
:
int
# tile size along qk gemm unroll
bn1
:
int
# tile size along v head_dim
bk1
:
int
# tile size along kv gemm unroll
bk0blen
:
int
vlayout
:
str
mask
:
str
bias
:
str
#
lse
:
str
#
dropout
:
str
squant
:
str
#
spad
:
str
skpad
:
str
dpad
:
str
dvpad
:
str
@
property
def
name
(
self
)
->
str
:
return
f
'
{
self
.
hdim
}
-
{
self
.
dtype
}
-
{
self
.
mode
}
-
{
self
.
bm0
}
-
{
self
.
bn0
}
-
{
self
.
bk0
}
-
{
self
.
bn0
}
-
{
self
.
bk1
}
-
{
self
.
bk0blen
}
-'
+
\
f
'
{
self
.
vlayout
}
-
{
self
.
mask
}
-
{
self
.
bias
}
-
{
self
.
lse
}
-
{
self
.
dropout
}
-
{
self
.
squant
}
-
{
self
.
spad
}
-
{
self
.
skpad
}
-
{
self
.
dpad
}
-
{
self
.
dvpad
}
'
@
property
def
scheck
(
self
)
->
str
:
if
self
.
mode
==
'group'
:
return
'true/*group mode spad always true*/'
# group mode only generate spad/skpad == true
if
self
.
pipeline_tag
==
'qr_async'
:
if
self
.
spad
==
't'
:
return
'true'
# always support
else
:
return
'true'
elif
self
.
pipeline_tag
in
[
'qr'
]:
if
self
.
spad
==
't'
:
return
f
'true /*a.seqlen_q %
{
self
.
bm0
}
!= 0*/'
# TODO: order of get_pipelines() matters! (ugly)
else
:
return
f
'a.seqlen_q %
{
self
.
bm0
}
== 0'
else
:
assert
False
@
property
def
skcheck
(
self
)
->
str
:
if
self
.
mode
==
'group'
:
return
'true/*group mode skpad always true*/'
# group mode only generate spad/skpad == true
if
self
.
pipeline_tag
==
'qr_async'
:
if
self
.
skpad
==
't'
:
return
f
'a.seqlen_k == 0 || a.seqlen_k %
{
self
.
bn0
}
!= 0'
else
:
return
f
'a.seqlen_k != 0 && a.seqlen_k %
{
self
.
bn0
}
== 0'
elif
self
.
pipeline_tag
in
[
'qr'
,
'qr_fp8'
]:
if
self
.
skpad
==
't'
:
return
f
'true /*a.seqlen_k %
{
self
.
bn0
}
!= 0*/'
# TODO: order of get_pipelines() matters! (ugly)
else
:
return
f
'a.seqlen_k %
{
self
.
bn0
}
== 0'
else
:
assert
False
@
property
def
dcheck
(
self
)
->
str
:
if
self
.
pipeline_tag
==
'qr_async'
:
vec
=
int
((
32
*
4
)
/
DTYPE_BITS
[
self
.
dtype
])
if
self
.
dpad
==
't'
:
return
f
'a.hdim_q %
{
vec
}
== 0'
else
:
assert
False
elif
self
.
pipeline_tag
in
[
'qr'
]:
if
self
.
dpad
==
't'
:
return
f
'true /*a.hdim_q %
{
self
.
bk0blen
}
!= 0*/'
# TODO: order of get_pipelines() matters! (ugly)
else
:
return
f
'a.hdim_q %
{
self
.
bk0blen
}
== 0'
else
:
assert
False
@
property
def
dvcheck
(
self
)
->
str
:
if
self
.
pipeline_tag
==
'qr_async'
:
vec
=
int
((
32
*
4
)
/
DTYPE_BITS
[
self
.
dtype
])
if
self
.
dvpad
==
't'
:
return
f
'a.hdim_v %
{
vec
}
== 0'
else
:
assert
False
elif
self
.
pipeline_tag
in
[
'qr'
]:
if
self
.
dvpad
==
't'
:
return
f
'true /*a.hdim_v %
{
self
.
bk0blen
}
!= 0*/'
# TODO: order of get_pipelines() matters! (ugly)
else
:
return
f
'a.hdim_v %
{
self
.
bk0blen
}
== 0'
else
:
assert
False
@
dataclass
class
FmhaFwdPipeline
:
tag
:
str
F_vlayout
:
str
# row/col
F_spad
:
str
# true/false
F_skpad
:
str
#
F_dpad
:
str
#
F_dvpad
:
str
#
F_bias
:
str
# true/false
F_lse
:
str
#
F_dropout
:
str
#
F_squant
:
str
#
F_mask
:
str
# value from MASK_MAP
@
property
def
name
(
self
)
->
str
:
def
pad_name
()
->
str
:
n
=
''
if
self
.
F_spad
==
't'
:
n
+=
's'
if
self
.
F_skpad
==
't'
:
n
+=
'sk'
if
self
.
F_dpad
==
't'
:
n
+=
'd'
if
self
.
F_dvpad
==
't'
:
n
+=
'dv'
if
n
!=
''
:
n
=
'p'
+
n
return
n
pn
=
pad_name
()
n
=
f
'
{
self
.
tag
}
_v
{
self
.
F_vlayout
[
0
]
}
'
if
pn
!=
''
:
n
+=
f
'_
{
pn
}
'
if
self
.
F_bias
!=
'no'
:
n
+=
f
'_
{
self
.
F_bias
}
'
if
self
.
F_mask
[
0
:
2
]
==
's_'
:
if
self
.
F_mask
==
's_mask'
:
n
+=
f
'_mask'
else
:
if
self
.
F_mask
!=
'no'
:
n
+=
f
'_m
{
self
.
F_mask
[
0
]
}
'
if
self
.
F_lse
==
't'
:
n
+=
'_lse'
if
self
.
F_dropout
==
't'
:
n
+=
'_dropout'
if
self
.
F_squant
==
't'
:
n
+=
'_squant'
return
n
class
FmhaFwdApiPool
:
def
__init__
(
self
,
mask_impl
):
self
.
pool
=
dict
()
self
.
mask_impl
=
mask_impl
def
register_traits
(
self
,
trait
:
FmhaFwdApiTrait
)
->
None
:
# TODO: do we need to check duplication?
if
trait
.
dtype
not
in
self
.
pool
.
keys
():
self
.
pool
[
trait
.
dtype
]
=
dict
()
if
trait
.
hdim
not
in
self
.
pool
[
trait
.
dtype
].
keys
():
self
.
pool
[
trait
.
dtype
][
trait
.
hdim
]
=
list
()
self
.
pool
[
trait
.
dtype
][
trait
.
hdim
].
append
(
copy
.
copy
(
trait
))
@
property
def
api
(
self
)
->
str
:
per_dtypes
=
str
()
for
i
,
dtype
in
enumerate
(
self
.
pool
.
keys
()):
per_hdim_case
=
str
()
for
j
,
hdim
in
enumerate
(
self
.
pool
[
dtype
].
keys
()):
traits
=
self
.
pool
[
dtype
][
hdim
]
inners
=
str
()
for
k
,
trait
in
enumerate
(
traits
):
if_k
=
'if'
if
k
==
0
else
'else if'
inners
=
inners
+
FMHA_FWD_API_INNER_DISPATCH
.
format
(
F_if
=
if_k
,
F_mode
=
MODE_MAP
[
trait
.
mode
],
F_vlayout
=
LAYOUT_MAP
[
trait
.
vlayout
],
F_pipeline_enum
=
PIPELINE_ENUM_MAP
[
trait
.
pipeline_tag
],
F_mask
=
get_mask_map
(
self
.
mask_impl
)[
trait
.
mask
],
F_mask_check
=
get_mask_check_map
(
self
.
mask_impl
)[
trait
.
mask
],
F_bias_check
=
BIAS_CHECK_MAP
[
trait
.
bias
],
F_bias
=
BIAS_MAP
[
trait
.
bias
],
F_lse
=
BOOL_MAP
[
trait
.
lse
],
F_dropout
=
BOOL_MAP
[
trait
.
dropout
]
,
F_squant
=
BOOL_MAP
[
trait
.
squant
],
F_scheck
=
trait
.
scheck
,
F_skcheck
=
trait
.
skcheck
,
F_dcheck
=
trait
.
dcheck
,
F_dvcheck
=
trait
.
dvcheck
,
F_spad
=
BOOL_MAP
[
trait
.
spad
],
F_skpad
=
BOOL_MAP
[
trait
.
skpad
],
F_dpad
=
BOOL_MAP
[
trait
.
dpad
],
F_dvpad
=
BOOL_MAP
[
trait
.
dvpad
],
F_bm0
=
trait
.
bm0
,
F_bn0
=
trait
.
bn0
,
F_bk0
=
trait
.
bk0
,
F_bn1
=
trait
.
bn1
,
F_bk1
=
trait
.
bk1
,
F_bk0blen
=
trait
.
bk0blen
,
F_hdim
=
hdim
,
F_dtype
=
DTYPE_MAP
[
dtype
])
if_j
=
'if'
if
j
==
0
else
'else if'
per_hdim_case
=
per_hdim_case
+
FMHA_FWD_API_PER_HDIM_CASE
.
format
(
F_if
=
if_j
,
F_hdim
=
hdim
,
F_inner_dispatch
=
inners
)
if_i
=
'if'
if
i
==
0
else
'else if'
per_dtypes
=
per_dtypes
+
FMHA_FWD_API_PER_DTYPE
.
format
(
F_if
=
if_i
,
F_dtype
=
dtype
,
F_hdim_case
=
per_hdim_case
)
if
not
per_dtypes
:
# empty string we add some ignore to suppress warning in api
per_dtypes
+=
' (void)t ; (void)s ; (void)a;'
return
FMHA_FWD_KERNEL_HEADER
+
FMHA_FWD_API
.
format
(
F_dispatch
=
per_dtypes
)
@
dataclass
class
FmhaFwdTileSize
:
F_bm0
:
int
# tile size along q seqlen (block size)
F_bn0
:
int
# tile size along k seqlen
F_bk0
:
int
# tile size along qk gemm unroll
F_bn1
:
int
# tile size along v head_dim
F_bk1
:
int
# tile size along kv gemm unroll
F_bk0blen
:
int
# total length of K0, used for pipeline that need load Q at once (or repeately load Q as a whole tile)
F_rm
:
int
# number of warps along q seqlen (block warps)
F_rn
:
int
# number of warps along k seqlen(not used)
F_rk
:
int
# number of warps along gemm-k(not used)
F_wm
:
int
# warp size along m (warp size)
F_wn
:
int
# warp size along n
F_wk
:
int
# warp size along k
F_occupancy
:
int
# occupancy, -1 will let pipeline decide the occupancy, other value will overwrite occupancy
@
property
def
name
(
self
)
->
str
:
return
f
"b
{
self
.
F_bm0
}
x
{
self
.
F_bn0
}
x
{
self
.
F_bk0
}
x
{
self
.
F_bn1
}
x
{
self
.
F_bk1
}
x
{
self
.
F_bk0blen
}
"
+
\
f
"_r
{
self
.
F_rm
}
x
{
self
.
F_rn
}
x
{
self
.
F_rk
}
_w
{
self
.
F_wm
}
x
{
self
.
F_wn
}
x
{
self
.
F_wk
}
"
+
\
(
""
if
self
.
F_occupancy
==
-
1
else
f
"_o
{
self
.
F_occupancy
}
"
)
@
dataclass
class
FmhaFwdKernel
:
F_idx
:
int
# this is not a tunable, but a counter to differentiate symbol
F_hdim
:
int
# hdim
F_dtype
:
str
# data type
F_mode
:
str
# value from MODE_MAP
F_tile
:
FmhaFwdTileSize
F_pipeline
:
FmhaFwdPipeline
mask_impl
:
str
def
get_tp
(
self
)
->
str
:
if
self
.
F_mode
==
'group'
:
return
'hbs'
else
:
return
'shb'
@
property
def
template
(
self
)
->
str
:
kernel_body
=
str
()
return
FMHA_FWD_KERNEL_HEADER
+
\
FMHA_FWD_KERNEL_BODY
.
format
(
F_idx
=
self
.
F_idx
,
F_hdim
=
self
.
F_hdim
,
F_dtype
=
DTYPE_MAP
[
self
.
F_dtype
],
F_bm0
=
self
.
F_tile
.
F_bm0
,
F_bn0
=
self
.
F_tile
.
F_bn0
,
F_bk0
=
self
.
F_tile
.
F_bk0
,
F_bn1
=
self
.
F_tile
.
F_bn1
,
F_bk1
=
self
.
F_tile
.
F_bk1
,
F_bk0blen
=
self
.
F_tile
.
F_bk0blen
,
F_rm
=
self
.
F_tile
.
F_rm
,
F_rn
=
self
.
F_tile
.
F_rn
,
F_rk
=
self
.
F_tile
.
F_rk
,
F_wm
=
self
.
F_tile
.
F_wm
,
F_wn
=
self
.
F_tile
.
F_wn
,
F_wk
=
self
.
F_tile
.
F_wk
,
F_vlayout
=
LAYOUT_MAP
[
self
.
F_pipeline
.
F_vlayout
],
F_spad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_spad
],
F_skpad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_skpad
],
F_dpad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_dpad
],
F_dvpad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_dvpad
],
F_bias
=
BIAS_MAP
[
self
.
F_pipeline
.
F_bias
],
F_lse
=
BOOL_MAP
[
self
.
F_pipeline
.
F_lse
],
F_dropout
=
BOOL_MAP
[
self
.
F_pipeline
.
F_dropout
],
F_squant
=
BOOL_MAP
[
self
.
F_pipeline
.
F_squant
],
F_occupancy
=
self
.
F_tile
.
F_occupancy
,
F_pipeline_enum
=
PIPELINE_ENUM_MAP
[
self
.
F_pipeline
.
tag
],
F_mask
=
get_mask_map
(
self
.
mask_impl
)[
self
.
F_pipeline
.
F_mask
],
F_mode
=
MODE_MAP
[
self
.
F_mode
],
F_pipeline
=
PIPELINE_MAP
[
self
.
F_pipeline
.
tag
],
F_tile_partitioner
=
TILE_PARTITIONER_MAP
[
self
.
get_tp
()])
@
property
def
name
(
self
)
->
str
:
# TODO: we don't encode idx here
return
f
"fmha_fwd_d
{
self
.
F_hdim
}
_
{
self
.
F_dtype
}
_
{
self
.
F_mode
}
_
{
self
.
get_tp
()
}
_"
+
\
self
.
F_tile
.
name
+
'_'
+
self
.
F_pipeline
.
name
@
property
def
filename
(
self
)
->
str
:
return
self
.
name
+
".cpp"
def
api_trait
(
self
)
->
FmhaFwdApiTrait
:
return
FmhaFwdApiTrait
(
pipeline_tag
=
self
.
F_pipeline
.
tag
,
hdim
=
str
(
self
.
F_hdim
),
dtype
=
self
.
F_dtype
,
mode
=
self
.
F_mode
,
bm0
=
self
.
F_tile
.
F_bm0
,
bn0
=
self
.
F_tile
.
F_bn0
,
bk0
=
self
.
F_tile
.
F_bk0
,
bn1
=
self
.
F_tile
.
F_bn1
,
bk1
=
self
.
F_tile
.
F_bk1
,
bk0blen
=
self
.
F_tile
.
F_bk0blen
,
vlayout
=
self
.
F_pipeline
.
F_vlayout
,
mask
=
self
.
F_pipeline
.
F_mask
,
bias
=
self
.
F_pipeline
.
F_bias
,
lse
=
self
.
F_pipeline
.
F_lse
,
dropout
=
self
.
F_pipeline
.
F_dropout
,
squant
=
self
.
F_pipeline
.
F_squant
,
spad
=
self
.
F_pipeline
.
F_spad
,
skpad
=
self
.
F_pipeline
.
F_skpad
,
dpad
=
self
.
F_pipeline
.
F_dpad
,
dvpad
=
self
.
F_pipeline
.
F_dvpad
)
# TODO: design a more practical way to do it
# this is current supported tile size per hdim
def
get_fmha_fwd_tile_dict_from_dtype
(
dtype
:
str
)
->
Optional
[
dict
]:
if
dtype
==
'fp16'
or
dtype
==
'bf16'
:
return
{
'32'
:
FmhaFwdTileSize
(
128
,
64
,
16
,
32
,
32
,
32
,
2
,
1
,
1
,
32
,
32
,
16
,
-
1
),
'64'
:
FmhaFwdTileSize
(
128
,
64
,
32
,
64
,
32
,
64
,
4
,
1
,
1
,
32
,
32
,
16
,
-
1
),
'128'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
128
,
32
,
128
,
4
,
1
,
1
,
32
,
32
,
16
,
-
1
),
'256'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
256
,
32
,
256
,
4
,
1
,
1
,
32
,
32
,
16
,
-
1
),
}
elif
dtype
==
'fp8'
or
dtype
==
'bf8'
:
return
{
'64'
:
FmhaFwdTileSize
(
128
,
64
,
32
,
64
,
32
,
64
,
2
,
1
,
1
,
32
,
32
,
32
,
-
1
),
'128'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
128
,
32
,
128
,
4
,
1
,
1
,
32
,
32
,
32
,
-
1
),
'256'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
256
,
32
,
256
,
4
,
1
,
1
,
32
,
32
,
32
,
-
1
)
}
else
:
return
None
def
get_fwd_blobs
(
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
Tuple
[
FmhaFwdApiPool
,
List
[
FmhaFwdKernel
]]:
# TODO: we don't support tuning yet, so pick up one value for vlayout/pipeline/pad
# support this in future
def
get_pipelines
(
dtype
,
hdim
)
->
List
[
FmhaFwdPipeline
]:
# this function will populate a list possible pipelines
# TODO: the order of List matters! the later in this list will be also be checked later
# TODO: currently for qr pipeline, let 't' padding to appear later!!
# TODO: how to design this more generic?
squant
=
't'
if
dtype
==
'fp8'
else
'f'
pipelines
=
[]
if
dtype
in
[
'fp16'
,
'bf16'
]:
for
mask
,
bias
,
lse
,
dropout
in
itertools
.
product
(
get_mask_map
(
mask_impl
).
keys
(),
BIAS_MAP
.
keys
(),
[
"t"
,
"f"
],
[
"t"
,
"f"
]):
if
hdim
==
256
:
# if True:
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'row'
,
'f'
,
'f'
,
'f'
,
'f'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'col'
,
'f'
,
'f'
,
'f'
,
'f'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'row'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'col'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
else
:
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'row'
,
't'
,
'f'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'row'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'col'
,
't'
,
'f'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'col'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
if
receipt
==
1
:
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'row'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
# TODO: cover arbitraty hdim
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'col'
,
't'
,
'f'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
# TODO: cover arbitraty hdim
elif
dtype
in
[
'fp8'
,
'bf8'
]:
# no need lse/dropout kernels
for
mask
,
bias
in
itertools
.
product
(
get_mask_map
(
mask_impl
).
keys
(),
BIAS_MAP
.
keys
()):
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'col'
,
'f'
,
'f'
,
'f'
,
'f'
,
bias
,
'f'
,
'f'
,
squant
,
mask
))
else
:
assert
False
return
pipelines
gen
=
list
()
api_pool
=
FmhaFwdApiPool
(
mask_impl
)
for
dtype
in
DTYPE_MAP
.
keys
():
d
=
get_fmha_fwd_tile_dict_from_dtype
(
dtype
)
if
d
==
None
:
continue
#for hdim_str, mode, mask, bias, lse in itertools.product(d.keys(), MODE_MAP.keys(), MASK_MAP.keys(), ["t", "f"], ["t", "f"]):
for
hdim_str
,
mode
in
itertools
.
product
(
d
.
keys
(),
MODE_MAP
.
keys
()):
tile
=
d
[
hdim_str
]
hdim
=
int
(
hdim_str
)
for
pipeline
in
get_pipelines
(
dtype
,
hdim
):
if
mode
==
"group"
:
if
pipeline
.
F_spad
!=
't'
or
pipeline
.
F_skpad
!=
't'
:
# in group mode, spad/skpad must be true, since we can't predict if seqlen of current batch need pad or not
continue
k
=
FmhaFwdKernel
(
F_idx
=
0
,
F_hdim
=
hdim
,
F_dtype
=
dtype
,
F_mode
=
mode
,
F_tile
=
tile
,
F_pipeline
=
pipeline
,
mask_impl
=
mask_impl
)
if
kernel_filter
!=
None
:
if
not
fnmatch
.
fnmatch
(
k
.
name
,
kernel_filter
):
continue
if
receipt
==
2
:
cond
=
dtype
in
[
'fp16'
,
'bf16'
]
cond
&=
pipeline
.
F_vlayout
==
'row'
cond
&=
pipeline
.
F_bias
in
[
'no'
,
'alibi'
]
cond
&=
pipeline
.
F_squant
==
'f'
if
not
cond
:
continue
api_pool
.
register_traits
(
k
.
api_trait
())
gen
.
append
(
k
)
return
(
api_pool
,
gen
)
def
write_single_fwd_kernel
(
kernel
:
FmhaFwdKernel
,
autogen_dir
:
Path
)
->
None
:
(
autogen_dir
/
kernel
.
filename
).
write_text
(
kernel
.
template
)
def
write_fwd_api
(
api_pool
:
FmhaFwdApiPool
,
autogen_dir
:
Path
)
->
None
:
(
autogen_dir
/
FMHA_FWD_API_FILENAME
).
write_text
(
api_pool
.
api
)
def
write_blobs
(
output_dir
:
Path
,
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
None
:
api_pool
,
kernels
=
get_fwd_blobs
(
kernel_filter
,
receipt
,
mask_impl
)
for
kernel
in
kernels
:
write_single_fwd_kernel
(
kernel
,
output_dir
)
write_fwd_api
(
api_pool
,
output_dir
)
def
list_blobs
(
file_path
:
Path
,
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
None
:
with
file_path
.
open
(
'a'
)
as
f
:
_
,
kernels
=
get_fwd_blobs
(
kernel_filter
,
receipt
,
mask_impl
)
for
kernel
in
kernels
:
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
kernel
.
filename
)
+
"
\n
"
)
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
FMHA_FWD_API_FILENAME
)
+
"
\n
"
)
\ No newline at end of file
example/ck_tile/01_fmha/codegen/ops/fmha_fwd_splitkv.py
0 → 100644
View file @
dcd3d21a
# SPDX-License-Identifier: MIT
# Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
# generate kernel instances to speed up compilation
import
copy
from
dataclasses
import
dataclass
import
fnmatch
import
itertools
from
pathlib
import
Path
from
typing
import
List
,
Optional
,
Tuple
,
Union
from
codegen.cmake_config
import
*
from
codegen.cpp_symbol_map
import
*
from
codegen.ops.fmha_fwd
import
(
FmhaFwdTileSize
,
FmhaFwdApiTrait
,
FMHA_FWD_KERNEL_HEADER
,
FMHA_FWD_API_PER_DTYPE
,
FMHA_FWD_API_PER_HDIM_CASE
,
)
FMHA_FWD_SPLITKV_PIPELINE_MAP
=
{
"qr"
:
"ck_tile::BlockFmhaFwdSplitKVPipelineQRKSVS"
,
"qr_async"
:
"ck_tile::BlockFmhaFwdSplitKVPipelineQRKSVSAsync"
,
}
FMHA_FWD_SPLITKV_KERNEL_BODY
=
"""
using fmha_dtype_{F_idx} = {F_dtype};
using fmha_mask_{F_idx} = {F_mask};
namespace {{
template <bool kHasUnevenSplits>
struct kernel_runner {{
using fmha_block_tile = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}>;
using fmha_block_warps = ck_tile::sequence<{F_rm}, {F_rn}, {F_rk}>;
using fmha_warp_tile = ck_tile::sequence<{F_wm}, {F_wn}, {F_wk}>;
using fmha_shape = ck_tile::TileFmhaShape<fmha_block_tile,
fmha_block_warps,
fmha_warp_tile,
fmha_block_warps,
fmha_warp_tile,
{F_vlayout}>;
using fmha_trait = ck_tile::TileFmhaFwdSplitKVTraits<{F_spad},
{F_skpad},
{F_dpad},
{F_dvpad},
{F_bias},
false,
{F_lse},
{F_dropout},
{F_squant},
kHasUnevenSplits,
{F_occupancy}>;
using fmha_pipeline_problem = ck_tile::BlockFmhaFwdSplitKVPipelineProblem<
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::QDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::KDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::VDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::SaccDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::SMPLComputeDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::BiasDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::RandValOutputDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::LSEDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::PDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::OaccDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::OaccDataType,
fmha_shape,
{F_mode},
fmha_mask_{F_idx},
fmha_trait>;
using fmha_pipeline = {F_pipeline}<
fmha_pipeline_problem>;
using fmha_epilogue =
ck_tile::Default2DEpilogue<ck_tile::Default2DEpilogueProblem<typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType,
typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType,
{F_spad}, {F_dvpad}>>;
using fmha_kernel =
ck_tile::FmhaFwdSplitKVKernel<ck_tile::FmhaFwdSplitKVTilePartitioner<fmha_shape>,
fmha_pipeline,
fmha_epilogue>;
static void run(const ck_tile::stream_config& s, fmha_fwd_args a)
{{
using k_ = fmha_kernel;
auto [kargs, grids] = fmha_fwd_splitkv_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks = k_::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs)(ck_tile::stream_config{{s.stream_id_}});
}}
}};
}}
using trait_{F_idx} = fmha_fwd_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}, {F_vlayout},
{F_pipeline_enum}, fmha_mask_{F_idx}, {F_bias}, {F_lse}, {F_dropout}, {F_squant}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
#include <iostream>
template<>
void fmha_fwd_splitkv_oneshot_<trait_{F_idx}>(const ck_tile::stream_config& s, fmha_fwd_args a)
{{
if constexpr({F_mode} == false) {{ // batch mode
if (a.seqlen_k % (a.num_splits * {F_bn0}) == 0) {{
kernel_runner<false>::run(s, a);
}} else {{
kernel_runner<true>::run(s, a);
}}
}} else {{
kernel_runner<true>::run(s, a);
}}
}}
template<>
std::string fmha_fwd_splitkv_get_name_<trait_{F_idx}>()
{{
using k_ = kernel_runner<true>::fmha_kernel; /// FIXME: choose real kernel type
return k_::GetName();
}}
"""
FMHA_FWD_SPLITKV_COMBINE_KERNEL_BODY
=
"""
using fmha_dtype_{F_idx} = {F_dtype};
namespace {{
template <ck_tile::index_t kLogMaxSplits>
struct kernel_runner {{
using fmha_trait = ck_tile::TileFmhaFwdSplitKVCombineTraits<{F_spad},
{F_dvpad},
{F_lse},
{F_squant},
kLogMaxSplits,
{F_occupancy}>;
using fmha_pipeline_problem = ck_tile::BlockFmhaSplitKVCombinePipelineProblem<
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::LSEDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::OaccDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::ODataType,
{F_hdim},
{F_bm0},
{F_bn1},
{F_mode},
fmha_trait>;
using fmha_pipeline = ck_tile::BlockFmhaFwdSplitKVCombinePipeline<
fmha_pipeline_problem>;
using fmha_epilogue =
ck_tile::Default2DEpilogue<ck_tile::Default2DEpilogueProblem<typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType,
typename FmhaFwdTypeConfig<{F_dtype}>::ODataType,
{F_spad}, {F_dvpad}>>;
using fmha_kernel =
ck_tile::FmhaFwdSplitKVCombineKernel<ck_tile::FmhaFwdSplitKVCombineTilePartitioner<{F_bm0}, {F_bn1}>,
fmha_pipeline,
fmha_epilogue>;
static void run(const ck_tile::stream_config& s, fmha_fwd_args a)
{{
using k_ = fmha_kernel;
auto [kargs, grids] = fmha_fwd_splitkv_combine_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks = k_::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs)(ck_tile::stream_config{{s.stream_id_}});
}}
}};
}}
using trait_{F_idx} = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn1},
{F_lse}, {F_squant}, {F_spad}, {F_dvpad}>;
#include <iostream>
template<>
void fmha_fwd_splitkv_combine_oneshot_<trait_{F_idx}>(const ck_tile::stream_config& s, fmha_fwd_args a)
{{
if (a.num_splits <= 16) {{
kernel_runner<4>::run(s, a);
}} else if (a.num_splits <= 32) {{
kernel_runner<5>::run(s, a);
}} else if (a.num_splits <= 64) {{
kernel_runner<6>::run(s, a);
}} else if (a.num_splits <= 128) {{
kernel_runner<7>::run(s, a);
}}
}}
template<>
std::string fmha_fwd_splitkv_combine_get_name_<trait_{F_idx}>()
{{
using k_ = kernel_runner<6>::fmha_kernel; /// FIXME: choose real kernel type
return k_::GetName();
}}
"""
FMHA_FWD_SPLITKV_API_FILENAME
=
"fmha_fwd_splitkv_api.cpp"
FMHA_FWD_SPLITKV_API
=
"""
#include <iostream>
template<typename fmha_fwd_splitkv_traits_, typename fmha_fwd_splitkv_combine_traits_>
float fmha_fwd_splitkv_(const ck_tile::stream_config& s, fmha_fwd_args a)
{{
if(s.log_level_ > 0)
std::cout
<< ", " << fmha_fwd_splitkv_get_name_<fmha_fwd_splitkv_traits_>()
<< ", " << fmha_fwd_splitkv_combine_get_name_<fmha_fwd_splitkv_combine_traits_>()
<< std::flush;
return ck_tile::launch_kernel(s,
[=](const ck_tile::stream_config& s_){{ fmha_fwd_splitkv_oneshot_<fmha_fwd_splitkv_traits_>(s_, a); }},
[=](const ck_tile::stream_config& s_){{ fmha_fwd_splitkv_combine_oneshot_<fmha_fwd_splitkv_combine_traits_>(s_, a); }}
);
}}
float fmha_fwd_splitkv(fmha_fwd_traits t, fmha_fwd_args a, const ck_tile::stream_config& s){{
float r = -1;
{F_dispatch}
return r;
}}
"""
FMHA_FWD_SPLITKV_API_INNER_DISPATCH
=
""" {F_if}((t.is_group_mode == {F_mode}) && (t.is_v_rowmajor == {F_vlayout}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.has_lse == {F_lse}) && (t.has_dropout == {F_dropout}) && (t.do_fp8_static_quant == {F_squant}) &&
({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck})) {{
using traits_ = fmha_fwd_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, {F_lse}, {F_dropout}, {F_squant}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
using traits2_ = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}/2, {F_bn1}, {F_lse}, {F_squant}, {F_spad}, {F_dvpad}>;
return fmha_fwd_splitkv_<traits_, traits2_>(s, a);
}}
"""
@
dataclass
class
FmhaFwdSplitKVPipeline
:
tag
:
str
F_vlayout
:
str
# row/col
F_spad
:
str
# true/false
F_skpad
:
str
#
F_dpad
:
str
#
F_dvpad
:
str
#
F_bias
:
str
# true/false
F_lse
:
str
#
F_dropout
:
str
#
F_squant
:
str
#
F_mask
:
str
# value from MASK_MAP
@
property
def
name
(
self
)
->
str
:
def
pad_name
()
->
str
:
n
=
''
if
self
.
F_spad
==
't'
:
n
+=
's'
if
self
.
F_skpad
==
't'
:
n
+=
'sk'
if
self
.
F_dpad
==
't'
:
n
+=
'd'
if
self
.
F_dvpad
==
't'
:
n
+=
'dv'
if
n
!=
''
:
n
=
'p'
+
n
return
n
pn
=
pad_name
()
n
=
f
'
{
self
.
tag
}
_v
{
self
.
F_vlayout
[
0
]
}
'
if
pn
!=
''
:
n
+=
f
'_
{
pn
}
'
if
self
.
F_bias
!=
'no'
:
n
+=
f
'_
{
self
.
F_bias
}
'
if
self
.
F_mask
[
0
:
2
]
==
's_'
:
if
self
.
F_mask
==
's_mask'
:
n
+=
f
'_mask'
else
:
if
self
.
F_mask
!=
'no'
:
n
+=
f
'_m
{
self
.
F_mask
[
0
]
}
'
if
self
.
F_lse
==
't'
:
n
+=
'_lse'
if
self
.
F_dropout
==
't'
:
n
+=
'_dropout'
if
self
.
F_squant
==
't'
:
n
+=
'_squant'
return
n
@
dataclass
class
FmhaFwdSplitKVCombinePipeline
:
tag
:
str
F_spad
:
str
# true/false
F_dvpad
:
str
#
F_lse
:
str
#
F_squant
:
str
#
@
property
def
name
(
self
)
->
str
:
def
pad_name
()
->
str
:
n
=
''
if
self
.
F_spad
==
't'
:
n
+=
's'
if
self
.
F_dvpad
==
't'
:
n
+=
'dv'
if
n
!=
''
:
n
=
'p'
+
n
return
n
pn
=
pad_name
()
n
=
f
'
{
self
.
tag
}
'
if
pn
!=
''
:
n
+=
f
'_
{
pn
}
'
if
self
.
F_lse
==
't'
:
n
+=
'_lse'
if
self
.
F_squant
==
't'
:
n
+=
'_squant'
return
n
class
FmhaFwdSplitKVApiPool
:
def
__init__
(
self
,
mask_impl
):
self
.
pool
=
dict
()
self
.
mask_impl
=
mask_impl
def
register_traits
(
self
,
trait
:
FmhaFwdApiTrait
)
->
None
:
# TODO: do we need to check duplication?
if
trait
.
dtype
not
in
self
.
pool
.
keys
():
self
.
pool
[
trait
.
dtype
]
=
dict
()
if
trait
.
hdim
not
in
self
.
pool
[
trait
.
dtype
].
keys
():
self
.
pool
[
trait
.
dtype
][
trait
.
hdim
]
=
list
()
self
.
pool
[
trait
.
dtype
][
trait
.
hdim
].
append
(
copy
.
copy
(
trait
))
@
property
def
api
(
self
)
->
str
:
per_dtypes
=
str
()
for
i
,
dtype
in
enumerate
(
self
.
pool
.
keys
()):
per_hdim_case
=
str
()
for
j
,
hdim
in
enumerate
(
self
.
pool
[
dtype
].
keys
()):
traits
=
self
.
pool
[
dtype
][
hdim
]
inners
=
str
()
for
k
,
trait
in
enumerate
(
traits
):
if_k
=
'if'
if
k
==
0
else
'else if'
inners
=
inners
+
FMHA_FWD_SPLITKV_API_INNER_DISPATCH
.
format
(
F_if
=
if_k
,
F_mode
=
MODE_MAP
[
trait
.
mode
],
F_vlayout
=
LAYOUT_MAP
[
trait
.
vlayout
],
F_pipeline_enum
=
PIPELINE_ENUM_MAP
[
trait
.
pipeline_tag
],
F_mask
=
get_mask_map
(
self
.
mask_impl
)[
trait
.
mask
],
F_mask_check
=
get_mask_check_map
(
self
.
mask_impl
)[
trait
.
mask
],
F_bias_check
=
BIAS_CHECK_MAP
[
trait
.
bias
],
F_bias
=
BIAS_MAP
[
trait
.
bias
],
F_lse
=
BOOL_MAP
[
trait
.
lse
],
F_dropout
=
BOOL_MAP
[
trait
.
dropout
]
,
F_squant
=
BOOL_MAP
[
trait
.
squant
],
F_scheck
=
trait
.
scheck
,
F_skcheck
=
trait
.
skcheck
,
F_dcheck
=
trait
.
dcheck
,
F_dvcheck
=
trait
.
dvcheck
,
F_spad
=
BOOL_MAP
[
trait
.
spad
],
F_skpad
=
BOOL_MAP
[
trait
.
skpad
],
F_dpad
=
BOOL_MAP
[
trait
.
dpad
],
F_dvpad
=
BOOL_MAP
[
trait
.
dvpad
],
F_bm0
=
trait
.
bm0
,
F_bn0
=
trait
.
bn0
,
F_bk0
=
trait
.
bk0
,
F_bn1
=
trait
.
bn1
,
F_bk1
=
trait
.
bk1
,
F_bk0blen
=
trait
.
bk0blen
,
F_hdim
=
hdim
,
F_dtype
=
DTYPE_MAP
[
dtype
])
if_j
=
'if'
if
j
==
0
else
'else if'
per_hdim_case
=
per_hdim_case
+
FMHA_FWD_API_PER_HDIM_CASE
.
format
(
F_if
=
if_j
,
F_hdim
=
hdim
,
F_inner_dispatch
=
inners
)
if_i
=
'if'
if
i
==
0
else
'else if'
per_dtypes
=
per_dtypes
+
FMHA_FWD_API_PER_DTYPE
.
format
(
F_if
=
if_i
,
F_dtype
=
dtype
,
F_hdim_case
=
per_hdim_case
)
if
not
per_dtypes
:
# empty string we add some ignore to suppress warning in api
per_dtypes
+=
' (void)t ; (void)s ; (void)a;'
return
FMHA_FWD_KERNEL_HEADER
+
FMHA_FWD_SPLITKV_API
.
format
(
F_dispatch
=
per_dtypes
)
@
dataclass
class
FmhaFwdSplitKVCombineTileSize
:
F_bm0
:
int
# tile size along q seqlen
F_bn1
:
int
# tile size along v head_dim
F_occupancy
:
int
# occupancy, -1 will let pipeline decide the occupancy, other value will overwrite occupancy
@
property
def
name
(
self
)
->
str
:
return
f
"b
{
self
.
F_bm0
}
x
{
self
.
F_bn1
}
"
+
\
(
""
if
self
.
F_occupancy
==
-
1
else
f
"_o
{
self
.
F_occupancy
}
"
)
@
dataclass
class
FmhaFwdSplitKVKernel
:
F_idx
:
int
# this is not a tunable, but a counter to differentiate symbol
F_hdim
:
int
# hdim
F_dtype
:
str
# data type
F_mode
:
str
# value from MODE_MAP
F_tile
:
FmhaFwdTileSize
F_pipeline
:
FmhaFwdSplitKVPipeline
mask_impl
:
str
@
property
def
template
(
self
)
->
str
:
kernel_body
=
str
()
return
FMHA_FWD_KERNEL_HEADER
+
\
FMHA_FWD_SPLITKV_KERNEL_BODY
.
format
(
F_idx
=
self
.
F_idx
,
F_hdim
=
self
.
F_hdim
,
F_dtype
=
DTYPE_MAP
[
self
.
F_dtype
],
F_bm0
=
self
.
F_tile
.
F_bm0
,
F_bn0
=
self
.
F_tile
.
F_bn0
,
F_bk0
=
self
.
F_tile
.
F_bk0
,
F_bn1
=
self
.
F_tile
.
F_bn1
,
F_bk1
=
self
.
F_tile
.
F_bk1
,
F_bk0blen
=
self
.
F_tile
.
F_bk0blen
,
F_rm
=
self
.
F_tile
.
F_rm
,
F_rn
=
self
.
F_tile
.
F_rn
,
F_rk
=
self
.
F_tile
.
F_rk
,
F_wm
=
self
.
F_tile
.
F_wm
,
F_wn
=
self
.
F_tile
.
F_wn
,
F_wk
=
self
.
F_tile
.
F_wk
,
F_vlayout
=
LAYOUT_MAP
[
self
.
F_pipeline
.
F_vlayout
],
F_spad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_spad
],
F_skpad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_skpad
],
F_dpad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_dpad
],
F_dvpad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_dvpad
],
F_bias
=
BIAS_MAP
[
self
.
F_pipeline
.
F_bias
],
F_lse
=
BOOL_MAP
[
self
.
F_pipeline
.
F_lse
],
F_dropout
=
BOOL_MAP
[
self
.
F_pipeline
.
F_dropout
],
F_squant
=
BOOL_MAP
[
self
.
F_pipeline
.
F_squant
],
F_occupancy
=
self
.
F_tile
.
F_occupancy
,
F_pipeline_enum
=
PIPELINE_ENUM_MAP
[
self
.
F_pipeline
.
tag
],
F_mask
=
get_mask_map
(
self
.
mask_impl
)[
self
.
F_pipeline
.
F_mask
],
F_mode
=
MODE_MAP
[
self
.
F_mode
],
F_pipeline
=
FMHA_FWD_SPLITKV_PIPELINE_MAP
[
self
.
F_pipeline
.
tag
])
@
property
def
name
(
self
)
->
str
:
# TODO: we don't encode idx here
return
f
"fmha_fwd_splitkv_d
{
self
.
F_hdim
}
_
{
self
.
F_dtype
}
_
{
self
.
F_mode
}
_"
+
\
self
.
F_tile
.
name
+
'_'
+
self
.
F_pipeline
.
name
@
property
def
filename
(
self
)
->
str
:
return
self
.
name
+
".cpp"
def
api_trait
(
self
)
->
FmhaFwdApiTrait
:
return
FmhaFwdApiTrait
(
pipeline_tag
=
self
.
F_pipeline
.
tag
,
hdim
=
str
(
self
.
F_hdim
),
dtype
=
self
.
F_dtype
,
mode
=
self
.
F_mode
,
bm0
=
self
.
F_tile
.
F_bm0
,
bn0
=
self
.
F_tile
.
F_bn0
,
bk0
=
self
.
F_tile
.
F_bk0
,
bn1
=
self
.
F_tile
.
F_bn1
,
bk1
=
self
.
F_tile
.
F_bk1
,
bk0blen
=
self
.
F_tile
.
F_bk0blen
,
vlayout
=
self
.
F_pipeline
.
F_vlayout
,
mask
=
self
.
F_pipeline
.
F_mask
,
bias
=
self
.
F_pipeline
.
F_bias
,
lse
=
self
.
F_pipeline
.
F_lse
,
dropout
=
self
.
F_pipeline
.
F_dropout
,
squant
=
self
.
F_pipeline
.
F_squant
,
spad
=
self
.
F_pipeline
.
F_spad
,
skpad
=
self
.
F_pipeline
.
F_skpad
,
dpad
=
self
.
F_pipeline
.
F_dpad
,
dvpad
=
self
.
F_pipeline
.
F_dvpad
)
@
dataclass
class
FmhaFwdSplitKVCombineKernel
:
F_idx
:
int
# this is not a tunable, but a counter to differentiate symbol
F_hdim
:
int
# hdim
F_dtype
:
str
# data type
F_mode
:
str
# value from MODE_MAP
F_tile
:
FmhaFwdSplitKVCombineTileSize
F_pipeline
:
FmhaFwdSplitKVCombinePipeline
@
property
def
template
(
self
)
->
str
:
kernel_body
=
str
()
return
FMHA_FWD_KERNEL_HEADER
+
\
FMHA_FWD_SPLITKV_COMBINE_KERNEL_BODY
.
format
(
F_idx
=
self
.
F_idx
,
F_hdim
=
self
.
F_hdim
,
F_dtype
=
DTYPE_MAP
[
self
.
F_dtype
],
F_bm0
=
self
.
F_tile
.
F_bm0
,
F_bn1
=
self
.
F_tile
.
F_bn1
,
F_spad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_spad
],
F_dvpad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_dvpad
],
F_lse
=
BOOL_MAP
[
self
.
F_pipeline
.
F_lse
],
F_squant
=
BOOL_MAP
[
self
.
F_pipeline
.
F_squant
],
F_occupancy
=
self
.
F_tile
.
F_occupancy
,
F_mode
=
MODE_MAP
[
self
.
F_mode
])
@
property
def
name
(
self
)
->
str
:
# TODO: we don't encode idx here
return
f
"fmha_fwd_splitkv_combine_d
{
self
.
F_hdim
}
_
{
self
.
F_dtype
}
_
{
self
.
F_mode
}
_"
+
\
self
.
F_tile
.
name
+
'_'
+
self
.
F_pipeline
.
name
@
property
def
filename
(
self
)
->
str
:
return
self
.
name
+
".cpp"
def
api_trait
(
self
)
->
FmhaFwdApiTrait
:
return
FmhaFwdApiTrait
(
pipeline_tag
=
self
.
F_pipeline
.
tag
,
hdim
=
str
(
self
.
F_hdim
),
dtype
=
self
.
F_dtype
,
mode
=
self
.
F_mode
,
bm0
=
self
.
F_tile
.
F_bm0
,
bn0
=
self
.
F_tile
.
F_bn0
,
bk0
=
self
.
F_tile
.
F_bk0
,
bn1
=
self
.
F_tile
.
F_bn1
,
bk1
=
self
.
F_tile
.
F_bk1
,
bk0blen
=
self
.
F_tile
.
F_bk0blen
,
vlayout
=
self
.
F_pipeline
.
F_vlayout
,
mask
=
self
.
F_pipeline
.
F_mask
,
bias
=
self
.
F_pipeline
.
F_bias
,
lse
=
self
.
F_pipeline
.
F_lse
,
dropout
=
self
.
F_pipeline
.
F_dropout
,
squant
=
self
.
F_pipeline
.
F_squant
,
spad
=
self
.
F_pipeline
.
F_spad
,
skpad
=
self
.
F_pipeline
.
F_skpad
,
dpad
=
self
.
F_pipeline
.
F_dpad
,
dvpad
=
self
.
F_pipeline
.
F_dvpad
)
# TODO: design a more practical way to do it
# this is current supported tile size per hdim
def
get_fmha_fwd_tile_dict_from_dtype
(
dtype
:
str
)
->
Optional
[
dict
]:
if
dtype
==
'fp16'
or
dtype
==
'bf16'
:
return
{
'32'
:
FmhaFwdTileSize
(
128
,
64
,
16
,
32
,
32
,
32
,
2
,
1
,
1
,
32
,
32
,
16
,
-
1
),
'64'
:
FmhaFwdTileSize
(
128
,
64
,
32
,
64
,
32
,
64
,
4
,
1
,
1
,
32
,
32
,
16
,
-
1
),
'128'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
128
,
32
,
128
,
4
,
1
,
1
,
32
,
32
,
16
,
-
1
),
'256'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
256
,
32
,
256
,
4
,
1
,
1
,
32
,
32
,
16
,
-
1
),
}
elif
dtype
==
'fp8'
or
dtype
==
'bf8'
:
return
{
'64'
:
FmhaFwdTileSize
(
128
,
64
,
32
,
64
,
32
,
64
,
2
,
1
,
1
,
32
,
32
,
32
,
-
1
),
'128'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
128
,
32
,
128
,
4
,
1
,
1
,
32
,
32
,
32
,
-
1
),
'256'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
256
,
32
,
256
,
4
,
1
,
1
,
32
,
32
,
32
,
-
1
)
}
else
:
return
None
def
get_fmha_fwd_splitkv_combine_tile_dict_from_dtype
(
dtype
:
str
)
->
Optional
[
dict
]:
if
dtype
==
'fp16'
or
dtype
==
'bf16'
:
return
{
'32'
:
FmhaFwdSplitKVCombineTileSize
(
64
,
32
,
-
1
),
'64'
:
FmhaFwdSplitKVCombineTileSize
(
64
,
64
,
-
1
),
'128'
:
FmhaFwdSplitKVCombineTileSize
(
64
,
128
,
-
1
),
'256'
:
FmhaFwdSplitKVCombineTileSize
(
64
,
256
,
-
1
),
}
elif
dtype
==
'fp8'
or
dtype
==
'bf8'
:
return
{
'64'
:
FmhaFwdSplitKVCombineTileSize
(
64
,
64
,
-
1
),
'128'
:
FmhaFwdSplitKVCombineTileSize
(
64
,
128
,
-
1
),
'256'
:
FmhaFwdSplitKVCombineTileSize
(
64
,
256
,
-
1
),
}
else
:
return
None
def
get_fwd_splitkv_blobs
(
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
Tuple
[
FmhaFwdSplitKVApiPool
,
List
[
FmhaFwdSplitKVKernel
]]:
Pipeline
=
FmhaFwdSplitKVPipeline
Kernel
=
FmhaFwdSplitKVKernel
# TODO: we don't support tuning yet, so pick up one value for vlayout/pipeline/pad
# support this in future
def
get_pipelines
(
dtype
,
hdim
)
->
List
[
FmhaFwdSplitKVPipeline
]:
# this function will populate a list possible pipelines
# TODO: the order of List matters! the later in this list will be also be checked later
# TODO: currently for qr pipeline, let 't' padding to appear later!!
# TODO: how to design this more generic?
squant
=
't'
if
dtype
==
'fp8'
else
'f'
pipelines
=
[]
if
dtype
in
[
'fp16'
,
'bf16'
]:
# splitkv kernel donot support dropout
for
mask
,
bias
,
lse
,
dropout
in
itertools
.
product
(
get_mask_map
(
mask_impl
).
keys
(),
BIAS_MAP
.
keys
(),
[
"t"
,
"f"
],
[
"f"
]):
if
hdim
==
256
:
# if True:
pipelines
.
append
(
Pipeline
(
'qr'
,
'row'
,
'f'
,
'f'
,
'f'
,
'f'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
Pipeline
(
'qr'
,
'col'
,
'f'
,
'f'
,
'f'
,
'f'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
Pipeline
(
'qr'
,
'row'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
Pipeline
(
'qr'
,
'col'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
else
:
pipelines
.
append
(
Pipeline
(
'qr_async'
,
'row'
,
't'
,
'f'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
Pipeline
(
'qr_async'
,
'row'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
Pipeline
(
'qr_async'
,
'col'
,
't'
,
'f'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
Pipeline
(
'qr_async'
,
'col'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
if
receipt
==
1
:
pipelines
.
append
(
Pipeline
(
'qr'
,
'row'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
# TODO: cover arbitraty hdim
pipelines
.
append
(
Pipeline
(
'qr'
,
'col'
,
't'
,
'f'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
# TODO: cover arbitraty hdim
elif
dtype
in
[
'fp8'
,
'bf8'
]:
# no need lse/dropout kernels
for
mask
,
bias
in
itertools
.
product
(
get_mask_map
(
mask_impl
).
keys
(),
BIAS_MAP
.
keys
()):
pipelines
.
append
(
Pipeline
(
'qr'
,
'col'
,
'f'
,
'f'
,
'f'
,
'f'
,
bias
,
'f'
,
'f'
,
squant
,
mask
))
else
:
assert
False
return
pipelines
gen
=
list
()
api_pool
=
FmhaFwdSplitKVApiPool
(
mask_impl
)
for
dtype
in
DTYPE_MAP
.
keys
():
d
=
get_fmha_fwd_tile_dict_from_dtype
(
dtype
)
if
d
==
None
:
continue
#for hdim_str, mode, mask, bias, lse in itertools.product(d.keys(), MODE_MAP.keys(), MASK_MAP.keys(), ["t", "f"], ["t", "f"]):
for
hdim_str
,
mode
in
itertools
.
product
(
d
.
keys
(),
MODE_MAP
.
keys
()):
tile
=
d
[
hdim_str
]
hdim
=
int
(
hdim_str
)
for
pipeline
in
get_pipelines
(
dtype
,
hdim
):
if
mode
==
"group"
:
if
pipeline
.
F_spad
!=
't'
or
pipeline
.
F_skpad
!=
't'
:
# in group mode, spad/skpad must be true, since we can't predict if seqlen of current batch need pad or not
continue
k
=
Kernel
(
F_idx
=
0
,
F_hdim
=
hdim
,
F_dtype
=
dtype
,
F_mode
=
mode
,
F_tile
=
tile
,
F_pipeline
=
pipeline
,
mask_impl
=
mask_impl
)
if
kernel_filter
!=
None
:
if
not
fnmatch
.
fnmatch
(
k
.
name
,
kernel_filter
):
continue
if
receipt
==
2
:
cond
=
dtype
in
[
'fp16'
,
'bf16'
]
cond
&=
pipeline
.
F_vlayout
==
'row'
cond
&=
pipeline
.
F_bias
in
[
'no'
,
'alibi'
]
cond
&=
pipeline
.
F_squant
==
'f'
if
not
cond
:
continue
api_pool
.
register_traits
(
k
.
api_trait
())
gen
.
append
(
k
)
return
(
api_pool
,
gen
)
def
get_fwd_splitkv_combine_blobs
(
kernel_filter
:
Optional
[
str
],
receipt
)
->
List
[
FmhaFwdSplitKVCombineKernel
]:
Pipeline
=
FmhaFwdSplitKVCombinePipeline
Kernel
=
FmhaFwdSplitKVCombineKernel
# TODO: we don't support tuning yet, so pick up one value for vlayout/pipeline/pad
# support this in future
def
get_pipelines
(
dtype
,
hdim
)
->
List
[
FmhaFwdSplitKVCombinePipeline
]:
# this function will populate a list possible pipelines
# TODO: the order of List matters! the later in this list will be also be checked later
# TODO: currently for qr pipeline, let 't' padding to appear later!!
# TODO: how to design this more generic?
squant
=
't'
if
dtype
==
'fp8'
else
'f'
pipelines
=
[]
if
dtype
in
[
'fp16'
,
'bf16'
]:
for
spad
,
dvpad
,
lse
in
itertools
.
product
([
"t"
,
"f"
],
[
"t"
,
"f"
],
[
"t"
,
"f"
]):
pipelines
.
append
(
Pipeline
(
'unused'
,
spad
,
dvpad
,
lse
,
squant
))
elif
dtype
in
[
'fp8'
,
'bf8'
]:
# no need lse kernels
pipelines
.
append
(
Pipeline
(
'unused'
,
'f'
,
'f'
,
'f'
,
squant
))
else
:
assert
False
return
pipelines
gen
=
list
()
for
dtype
in
DTYPE_MAP
.
keys
():
d
=
get_fmha_fwd_splitkv_combine_tile_dict_from_dtype
(
dtype
)
if
d
==
None
:
continue
#for hdim_str, mode, mask, bias, lse in itertools.product(d.keys(), MODE_MAP.keys(), MASK_MAP.keys(), ["t", "f"], ["t", "f"]):
for
hdim_str
,
mode
in
itertools
.
product
(
d
.
keys
(),
MODE_MAP
.
keys
()):
tile
=
d
[
hdim_str
]
hdim
=
int
(
hdim_str
)
for
pipeline
in
get_pipelines
(
dtype
,
hdim
):
if
mode
==
"group"
:
if
pipeline
.
F_spad
!=
't'
:
# in group mode, spad/skpad must be true, since we can't predict if seqlen of current batch need pad or not
continue
k
=
Kernel
(
F_idx
=
0
,
F_hdim
=
hdim
,
F_dtype
=
dtype
,
F_mode
=
mode
,
F_tile
=
tile
,
F_pipeline
=
pipeline
)
if
kernel_filter
!=
None
:
if
not
fnmatch
.
fnmatch
(
k
.
name
,
kernel_filter
):
continue
gen
.
append
(
k
)
return
gen
def
write_single_kernel
(
kernel
:
Union
[
FmhaFwdSplitKVKernel
,
FmhaFwdSplitKVCombineKernel
],
autogen_dir
:
Path
)
->
None
:
(
autogen_dir
/
kernel
.
filename
).
write_text
(
kernel
.
template
)
def
write_fwd_splitkv_api
(
api_pool
:
FmhaFwdSplitKVApiPool
,
autogen_dir
:
Path
)
->
None
:
file_path
=
autogen_dir
/
FMHA_FWD_SPLITKV_API_FILENAME
file_path
.
write_text
(
api_pool
.
api
)
def
write_blobs
(
output_dir
:
Path
,
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
None
:
kernels
=
get_fwd_splitkv_combine_blobs
(
kernel_filter
,
receipt
)
for
kernel
in
kernels
:
write_single_kernel
(
kernel
,
output_dir
)
api_pool
,
kernels
=
get_fwd_splitkv_blobs
(
kernel_filter
,
receipt
,
mask_impl
)
for
kernel
in
kernels
:
write_single_kernel
(
kernel
,
output_dir
)
write_fwd_splitkv_api
(
api_pool
,
output_dir
)
def
list_blobs
(
file_path
:
Path
,
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
None
:
with
file_path
.
open
(
'a'
)
as
f
:
kernels
=
get_fwd_splitkv_combine_blobs
(
kernel_filter
,
receipt
)
for
kernel
in
kernels
:
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
kernel
.
filename
)
+
"
\n
"
)
_
,
kernels
=
get_fwd_splitkv_blobs
(
kernel_filter
,
receipt
,
mask_impl
)
for
kernel
in
kernels
:
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
kernel
.
filename
)
+
"
\n
"
)
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
FMHA_FWD_SPLITKV_API_FILENAME
)
+
"
\n
"
)
\ No newline at end of file
example/ck_tile/01_fmha/fmha_bwd.cpp
0 → 100644
View file @
dcd3d21a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "fmha_bwd.hpp"
#include "ck_tile/host.hpp"
#include "mask.hpp"
#include "utils.hpp"
#include <array>
#include <cstring>
#include <functional>
#include <numeric>
#include <ostream>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
template
<
typename
T
>
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
std
::
vector
<
T
>&
v
)
{
using
size_type
=
typename
std
::
vector
<
T
>::
size_type
;
os
<<
"["
;
for
(
size_type
idx
=
0
;
idx
<
v
.
size
();
++
idx
)
{
if
(
0
<
idx
)
{
os
<<
", "
;
}
os
<<
v
[
idx
];
}
return
os
<<
"]"
;
}
auto
create_args
(
int
argc
,
char
*
argv
[])
{
ck_tile
::
ArgParser
arg_parser
;
arg_parser
.
insert
(
"v"
,
"1"
,
"weather do CPU validation or not"
)
.
insert
(
"mode"
,
"0"
,
"kernel mode. 0:batch, 1:group"
)
.
insert
(
"b"
,
"2"
,
"batch size"
)
.
insert
(
"h"
,
"8"
,
"num of head, for q"
)
.
insert
(
"h_k"
,
"-1"
,
"num of head, for k/v, -1 means equal to h
\n
"
"if not equal to h, then this is GQA/MQA case"
)
.
insert
(
"s"
,
"3328"
,
"seqlen_q. if group-mode, means the average value of seqlen_q
\n
"
"total_seqlen_q = seqlen_q * batch, and seqlen_q per batch may vary"
)
.
insert
(
"s_k"
,
"-1"
,
"seqlen_k, -1 means equal to s"
)
.
insert
(
"d"
,
"128"
,
"head dim for q, k"
)
.
insert
(
"d_v"
,
"-1"
,
"head dim for v, -1 means equal to d"
)
.
insert
(
"scale"
,
"0"
,
"scale factor. 0 means equal to 1/sqrt(hdim)"
)
.
insert
(
"iperm"
,
"1"
,
"permute input
\n
"
"if true, will be b*h*s*d, else b*s*h*d"
)
.
insert
(
"operm"
,
"1"
,
"permute output"
)
.
insert
(
"bias"
,
"n"
,
"n or 0, no bias
\n
"
"e(lementwise) or 1, elementwise bias with 1*1*s*s. e:1, 1*h*s*s. e:2, b*h*s*s
\n
"
"a(libi) or 2, alibi with 1*h. a:1, b*h"
)
.
insert
(
"dbias"
,
"0"
,
"output bias gradient or not"
)
.
insert
(
"prec"
,
"fp16"
,
"data type. fp16 or bf16"
)
.
insert
(
"mask"
,
"0"
,
"0: no mask, 1: top-left(same as 't'), 2:bottom-right(same as 'b')
\n
"
"'t', top-left causal mask, 'b', bottom-r causal mask
\n
"
"'t:l,r', top-left sliding window attn(swa) with FA style left right size
\n
"
"'b:l,r', bottom-r sliding window attn(swa) with FA style left right size
\n
"
"'xt:window_size', xformer style masking from top-left, window_size negative is "
"causal, positive is swa
\n
"
"'xb:window_size', xformer style masking from bottom-r, window_size negative is "
"causal, positive is swa
\n
"
"'g:y,x', generic attention mask coordinate with y/x size (only debug purpose for "
"now)"
)
.
insert
(
"kname"
,
"0"
,
"if set to 1 will print kernel name"
)
.
insert
(
"init"
,
"1"
,
"init method. 0:random int, 1:random float, 2:trig float"
)
.
insert
(
"seed"
,
"11939"
,
"random seed used for initializing input tensors. 0 for "
"non-deterministic seed"
)
.
insert
(
"p_drop"
,
"0"
,
"0~1 probability of dropout"
)
.
insert
(
"drop_seed"
,
"1"
,
"seed for random number generator"
)
.
insert
(
"drop_offset"
,
"0"
,
"offset for random number generator"
)
.
insert
(
"timer"
,
"gpu"
,
"gpu:gpu timer, cpu:cpu timer"
)
.
insert
(
"warmup"
,
"5"
,
"number of iterations before benchmark the kernel"
)
.
insert
(
"repeat"
,
"20"
,
"number of iterations to benchmark the kernel"
);
bool
result
=
arg_parser
.
parse
(
argc
,
argv
);
return
std
::
make_tuple
(
result
,
arg_parser
);
}
// different threshold for different dtype
template
<
typename
DataType
>
auto
get_elimit
(
int
/*init_method*/
)
{
double
rtol
=
1e-2
;
double
atol
=
1e-2
;
return
ck_tile
::
make_tuple
(
rtol
,
atol
);
}
template
<
typename
DataType
>
bool
run
(
const
ck_tile
::
ArgParser
&
arg_parser
)
{
std
::
string
data_type
=
arg_parser
.
get_str
(
"prec"
);
int
do_validation
=
arg_parser
.
get_int
(
"v"
);
auto
mode
=
static_cast
<
mode_enum
>
(
arg_parser
.
get_uint32
(
"mode"
));
ck_tile
::
index_t
batch
=
arg_parser
.
get_int
(
"b"
);
ck_tile
::
index_t
nhead
=
arg_parser
.
get_int
(
"h"
);
ck_tile
::
index_t
nhead_k
=
arg_parser
.
get_int
(
"h_k"
);
if
(
nhead_k
<
0
)
nhead_k
=
nhead
;
if
(
nhead
%
nhead_k
!=
0
)
{
std
::
cerr
<<
"nhead:"
<<
nhead
<<
" must be multiple of nhead_k:"
<<
nhead_k
<<
std
::
endl
;
return
false
;
}
ck_tile
::
index_t
seqlen_q
=
arg_parser
.
get_int
(
"s"
);
ck_tile
::
index_t
seqlen_k
=
arg_parser
.
get_int
(
"s_k"
);
if
(
seqlen_k
<
0
)
seqlen_k
=
seqlen_q
;
ck_tile
::
index_t
hdim_q
=
arg_parser
.
get_int
(
"d"
);
ck_tile
::
index_t
hdim_v
=
arg_parser
.
get_int
(
"d_v"
);
if
(
hdim_v
<
0
)
hdim_v
=
hdim_q
;
if
(
hdim_q
%
2
!=
0
||
hdim_v
%
2
!=
0
)
{
std
::
cerr
<<
"FMHA Bwd kernel currently only supports even headdim"
<<
std
::
endl
;
return
false
;
}
bool
i_perm
=
arg_parser
.
get_bool
(
"iperm"
);
// if true, will be batch * nhead * seqlen * hdim
bool
o_perm
=
arg_parser
.
get_bool
(
"operm"
);
// if false, will be batch * seqlen * nhead * hdim
float
scale
=
arg_parser
.
get_float
(
"scale"
);
if
(
scale
==
.0
f
)
scale
=
1.0
/
ck_tile
::
sqrt
(
static_cast
<
float
>
(
hdim_q
));
bias_info
bias
=
bias_info
::
decode
(
arg_parser
.
get_str
(
"bias"
));
bool
use_dbias
=
arg_parser
.
get_bool
(
"dbias"
);
float
p_drop
=
arg_parser
.
get_float
(
"p_drop"
);
uint64_t
drop_seed
=
arg_parser
.
get_uint64
(
"drop_seed"
);
uint64_t
drop_offset
=
arg_parser
.
get_uint64
(
"drop_offset"
);
if
(
use_dbias
&&
bias
.
type
!=
bias_enum
::
elementwise_bias
)
{
std
::
cerr
<<
"dbias only exists when bias type is elementwise"
<<
std
::
endl
;
return
false
;
}
if
(
p_drop
<
0.0
f
||
p_drop
>
1.0
f
)
{
std
::
cerr
<<
"The value of p_drop should be 0~1"
<<
std
::
endl
;
return
false
;
}
float
p_undrop
=
1.0
-
p_drop
;
uint8_t
p_undrop_in_uint8_t
=
uint8_t
(
std
::
floor
(
p_undrop
*
std
::
numeric_limits
<
uint8_t
>::
max
()));
float
rp_undrop
=
1.0
/
p_undrop
;
bool
s_randval
=
false
;
if
(
p_drop
>
0.0
f
&&
do_validation
)
{
s_randval
=
true
;
}
mask_info
mask
=
mask_info
::
decode
(
arg_parser
.
get_str
(
"mask"
),
seqlen_q
,
seqlen_k
);
int
init_method
=
arg_parser
.
get_int
(
"init"
);
std
::
optional
<
uint32_t
>
seed
=
arg_parser
.
get_uint32
(
"seed"
);
if
(
*
seed
==
0
)
{
seed
.
reset
();
}
int
stream_warmup
=
arg_parser
.
get_int
(
"warmup"
);
int
stream_repeat
=
arg_parser
.
get_int
(
"repeat"
);
bool
kname
=
arg_parser
.
get_bool
(
"kname"
);
ck_tile
::
stream_config
stream_config
{
nullptr
,
true
,
/* log_level = */
(
kname
?
1
:
0
),
stream_warmup
,
stream_repeat
,
arg_parser
.
get_str
(
"timer"
)
==
std
::
string
(
"gpu"
)};
const
auto
seqstart_q_host
=
generate_seqstarts
(
mode
,
batch
,
seqlen_q
);
const
auto
seqstart_k_host
=
generate_seqstarts
(
mode
,
batch
,
seqlen_k
);
using
TypeConfig
=
FmhaBwdTypeConfig
<
DataType
>
;
using
QDataType
=
typename
TypeConfig
::
QDataType
;
using
KDataType
=
typename
TypeConfig
::
KDataType
;
using
VDataType
=
typename
TypeConfig
::
VDataType
;
using
GemmDataType
=
typename
TypeConfig
::
GemmDataType
;
using
BiasDataType
=
typename
TypeConfig
::
BiasDataType
;
using
LSEDataType
=
typename
TypeConfig
::
LSEDataType
;
using
AccDataType
=
typename
TypeConfig
::
AccDataType
;
using
DDataType
=
typename
TypeConfig
::
DDataType
;
using
RandValOutputDataType
=
typename
TypeConfig
::
RandValOutputDataType
;
using
ODataType
=
typename
TypeConfig
::
ODataType
;
using
OGradDataType
=
typename
TypeConfig
::
OGradDataType
;
using
QGradDataType
=
typename
TypeConfig
::
QGradDataType
;
using
KGradDataType
=
typename
TypeConfig
::
KGradDataType
;
using
VGradDataType
=
typename
TypeConfig
::
VGradDataType
;
using
BiasGradDataType
=
typename
TypeConfig
::
BiasGradDataType
;
// accumulation numbers for performance evaluation
std
::
size_t
flop
=
0
,
num_byte
=
0
;
auto
max_seqlen_q
=
std
::
numeric_limits
<
int32_t
>::
min
();
// we will use max seqlen to decide grid size
auto
max_seqlen_k
=
std
::
numeric_limits
<
int32_t
>::
min
();
// we will use max seqlen to decide grid size
{
for
(
ck_tile
::
index_t
wb
=
0
;
wb
<
batch
;
++
wb
)
{
const
int32_t
real_seqlen_q
=
seqstart_q_host
[
wb
+
1
]
-
seqstart_q_host
[
wb
];
const
int32_t
real_seqlen_k
=
seqstart_k_host
[
wb
+
1
]
-
seqstart_k_host
[
wb
];
if
(
max_seqlen_q
<
real_seqlen_q
)
{
max_seqlen_q
=
real_seqlen_q
;
}
if
(
max_seqlen_k
<
real_seqlen_k
)
{
max_seqlen_k
=
real_seqlen_k
;
}
flop
+=
nhead
*
(
static_cast
<
std
::
size_t
>
(
3
)
*
static_cast
<
std
::
size_t
>
(
2
)
*
real_seqlen_q
*
real_seqlen_k
*
hdim_q
+
// Q@K/dS^T@Q^T/dS@K^T
static_cast
<
std
::
size_t
>
(
2
)
*
static_cast
<
std
::
size_t
>
(
2
)
*
real_seqlen_q
*
real_seqlen_k
*
hdim_v
);
// dO@V/P^T@dO^T
num_byte
+=
nhead
*
(
sizeof
(
QDataType
)
*
real_seqlen_q
*
hdim_q
+
sizeof
(
KDataType
)
*
real_seqlen_k
*
hdim_q
+
sizeof
(
VDataType
)
*
real_seqlen_k
*
hdim_v
+
sizeof
(
ODataType
)
*
real_seqlen_q
*
hdim_v
+
sizeof
(
OGradDataType
)
*
real_seqlen_q
*
hdim_v
+
sizeof
(
QGradDataType
)
*
real_seqlen_q
*
hdim_q
+
sizeof
(
KGradDataType
)
*
real_seqlen_k
*
hdim_q
+
sizeof
(
VGradDataType
)
*
real_seqlen_k
*
hdim_v
+
sizeof
(
LSEDataType
)
*
real_seqlen_q
);
}
}
auto
get_lengths
=
[
&
](
bool
permute
,
ck_tile
::
index_t
b
/*batch*/
,
ck_tile
::
index_t
h
/*nhead*/
,
ck_tile
::
index_t
s
/*seqlen*/
,
ck_tile
::
index_t
d
/*hdim*/
)
{
if
(
permute
)
return
std
::
array
<
ck_tile
::
index_t
,
4
>
{
b
,
h
,
s
,
d
};
else
return
std
::
array
<
ck_tile
::
index_t
,
4
>
{
b
,
s
,
h
,
d
};
};
// host memory for storing all the tensor elements
const
ck_tile
::
index_t
shape_batch
=
(
mode
==
mode_enum
::
batch
?
batch
:
1
);
const
ck_tile
::
index_t
shape_seqlen_q
=
(
mode
==
mode_enum
::
batch
?
seqlen_q
:
seqstart_q_host
.
back
());
const
ck_tile
::
index_t
shape_seqlen_k
=
(
mode
==
mode_enum
::
batch
?
seqlen_k
:
seqstart_k_host
.
back
());
ck_tile
::
HostTensor
<
QDataType
>
q_host
(
get_lengths
(
i_perm
,
shape_batch
,
nhead
,
shape_seqlen_q
,
hdim_q
));
ck_tile
::
HostTensor
<
KDataType
>
k_host
(
get_lengths
(
i_perm
,
shape_batch
,
nhead_k
,
shape_seqlen_k
,
hdim_q
));
ck_tile
::
HostTensor
<
VDataType
>
v_host
(
get_lengths
(
i_perm
,
shape_batch
,
nhead_k
,
shape_seqlen_k
,
hdim_v
));
ck_tile
::
HostTensor
<
BiasDataType
>
bias_host
(
bias
.
type
==
bias_enum
::
elementwise_bias
?
get_lengths
(
i_perm
,
1
,
1
,
shape_seqlen_q
,
max_seqlen_k
)
:
std
::
array
<
ck_tile
::
index_t
,
4
>
{
1
,
1
,
1
,
1
}
/* dummy shape for simplifying code */
);
ck_tile
::
HostTensor
<
AccDataType
>
alibi_slope_host
(
bias
.
type
==
bias_enum
::
alibi
?
(
bias
.
rank_info
==
0
?
std
::
array
<
ck_tile
::
index_t
,
2
>
{
1
,
nhead
}
:
std
::
array
<
ck_tile
::
index_t
,
2
>
{
batch
,
nhead
})
:
std
::
array
<
ck_tile
::
index_t
,
2
>
{
1
,
1
});
ck_tile
::
HostTensor
<
ODataType
>
o_host
(
get_lengths
(
o_perm
,
shape_batch
,
nhead
,
shape_seqlen_q
,
hdim_v
));
ck_tile
::
HostTensor
<
LSEDataType
>
lse_host
(
std
::
array
<
ck_tile
::
index_t
,
3
>
{
batch
,
nhead
,
max_seqlen_q
});
ck_tile
::
HostTensor
<
DDataType
>
d_host
(
std
::
array
<
ck_tile
::
index_t
,
3
>
{
batch
,
nhead
,
max_seqlen_q
});
ck_tile
::
HostTensor
<
RandValOutputDataType
>
randval_host
(
p_drop
>
0
?
get_lengths
(
true
,
shape_batch
,
nhead
,
shape_seqlen_q
,
max_seqlen_k
)
:
std
::
array
<
ck_tile
::
index_t
,
4
>
{
1
,
1
,
1
,
1
});
ck_tile
::
HostTensor
<
QGradDataType
>
dq_host
(
get_lengths
(
i_perm
,
shape_batch
,
nhead
,
shape_seqlen_q
,
hdim_q
));
ck_tile
::
HostTensor
<
KGradDataType
>
dk_host
(
get_lengths
(
i_perm
,
shape_batch
,
nhead
,
shape_seqlen_k
,
hdim_q
));
ck_tile
::
HostTensor
<
VGradDataType
>
dv_host
(
get_lengths
(
i_perm
,
shape_batch
,
nhead
,
shape_seqlen_k
,
hdim_v
));
ck_tile
::
HostTensor
<
OGradDataType
>
do_host
(
get_lengths
(
o_perm
,
shape_batch
,
nhead
,
shape_seqlen_q
,
hdim_v
));
ck_tile
::
HostTensor
<
BiasGradDataType
>
dbias_host
(
use_dbias
?
get_lengths
(
i_perm
,
shape_batch
,
nhead
,
shape_seqlen_q
,
max_seqlen_k
)
:
std
::
array
<
ck_tile
::
index_t
,
4
>
{
1
,
1
,
1
,
1
}
/* dummy shape for simplifying code */
);
if
(
init_method
==
0
)
{
ck_tile
::
FillUniformDistributionIntegerValue
<
QDataType
>
{
-
2.
f
,
2.
f
,
seed
}(
q_host
);
ck_tile
::
FillUniformDistributionIntegerValue
<
KDataType
>
{
-
2.
f
,
2.
f
,
seed
}(
k_host
);
ck_tile
::
FillUniformDistributionIntegerValue
<
VDataType
>
{
-
2.
f
,
2.
f
,
seed
}(
v_host
);
ck_tile
::
FillUniformDistributionIntegerValue
<
BiasDataType
>
{
-
2.
f
,
2.
f
,
seed
}(
bias_host
);
ck_tile
::
FillUniformDistributionIntegerValue
<
OGradDataType
>
{
-
2.
f
,
2.
f
,
seed
}(
do_host
);
}
else
if
(
init_method
==
1
)
{
ck_tile
::
FillUniformDistribution
<
QDataType
>
{
0.
f
,
1.
f
,
seed
}(
q_host
);
ck_tile
::
FillUniformDistribution
<
KDataType
>
{
0.
f
,
1.
f
,
seed
}(
k_host
);
ck_tile
::
FillUniformDistribution
<
VDataType
>
{
0.
f
,
1.
f
,
seed
}(
v_host
);
ck_tile
::
FillUniformDistribution
<
BiasDataType
>
{
0.
f
,
1.
f
,
seed
}(
bias_host
);
ck_tile
::
FillUniformDistribution
<
OGradDataType
>
{
0.
f
,
1.
f
,
seed
}(
do_host
);
}
else
if
(
init_method
==
2
)
{
ck_tile
::
FillTrigValue
<
QDataType
>
{}(
q_host
);
ck_tile
::
FillTrigValue
<
KDataType
>
{}(
k_host
);
ck_tile
::
FillTrigValue
<
VDataType
>
{}(
v_host
);
ck_tile
::
FillTrigValue
<
BiasDataType
>
{}(
bias_host
);
ck_tile
::
FillTrigValue
<
OGradDataType
>
{}(
do_host
);
}
if
(
bias
.
type
==
bias_enum
::
alibi
)
{
auto
slopes
=
ck_tile
::
get_alibi_slopes
<
AccDataType
>
(
nhead
);
assert
(
slopes
.
size
()
==
nhead
);
if
(
bias
.
rank_info
==
0
)
{
// alibi in 1*h
std
::
copy
(
slopes
.
begin
(),
slopes
.
end
(),
alibi_slope_host
.
begin
());
}
else
{
// alibi in b*h
for
(
auto
i_b
=
0
;
i_b
<
batch
;
i_b
++
)
{
std
::
copy
(
slopes
.
begin
(),
slopes
.
end
(),
alibi_slope_host
.
begin
()
+
i_b
*
nhead
);
}
}
}
ck_tile
::
DeviceMem
q_buf
(
q_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
k_buf
(
k_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
v_buf
(
v_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
bias_buf
(
bias_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
o_buf
(
o_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
lse_buf
(
lse_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
d_buf
(
d_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
randval_buf
(
randval_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
dq_buf
(
dq_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
dk_buf
(
dk_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
dv_buf
(
dv_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
do_buf
(
do_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
dbias_buf
(
dbias_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
seqstart_q
(
seqstart_q_host
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
seqstart_k
(
seqstart_k_host
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
alibi_slope_buf
(
alibi_slope_host
.
get_element_space_size_in_bytes
());
q_buf
.
ToDevice
(
q_host
.
data
());
k_buf
.
ToDevice
(
k_host
.
data
());
v_buf
.
ToDevice
(
v_host
.
data
());
bias_buf
.
ToDevice
(
bias_host
.
data
());
do_buf
.
ToDevice
(
do_host
.
data
());
seqstart_q
.
ToDevice
(
seqstart_q_host
.
data
());
seqstart_k
.
ToDevice
(
seqstart_k_host
.
data
());
alibi_slope_buf
.
ToDevice
(
alibi_slope_host
.
data
());
// clang-format off
auto
layout_str
=
[
&
](
bool
permute
){
if
(
permute
)
return
std
::
string
(
"bhsd"
);
else
return
std
::
string
(
"bshd"
);
};
auto
io_layout
=
[
&
](
bool
iperm_
,
bool
operm_
)
{
if
(
iperm_
==
operm_
)
return
layout_str
(
iperm_
);
else
return
layout_str
(
iperm_
)
+
std
::
string
(
"-"
)
+
layout_str
(
operm_
);
};
// clang-format on
const
std
::
string
prec
=
arg_parser
.
get_str
(
"prec"
);
std
::
cout
<<
"["
<<
prec
<<
"|"
<<
mode
<<
"|"
<<
io_layout
(
i_perm
,
o_perm
)
<<
"] b:"
<<
batch
<<
", h:"
<<
nhead
<<
"/"
<<
nhead_k
<<
", s:"
<<
seqlen_q
<<
"/"
<<
seqlen_k
<<
", d:"
<<
hdim_q
<<
"/"
<<
hdim_v
<<
", scale:"
<<
scale
<<
", bias:"
<<
bias
<<
", dbias:"
<<
use_dbias
<<
", p_drop:"
<<
p_drop
<<
", mask:"
<<
mask
<<
std
::
flush
;
auto
fmha_traits
=
fmha_bwd_traits
{
hdim_q
,
hdim_v
,
data_type
,
mode
==
mode_enum
::
group
,
mask
.
type
,
bias
.
type
,
use_dbias
,
p_drop
>
0.0
f
};
auto
fmha_args
=
[
&
]()
{
assert
(
nhead
%
nhead_k
==
0
);
/// NOTE: we broadcast bias from [1, 1, seqlen_q, seqlen_k] to [batch, nhead, seqlen_q,
/// seqlen_k] in this example, hence both the 'batch_stride_bias' &
/// 'nhead_stride_bias' are 0.
// setup stride_* arguments
const
ck_tile
::
index_t
stride_q
=
(
i_perm
?
hdim_q
:
nhead
*
hdim_q
);
const
ck_tile
::
index_t
stride_k
=
(
i_perm
?
hdim_q
:
nhead_k
*
hdim_q
);
const
ck_tile
::
index_t
stride_v
=
(
i_perm
?
hdim_v
:
nhead_k
*
hdim_v
);
const
ck_tile
::
index_t
stride_bias
=
(
max_seqlen_k
);
const
ck_tile
::
index_t
stride_o
=
(
o_perm
?
hdim_v
:
nhead
*
hdim_v
);
const
ck_tile
::
index_t
stride_randval
=
(
max_seqlen_k
);
const
ck_tile
::
index_t
stride_do
=
(
o_perm
?
hdim_v
:
nhead
*
hdim_v
);
const
ck_tile
::
index_t
stride_dk
=
(
i_perm
?
hdim_q
:
nhead
*
hdim_q
);
const
ck_tile
::
index_t
stride_dv
=
(
i_perm
?
hdim_v
:
nhead
*
hdim_v
);
const
ck_tile
::
index_t
stride_dbias
=
(
i_perm
?
max_seqlen_k
:
nhead
*
max_seqlen_k
);
// setup nhead_stride_* arguments
const
ck_tile
::
index_t
nhead_stride_q
=
(
i_perm
?
shape_seqlen_q
*
hdim_q
:
hdim_q
);
const
ck_tile
::
index_t
nhead_stride_k
=
(
i_perm
?
shape_seqlen_k
*
hdim_q
:
hdim_q
);
const
ck_tile
::
index_t
nhead_stride_v
=
(
i_perm
?
shape_seqlen_k
*
hdim_v
:
hdim_v
);
const
ck_tile
::
index_t
nhead_stride_bias
=
0
;
const
ck_tile
::
index_t
nhead_stride_o
=
(
o_perm
?
shape_seqlen_q
*
hdim_v
:
hdim_v
);
const
ck_tile
::
index_t
nhead_stride_randval
=
(
shape_seqlen_q
*
max_seqlen_k
);
const
ck_tile
::
index_t
nhead_stride_do
=
(
o_perm
?
shape_seqlen_q
*
hdim_v
:
hdim_v
);
const
ck_tile
::
index_t
nhead_stride_lsed
=
max_seqlen_q
;
const
ck_tile
::
index_t
nhead_stride_dbias
=
(
i_perm
?
shape_seqlen_q
*
max_seqlen_k
:
max_seqlen_k
);
// setup batch_stride_* arguments
const
ck_tile
::
index_t
batch_stride_q
=
(
nhead
*
shape_seqlen_q
*
hdim_q
);
const
ck_tile
::
index_t
batch_stride_k
=
(
nhead_k
*
shape_seqlen_k
*
hdim_q
);
const
ck_tile
::
index_t
batch_stride_v
=
(
nhead_k
*
shape_seqlen_k
*
hdim_v
);
const
ck_tile
::
index_t
batch_stride_bias
=
0
;
const
ck_tile
::
index_t
batch_stride_o
=
(
nhead
*
shape_seqlen_q
*
hdim_v
);
const
ck_tile
::
index_t
batch_stride_randval
=
(
nhead
*
shape_seqlen_q
*
max_seqlen_k
);
const
ck_tile
::
index_t
batch_stride_do
=
(
nhead
*
shape_seqlen_q
*
hdim_v
);
const
ck_tile
::
index_t
batch_stride_lsed
=
(
nhead
*
max_seqlen_q
);
const
ck_tile
::
index_t
batch_stride_dk
=
(
nhead
*
shape_seqlen_k
*
hdim_q
);
const
ck_tile
::
index_t
batch_stride_dv
=
(
nhead
*
shape_seqlen_k
*
hdim_v
);
const
ck_tile
::
index_t
batch_stride_dbias
=
(
nhead
*
shape_seqlen_q
*
max_seqlen_k
);
return
fmha_bwd_args
{
q_buf
.
GetDeviceBuffer
(),
k_buf
.
GetDeviceBuffer
(),
v_buf
.
GetDeviceBuffer
(),
bias
.
type
==
bias_enum
::
alibi
?
alibi_slope_buf
.
GetDeviceBuffer
()
:
bias_buf
.
GetDeviceBuffer
(),
o_buf
.
GetDeviceBuffer
(),
lse_buf
.
GetDeviceBuffer
(),
do_buf
.
GetDeviceBuffer
(),
d_buf
.
GetDeviceBuffer
(),
randval_buf
.
GetDeviceBuffer
(),
dq_buf
.
GetDeviceBuffer
(),
dk_buf
.
GetDeviceBuffer
(),
dv_buf
.
GetDeviceBuffer
(),
dbias_buf
.
GetDeviceBuffer
(),
seqstart_q
.
GetDeviceBuffer
(),
seqstart_k
.
GetDeviceBuffer
(),
nullptr
,
shape_seqlen_q
,
shape_seqlen_k
,
batch
,
max_seqlen_q
,
max_seqlen_k
,
hdim_q
,
hdim_v
,
nhead
,
nhead_k
,
scale
,
stride_q
,
stride_k
,
stride_v
,
bias
.
type
==
bias_enum
::
alibi
?
(
bias
.
rank_info
==
0
?
0
:
nhead
)
:
stride_bias
,
stride_o
,
stride_randval
,
stride_do
,
stride_dk
,
stride_dv
,
stride_dbias
,
nhead_stride_q
,
nhead_stride_k
,
nhead_stride_v
,
nhead_stride_bias
,
nhead_stride_o
,
nhead_stride_randval
,
nhead_stride_do
,
nhead_stride_lsed
,
nhead_stride_dbias
,
batch_stride_q
,
batch_stride_k
,
batch_stride_v
,
batch_stride_bias
,
batch_stride_o
,
batch_stride_randval
,
batch_stride_do
,
batch_stride_lsed
,
batch_stride_dk
,
batch_stride_dv
,
batch_stride_dbias
,
mask
.
left
,
mask
.
right
,
static_cast
<
ck_tile
::
index_t
>
(
mask
.
type
),
p_drop
,
p_undrop
,
s_randval
,
{
drop_seed
,
drop_offset
}};
}();
float
ave_time
=
fmha_bwd
(
fmha_traits
,
fmha_args
,
stream_config
);
if
(
ave_time
<
0
)
{
std
::
cout
<<
", not supported yet"
<<
std
::
flush
<<
std
::
endl
;
return
false
;
}
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
std
::
fixed
<<
", "
<<
std
::
setprecision
(
3
)
<<
ave_time
<<
" ms, "
<<
std
::
setprecision
(
2
)
<<
tflops
<<
" TFlops, "
<<
std
::
setprecision
(
2
)
<<
gb_per_sec
<<
" GB/s"
<<
std
::
flush
;
if
(
!
do_validation
)
{
std
::
cout
<<
std
::
flush
<<
std
::
endl
;
return
true
;
}
bool
pass
=
true
;
std
::
vector
<
ck_tile
::
HostTensor
<
QDataType
>>
q_host_refs
;
std
::
vector
<
ck_tile
::
HostTensor
<
KDataType
>>
k_host_refs
;
std
::
vector
<
ck_tile
::
HostTensor
<
VDataType
>>
v_host_refs
;
std
::
vector
<
ck_tile
::
HostTensor
<
ODataType
>>
o_host_refs
;
std
::
vector
<
ck_tile
::
HostTensor
<
RandValOutputDataType
>>
randval_host_refs
;
std
::
vector
<
ck_tile
::
HostTensor
<
AccDataType
>>
p_hp_host_refs
;
std
::
vector
<
ck_tile
::
HostTensor
<
GemmDataType
>>
p_lp_host_refs
;
randval_buf
.
FromDevice
(
randval_host
.
data
());
for
(
ck_tile
::
index_t
wb
=
0
;
wb
<
batch
;
++
wb
)
{
const
ck_tile
::
index_t
real_seqlen_q
=
seqstart_q_host
[
wb
+
1
]
-
seqstart_q_host
[
wb
];
const
ck_tile
::
index_t
real_seqlen_k
=
seqstart_k_host
[
wb
+
1
]
-
seqstart_k_host
[
wb
];
// adjust matrix index according to the mode
const
ck_tile
::
index_t
b
=
(
mode
==
mode_enum
::
batch
?
wb
:
0
);
const
ck_tile
::
index_t
query_offset
=
(
mode
==
mode_enum
::
batch
?
0
:
seqstart_q_host
[
wb
]);
const
ck_tile
::
index_t
key_offset
=
(
mode
==
mode_enum
::
batch
?
0
:
seqstart_k_host
[
wb
]);
ck_tile
::
HostTensor
<
QDataType
>
q_host_ref
({
nhead
,
real_seqlen_q
,
hdim_q
});
// q_g_m_k
ck_tile
::
HostTensor
<
KDataType
>
k_host_ref
({
nhead
,
real_seqlen_k
,
hdim_q
});
// k_g_n_k
ck_tile
::
HostTensor
<
VDataType
>
v_host_ref
({
nhead
,
hdim_v
,
real_seqlen_k
});
// v_g_o_n
ck_tile
::
HostTensor
<
ODataType
>
o_host_ref
({
nhead
,
real_seqlen_q
,
hdim_v
});
// o_g_m_o
ck_tile
::
HostTensor
<
LSEDataType
>
lse_host_ref
({
nhead
,
real_seqlen_q
});
// lse_g_m
ck_tile
::
HostTensor
<
RandValOutputDataType
>
randval_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
// randval_g_m_n
ck_tile
::
HostTensor
<
AccDataType
>
s_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
// s_g_m_n
ck_tile
::
HostTensor
<
AccDataType
>
p_hp_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
// p_hp_g_m_n high precision
ck_tile
::
HostTensor
<
AccDataType
>
p_dropped_hp_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
// p_dropped_hp_g_m_n high precision
ck_tile
::
HostTensor
<
GemmDataType
>
p_lp_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
// p_lp_g_m_n low precision
ck_tile
::
index_t
nr
=
nhead
/
nhead_k
;
// clang-format off
// permute
if
(
i_perm
)
q_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
i
)
{
self
(
i
)
=
q_host
(
b
,
i
[
0
],
i
[
1
]
+
query_offset
,
i
[
2
]);
});
else
q_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
i
)
{
self
(
i
)
=
q_host
(
b
,
i
[
1
]
+
query_offset
,
i
[
0
],
i
[
2
]);
});
if
(
i_perm
)
k_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
i
)
{
self
(
i
)
=
k_host
(
b
,
i
[
0
]
/
nr
,
i
[
1
]
+
key_offset
,
i
[
2
]);
});
else
k_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
i
)
{
self
(
i
)
=
k_host
(
b
,
i
[
1
]
+
key_offset
,
i
[
0
]
/
nr
,
i
[
2
]);
});
// v_host_ref: [nhead, hdim, seq], v_host: [b, h_k, s, d]
if
(
i_perm
)
v_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
i
)
{
self
(
i
)
=
v_host
(
b
,
i
[
0
]
/
nr
,
i
[
2
]
+
key_offset
,
i
[
1
]);
});
// v_host_ref: [nhead, hdim, seq], v_host: [b, s, h_k, d]
else
v_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
i
)
{
self
(
i
)
=
v_host
(
b
,
i
[
2
]
+
key_offset
,
i
[
0
]
/
nr
,
i
[
1
]);
});
// clang-format on
// reference
// S = scale * Q * K^T
ck_tile
::
reference_batched_gemm
<
QDataType
,
KDataType
,
AccDataType
,
AccDataType
>
(
q_host_ref
,
k_host_ref
,
s_host_ref
,
ck_tile
::
identity
{},
ck_tile
::
identity
{},
ck_tile
::
scales
(
scale
));
// s_g_m_n = scale * q_g_m_k@k_g_n_k
if
(
bias
.
type
==
bias_enum
::
elementwise_bias
)
{
// elementwise bias
ck_tile
::
HostTensor
<
BiasDataType
>
bias_host_ref
({
1
,
real_seqlen_q
,
real_seqlen_k
});
// clang-format off
if
(
i_perm
)
bias_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
i
)
{
self
(
i
)
=
bias_host
(
0
,
0
,
i
[
1
]
+
query_offset
,
i
[
2
]);
});
else
bias_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
i
)
{
self
(
i
)
=
bias_host
(
0
,
i
[
1
]
+
query_offset
,
0
,
i
[
2
]);
});
// clang-format on
// broadcast from [1, real_seqlen_q, real_seqlen_k] to [nhead, real_seqlen_q,
// real_seqlen_k]
ck_tile
::
reference_batched_elementwise
<
AccDataType
,
BiasDataType
,
AccDataType
,
AccDataType
>
(
s_host_ref
,
bias_host_ref
,
s_host_ref
);
}
else
if
(
bias
.
type
==
bias_enum
::
alibi
)
{
// alibi construct elementwise bias to verify
auto
alibi_host
=
[
&
]()
{
if
(
mask
.
type
!=
mask_enum
::
no_mask
)
{
return
ck_tile
::
make_alibi_from_lr_mask
<
AccDataType
,
false
>
(
0
,
mask
.
left
,
mask
.
right
,
real_seqlen_q
,
real_seqlen_k
,
static_cast
<
ck_tile
::
GenericAttentionMaskEnum
>
(
mask
.
type
));
}
else
{
return
ck_tile
::
Alibi
<
AccDataType
,
false
>
{
0
,
real_seqlen_q
,
real_seqlen_k
,
ck_tile
::
AlibiMode
::
FROM_BOTTOM_RIGHT
};
}
}();
ck_tile
::
HostTensor
<
AccDataType
>
alibi_bias_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
auto
i_b_slope
=
bias
.
rank_info
==
0
?
0
:
wb
;
for
(
auto
i_h
=
0
;
i_h
<
nhead
;
i_h
++
)
{
AccDataType
current_slope
=
alibi_slope_host
(
i_b_slope
,
i_h
);
alibi_host
.
slope
=
alibi_host
.
mode
==
ck_tile
::
AlibiMode
::
VERTICAL
?
current_slope
:
-
current_slope
;
for
(
auto
i_r
=
0
;
i_r
<
real_seqlen_q
;
i_r
++
)
{
for
(
auto
i_c
=
0
;
i_c
<
real_seqlen_k
;
i_c
++
)
{
AccDataType
pixel
=
0
;
alibi_host
.
update
(
pixel
,
i_r
,
i_c
);
alibi_bias_host_ref
(
i_h
,
i_r
,
i_c
)
=
pixel
;
}
}
}
// [nhead, real_seqlen_q, real_seqlen_k]
ck_tile
::
reference_batched_elementwise
<
AccDataType
,
AccDataType
,
AccDataType
,
AccDataType
>
(
s_host_ref
,
alibi_bias_host_ref
,
s_host_ref
);
}
if
(
mask
.
type
==
mask_enum
::
no_mask
)
{
ck_tile
::
reference_batched_masking
<
AccDataType
>
(
s_host_ref
,
FmhaMasks
::
NoMask
{
real_seqlen_q
,
real_seqlen_k
});
}
else
if
(
mask
.
type
==
mask_enum
::
window_generic
)
{
ck_tile
::
reference_batched_masking
<
AccDataType
>
(
s_host_ref
,
ck_tile
::
make_generic_attention_mask_from_lr_window
<
FmhaMasks
::
GenericMask
>
(
mask
.
left
,
mask
.
right
,
real_seqlen_q
,
real_seqlen_k
));
}
else
{
// if left window size is negative, means causal
// else means generic (for current batch)
if
(
mask
.
left
<
0
)
ck_tile
::
reference_batched_masking
<
AccDataType
>
(
s_host_ref
,
ck_tile
::
make_generic_attention_mask_from_lr_window
<
FmhaMasks
::
CausalMask
>
(
mask
.
left
,
mask
.
right
,
real_seqlen_q
,
real_seqlen_k
,
mask
.
type
==
mask_enum
::
mask_top_left
));
else
ck_tile
::
reference_batched_masking
<
AccDataType
>
(
s_host_ref
,
ck_tile
::
make_generic_attention_mask_from_lr_window
<
FmhaMasks
::
GenericMask
>
(
mask
.
left
,
mask
.
right
,
real_seqlen_q
,
real_seqlen_k
,
mask
.
type
==
mask_enum
::
mask_top_left
));
}
ck_tile
::
reference_batched_softmax
<
AccDataType
,
LSEDataType
,
AccDataType
>
(
s_host_ref
,
p_hp_host_ref
,
ck_tile
::
identity
{},
lse_host_ref
);
if
(
p_drop
>
0
)
{
p_hp_host_ref
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
p_dropped_hp_host_ref
(
idx
)
=
self
(
idx
);
});
randval_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
randval_host
(
b
,
idx
[
0
],
idx
[
1
]
+
query_offset
,
idx
[
2
]);
});
ck_tile
::
reference_batched_dropout
(
p_dropped_hp_host_ref
,
randval_host_ref
,
p_undrop_in_uint8_t
,
rp_undrop
);
p_dropped_hp_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
p_lp_host_ref
(
idx
)
=
ck_tile
::
type_convert
<
GemmDataType
>
(
self
(
idx
));
});
}
else
{
p_hp_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
p_lp_host_ref
(
idx
)
=
ck_tile
::
type_convert
<
GemmDataType
>
(
self
(
idx
));
});
}
// O = P * V
ck_tile
::
reference_batched_gemm
<
GemmDataType
,
VDataType
,
AccDataType
,
ODataType
>
(
p_lp_host_ref
,
v_host_ref
,
o_host_ref
);
// o_g_m_o = p_lp_g_m_n@v_g_o_n
// clang-format off
// permute
if
(
o_perm
)
o_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
o_host
(
b
,
idx
[
0
],
idx
[
1
]
+
query_offset
,
idx
[
2
])
=
self
(
idx
);
});
else
o_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
o_host
(
b
,
idx
[
1
]
+
query_offset
,
idx
[
0
],
idx
[
2
])
=
self
(
idx
);
});
lse_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
lse_host
(
wb
,
idx
[
0
],
idx
[
1
])
=
self
(
idx
);
});
// clang-format on
q_host_refs
.
push_back
(
q_host_ref
);
k_host_refs
.
push_back
(
k_host_ref
);
v_host_refs
.
push_back
(
v_host_ref
);
o_host_refs
.
push_back
(
o_host_ref
);
p_hp_host_refs
.
push_back
(
p_hp_host_ref
);
p_lp_host_refs
.
push_back
(
p_lp_host_ref
);
if
(
p_drop
>
0
)
{
randval_host_refs
.
push_back
(
randval_host_ref
);
}
}
o_buf
.
ToDevice
(
o_host
.
data
());
lse_buf
.
ToDevice
(
lse_host
.
data
());
dq_buf
.
SetZero
();
dbias_buf
.
SetZero
();
ck_tile
::
stream_config
stream_config_v
{
nullptr
,
true
,
0
,
0
,
1
,
arg_parser
.
get_str
(
"timer"
)
==
std
::
string
(
"gpu"
)};
fmha_bwd
(
fmha_traits
,
fmha_args
,
stream_config_v
);
dq_buf
.
FromDevice
(
dq_host
.
data
());
dk_buf
.
FromDevice
(
dk_host
.
data
());
dv_buf
.
FromDevice
(
dv_host
.
data
());
dbias_buf
.
FromDevice
(
dbias_host
.
data
());
for
(
ck_tile
::
index_t
wb
=
0
;
wb
<
batch
;
++
wb
)
{
const
ck_tile
::
index_t
real_seqlen_q
=
seqstart_q_host
[
wb
+
1
]
-
seqstart_q_host
[
wb
];
const
ck_tile
::
index_t
real_seqlen_k
=
seqstart_k_host
[
wb
+
1
]
-
seqstart_k_host
[
wb
];
// adjust matrix index according to the mode
const
ck_tile
::
index_t
b
=
(
mode
==
mode_enum
::
batch
?
wb
:
0
);
const
ck_tile
::
index_t
query_offset
=
(
mode
==
mode_enum
::
batch
?
0
:
seqstart_q_host
[
wb
]);
const
ck_tile
::
index_t
key_offset
=
(
mode
==
mode_enum
::
batch
?
0
:
seqstart_k_host
[
wb
]);
ck_tile
::
HostTensor
<
OGradDataType
>
do_host_ref
({
nhead
,
real_seqlen_q
,
hdim_v
});
// do_g_m_o
ck_tile
::
HostTensor
<
AccDataType
>
ds_hp_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
// ds_g_m_n high precision
ck_tile
::
HostTensor
<
GemmDataType
>
ds_lp_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
// ds_g_m_n low precision
ck_tile
::
HostTensor
<
AccDataType
>
dp_hp_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
// dp_g_m_n high precision
ck_tile
::
HostTensor
<
BiasGradDataType
>
dbias_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
// dbias_g_m_n
ck_tile
::
HostTensor
<
QGradDataType
>
dq_host_ref
({
nhead
,
real_seqlen_q
,
hdim_q
});
// dq_g_m_k
ck_tile
::
HostTensor
<
KGradDataType
>
dk_host_ref
({
nhead
,
real_seqlen_k
,
hdim_q
});
// dk_g_n_k
ck_tile
::
HostTensor
<
VGradDataType
>
dv_host_ref
({
nhead
,
real_seqlen_k
,
hdim_v
});
// dv_g_n_o
// clang-format off
if
(
o_perm
)
do_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
i
)
{
self
(
i
)
=
do_host
(
b
,
i
[
0
],
i
[
1
]
+
query_offset
,
i
[
2
]);
});
else
do_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
i
)
{
self
(
i
)
=
do_host
(
b
,
i
[
1
]
+
query_offset
,
i
[
0
],
i
[
2
]);
});
// clang-format on
// dP = dO@V x Z w/ dropout
// dP = dO@V w/o dropout
auto
v_t_host_ref
=
v_host_refs
[
wb
].
transpose
({
0
,
2
,
1
});
// v_g_o_n -> v_g_n_o
ck_tile
::
reference_batched_gemm
<
OGradDataType
,
VDataType
,
AccDataType
,
AccDataType
>
(
do_host_ref
,
v_t_host_ref
,
dp_hp_host_ref
);
// dp_g_m_n = do_g_m_o@v_g_n_o
if
(
p_drop
>
0
)
{
ck_tile
::
reference_batched_dropout
(
dp_hp_host_ref
,
randval_host_refs
[
wb
],
p_undrop_in_uint8_t
,
rp_undrop
);
}
// dS_i_j = P_i_j .* (dP_i_j - dO_i dot O_i)
ds_hp_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx_gmn
)
{
AccDataType
do_dot_o
=
0
;
for
(
int
o
=
0
;
o
<
hdim_v
;
o
++
)
{
auto
idx_gmo
=
idx_gmn
;
idx_gmo
[
2
]
=
o
;
do_dot_o
+=
ck_tile
::
type_convert
<
AccDataType
>
(
do_host_ref
(
idx_gmo
))
*
ck_tile
::
type_convert
<
AccDataType
>
(
o_host_refs
[
wb
](
idx_gmo
));
}
self
(
idx_gmn
)
=
ck_tile
::
type_convert
<
AccDataType
>
(
p_hp_host_refs
[
wb
](
idx_gmn
)
*
(
dp_hp_host_ref
(
idx_gmn
)
-
do_dot_o
));
});
if
(
use_dbias
)
{
ds_hp_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
dbias_host_ref
(
idx
)
=
ck_tile
::
type_convert
<
BiasGradDataType
>
(
self
(
idx
));
});
}
ds_hp_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
ds_lp_host_ref
(
idx
)
=
ck_tile
::
type_convert
<
GemmDataType
>
(
self
(
idx
));
});
// dV = P_drop^T@dO^T
// dV = P^T@dO^T w/o dropout
auto
p_t_lp_host_ref
=
p_lp_host_refs
[
wb
].
transpose
({
0
,
2
,
1
});
// p_lp_g_m_n -> p_lp_g_n_m
auto
do_t_host_ref
=
do_host_ref
.
transpose
({
0
,
2
,
1
});
// do_g_m_o -> do_g_o_m
ck_tile
::
reference_batched_gemm
<
GemmDataType
,
OGradDataType
,
AccDataType
,
VGradDataType
>
(
p_t_lp_host_ref
,
do_t_host_ref
,
dv_host_ref
);
// dv_g_n_o = p_lp_g_n_m@do_g_o_m
// dQ = scale * dS@K^T
auto
k_t_host_ref
=
k_host_refs
[
wb
].
transpose
({
0
,
2
,
1
});
// k_g_n_k -> k_g_k_n
ck_tile
::
reference_batched_gemm
<
GemmDataType
,
KDataType
,
AccDataType
,
QGradDataType
>
(
ds_lp_host_ref
,
k_t_host_ref
,
dq_host_ref
,
ck_tile
::
identity
{},
ck_tile
::
identity
{},
ck_tile
::
scales
(
scale
));
// dq_g_m_k = ds_g_m_n@k_g_k_n
// dK = scale * dS^T@Q^T
auto
ds_t_lp_host_ref
=
ds_lp_host_ref
.
transpose
({
0
,
2
,
1
});
// ds_g_m_n -> ds_g_n_m
auto
q_t_host_ref
=
q_host_refs
[
wb
].
transpose
({
0
,
2
,
1
});
// q_g_m_k -> q_g_k_m
ck_tile
::
reference_batched_gemm
<
GemmDataType
,
QDataType
,
AccDataType
,
KGradDataType
>
(
ds_t_lp_host_ref
,
q_t_host_ref
,
dk_host_ref
,
ck_tile
::
identity
{},
ck_tile
::
identity
{},
ck_tile
::
scales
(
scale
));
// dk_g_n_k = ds_g_n_m@q_g_k_m
ck_tile
::
HostTensor
<
QGradDataType
>
dq_host_result
(
{
nhead
,
real_seqlen_q
,
hdim_q
});
// dq_g_m_k
ck_tile
::
HostTensor
<
KGradDataType
>
dk_host_result
(
{
nhead
,
real_seqlen_k
,
hdim_q
});
// dk_g_n_k
ck_tile
::
HostTensor
<
VGradDataType
>
dv_host_result
(
{
nhead
,
real_seqlen_k
,
hdim_v
});
// dv_g_n_o
ck_tile
::
HostTensor
<
BiasGradDataType
>
dbias_host_result
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
// dbias_g_m_n
// clang-format off
// permute
if
(
i_perm
)
dq_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
dq_host
(
b
,
idx
[
0
],
idx
[
1
]
+
query_offset
,
idx
[
2
]);
});
else
dq_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
dq_host
(
b
,
idx
[
1
]
+
query_offset
,
idx
[
0
],
idx
[
2
]);
});
if
(
i_perm
)
dk_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
dk_host
(
b
,
idx
[
0
],
idx
[
1
]
+
key_offset
,
idx
[
2
]);
});
else
dk_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
dk_host
(
b
,
idx
[
1
]
+
key_offset
,
idx
[
0
],
idx
[
2
]);
});
if
(
i_perm
)
dv_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
dv_host
(
b
,
idx
[
0
],
idx
[
1
]
+
key_offset
,
idx
[
2
]);
});
else
dv_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
dv_host
(
b
,
idx
[
1
]
+
key_offset
,
idx
[
0
],
idx
[
2
]);
});
if
(
use_dbias
)
{
if
(
i_perm
)
dbias_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
dbias_host
(
b
,
idx
[
0
],
idx
[
1
]
+
query_offset
,
idx
[
2
]);
});
else
dbias_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
dbias_host
(
b
,
idx
[
1
]
+
query_offset
,
idx
[
0
],
idx
[
2
]);
});
}
// clang-format on
auto
[
rtol
,
atol
]
=
get_elimit
<
DataType
>
(
init_method
);
bool
dq_cur_pass
=
ck_tile
::
check_err
(
dq_host_result
,
dq_host_ref
,
std
::
string
(
"Error: QGrad Incorrect results!"
),
rtol
,
atol
);
bool
dk_cur_pass
=
ck_tile
::
check_err
(
dk_host_result
,
dk_host_ref
,
std
::
string
(
"Error: KGrad Incorrect results!"
),
rtol
,
atol
);
bool
dv_cur_pass
=
ck_tile
::
check_err
(
dv_host_result
,
dv_host_ref
,
std
::
string
(
"Error: VGrad Incorrect results!"
),
rtol
,
atol
);
bool
dbias_cur_pass
=
true
;
if
(
use_dbias
)
{
dbias_cur_pass
=
ck_tile
::
check_err
(
dbias_host_result
,
dbias_host_ref
,
std
::
string
(
"Error: BiasGrad Incorrect results!"
),
rtol
,
atol
);
}
pass
&=
(
dq_cur_pass
&
dk_cur_pass
&
dv_cur_pass
&
dbias_cur_pass
);
if
(
!
(
dq_cur_pass
&
dk_cur_pass
&
dv_cur_pass
&
dbias_cur_pass
))
{
std
::
cerr
<<
"mismatch found at batch: "
<<
wb
<<
std
::
endl
<<
"
\t
seqlen_q: "
<<
real_seqlen_q
<<
std
::
endl
<<
"
\t
seqlen_k: "
<<
real_seqlen_k
<<
std
::
endl
<<
"
\t
seqstart_q: "
<<
seqstart_q_host
<<
std
::
endl
<<
"
\t
seqstart_k: "
<<
seqstart_k_host
<<
std
::
endl
;
break
;
}
}
std
::
cout
<<
", valid:"
<<
(
pass
?
"y"
:
"n"
)
<<
std
::
flush
<<
std
::
endl
;
return
pass
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
auto
[
result
,
arg_parser
]
=
create_args
(
argc
,
argv
);
if
(
!
result
)
return
-
1
;
const
std
::
string
data_type
=
arg_parser
.
get_str
(
"prec"
);
if
(
data_type
==
"fp16"
)
{
return
run
<
ck_tile
::
half_t
>
(
arg_parser
)
?
0
:
-
2
;
}
else
if
(
data_type
==
"bf16"
)
{
return
run
<
ck_tile
::
bf16_t
>
(
arg_parser
)
?
0
:
-
2
;
}
return
-
3
;
}
example/ck_tile/01_fmha/fmha_bwd.hpp
0 → 100644
View file @
dcd3d21a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host/kernel_launch.hpp"
#include "ck_tile/ops/fmha.hpp"
#include "ck_tile/ops/epilogue.hpp"
#include "mask.hpp"
#include "bias.hpp"
#include <type_traits>
template
<
typename
DataType
>
struct
FmhaBwdTypeConfig
;
template
<
>
struct
FmhaBwdTypeConfig
<
ck_tile
::
half_t
>
{
using
QDataType
=
ck_tile
::
half_t
;
using
KDataType
=
ck_tile
::
half_t
;
using
VDataType
=
ck_tile
::
half_t
;
using
GemmDataType
=
ck_tile
::
half_t
;
using
BiasDataType
=
ck_tile
::
half_t
;
using
LSEDataType
=
float
;
using
AccDataType
=
float
;
// data type for gemm accumulation
using
DDataType
=
float
;
using
RandValOutputDataType
=
uint8_t
;
using
ODataType
=
ck_tile
::
half_t
;
using
OGradDataType
=
ck_tile
::
half_t
;
using
QGradDataType
=
ck_tile
::
half_t
;
using
KGradDataType
=
ck_tile
::
half_t
;
using
VGradDataType
=
ck_tile
::
half_t
;
using
BiasGradDataType
=
ck_tile
::
half_t
;
};
template
<
>
struct
FmhaBwdTypeConfig
<
ck_tile
::
bf16_t
>
{
using
QDataType
=
ck_tile
::
bf16_t
;
using
KDataType
=
ck_tile
::
bf16_t
;
using
VDataType
=
ck_tile
::
bf16_t
;
using
GemmDataType
=
ck_tile
::
bf16_t
;
using
BiasDataType
=
ck_tile
::
bf16_t
;
using
LSEDataType
=
float
;
using
AccDataType
=
float
;
// data type for gemm accumulation
using
DDataType
=
float
;
using
RandValOutputDataType
=
uint8_t
;
using
ODataType
=
ck_tile
::
bf16_t
;
using
OGradDataType
=
ck_tile
::
bf16_t
;
using
QGradDataType
=
ck_tile
::
bf16_t
;
using
KGradDataType
=
ck_tile
::
bf16_t
;
using
VGradDataType
=
ck_tile
::
bf16_t
;
using
BiasGradDataType
=
ck_tile
::
bf16_t
;
};
struct
FmhaMasks
{
using
NoMask
=
ck_tile
::
GenericAttentionMask
<
false
>
;
using
GenericMask
=
ck_tile
::
GenericAttentionMask
<
true
,
true
>
;
using
CausalMask
=
ck_tile
::
GenericAttentionMask
<
true
,
false
>
;
};
// runtime args, some will passed to karg, some will used to compute grids/blocks
struct
fmha_bwd_args
{
const
void
*
q_ptr
;
const
void
*
k_ptr
;
const
void
*
v_ptr
;
const
void
*
bias_ptr
;
// bias or alibi_slope pointer
const
void
*
o_ptr
;
const
void
*
lse_ptr
;
const
void
*
do_ptr
;
void
*
d_ptr
;
void
*
rand_val_ptr
;
void
*
dq_ptr
;
void
*
dk_ptr
;
void
*
dv_ptr
;
void
*
dbias_ptr
;
const
void
*
seqstart_q_ptr
;
const
void
*
seqstart_k_ptr
;
const
void
*
seqlen_k_ptr
;
ck_tile
::
index_t
seqlen_q
;
ck_tile
::
index_t
seqlen_k
;
ck_tile
::
index_t
batch
;
ck_tile
::
index_t
max_seqlen_q
;
ck_tile
::
index_t
max_seqlen_k
;
ck_tile
::
index_t
hdim_q
;
ck_tile
::
index_t
hdim_v
;
ck_tile
::
index_t
nhead_q
;
ck_tile
::
index_t
nhead_k
;
float
scale
;
ck_tile
::
index_t
stride_q
;
ck_tile
::
index_t
stride_k
;
ck_tile
::
index_t
stride_v
;
ck_tile
::
index_t
stride_bias
;
// if alibi, b*h need set this to h, 1*h need set this to 0
ck_tile
::
index_t
stride_o
;
ck_tile
::
index_t
stride_randval
;
ck_tile
::
index_t
stride_do
;
ck_tile
::
index_t
stride_dk
;
ck_tile
::
index_t
stride_dv
;
ck_tile
::
index_t
stride_dbias
;
ck_tile
::
index_t
nhead_stride_q
;
ck_tile
::
index_t
nhead_stride_k
;
ck_tile
::
index_t
nhead_stride_v
;
ck_tile
::
index_t
nhead_stride_bias
;
ck_tile
::
index_t
nhead_stride_o
;
ck_tile
::
index_t
nhead_stride_randval
;
ck_tile
::
index_t
nhead_stride_do
;
ck_tile
::
index_t
nhead_stride_lsed
;
ck_tile
::
index_t
nhead_stride_dbias
;
ck_tile
::
index_t
batch_stride_q
;
ck_tile
::
index_t
batch_stride_k
;
ck_tile
::
index_t
batch_stride_v
;
ck_tile
::
index_t
batch_stride_bias
;
ck_tile
::
index_t
batch_stride_o
;
ck_tile
::
index_t
batch_stride_randval
;
ck_tile
::
index_t
batch_stride_do
;
ck_tile
::
index_t
batch_stride_lsed
;
ck_tile
::
index_t
batch_stride_dk
;
ck_tile
::
index_t
batch_stride_dv
;
ck_tile
::
index_t
batch_stride_dbias
;
ck_tile
::
index_t
window_size_left
;
ck_tile
::
index_t
window_size_right
;
ck_tile
::
index_t
mask_type
;
float
p_drop
;
float
p_undrop
;
bool
s_randval
;
std
::
tuple
<
uint64_t
,
uint64_t
>
drop_seed_offset
;
};
template
<
typename
FmhaBwdDQDKDVKernel
>
auto
fmha_bwd_dq_dk_dv_create_kargs_and_grids
(
fmha_bwd_args
args
)
{
assert
(
args
.
nhead_q
%
args
.
nhead_k
==
0
);
auto
kargs
=
[
&
]
{
// create group mode kernel arguments
if
constexpr
(
FmhaBwdDQDKDVKernel
::
kIsGroupMode
)
{
return
FmhaBwdDQDKDVKernel
::
MakeKargs
(
args
.
q_ptr
,
args
.
k_ptr
,
args
.
v_ptr
,
args
.
bias_ptr
,
args
.
lse_ptr
,
args
.
do_ptr
,
args
.
d_ptr
,
args
.
rand_val_ptr
,
args
.
dq_ptr
,
args
.
dk_ptr
,
args
.
dv_ptr
,
args
.
dbias_ptr
,
args
.
seqstart_q_ptr
,
args
.
seqstart_k_ptr
,
args
.
seqlen_k_ptr
,
args
.
hdim_q
,
args
.
hdim_v
,
args
.
nhead_q
,
args
.
nhead_q
/
args
.
nhead_k
,
args
.
scale
,
args
.
stride_q
,
args
.
stride_k
,
args
.
stride_v
,
args
.
stride_bias
,
args
.
stride_randval
,
args
.
stride_do
,
args
.
stride_dk
,
args
.
stride_dv
,
args
.
stride_dbias
,
args
.
nhead_stride_q
,
args
.
nhead_stride_k
,
args
.
nhead_stride_v
,
args
.
nhead_stride_bias
,
args
.
nhead_stride_randval
,
args
.
nhead_stride_do
,
args
.
nhead_stride_lsed
,
args
.
nhead_stride_dbias
,
args
.
batch_stride_lsed
,
args
.
window_size_left
,
args
.
window_size_right
,
args
.
mask_type
,
args
.
p_drop
,
args
.
s_randval
,
args
.
drop_seed_offset
);
}
else
{
// create batch mode kernel arguments
return
FmhaBwdDQDKDVKernel
::
MakeKargs
(
args
.
q_ptr
,
args
.
k_ptr
,
args
.
v_ptr
,
args
.
bias_ptr
,
args
.
lse_ptr
,
args
.
do_ptr
,
args
.
d_ptr
,
args
.
rand_val_ptr
,
args
.
dq_ptr
,
args
.
dk_ptr
,
args
.
dv_ptr
,
args
.
dbias_ptr
,
args
.
seqlen_q
,
args
.
seqlen_k
,
args
.
hdim_q
,
args
.
hdim_v
,
args
.
nhead_q
,
args
.
nhead_q
/
args
.
nhead_k
,
args
.
scale
,
args
.
stride_q
,
args
.
stride_k
,
args
.
stride_v
,
args
.
stride_bias
,
args
.
stride_randval
,
args
.
stride_do
,
args
.
stride_dk
,
args
.
stride_dv
,
args
.
stride_dbias
,
args
.
nhead_stride_q
,
args
.
nhead_stride_k
,
args
.
nhead_stride_v
,
args
.
nhead_stride_bias
,
args
.
nhead_stride_randval
,
args
.
nhead_stride_do
,
args
.
nhead_stride_lsed
,
args
.
nhead_stride_dbias
,
args
.
batch_stride_q
,
args
.
batch_stride_k
,
args
.
batch_stride_v
,
args
.
batch_stride_bias
,
args
.
batch_stride_randval
,
args
.
batch_stride_do
,
args
.
batch_stride_lsed
,
args
.
batch_stride_dk
,
args
.
batch_stride_dv
,
args
.
batch_stride_dbias
,
args
.
window_size_left
,
args
.
window_size_right
,
args
.
mask_type
,
args
.
p_drop
,
args
.
s_randval
,
args
.
drop_seed_offset
);
}
}();
dim3
grids
=
FmhaBwdDQDKDVKernel
::
GridSize
(
args
.
batch
,
args
.
nhead_q
,
args
.
max_seqlen_k
);
return
ck_tile
::
make_tuple
(
kargs
,
grids
);
}
template
<
typename
FmhaBwdOGradDotOKernel
>
auto
fmha_bwd_dot_do_o_create_kargs_and_grids
(
fmha_bwd_args
args
)
{
auto
kargs
=
[
&
]
{
// create group mode kernel arguments
if
constexpr
(
FmhaBwdOGradDotOKernel
::
kIsGroupMode
)
{
return
FmhaBwdOGradDotOKernel
::
MakeKargs
(
args
.
o_ptr
,
args
.
do_ptr
,
args
.
d_ptr
,
args
.
p_undrop
,
args
.
seqstart_q_ptr
,
args
.
hdim_v
,
args
.
stride_do
,
args
.
stride_o
,
args
.
nhead_stride_do
,
args
.
nhead_stride_o
,
args
.
nhead_stride_lsed
,
args
.
batch_stride_lsed
);
}
else
{
// create batch mode kernel arguments
return
FmhaBwdOGradDotOKernel
::
MakeKargs
(
args
.
o_ptr
,
args
.
do_ptr
,
args
.
d_ptr
,
args
.
p_undrop
,
args
.
seqlen_q
,
args
.
hdim_v
,
args
.
stride_do
,
args
.
stride_o
,
args
.
nhead_stride_do
,
args
.
nhead_stride_o
,
args
.
nhead_stride_lsed
,
args
.
batch_stride_do
,
args
.
batch_stride_o
,
args
.
batch_stride_lsed
);
}
}();
dim3
grids
=
FmhaBwdOGradDotOKernel
::
GridSize
(
args
.
batch
,
args
.
nhead_q
,
args
.
max_seqlen_q
);
return
ck_tile
::
make_tuple
(
kargs
,
grids
);
}
// this is used to pattern-match internl kernel implementation, not to instantiate kernel
template
<
ck_tile
::
index_t
HDim_
,
typename
DataType_
,
bool
kIsGroupMode_
,
ck_tile
::
BlockFmhaBwdPipelineEnum
FmhaBwdPipelineEnum_
,
typename
FmhaMask_
,
ck_tile
::
BlockAttentionBiasEnum
BiasEnum_
,
bool
kHasBiasGrad_
,
bool
kHasDropout_
,
bool
kPadS_
,
bool
kPadSK_
,
bool
kPadD_
,
bool
kPadDv_
>
struct
fmha_bwd_dq_dk_dv_traits_
{
static
constexpr
ck_tile
::
index_t
HDim
=
HDim_
;
using
DataType
=
ck_tile
::
remove_cvref_t
<
DataType_
>
;
static
constexpr
bool
kIsGroupMode
=
kIsGroupMode_
;
static
constexpr
auto
FmhaBwdPipelineEnum
=
FmhaBwdPipelineEnum_
;
using
FmhaMask
=
ck_tile
::
remove_cvref_t
<
FmhaMask_
>
;
static
constexpr
auto
BiasEnum
=
BiasEnum_
;
static
constexpr
bool
kHasBiasGrad
=
kHasBiasGrad_
;
static
constexpr
bool
kHasDropout
=
kHasDropout_
;
static
constexpr
bool
kPadS
=
kPadS_
;
static
constexpr
bool
kPadSK
=
kPadSK_
;
static
constexpr
bool
kPadD
=
kPadD_
;
static
constexpr
bool
kPadDv
=
kPadDv_
;
};
template
<
typename
Traits_
>
float
fmha_bwd_dq_dk_dv_
(
const
ck_tile
::
stream_config
&
,
fmha_bwd_args
);
template
<
typename
Traits_
>
void
fmha_bwd_dq_dk_dv_oneshot_
(
const
ck_tile
::
stream_config
&
,
fmha_bwd_args
);
template
<
typename
Traits_
>
std
::
string
fmha_bwd_dq_dk_dv_get_name_
();
template
<
ck_tile
::
index_t
HDim_
,
typename
DataType_
,
bool
kIsGroupMode_
,
bool
kPadS_
,
bool
kPadDv_
>
struct
fmha_bwd_dot_do_o_traits_
{
static
constexpr
ck_tile
::
index_t
HDim
=
HDim_
;
using
DataType
=
ck_tile
::
remove_cvref_t
<
DataType_
>
;
static
constexpr
bool
kIsGroupMode
=
kIsGroupMode_
;
static
constexpr
bool
kPadS
=
kPadS_
;
static
constexpr
bool
kPadDv
=
kPadDv_
;
};
template
<
typename
Traits_
>
float
fmha_bwd_dot_do_o_
(
const
ck_tile
::
stream_config
&
,
fmha_bwd_args
);
template
<
typename
Traits_
>
void
fmha_bwd_dot_do_o_oneshot_
(
const
ck_tile
::
stream_config
&
,
fmha_bwd_args
);
template
<
typename
Traits_
>
std
::
string
fmha_bwd_dot_do_o_get_name_
();
// This is the public API, will be generated by script
struct
fmha_bwd_traits
{
int
hdim_q
;
int
hdim_v
;
std
::
string
data_type
;
bool
is_group_mode
;
mask_enum
mask_type
;
bias_enum
bias_type
;
// 0:no bias, 1:elementwise bias, 2:alibi. sync with BlockAttentionBiasEnum
bool
has_dbias
;
bool
has_dropout
;
// TODO: padding check is inside this api
};
float
fmha_bwd
(
fmha_bwd_traits
,
fmha_bwd_args
,
const
ck_tile
::
stream_config
&
);
example/ck_tile/01_fmha/fmha_fwd.cpp
View file @
dcd3d21a
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include "fmha_fwd.hpp"
#include "fmha_fwd.hpp"
#include "ck_tile/host.hpp"
#include "ck_tile/host.hpp"
...
@@ -44,11 +44,18 @@ auto create_args(int argc, char* argv[])
...
@@ -44,11 +44,18 @@ auto create_args(int argc, char* argv[])
"-1"
,
"-1"
,
"num of head, for k/v, -1 means equal to h
\n
"
"num of head, for k/v, -1 means equal to h
\n
"
"if not equal to h, then this is GQA/MQA case"
)
"if not equal to h, then this is GQA/MQA case"
)
.
insert
(
"s"
,
.
insert
(
"3328"
,
"s"
,
"seqlen_q. if group-mode, means the average value of seqlen_q
\n
"
"3328"
,
"total_seqlen_q = seqlen_q * batch, and seqlen_q per batch may vary"
)
"seqlen_q. if group-mode, means the average value of seqlen_q
\n
"
"total_seqlen_q = seqlen_q * batch, and seqlen_q per batch may vary
\n
"
"also with
\"
-s=s0,s1,s2...
\"
comma seperated int to set per batch seqlen(group-mode)"
)
.
insert
(
"s_k"
,
"-1"
,
"seqlen_k, -1 means equal to s"
)
.
insert
(
"s_k"
,
"-1"
,
"seqlen_k, -1 means equal to s"
)
.
insert
(
"s_kpad"
,
"-1"
,
"seqlen_k stride between 2 tokens, currently used in group-mode only
\n
"
"for kv-cache case, each batch [1,s,h,d]/[1,h,s,d] can have a stride
\n
"
"along seqlen, instead of packed. same as xformer kv_padding"
)
.
insert
(
"d"
,
"128"
,
"head dim for q, k"
)
.
insert
(
"d"
,
"128"
,
"head dim for q, k"
)
.
insert
(
"d_v"
,
"-1"
,
"head dim for v, -1 means equal to d"
)
.
insert
(
"d_v"
,
"-1"
,
"head dim for v, -1 means equal to d"
)
.
insert
(
"scale_s"
,
.
insert
(
"scale_s"
,
...
@@ -103,6 +110,13 @@ auto create_args(int argc, char* argv[])
...
@@ -103,6 +110,13 @@ auto create_args(int argc, char* argv[])
"11939"
,
"11939"
,
"random seed used for initializing input tensors. 0 for "
"random seed used for initializing input tensors. 0 for "
"non-deterministic seed"
)
"non-deterministic seed"
)
.
insert
(
"p_drop"
,
"0"
,
"0~1 probability of dropout"
)
.
insert
(
"drop_seed"
,
"1"
,
"seed for random number generator"
)
.
insert
(
"drop_offset"
,
"0"
,
"offset for random number generator"
)
.
insert
(
"timer"
,
"gpu"
,
"gpu:gpu timer, cpu:cpu timer"
)
.
insert
(
"num_splits"
,
"1"
,
"# of splits for key/value. 0 to determine actual number by heuristic"
)
.
insert
(
"warmup"
,
"5"
,
"number of iterations before benchmark the kernel"
)
.
insert
(
"warmup"
,
"5"
,
"number of iterations before benchmark the kernel"
)
.
insert
(
"repeat"
,
"20"
,
"number of iterations to benchmark the kernel"
);
.
insert
(
"repeat"
,
"20"
,
"number of iterations to benchmark the kernel"
);
...
@@ -120,26 +134,11 @@ auto get_elimit(std::string /*init_method*/)
...
@@ -120,26 +134,11 @@ auto get_elimit(std::string /*init_method*/)
}
}
template
<
>
template
<
>
auto
get_elimit
<
ck_tile
::
bf16_t
>
(
std
::
string
init_method
)
auto
get_elimit
<
ck_tile
::
bf16_t
>
(
std
::
string
/*
init_method
*/
)
{
{
if
(
init_method
==
"ui"
||
init_method
==
"ni"
)
double
rtol
=
1e-2
;
{
double
atol
=
1e-2
;
double
rtol
=
1e-2
;
return
ck_tile
::
make_tuple
(
rtol
,
atol
);
double
atol
=
1e-2
;
return
ck_tile
::
make_tuple
(
rtol
,
atol
);
}
else
if
(
init_method
==
"nf"
)
{
double
rtol
=
1e-2
;
double
atol
=
1e-2
;
return
ck_tile
::
make_tuple
(
rtol
,
atol
);
}
else
{
double
rtol
=
3e-3
;
double
atol
=
3e-3
;
return
ck_tile
::
make_tuple
(
rtol
,
atol
);
}
}
}
template
<
>
template
<
>
...
@@ -159,6 +158,106 @@ auto get_elimit<ck_tile::fp8_t>(std::string init_method)
...
@@ -159,6 +158,106 @@ auto get_elimit<ck_tile::fp8_t>(std::string init_method)
}
}
}
}
int
num_splits_heuristic
(
int
batch_nhead_mblocks
,
int
num_SMs
,
int
num_n_blocks
,
int
max_splits
)
{
// If we have enough to almost fill the SMs, then just use 1 split
if
(
batch_nhead_mblocks
>=
0.8
f
*
num_SMs
)
{
return
1
;
}
max_splits
=
std
::
min
({
max_splits
,
num_SMs
,
num_n_blocks
});
float
max_efficiency
=
0.
f
;
std
::
vector
<
float
>
efficiency
;
efficiency
.
reserve
(
max_splits
);
auto
ceildiv
=
[](
int
a
,
int
b
)
{
return
(
a
+
b
-
1
)
/
b
;
};
// Some splits are not eligible. For example, if we have 64 blocks and choose 11 splits,
// we'll have 6 * 10 + 4 blocks. If we choose 12 splits, we'll have 6 * 11 + (-2) blocks
// (i.e. it's 11 splits anyway).
// So we check if the number of blocks per split is the same as the previous num_splits.
auto
is_split_eligible
=
[
&
ceildiv
,
&
num_n_blocks
](
int
num_splits
)
{
return
num_splits
==
1
||
ceildiv
(
num_n_blocks
,
num_splits
)
!=
ceildiv
(
num_n_blocks
,
num_splits
-
1
);
};
for
(
int
num_splits
=
1
;
num_splits
<=
max_splits
;
num_splits
++
)
{
if
(
!
is_split_eligible
(
num_splits
))
{
efficiency
.
push_back
(
0.
f
);
}
else
{
float
n_waves
=
float
(
batch_nhead_mblocks
*
num_splits
)
/
num_SMs
;
float
eff
=
n_waves
/
ceil
(
n_waves
);
// printf("num_splits = %d, eff = %f\n", num_splits, eff);
if
(
eff
>
max_efficiency
)
{
max_efficiency
=
eff
;
}
efficiency
.
push_back
(
eff
);
}
}
for
(
int
num_splits
=
1
;
num_splits
<=
max_splits
;
num_splits
++
)
{
if
(
!
is_split_eligible
(
num_splits
))
{
continue
;
}
if
(
efficiency
[
num_splits
-
1
]
>=
0.85
*
max_efficiency
)
{
// printf("num_splits chosen = %d\n", num_splits);
return
num_splits
;
}
}
return
1
;
}
int
override_num_splits_if_necessary
(
int
batch
,
int
nhead
,
int
max_seqlen_q
,
int
hdim_v
,
float
p_drop
,
int
num_splits
)
{
int
device
;
auto
status
=
hipGetDevice
(
&
device
);
if
(
status
!=
hipSuccess
)
{
return
num_splits
;
}
hipDeviceProp_t
props
{};
status
=
hipGetDeviceProperties
(
&
props
,
device
);
if
(
status
!=
hipSuccess
)
{
return
num_splits
;
}
// tile size should match the generate.py
const
int
kM0
=
64
;
const
int
kN1
=
hdim_v
;
const
int
num_m_blocks
=
ck_tile
::
integer_divide_ceil
(
max_seqlen_q
,
kM0
);
const
int
num_n_blocks
=
ck_tile
::
integer_divide_ceil
(
hdim_v
,
kN1
);
if
(
num_splits
<
1
&&
p_drop
==
0.0
f
)
{
return
num_splits_heuristic
(
batch
*
nhead
*
num_m_blocks
,
props
.
multiProcessorCount
*
2
,
num_n_blocks
,
128
);
}
return
num_splits
;
}
float
fmha_fwd_dispatch
(
fmha_fwd_traits
traits
,
fmha_fwd_args
args
,
const
ck_tile
::
stream_config
&
config
)
{
if
(
1
<
args
.
num_splits
)
{
return
fmha_fwd_splitkv
(
traits
,
args
,
config
);
}
else
{
return
fmha_fwd
(
traits
,
args
,
config
);
}
}
template
<
typename
DataType
>
template
<
typename
DataType
>
bool
run
(
const
ck_tile
::
ArgParser
&
arg_parser
)
bool
run
(
const
ck_tile
::
ArgParser
&
arg_parser
)
{
{
...
@@ -177,10 +276,20 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -177,10 +276,20 @@ bool run(const ck_tile::ArgParser& arg_parser)
return
false
;
return
false
;
}
}
ck_tile
::
index_t
seqlen_q
=
arg_parser
.
get_int
(
"s"
);
auto
[
seqlen_qs
,
seqlen_ks
,
seqlen_kpads
]
=
decode_seqlen
(
mode
,
ck_tile
::
index_t
seqlen_k
=
arg_parser
.
get_int
(
"s_k"
);
batch
,
if
(
seqlen_k
<
0
)
arg_parser
.
get_str
(
"s"
),
seqlen_k
=
seqlen_q
;
arg_parser
.
get_str
(
"s_k"
),
arg_parser
.
get_str
(
"s_kpad"
));
#if 0
// clang-format off
std::cout << "seqlen_qs:"; for(auto xx : seqlen_qs) { std::cout << xx << ","; } std::cout << std::endl;
std::cout << "seqlen_ks:"; for(auto xx : seqlen_ks) { std::cout << xx << ","; } std::cout << std::endl;
std::cout << "seqlen_kpads:"; for(auto xx : seqlen_kpads) { std::cout << xx << ","; } std::cout << std::endl;
// clang-format on
#endif
ck_tile
::
index_t
hdim_q
=
arg_parser
.
get_int
(
"d"
);
ck_tile
::
index_t
hdim_q
=
arg_parser
.
get_int
(
"d"
);
ck_tile
::
index_t
hdim_v
=
arg_parser
.
get_int
(
"d_v"
);
ck_tile
::
index_t
hdim_v
=
arg_parser
.
get_int
(
"d_v"
);
if
(
hdim_v
<
0
)
if
(
hdim_v
<
0
)
...
@@ -229,7 +338,23 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -229,7 +338,23 @@ bool run(const ck_tile::ArgParser& arg_parser)
bool
lse
=
arg_parser
.
get_bool
(
"lse"
);
bool
lse
=
arg_parser
.
get_bool
(
"lse"
);
bias_info
bias
=
bias_info
::
decode
(
arg_parser
.
get_str
(
"bias"
));
bias_info
bias
=
bias_info
::
decode
(
arg_parser
.
get_str
(
"bias"
));
mask_info
mask
=
mask_info
::
decode
(
arg_parser
.
get_str
(
"mask"
),
seqlen_q
,
seqlen_k
);
mask_info
mask
=
mask_info
::
decode
(
arg_parser
.
get_str
(
"mask"
),
seqlen_qs
[
0
],
seqlen_ks
[
0
]);
// TODO: we don't need x/y anymore
float
p_drop
=
arg_parser
.
get_float
(
"p_drop"
);
uint64_t
drop_seed
=
arg_parser
.
get_uint64
(
"drop_seed"
);
uint64_t
drop_offset
=
arg_parser
.
get_uint64
(
"drop_offset"
);
if
(
p_drop
<
0.0
f
||
p_drop
>
1.0
f
)
{
std
::
cerr
<<
"The value of p_drop should be 0~1"
<<
std
::
endl
;
return
false
;
}
bool
s_randval
=
false
;
if
(
p_drop
>
0.0
f
&&
do_validation
)
{
s_randval
=
true
;
}
std
::
string
init_method
=
arg_parser
.
get_str
(
"init"
);
std
::
string
init_method
=
arg_parser
.
get_str
(
"init"
);
std
::
optional
<
uint32_t
>
seed
=
arg_parser
.
get_uint32
(
"seed"
);
std
::
optional
<
uint32_t
>
seed
=
arg_parser
.
get_uint32
(
"seed"
);
...
@@ -238,33 +363,42 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -238,33 +363,42 @@ bool run(const ck_tile::ArgParser& arg_parser)
seed
.
reset
();
seed
.
reset
();
}
}
int
num_splits
=
arg_parser
.
get_int
(
"num_splits"
);
int
stream_warmup
=
arg_parser
.
get_int
(
"warmup"
);
int
stream_warmup
=
arg_parser
.
get_int
(
"warmup"
);
int
stream_repeat
=
arg_parser
.
get_int
(
"repeat"
);
int
stream_repeat
=
arg_parser
.
get_int
(
"repeat"
);
bool
kname
=
arg_parser
.
get_bool
(
"kname"
);
bool
kname
=
arg_parser
.
get_bool
(
"kname"
);
ck_tile
::
stream_config
stream_config
{
ck_tile
::
stream_config
stream_config
{
nullptr
,
nullptr
,
true
,
/* log_level = */
(
kname
?
1
:
0
),
stream_warmup
,
stream_repeat
};
true
,
/* log_level = */
(
kname
?
1
:
0
),
stream_warmup
,
stream_repeat
,
arg_parser
.
get_str
(
"timer"
)
==
std
::
string
(
"gpu"
)};
const
auto
seqstart_q_host
=
generate_seqstarts
(
mode
,
batch
,
seqlen_q
);
const
auto
seqstart_q_host
=
to_seqstarts
(
seqlen_qs
);
const
auto
seqstart_k_host
=
generate_seqstarts
(
mode
,
batch
,
seqlen_k
);
const
auto
seqstart_k_host
=
to_seqstarts
(
seqlen_ks
);
const
auto
seqstart_k_with_padding_host
=
to_seqstarts
(
seqlen_kpads
);
using
TypeConfig
=
FmhaFwdTypeConfig
<
DataType
>
;
using
TypeConfig
=
FmhaFwdTypeConfig
<
DataType
>
;
using
QDataType
=
typename
TypeConfig
::
QDataType
;
using
QDataType
=
typename
TypeConfig
::
QDataType
;
using
KDataType
=
typename
TypeConfig
::
KDataType
;
using
KDataType
=
typename
TypeConfig
::
KDataType
;
using
VDataType
=
typename
TypeConfig
::
VDataType
;
using
VDataType
=
typename
TypeConfig
::
VDataType
;
using
BiasDataType
=
typename
TypeConfig
::
BiasDataType
;
using
BiasDataType
=
typename
TypeConfig
::
BiasDataType
;
using
LSEDataType
=
typename
TypeConfig
::
LSEDataType
;
using
RandValOutputDataType
=
typename
TypeConfig
::
RandValOutputDataType
;
using
SaccDataType
=
typename
TypeConfig
::
SaccDataType
;
using
LSEDataType
=
typename
TypeConfig
::
LSEDataType
;
using
SMPLComputeDataType
=
typename
TypeConfig
::
SMPLComputeDataType
;
using
SaccDataType
=
typename
TypeConfig
::
SaccDataType
;
using
PDataType
=
typename
TypeConfig
::
PDataType
;
using
SMPLComputeDataType
=
typename
TypeConfig
::
SMPLComputeDataType
;
using
OaccDataType
=
typename
TypeConfig
::
OaccDataType
;
using
PDataType
=
typename
TypeConfig
::
PDataType
;
using
ODataType
=
typename
TypeConfig
::
ODataType
;
using
OaccDataType
=
typename
TypeConfig
::
OaccDataType
;
using
ODataType
=
typename
TypeConfig
::
ODataType
;
// accumulation numbers for performance evaluation
// accumulation numbers for performance evaluation
std
::
size_t
flop
=
0
,
num_byte
=
0
;
std
::
size_t
flop
=
0
,
num_byte
=
0
;
auto
max_seqlen_q
=
auto
max_seqlen_q
=
std
::
numeric_limits
<
int32_t
>::
min
();
// we will use max seqlen to decide grid size
std
::
numeric_limits
<
int32_t
>::
min
();
// we will use max seqlen to decide grid size
auto
max_seqlen_k
=
std
::
numeric_limits
<
int32_t
>::
min
();
{
{
for
(
ck_tile
::
index_t
wb
=
0
;
wb
<
batch
;
++
wb
)
for
(
ck_tile
::
index_t
wb
=
0
;
wb
<
batch
;
++
wb
)
{
{
...
@@ -276,6 +410,11 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -276,6 +410,11 @@ bool run(const ck_tile::ArgParser& arg_parser)
max_seqlen_q
=
real_seqlen_q
;
max_seqlen_q
=
real_seqlen_q
;
}
}
if
(
max_seqlen_k
<
real_seqlen_k
)
{
max_seqlen_k
=
real_seqlen_k
;
}
flop
+=
nhead
*
(
static_cast
<
std
::
size_t
>
(
2
)
*
real_seqlen_q
*
real_seqlen_k
*
hdim_q
+
flop
+=
nhead
*
(
static_cast
<
std
::
size_t
>
(
2
)
*
real_seqlen_q
*
real_seqlen_k
*
hdim_q
+
static_cast
<
std
::
size_t
>
(
2
)
*
real_seqlen_q
*
hdim_v
*
real_seqlen_k
);
static_cast
<
std
::
size_t
>
(
2
)
*
real_seqlen_q
*
hdim_v
*
real_seqlen_k
);
...
@@ -286,6 +425,18 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -286,6 +425,18 @@ bool run(const ck_tile::ArgParser& arg_parser)
}
}
}
}
// legalize num_splits according to other options
if
(
num_splits
<
1
)
{
num_splits
=
override_num_splits_if_necessary
(
batch
,
nhead
,
max_seqlen_q
,
hdim_v
,
p_drop
,
num_splits
);
}
if
(
128
<
num_splits
)
{
std
::
cerr
<<
"num_splits greater than 128 is not supported"
<<
std
::
endl
;
return
false
;
}
auto
get_lengths
=
[
&
](
bool
permute
,
auto
get_lengths
=
[
&
](
bool
permute
,
ck_tile
::
index_t
b
/*batch*/
,
ck_tile
::
index_t
b
/*batch*/
,
ck_tile
::
index_t
h
/*nhead*/
,
ck_tile
::
index_t
h
/*nhead*/
,
...
@@ -302,9 +453,11 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -302,9 +453,11 @@ bool run(const ck_tile::ArgParser& arg_parser)
// host memory for storing all the tensor elements
// host memory for storing all the tensor elements
const
ck_tile
::
index_t
shape_batch
=
(
mode
==
mode_enum
::
batch
?
batch
:
1
);
const
ck_tile
::
index_t
shape_batch
=
(
mode
==
mode_enum
::
batch
?
batch
:
1
);
const
ck_tile
::
index_t
shape_seqlen_q
=
const
ck_tile
::
index_t
shape_seqlen_q
=
(
mode
==
mode_enum
::
batch
?
seqlen_q
:
seqstart_q_host
.
back
());
(
mode
==
mode_enum
::
batch
?
seqlen_q
s
[
0
]
:
seqstart_q_host
.
back
());
const
ck_tile
::
index_t
shape_seqlen_k
=
const
ck_tile
::
index_t
shape_seqlen_k
=
(
mode
==
mode_enum
::
batch
?
seqlen_k
:
seqstart_k_host
.
back
());
(
mode
==
mode_enum
::
batch
?
seqlen_ks
[
0
]
:
(
seqlen_kpads
[
0
]
<
0
?
seqstart_k_host
.
back
()
:
seqstart_k_with_padding_host
.
back
()));
ck_tile
::
HostTensor
<
QDataType
>
q_host
(
ck_tile
::
HostTensor
<
QDataType
>
q_host
(
get_lengths
(
i_perm
,
shape_batch
,
nhead
,
shape_seqlen_q
,
hdim_q
));
get_lengths
(
i_perm
,
shape_batch
,
nhead
,
shape_seqlen_q
,
hdim_q
));
...
@@ -325,14 +478,26 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -325,14 +478,26 @@ bool run(const ck_tile::ArgParser& arg_parser)
:
std
::
array
<
ck_tile
::
index_t
,
2
>
{
batch
,
nhead
})
:
std
::
array
<
ck_tile
::
index_t
,
2
>
{
batch
,
nhead
})
:
std
::
array
<
ck_tile
::
index_t
,
2
>
{
1
,
1
});
:
std
::
array
<
ck_tile
::
index_t
,
2
>
{
1
,
1
});
// self define lse data layout as [shape_batch, nhead, shape_seqlen_q]
ck_tile
::
HostTensor
<
LSEDataType
>
lse_acc_host
(
1
<
num_splits
?
std
::
array
<
ck_tile
::
index_t
,
4
>
{
num_splits
,
batch
,
nhead
,
max_seqlen_q
}
:
std
::
array
<
ck_tile
::
index_t
,
4
>
{
1
,
1
,
1
,
1
});
ck_tile
::
HostTensor
<
OaccDataType
>
o_acc_host
(
1
<
num_splits
?
std
::
array
<
ck_tile
::
index_t
,
5
>
{
num_splits
,
batch
,
nhead
,
max_seqlen_q
,
hdim_v
}
:
std
::
array
<
ck_tile
::
index_t
,
5
>
{
1
,
1
,
1
,
1
,
1
});
// self define lse data layout as [batch, nhead, max_seqlen_q]
ck_tile
::
HostTensor
<
LSEDataType
>
lse_host
(
ck_tile
::
HostTensor
<
LSEDataType
>
lse_host
(
lse
?
std
::
array
<
ck_tile
::
index_t
,
3
>
{
shape_
batch
,
nhead
,
shape
_seqlen_q
}
lse
?
std
::
array
<
ck_tile
::
index_t
,
3
>
{
batch
,
nhead
,
max
_seqlen_q
}
:
std
::
array
<
ck_tile
::
index_t
,
3
>
{
1
,
1
,
1
}
/* dummy shape for simplifying code */
);
:
std
::
array
<
ck_tile
::
index_t
,
3
>
{
1
,
1
,
1
}
/* dummy shape for simplifying code */
);
ck_tile
::
HostTensor
<
ODataType
>
o_host
(
ck_tile
::
HostTensor
<
ODataType
>
o_host
(
get_lengths
(
o_perm
,
shape_batch
,
nhead
,
shape_seqlen_q
,
hdim_v
));
get_lengths
(
o_perm
,
shape_batch
,
nhead
,
shape_seqlen_q
,
hdim_v
));
ck_tile
::
HostTensor
<
RandValOutputDataType
>
randval_host
(
p_drop
>
0
?
get_lengths
(
true
,
shape_batch
,
nhead
,
shape_seqlen_q
,
max_seqlen_k
)
:
std
::
array
<
ck_tile
::
index_t
,
4
>
{
1
,
1
,
1
,
1
});
if
(
init_method
==
"ui"
||
init_method
==
"0"
)
if
(
init_method
==
"ui"
||
init_method
==
"0"
)
{
{
ck_tile
::
FillUniformDistributionIntegerValue
<
QDataType
>
{
-
3.
f
,
3.
f
,
seed
}(
q_host
);
ck_tile
::
FillUniformDistributionIntegerValue
<
QDataType
>
{
-
3.
f
,
3.
f
,
seed
}(
q_host
);
...
@@ -403,10 +568,14 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -403,10 +568,14 @@ bool run(const ck_tile::ArgParser& arg_parser)
ck_tile
::
DeviceMem
k_buf
(
k_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
k_buf
(
k_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
v_buf
(
v_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
v_buf
(
v_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
bias_buf
(
bias_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
bias_buf
(
bias_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
lse_acc_buf
(
lse_acc_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
o_acc_buf
(
o_acc_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
lse_buf
(
lse_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
lse_buf
(
lse_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
o_buf
(
o_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
o_buf
(
o_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
seqstart_q
(
seqstart_q_host
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
seqstart_q
(
seqstart_q_host
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
seqstart_k
(
seqstart_k_host
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
seqstart_k
(
seqstart_k_host
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
seqlen_k_buf
(
seqlen_kpads
[
0
]
<
0
?
0
:
seqlen_ks
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
randval_buf
(
randval_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
alibi_slope_buf
(
alibi_slope_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
alibi_slope_buf
(
alibi_slope_host
.
get_element_space_size_in_bytes
());
q_buf
.
ToDevice
(
q_host
.
data
());
q_buf
.
ToDevice
(
q_host
.
data
());
...
@@ -414,7 +583,9 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -414,7 +583,9 @@ bool run(const ck_tile::ArgParser& arg_parser)
v_buf
.
ToDevice
(
v_host
.
data
());
v_buf
.
ToDevice
(
v_host
.
data
());
bias_buf
.
ToDevice
(
bias_host
.
data
());
bias_buf
.
ToDevice
(
bias_host
.
data
());
seqstart_q
.
ToDevice
(
seqstart_q_host
.
data
());
seqstart_q
.
ToDevice
(
seqstart_q_host
.
data
());
seqstart_k
.
ToDevice
(
seqstart_k_host
.
data
());
seqstart_k
.
ToDevice
(
seqlen_kpads
[
0
]
<
0
?
seqstart_k_host
.
data
()
:
seqstart_k_with_padding_host
.
data
());
seqlen_k_buf
.
ToDevice
(
seqlen_kpads
[
0
]
<
0
?
nullptr
:
seqlen_ks
.
data
());
alibi_slope_buf
.
ToDevice
(
alibi_slope_host
.
data
());
alibi_slope_buf
.
ToDevice
(
alibi_slope_host
.
data
());
// clang-format off
// clang-format off
...
@@ -430,10 +601,17 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -430,10 +601,17 @@ bool run(const ck_tile::ArgParser& arg_parser)
const
std
::
string
prec
=
arg_parser
.
get_str
(
"prec"
);
const
std
::
string
prec
=
arg_parser
.
get_str
(
"prec"
);
std
::
cout
<<
"["
<<
prec
<<
"|"
<<
mode
<<
"|"
<<
io_layout
(
i_perm
,
o_perm
)
<<
"] b:"
<<
batch
std
::
cout
<<
"["
<<
prec
<<
"|"
<<
mode
<<
"|"
<<
io_layout
(
i_perm
,
o_perm
)
<<
"] b:"
<<
batch
<<
", h:"
<<
nhead
<<
"/"
<<
nhead_k
<<
", s:"
<<
seqlen_q
<<
"/"
<<
seqlen_k
<<
", h:"
<<
nhead
<<
"/"
<<
nhead_k
<<
", s:"
<<
seqlen_qs
[
0
]
<<
"/"
<<
seqlen_ks
[
0
]
<<
(
seqlen_kpads
[
0
]
<
0
?
""
:
(
std
::
string
(
"("
)
+
std
::
to_string
(
seqlen_kpads
[
0
])
+
")"
))
<<
", d:"
<<
hdim_q
<<
"/"
<<
hdim_v
<<
", scale_s:"
<<
scale_s
<<
", bias:"
<<
bias
<<
", d:"
<<
hdim_q
<<
"/"
<<
hdim_v
<<
", scale_s:"
<<
scale_s
<<
", bias:"
<<
bias
<<
", lse:"
<<
lse
<<
", squant:"
<<
squant
<<
", mask:"
<<
mask
<<
", v:"
<<
vlayout
<<
", p_drop:"
<<
p_drop
<<
", lse:"
<<
lse
<<
", squant:"
<<
squant
<<
std
::
flush
;
<<
", mask:"
<<
mask
<<
", v:"
<<
vlayout
;
if
(
1
<
num_splits
)
{
std
::
cout
<<
", num_splits:"
<<
num_splits
;
}
std
::
cout
<<
std
::
flush
;
auto
fmha_traits
=
fmha_fwd_traits
{
hdim_q
,
auto
fmha_traits
=
fmha_fwd_traits
{
hdim_q
,
hdim_v
,
hdim_v
,
...
@@ -443,6 +621,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -443,6 +621,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
mask
.
type
,
mask
.
type
,
bias
.
type
,
bias
.
type
,
lse
,
lse
,
p_drop
>
0.0
f
,
squant
};
squant
};
auto
p_compute_element_func
=
[
&
]()
{
auto
p_compute_element_func
=
[
&
]()
{
...
@@ -460,7 +639,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -460,7 +639,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
return
ck_tile
::
identity
{};
return
ck_tile
::
identity
{};
}();
}();
auto
fmha_args
=
[
&
]()
{
auto
fmha_args
=
[
&
,
k_paddings_
=
seqlen_kpads
]()
{
assert
(
nhead
%
nhead_k
==
0
);
assert
(
nhead
%
nhead_k
==
0
);
/// NOTE: we broadcast bias from [1, 1, seqlen_q, seqlen_k] to [batch, nhead, seqlen_q,
/// NOTE: we broadcast bias from [1, 1, seqlen_q, seqlen_k] to [batch, nhead, seqlen_q,
/// seqlen_k] in this example, hence both the 'batch_stride_bias' &
/// seqlen_k] in this example, hence both the 'batch_stride_bias' &
...
@@ -474,8 +653,10 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -474,8 +653,10 @@ bool run(const ck_tile::ArgParser& arg_parser)
else
else
return
i_perm
?
shape_seqlen_k
:
nhead_k
*
shape_seqlen_k
;
return
i_perm
?
shape_seqlen_k
:
nhead_k
*
shape_seqlen_k
;
}();
}();
const
ck_tile
::
index_t
stride_bias
=
(
i_perm
?
shape_seqlen_k
:
1
*
shape_seqlen_k
);
const
ck_tile
::
index_t
stride_bias
=
(
i_perm
?
shape_seqlen_k
:
1
*
shape_seqlen_k
);
const
ck_tile
::
index_t
stride_o
=
(
o_perm
?
hdim_v
:
nhead
*
hdim_v
);
const
ck_tile
::
index_t
stride_randval
=
(
max_seqlen_k
);
const
ck_tile
::
index_t
stride_o_acc
=
hdim_v
;
const
ck_tile
::
index_t
stride_o
=
(
o_perm
?
hdim_v
:
nhead
*
hdim_v
);
// setup nhead_stride_* arguments
// setup nhead_stride_* arguments
const
ck_tile
::
index_t
nhead_stride_q
=
(
i_perm
?
shape_seqlen_q
*
hdim_q
:
hdim_q
);
const
ck_tile
::
index_t
nhead_stride_q
=
(
i_perm
?
shape_seqlen_q
*
hdim_q
:
hdim_q
);
const
ck_tile
::
index_t
nhead_stride_k
=
(
i_perm
?
shape_seqlen_k
*
hdim_q
:
hdim_q
);
const
ck_tile
::
index_t
nhead_stride_k
=
(
i_perm
?
shape_seqlen_k
*
hdim_q
:
hdim_q
);
...
@@ -487,26 +668,38 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -487,26 +668,38 @@ bool run(const ck_tile::ArgParser& arg_parser)
}();
}();
const
ck_tile
::
index_t
nhead_stride_bias
=
const
ck_tile
::
index_t
nhead_stride_bias
=
(
i_perm
?
0
*
shape_seqlen_q
*
shape_seqlen_k
:
0
*
shape_seqlen_k
);
(
i_perm
?
0
*
shape_seqlen_q
*
shape_seqlen_k
:
0
*
shape_seqlen_k
);
const
ck_tile
::
index_t
nhead_stride_lse
=
(
shape_seqlen_q
*
1
);
const
ck_tile
::
index_t
nhead_stride_randval
=
(
shape_seqlen_q
*
max_seqlen_k
);
const
ck_tile
::
index_t
nhead_stride_o
=
(
o_perm
?
shape_seqlen_q
*
hdim_v
:
hdim_v
);
const
ck_tile
::
index_t
nhead_stride_lse
=
max_seqlen_q
;
const
ck_tile
::
index_t
nhead_stride_lse_acc
=
max_seqlen_q
;
const
ck_tile
::
index_t
nhead_stride_o_acc
=
(
max_seqlen_q
*
hdim_v
);
const
ck_tile
::
index_t
nhead_stride_o
=
(
o_perm
?
shape_seqlen_q
*
hdim_v
:
hdim_v
);
// setup batch_stride_* arguments
// setup batch_stride_* arguments
const
ck_tile
::
index_t
batch_stride_q
=
(
nhead
*
shape_seqlen_q
*
hdim_q
);
const
ck_tile
::
index_t
batch_stride_q
=
(
nhead
*
shape_seqlen_q
*
hdim_q
);
const
ck_tile
::
index_t
batch_stride_k
=
(
nhead_k
*
shape_seqlen_k
*
hdim_q
);
const
ck_tile
::
index_t
batch_stride_k
=
(
nhead_k
*
shape_seqlen_k
*
hdim_q
);
const
ck_tile
::
index_t
batch_stride_v
=
(
nhead_k
*
hdim_v
*
shape_seqlen_k
);
const
ck_tile
::
index_t
batch_stride_v
=
(
nhead_k
*
hdim_v
*
shape_seqlen_k
);
const
ck_tile
::
index_t
batch_stride_bias
=
(
0
*
nhead
*
shape_seqlen_q
*
shape_seqlen_k
);
const
ck_tile
::
index_t
batch_stride_bias
=
(
0
*
nhead
*
shape_seqlen_q
*
shape_seqlen_k
);
const
ck_tile
::
index_t
batch_stride_lse
=
(
nhead
*
shape_seqlen_q
*
1
);
const
ck_tile
::
index_t
batch_stride_randval
=
(
nhead
*
shape_seqlen_q
*
max_seqlen_k
);
const
ck_tile
::
index_t
batch_stride_o
=
(
nhead
*
shape_seqlen_q
*
hdim_v
);
const
ck_tile
::
index_t
batch_stride_lse
=
(
nhead
*
max_seqlen_q
);
const
ck_tile
::
index_t
batch_stride_lse_acc
=
(
nhead
*
max_seqlen_q
);
const
ck_tile
::
index_t
batch_stride_o_acc
=
(
nhead
*
max_seqlen_q
*
hdim_v
);
const
ck_tile
::
index_t
batch_stride_o
=
(
nhead
*
shape_seqlen_q
*
hdim_v
);
// setup split_stride_* arguments (only used in split-kv kernel)
const
ck_tile
::
index_t
split_stride_lse_acc
=
(
batch
*
nhead
*
max_seqlen_q
);
const
ck_tile
::
index_t
split_stride_o_acc
=
(
batch
*
nhead
*
max_seqlen_q
*
hdim_v
);
return
fmha_fwd_args
{
q_buf
.
GetDeviceBuffer
(),
return
fmha_fwd_args
{
q_buf
.
GetDeviceBuffer
(),
k_buf
.
GetDeviceBuffer
(),
k_buf
.
GetDeviceBuffer
(),
v_buf
.
GetDeviceBuffer
(),
v_buf
.
GetDeviceBuffer
(),
bias
.
type
==
bias_enum
::
alibi
?
alibi_slope_buf
.
GetDeviceBuffer
()
bias
.
type
==
bias_enum
::
alibi
?
alibi_slope_buf
.
GetDeviceBuffer
()
:
bias_buf
.
GetDeviceBuffer
(),
:
bias_buf
.
GetDeviceBuffer
(),
randval_buf
.
GetDeviceBuffer
(),
lse_acc_buf
.
GetDeviceBuffer
(),
o_acc_buf
.
GetDeviceBuffer
(),
lse_buf
.
GetDeviceBuffer
(),
lse_buf
.
GetDeviceBuffer
(),
o_buf
.
GetDeviceBuffer
(),
o_buf
.
GetDeviceBuffer
(),
seqstart_q
.
GetDeviceBuffer
(),
seqstart_q
.
GetDeviceBuffer
(),
seqstart_k
.
GetDeviceBuffer
(),
seqstart_k
.
GetDeviceBuffer
(),
nullptr
,
k_paddings_
[
0
]
<
0
?
nullptr
:
seqlen_k_buf
.
GetDeviceBuffer
()
,
shape_seqlen_q
,
shape_seqlen_q
,
shape_seqlen_k
,
shape_seqlen_k
,
batch
,
batch
,
...
@@ -515,6 +708,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -515,6 +708,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
hdim_v
,
hdim_v
,
nhead
,
nhead
,
nhead_k
,
nhead_k
,
num_splits
,
scale_s
,
scale_s
,
scale_p
,
scale_p
,
scale_o
,
scale_o
,
...
@@ -523,25 +717,38 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -523,25 +717,38 @@ bool run(const ck_tile::ArgParser& arg_parser)
stride_v
,
stride_v
,
bias
.
type
==
bias_enum
::
alibi
?
(
bias
.
rank_info
==
0
?
0
:
nhead
)
bias
.
type
==
bias_enum
::
alibi
?
(
bias
.
rank_info
==
0
?
0
:
nhead
)
:
stride_bias
,
:
stride_bias
,
stride_randval
,
stride_o_acc
,
stride_o
,
stride_o
,
nhead_stride_q
,
nhead_stride_q
,
nhead_stride_k
,
nhead_stride_k
,
nhead_stride_v
,
nhead_stride_v
,
nhead_stride_bias
,
nhead_stride_bias
,
nhead_stride_randval
,
nhead_stride_lse
,
nhead_stride_lse
,
nhead_stride_lse_acc
,
nhead_stride_o_acc
,
nhead_stride_o
,
nhead_stride_o
,
batch_stride_q
,
batch_stride_q
,
batch_stride_k
,
batch_stride_k
,
batch_stride_v
,
batch_stride_v
,
batch_stride_bias
,
batch_stride_bias
,
batch_stride_randval
,
batch_stride_lse
,
batch_stride_lse
,
batch_stride_lse_acc
,
batch_stride_o_acc
,
batch_stride_o
,
batch_stride_o
,
split_stride_lse_acc
,
split_stride_o_acc
,
mask
.
left
,
mask
.
left
,
mask
.
right
,
mask
.
right
,
static_cast
<
ck_tile
::
index_t
>
(
mask
.
type
)};
static_cast
<
ck_tile
::
index_t
>
(
mask
.
type
),
p_drop
,
s_randval
,
{
drop_seed
,
drop_offset
}};
}();
}();
float
ave_time
=
fmha_fwd
(
fmha_traits
,
fmha_args
,
stream_config
);
float
ave_time
=
fmha_fwd
_dispatch
(
fmha_traits
,
fmha_args
,
stream_config
);
if
(
ave_time
<
0
)
if
(
ave_time
<
0
)
{
{
...
@@ -565,6 +772,11 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -565,6 +772,11 @@ bool run(const ck_tile::ArgParser& arg_parser)
o_buf
.
FromDevice
(
o_host
.
data
());
o_buf
.
FromDevice
(
o_host
.
data
());
lse_buf
.
FromDevice
(
lse_host
.
data
());
lse_buf
.
FromDevice
(
lse_host
.
data
());
randval_buf
.
FromDevice
(
randval_host
.
data
());
float
p_undrop
=
1.0
-
p_drop
;
uint8_t
p_undrop_in_uint8_t
=
uint8_t
(
std
::
floor
(
p_undrop
*
std
::
numeric_limits
<
uint8_t
>::
max
()));
float
rp_undrop
=
1.0
/
p_undrop
;
bool
pass
=
true
;
bool
pass
=
true
;
...
@@ -576,7 +788,10 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -576,7 +788,10 @@ bool run(const ck_tile::ArgParser& arg_parser)
// adjust matrix index according to the mode
// adjust matrix index according to the mode
const
ck_tile
::
index_t
b
=
(
mode
==
mode_enum
::
batch
?
wb
:
0
);
const
ck_tile
::
index_t
b
=
(
mode
==
mode_enum
::
batch
?
wb
:
0
);
const
ck_tile
::
index_t
query_offset
=
(
mode
==
mode_enum
::
batch
?
0
:
seqstart_q_host
[
wb
]);
const
ck_tile
::
index_t
query_offset
=
(
mode
==
mode_enum
::
batch
?
0
:
seqstart_q_host
[
wb
]);
const
ck_tile
::
index_t
key_offset
=
(
mode
==
mode_enum
::
batch
?
0
:
seqstart_k_host
[
wb
]);
const
ck_tile
::
index_t
key_offset
=
(
mode
==
mode_enum
::
batch
?
0
:
(
seqlen_kpads
[
0
]
<
0
?
seqstart_k_host
[
wb
]
:
seqstart_k_with_padding_host
[
wb
]));
const
auto
v_host_ref_lengths
=
const
auto
v_host_ref_lengths
=
std
::
array
<
ck_tile
::
index_t
,
3
>
{
nhead
,
hdim_v
,
real_seqlen_k
};
std
::
array
<
ck_tile
::
index_t
,
3
>
{
nhead
,
hdim_v
,
real_seqlen_k
};
...
@@ -661,7 +876,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -661,7 +876,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
else
else
{
{
return
ck_tile
::
Alibi
<
SaccDataType
,
true
>
{
return
ck_tile
::
Alibi
<
SaccDataType
,
true
>
{
0
,
real_seqlen_q
,
real_seqlen_k
,
ck_tile
::
AlibiMode
::
VERTICAL
};
0
,
real_seqlen_q
,
real_seqlen_k
,
ck_tile
::
AlibiMode
::
FROM_BOTTOM_RIGHT
};
}
}
}();
}();
...
@@ -671,7 +886,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -671,7 +886,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
for
(
auto
i_h
=
0
;
i_h
<
nhead
;
i_h
++
)
for
(
auto
i_h
=
0
;
i_h
<
nhead
;
i_h
++
)
{
{
SaccDataType
current_slope
=
alibi_slope_host
(
i_b_slope
,
i_h
);
SaccDataType
current_slope
=
alibi_slope_host
(
i_b_slope
,
i_h
);
alibi_host
.
slope
=
current_slope
;
alibi_host
.
slope
=
alibi_host
.
mode
==
ck_tile
::
AlibiMode
::
VERTICAL
?
current_slope
:
-
current_slope
;
for
(
auto
i_r
=
0
;
i_r
<
real_seqlen_q
;
i_r
++
)
for
(
auto
i_r
=
0
;
i_r
<
real_seqlen_q
;
i_r
++
)
{
{
for
(
auto
i_c
=
0
;
i_c
<
real_seqlen_k
;
i_c
++
)
for
(
auto
i_c
=
0
;
i_c
<
real_seqlen_k
;
i_c
++
)
...
@@ -736,6 +952,17 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -736,6 +952,17 @@ bool run(const ck_tile::ArgParser& arg_parser)
s_host_ref
,
p_host_ref
,
p_compute_element_func
);
s_host_ref
,
p_host_ref
,
p_compute_element_func
);
}
}
if
(
p_drop
>
0
)
{
ck_tile
::
HostTensor
<
RandValOutputDataType
>
randval_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
randval_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
randval_host
(
b
,
idx
[
0
],
idx
[
1
]
+
query_offset
,
idx
[
2
]);
});
ck_tile
::
reference_batched_dropout
(
p_host_ref
,
randval_host_ref
,
p_undrop_in_uint8_t
,
rp_undrop
);
}
ck_tile
::
reference_batched_gemm
<
PDataType
,
VDataType
,
OaccDataType
,
ODataType
>
(
ck_tile
::
reference_batched_gemm
<
PDataType
,
VDataType
,
OaccDataType
,
ODataType
>
(
p_host_ref
,
p_host_ref
,
v_host_ref
,
v_host_ref
,
...
@@ -769,18 +996,17 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -769,18 +996,17 @@ bool run(const ck_tile::ArgParser& arg_parser)
if
(
lse
)
if
(
lse
)
{
{
ck_tile
::
HostTensor
<
SMPLComputeDataType
>
lse_host_result
({
nhead
,
real_seqlen_q
});
ck_tile
::
HostTensor
<
SMPLComputeDataType
>
lse_host_result
({
nhead
,
real_seqlen_q
});
lse_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
lse_host_result
.
ForEach
(
self
(
idx
)
=
lse_host
(
b
,
idx
[
0
],
idx
[
1
]
+
query_offset
);
[
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
lse_host
(
wb
,
idx
[
0
],
idx
[
1
]);
});
});
bool
lse
_pass
=
ck_tile
::
check_err
(
lse_host_result
,
cur
_pass
=
ck_tile
::
check_err
(
lse_host_result
,
lse_host_ref
,
lse_host_ref
,
"LSE Error: Incorrect results!"
,
"LSE Error: Incorrect results!"
,
rtol
,
rtol
,
atol
,
atol
,
/* allow_infinity_ref = */
true
);
/* allow_infinity_ref = */
true
);
pass
&=
lse
_pass
;
pass
&=
cur
_pass
;
if
(
!
cur_pass
)
if
(
!
cur_pass
)
{
{
std
::
cerr
<<
"LSE mismatch found at batch: "
<<
wb
<<
std
::
endl
std
::
cerr
<<
"LSE mismatch found at batch: "
<<
wb
<<
std
::
endl
...
...
example/ck_tile/01_fmha/fmha_fwd.hpp
View file @
dcd3d21a
...
@@ -17,61 +17,65 @@ struct FmhaFwdTypeConfig;
...
@@ -17,61 +17,65 @@ struct FmhaFwdTypeConfig;
template
<
>
template
<
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
half_t
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
half_t
>
{
{
using
QDataType
=
ck_tile
::
half_t
;
using
QDataType
=
ck_tile
::
half_t
;
using
KDataType
=
ck_tile
::
half_t
;
using
KDataType
=
ck_tile
::
half_t
;
using
VDataType
=
ck_tile
::
half_t
;
using
VDataType
=
ck_tile
::
half_t
;
using
BiasDataType
=
ck_tile
::
half_t
;
using
BiasDataType
=
ck_tile
::
half_t
;
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
RandValOutputDataType
=
uint8_t
;
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
PDataType
=
ck_tile
::
half_t
;
// data type for A matrix of second gemm
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
PDataType
=
ck_tile
::
half_t
;
// data type for A matrix of second gemm
using
ODataType
=
ck_tile
::
half_t
;
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
ODataType
=
ck_tile
::
half_t
;
};
};
template
<
>
template
<
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
bf16_t
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
bf16_t
>
{
{
using
QDataType
=
ck_tile
::
bf16_t
;
using
QDataType
=
ck_tile
::
bf16_t
;
using
KDataType
=
ck_tile
::
bf16_t
;
using
KDataType
=
ck_tile
::
bf16_t
;
using
VDataType
=
ck_tile
::
bf16_t
;
using
VDataType
=
ck_tile
::
bf16_t
;
using
BiasDataType
=
ck_tile
::
bf16_t
;
using
BiasDataType
=
ck_tile
::
bf16_t
;
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
RandValOutputDataType
=
uint8_t
;
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
PDataType
=
ck_tile
::
bf16_t
;
// data type for A matrix of second gemm
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
PDataType
=
ck_tile
::
bf16_t
;
// data type for A matrix of second gemm
using
ODataType
=
ck_tile
::
bf16_t
;
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
ODataType
=
ck_tile
::
bf16_t
;
};
};
template
<
>
template
<
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
fp8_t
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
fp8_t
>
{
{
using
QDataType
=
ck_tile
::
fp8_t
;
using
QDataType
=
ck_tile
::
fp8_t
;
using
KDataType
=
ck_tile
::
fp8_t
;
using
KDataType
=
ck_tile
::
fp8_t
;
using
VDataType
=
ck_tile
::
fp8_t
;
using
VDataType
=
ck_tile
::
fp8_t
;
using
BiasDataType
=
float
;
using
BiasDataType
=
float
;
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
RandValOutputDataType
=
uint8_t
;
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
PDataType
=
ck_tile
::
fp8_t
;
// data type for A matrix of second gemm
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
PDataType
=
ck_tile
::
fp8_t
;
// data type for A matrix of second gemm
using
ODataType
=
ck_tile
::
fp8_t
;
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
ODataType
=
ck_tile
::
fp8_t
;
};
};
template
<
>
template
<
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
bf8_t
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
bf8_t
>
{
{
using
QDataType
=
ck_tile
::
bf8_t
;
using
QDataType
=
ck_tile
::
bf8_t
;
using
KDataType
=
ck_tile
::
bf8_t
;
using
KDataType
=
ck_tile
::
bf8_t
;
using
VDataType
=
ck_tile
::
bf8_t
;
using
VDataType
=
ck_tile
::
bf8_t
;
using
BiasDataType
=
ck_tile
::
bf8_t
;
using
BiasDataType
=
ck_tile
::
bf8_t
;
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
RandValOutputDataType
=
uint8_t
;
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
PDataType
=
ck_tile
::
bf8_t
;
// data type for A matrix of second gemm
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
PDataType
=
ck_tile
::
bf8_t
;
// data type for A matrix of second gemm
using
ODataType
=
ck_tile
::
bf8_t
;
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
ODataType
=
ck_tile
::
bf8_t
;
};
};
struct
FmhaMasks
struct
FmhaMasks
...
@@ -88,6 +92,9 @@ struct fmha_fwd_args
...
@@ -88,6 +92,9 @@ struct fmha_fwd_args
const
void
*
k_ptr
;
const
void
*
k_ptr
;
const
void
*
v_ptr
;
const
void
*
v_ptr
;
const
void
*
bias_ptr
;
// bias or alibi_slope pointer
const
void
*
bias_ptr
;
// bias or alibi_slope pointer
void
*
rand_val_ptr
;
void
*
lse_acc_ptr
;
void
*
o_acc_ptr
;
void
*
lse_ptr
;
void
*
lse_ptr
;
void
*
o_ptr
;
void
*
o_ptr
;
const
void
*
seqstart_q_ptr
;
const
void
*
seqstart_q_ptr
;
...
@@ -101,6 +108,7 @@ struct fmha_fwd_args
...
@@ -101,6 +108,7 @@ struct fmha_fwd_args
ck_tile
::
index_t
hdim_v
;
ck_tile
::
index_t
hdim_v
;
ck_tile
::
index_t
nhead_q
;
ck_tile
::
index_t
nhead_q
;
ck_tile
::
index_t
nhead_k
;
ck_tile
::
index_t
nhead_k
;
ck_tile
::
index_t
num_splits
;
float
scale_s
;
float
scale_s
;
float
scale_p
;
float
scale_p
;
float
scale_o
;
float
scale_o
;
...
@@ -108,22 +116,35 @@ struct fmha_fwd_args
...
@@ -108,22 +116,35 @@ struct fmha_fwd_args
ck_tile
::
index_t
stride_k
;
ck_tile
::
index_t
stride_k
;
ck_tile
::
index_t
stride_v
;
ck_tile
::
index_t
stride_v
;
ck_tile
::
index_t
stride_bias
;
// if alibi, b*h need set this to h, 1*h need set this to 0
ck_tile
::
index_t
stride_bias
;
// if alibi, b*h need set this to h, 1*h need set this to 0
ck_tile
::
index_t
stride_randval
;
ck_tile
::
index_t
stride_o_acc
;
ck_tile
::
index_t
stride_o
;
ck_tile
::
index_t
stride_o
;
ck_tile
::
index_t
nhead_stride_q
;
ck_tile
::
index_t
nhead_stride_q
;
ck_tile
::
index_t
nhead_stride_k
;
ck_tile
::
index_t
nhead_stride_k
;
ck_tile
::
index_t
nhead_stride_v
;
ck_tile
::
index_t
nhead_stride_v
;
ck_tile
::
index_t
nhead_stride_bias
;
ck_tile
::
index_t
nhead_stride_bias
;
ck_tile
::
index_t
nhead_stride_randval
;
ck_tile
::
index_t
nhead_stride_lse
;
ck_tile
::
index_t
nhead_stride_lse
;
ck_tile
::
index_t
nhead_stride_lse_acc
;
ck_tile
::
index_t
nhead_stride_o_acc
;
ck_tile
::
index_t
nhead_stride_o
;
ck_tile
::
index_t
nhead_stride_o
;
ck_tile
::
index_t
batch_stride_q
;
ck_tile
::
index_t
batch_stride_q
;
ck_tile
::
index_t
batch_stride_k
;
ck_tile
::
index_t
batch_stride_k
;
ck_tile
::
index_t
batch_stride_v
;
ck_tile
::
index_t
batch_stride_v
;
ck_tile
::
index_t
batch_stride_bias
;
ck_tile
::
index_t
batch_stride_bias
;
ck_tile
::
index_t
batch_stride_randval
;
ck_tile
::
index_t
batch_stride_lse
;
ck_tile
::
index_t
batch_stride_lse
;
ck_tile
::
index_t
batch_stride_lse_acc
;
ck_tile
::
index_t
batch_stride_o_acc
;
ck_tile
::
index_t
batch_stride_o
;
ck_tile
::
index_t
batch_stride_o
;
ck_tile
::
index_t
split_stride_lse_acc
;
ck_tile
::
index_t
split_stride_o_acc
;
ck_tile
::
index_t
window_size_left
;
ck_tile
::
index_t
window_size_left
;
ck_tile
::
index_t
window_size_right
;
ck_tile
::
index_t
window_size_right
;
ck_tile
::
index_t
mask_type
;
ck_tile
::
index_t
mask_type
;
float
p_drop
;
bool
s_randval
;
std
::
tuple
<
uint64_t
,
uint64_t
>
drop_seed_offset
;
};
};
template
<
typename
FmhaKernel
>
template
<
typename
FmhaKernel
>
...
@@ -138,6 +159,7 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
...
@@ -138,6 +159,7 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
args
.
k_ptr
,
args
.
k_ptr
,
args
.
v_ptr
,
args
.
v_ptr
,
args
.
bias_ptr
,
args
.
bias_ptr
,
args
.
rand_val_ptr
,
args
.
lse_ptr
,
args
.
lse_ptr
,
args
.
o_ptr
,
args
.
o_ptr
,
args
.
seqstart_q_ptr
,
args
.
seqstart_q_ptr
,
...
@@ -145,6 +167,7 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
...
@@ -145,6 +167,7 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
args
.
seqlen_k_ptr
,
args
.
seqlen_k_ptr
,
args
.
hdim_q
,
args
.
hdim_q
,
args
.
hdim_v
,
args
.
hdim_v
,
args
.
nhead_q
,
args
.
nhead_q
/
args
.
nhead_k
,
args
.
nhead_q
/
args
.
nhead_k
,
args
.
scale_s
,
args
.
scale_s
,
args
.
scale_p
,
args
.
scale_p
,
...
@@ -153,16 +176,22 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
...
@@ -153,16 +176,22 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
args
.
stride_k
,
args
.
stride_k
,
args
.
stride_v
,
args
.
stride_v
,
args
.
stride_bias
,
args
.
stride_bias
,
args
.
stride_randval
,
args
.
stride_o
,
args
.
stride_o
,
args
.
nhead_stride_q
,
args
.
nhead_stride_q
,
args
.
nhead_stride_k
,
args
.
nhead_stride_k
,
args
.
nhead_stride_v
,
args
.
nhead_stride_v
,
args
.
nhead_stride_bias
,
args
.
nhead_stride_bias
,
args
.
nhead_stride_randval
,
args
.
nhead_stride_lse
,
args
.
nhead_stride_lse
,
args
.
nhead_stride_o
,
args
.
nhead_stride_o
,
args
.
batch_stride_lse
,
args
.
window_size_left
,
args
.
window_size_left
,
args
.
window_size_right
,
args
.
window_size_right
,
args
.
mask_type
);
args
.
mask_type
,
args
.
p_drop
,
args
.
s_randval
,
args
.
drop_seed_offset
);
}
}
else
else
{
// create batch mode kernel arguments
{
// create batch mode kernel arguments
...
@@ -170,12 +199,14 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
...
@@ -170,12 +199,14 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
args
.
k_ptr
,
args
.
k_ptr
,
args
.
v_ptr
,
args
.
v_ptr
,
args
.
bias_ptr
,
args
.
bias_ptr
,
args
.
rand_val_ptr
,
args
.
lse_ptr
,
args
.
lse_ptr
,
args
.
o_ptr
,
args
.
o_ptr
,
args
.
seqlen_q
,
args
.
seqlen_q
,
args
.
seqlen_k
,
args
.
seqlen_k
,
args
.
hdim_q
,
args
.
hdim_q
,
args
.
hdim_v
,
args
.
hdim_v
,
args
.
nhead_q
,
args
.
nhead_q
/
args
.
nhead_k
,
args
.
nhead_q
/
args
.
nhead_k
,
args
.
scale_s
,
args
.
scale_s
,
args
.
scale_p
,
args
.
scale_p
,
...
@@ -184,22 +215,28 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
...
@@ -184,22 +215,28 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
args
.
stride_k
,
args
.
stride_k
,
args
.
stride_v
,
args
.
stride_v
,
args
.
stride_bias
,
args
.
stride_bias
,
args
.
stride_randval
,
args
.
stride_o
,
args
.
stride_o
,
args
.
nhead_stride_q
,
args
.
nhead_stride_q
,
args
.
nhead_stride_k
,
args
.
nhead_stride_k
,
args
.
nhead_stride_v
,
args
.
nhead_stride_v
,
args
.
nhead_stride_bias
,
args
.
nhead_stride_bias
,
args
.
nhead_stride_randval
,
args
.
nhead_stride_lse
,
args
.
nhead_stride_lse
,
args
.
nhead_stride_o
,
args
.
nhead_stride_o
,
args
.
batch_stride_q
,
args
.
batch_stride_q
,
args
.
batch_stride_k
,
args
.
batch_stride_k
,
args
.
batch_stride_v
,
args
.
batch_stride_v
,
args
.
batch_stride_bias
,
args
.
batch_stride_bias
,
args
.
batch_stride_randval
,
args
.
batch_stride_lse
,
args
.
batch_stride_lse
,
args
.
batch_stride_o
,
args
.
batch_stride_o
,
args
.
window_size_left
,
args
.
window_size_left
,
args
.
window_size_right
,
args
.
window_size_right
,
args
.
mask_type
);
args
.
mask_type
,
args
.
p_drop
,
args
.
s_randval
,
args
.
drop_seed_offset
);
}
}
}();
}();
...
@@ -207,6 +244,176 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
...
@@ -207,6 +244,176 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
return
ck_tile
::
make_tuple
(
kargs
,
grids
);
return
ck_tile
::
make_tuple
(
kargs
,
grids
);
}
}
template
<
typename
Kernel
>
auto
fmha_fwd_splitkv_create_kargs_and_grids
(
fmha_fwd_args
args
)
{
assert
(
args
.
nhead_q
%
args
.
nhead_k
==
0
);
auto
kargs
=
[
&
]
{
// create group mode kernel arguments
if
constexpr
(
Kernel
::
kIsGroupMode
)
{
return
Kernel
::
MakeKargs
(
args
.
q_ptr
,
args
.
k_ptr
,
args
.
v_ptr
,
args
.
bias_ptr
,
args
.
rand_val_ptr
,
args
.
lse_acc_ptr
,
args
.
o_acc_ptr
,
args
.
batch
,
args
.
max_seqlen_q
,
args
.
seqstart_q_ptr
,
args
.
seqstart_k_ptr
,
args
.
seqlen_k_ptr
,
args
.
hdim_q
,
args
.
hdim_v
,
args
.
nhead_q
,
args
.
nhead_q
/
args
.
nhead_k
,
args
.
num_splits
,
args
.
scale_s
,
args
.
scale_p
,
args
.
stride_q
,
args
.
stride_k
,
args
.
stride_v
,
args
.
stride_bias
,
args
.
stride_randval
,
args
.
stride_o_acc
,
args
.
nhead_stride_q
,
args
.
nhead_stride_k
,
args
.
nhead_stride_v
,
args
.
nhead_stride_bias
,
args
.
nhead_stride_randval
,
args
.
nhead_stride_lse_acc
,
args
.
nhead_stride_o_acc
,
args
.
batch_stride_lse_acc
,
args
.
batch_stride_o_acc
,
args
.
split_stride_lse_acc
,
args
.
split_stride_o_acc
,
args
.
window_size_left
,
args
.
window_size_right
,
args
.
mask_type
,
args
.
p_drop
,
args
.
s_randval
,
args
.
drop_seed_offset
);
}
else
{
// create batch mode kernel arguments
return
Kernel
::
MakeKargs
(
args
.
q_ptr
,
args
.
k_ptr
,
args
.
v_ptr
,
args
.
bias_ptr
,
args
.
rand_val_ptr
,
args
.
lse_acc_ptr
,
args
.
o_acc_ptr
,
args
.
batch
,
args
.
max_seqlen_q
,
args
.
seqlen_q
,
args
.
seqlen_k
,
args
.
hdim_q
,
args
.
hdim_v
,
args
.
nhead_q
,
args
.
nhead_q
/
args
.
nhead_k
,
args
.
num_splits
,
args
.
scale_s
,
args
.
scale_p
,
args
.
stride_q
,
args
.
stride_k
,
args
.
stride_v
,
args
.
stride_bias
,
args
.
stride_randval
,
args
.
stride_o_acc
,
args
.
nhead_stride_q
,
args
.
nhead_stride_k
,
args
.
nhead_stride_v
,
args
.
nhead_stride_bias
,
args
.
nhead_stride_randval
,
args
.
nhead_stride_lse_acc
,
args
.
nhead_stride_o_acc
,
args
.
batch_stride_q
,
args
.
batch_stride_k
,
args
.
batch_stride_v
,
args
.
batch_stride_bias
,
args
.
batch_stride_randval
,
args
.
batch_stride_lse_acc
,
args
.
batch_stride_o_acc
,
args
.
split_stride_lse_acc
,
args
.
split_stride_o_acc
,
args
.
window_size_left
,
args
.
window_size_right
,
args
.
mask_type
,
args
.
p_drop
,
args
.
s_randval
,
args
.
drop_seed_offset
);
}
}();
dim3
grids
=
Kernel
::
GridSize
(
args
.
batch
,
args
.
nhead_q
,
args
.
max_seqlen_q
,
args
.
hdim_v
,
args
.
num_splits
);
return
ck_tile
::
make_tuple
(
kargs
,
grids
);
}
template
<
typename
Kernel
>
auto
fmha_fwd_splitkv_combine_create_kargs_and_grids
(
fmha_fwd_args
args
)
{
assert
(
args
.
nhead_q
%
args
.
nhead_k
==
0
);
auto
kargs
=
[
&
]
{
// create group mode kernel argumentszs
if
constexpr
(
Kernel
::
kIsGroupMode
)
{
return
Kernel
::
MakeKargs
(
args
.
lse_acc_ptr
,
args
.
o_acc_ptr
,
args
.
lse_ptr
,
args
.
o_ptr
,
args
.
batch
,
args
.
max_seqlen_q
,
args
.
seqstart_q_ptr
,
args
.
hdim_v
,
args
.
num_splits
,
args
.
scale_o
,
args
.
stride_o_acc
,
args
.
stride_o
,
args
.
nhead_stride_lse_acc
,
args
.
nhead_stride_o_acc
,
args
.
nhead_stride_lse
,
args
.
nhead_stride_o
,
args
.
batch_stride_lse_acc
,
args
.
batch_stride_o_acc
,
args
.
batch_stride_lse
,
args
.
split_stride_lse_acc
,
args
.
split_stride_o_acc
);
}
else
{
// create batch mode kernel arguments
return
Kernel
::
MakeKargs
(
args
.
lse_acc_ptr
,
args
.
o_acc_ptr
,
args
.
lse_ptr
,
args
.
o_ptr
,
args
.
batch
,
args
.
max_seqlen_q
,
args
.
seqlen_q
,
args
.
hdim_v
,
args
.
num_splits
,
args
.
scale_o
,
args
.
stride_o_acc
,
args
.
stride_o
,
args
.
nhead_stride_lse_acc
,
args
.
nhead_stride_o_acc
,
args
.
nhead_stride_lse
,
args
.
nhead_stride_o
,
args
.
batch_stride_lse_acc
,
args
.
batch_stride_o_acc
,
args
.
batch_stride_lse
,
args
.
batch_stride_o
,
args
.
split_stride_lse_acc
,
args
.
split_stride_o_acc
);
}
}();
dim3
grids
=
Kernel
::
GridSize
(
args
.
batch
,
args
.
nhead_q
,
args
.
max_seqlen_q
,
args
.
hdim_v
);
return
ck_tile
::
make_tuple
(
kargs
,
grids
);
}
// this is used to pattern-match internl kernel implementation, not to instantiate kernel
// this is used to pattern-match internl kernel implementation, not to instantiate kernel
template
<
ck_tile
::
index_t
HDim_
,
template
<
ck_tile
::
index_t
HDim_
,
typename
DataType_
,
typename
DataType_
,
...
@@ -222,6 +429,7 @@ template <ck_tile::index_t HDim_,
...
@@ -222,6 +429,7 @@ template <ck_tile::index_t HDim_,
typename
FmhaMask_
,
typename
FmhaMask_
,
ck_tile
::
BlockAttentionBiasEnum
BiasEnum_
,
ck_tile
::
BlockAttentionBiasEnum
BiasEnum_
,
bool
kStoreLse_
,
bool
kStoreLse_
,
bool
kHasDropout_
,
bool
kDoFp8StaticQuant_
,
bool
kDoFp8StaticQuant_
,
bool
kPadS_
,
bool
kPadS_
,
bool
kPadSK_
,
bool
kPadSK_
,
...
@@ -243,6 +451,7 @@ struct fmha_fwd_traits_
...
@@ -243,6 +451,7 @@ struct fmha_fwd_traits_
using
FmhaMask
=
ck_tile
::
remove_cvref_t
<
FmhaMask_
>
;
using
FmhaMask
=
ck_tile
::
remove_cvref_t
<
FmhaMask_
>
;
static
constexpr
auto
BiasEnum
=
BiasEnum_
;
static
constexpr
auto
BiasEnum
=
BiasEnum_
;
static
constexpr
bool
kStoreLse
=
kStoreLse_
;
static
constexpr
bool
kStoreLse
=
kStoreLse_
;
static
constexpr
bool
kHasDropout
=
kHasDropout_
;
static
constexpr
bool
kDoFp8StaticQuant
=
kDoFp8StaticQuant_
;
static
constexpr
bool
kDoFp8StaticQuant
=
kDoFp8StaticQuant_
;
static
constexpr
bool
kPadS
=
kPadS_
;
static
constexpr
bool
kPadS
=
kPadS_
;
static
constexpr
bool
kPadSK
=
kPadSK_
;
static
constexpr
bool
kPadSK
=
kPadSK_
;
...
@@ -253,6 +462,40 @@ struct fmha_fwd_traits_
...
@@ -253,6 +462,40 @@ struct fmha_fwd_traits_
template
<
typename
Traits_
>
template
<
typename
Traits_
>
float
fmha_fwd_
(
const
ck_tile
::
stream_config
&
,
fmha_fwd_args
);
float
fmha_fwd_
(
const
ck_tile
::
stream_config
&
,
fmha_fwd_args
);
template
<
typename
Traits_
>
void
fmha_fwd_splitkv_oneshot_
(
const
ck_tile
::
stream_config
&
,
fmha_fwd_args
);
template
<
typename
Traits_
>
std
::
string
fmha_fwd_splitkv_get_name_
();
template
<
ck_tile
::
index_t
HDim_
,
typename
DataType_
,
bool
kIsGroupMode_
,
ck_tile
::
index_t
kM0_
,
ck_tile
::
index_t
kN1_
,
bool
kStoreLse_
,
bool
kDoFp8StaticQuant_
,
bool
kPadS_
,
bool
kPadDv_
>
struct
fmha_fwd_splitkv_combine_traits_
{
static
constexpr
ck_tile
::
index_t
HDim
=
HDim_
;
using
DataType
=
ck_tile
::
remove_cvref_t
<
DataType_
>
;
static
constexpr
bool
kIsGroupMode
=
kIsGroupMode_
;
static
constexpr
ck_tile
::
index_t
kM0
=
kM0_
;
static
constexpr
ck_tile
::
index_t
kN1
=
kN1_
;
static
constexpr
bool
kStoreLse
=
kStoreLse_
;
static
constexpr
bool
kDoFp8StaticQuant
=
kDoFp8StaticQuant_
;
static
constexpr
bool
kPadS
=
kPadS_
;
static
constexpr
bool
kPadDv
=
kPadDv_
;
};
template
<
typename
Traits_
>
void
fmha_fwd_splitkv_combine_oneshot_
(
const
ck_tile
::
stream_config
&
,
fmha_fwd_args
);
template
<
typename
Traits_
>
std
::
string
fmha_fwd_splitkv_combine_get_name_
();
// This is the public API, will be generated by script
// This is the public API, will be generated by script
struct
fmha_fwd_traits
struct
fmha_fwd_traits
{
{
...
@@ -264,7 +507,9 @@ struct fmha_fwd_traits
...
@@ -264,7 +507,9 @@ struct fmha_fwd_traits
mask_enum
mask_type
;
mask_enum
mask_type
;
bias_enum
bias_type
;
// 0:no bias, 1:elementwise bias, 2:alibi. sync with BlockAttentionBiasEnum
bias_enum
bias_type
;
// 0:no bias, 1:elementwise bias, 2:alibi. sync with BlockAttentionBiasEnum
bool
has_lse
;
bool
has_lse
;
bool
has_dropout
;
bool
do_fp8_static_quant
;
bool
do_fp8_static_quant
;
// TODO: padding check is inside this api
// TODO: padding check is inside this api
};
};
float
fmha_fwd
(
fmha_fwd_traits
,
fmha_fwd_args
,
const
ck_tile
::
stream_config
&
);
float
fmha_fwd
(
fmha_fwd_traits
,
fmha_fwd_args
,
const
ck_tile
::
stream_config
&
);
float
fmha_fwd_splitkv
(
fmha_fwd_traits
,
fmha_fwd_args
,
const
ck_tile
::
stream_config
&
);
example/ck_tile/01_fmha/generate.py
View file @
dcd3d21a
...
@@ -3,579 +3,62 @@
...
@@ -3,579 +3,62 @@
# generate kernel instances to speed up compilation
# generate kernel instances to speed up compilation
import
argparse
import
argparse
import
itertools
from
enum
import
IntEnum
from
pathlib
import
Path
from
pathlib
import
Path
from
typing
import
List
,
Optional
,
Tuple
from
typing
import
List
,
Optional
from
dataclasses
import
dataclass
import
copy
import
fnmatch
DTYPE_MAP
=
{
from
codegen.cmake_config
import
*
"fp16"
:
"ck_tile::fp16_t"
,
from
codegen.ops
import
(
"bf16"
:
"ck_tile::bf16_t"
,
fmha_fwd
,
"fp8"
:
"ck_tile::fp8_t"
fmha_fwd_splitkv
,
}
fmha_bwd
)
DTYPE_BITS
=
{
"fp32"
:
32
,
"fp16"
:
16
,
"bf16"
:
16
,
"fp8"
:
8
,
"bf8"
:
8
}
MASK_IMPL
=
{
"generic"
:
"ck_tile::GenericAttentionMask"
,
"simplified"
:
"ck_tile::SimplifiedGenericAttentionMask"
}
MASK_SIMPLIFIED_MAP
=
{
"s_no"
:
"ck_tile::SimplifiedGenericAttentionMask<false>"
,
"s_mask"
:
"ck_tile::SimplifiedGenericAttentionMask<true>"
,
}
MASK_MAP
=
{
"no"
:
"FmhaMasks::NoMask"
,
"causal"
:
"FmhaMasks::CausalMask"
,
"generic"
:
"FmhaMasks::GenericMask"
}
BIAS_MAP
=
{
"no"
:
"ck_tile::BlockAttentionBiasEnum::NO_BIAS"
,
"bias"
:
"ck_tile::BlockAttentionBiasEnum::ELEMENTWISE_BIAS"
,
"alibi"
:
"ck_tile::BlockAttentionBiasEnum::ALIBI"
}
# TODO: this is ugly
BIAS_CHECK_MAP
=
{
"no"
:
"bias_enum::no_bias"
,
"bias"
:
"bias_enum::elementwise_bias"
,
"alibi"
:
"bias_enum::alibi"
}
MODE_MAP
=
{
"batch"
:
"false"
,
"group"
:
"true"
}
LAYOUT_MAP
=
{
"row"
:
"true"
,
"col"
:
"false"
}
PIPELINE_MAP
=
{
"qr"
:
"ck_tile::BlockFmhaPipelineQRKSVS"
,
"qr_async"
:
"ck_tile::BlockFmhaPipelineQRKSVSAsync"
,
}
PIPELINE_ENUM_MAP
=
{
"qr"
:
"ck_tile::BlockFmhaPipelineEnum::QRKSVS"
,
"qr_async"
:
"ck_tile::BlockFmhaPipelineEnum::QRKSVS_ASYNC"
,
}
BOOL_MAP
=
{
"t"
:
"true"
,
"f"
:
"false"
}
DIRECTIONS
=
[
"fwd"
]
GEN_DIR
=
""
# in Cmake, have to generate files in same folder
FMHA_FWD_KERNEL_HEADER
=
"""// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
\n
// auto generated by generate.py
#include "fmha_fwd.hpp"
"""
FMHA_FWD_KERNEL_BODY
=
"""
using fmha_dtype_{F_idx} = {F_dtype};
using fmha_block_tile_{F_idx} = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}>;
using fmha_block_warps_{F_idx} = ck_tile::sequence<{F_rm}, {F_rn}, {F_rk}>;
using fmha_warp_tile_{F_idx} = ck_tile::sequence<{F_wm}, {F_wn}, {F_wk}>;
using fmha_shape_{F_idx} = ck_tile::TileFmhaShape<fmha_block_tile_{F_idx},
fmha_block_warps_{F_idx},
fmha_warp_tile_{F_idx},
fmha_block_warps_{F_idx},
fmha_warp_tile_{F_idx},
{F_vlayout}>;
using fmha_trait_{F_idx} = ck_tile::TileFmhaTraits<{F_spad},
{F_skpad},
{F_dpad},
{F_dvpad},
{F_bias},
{F_lse},
{F_squant},
{F_occupancy}>;
using fmha_mask_{F_idx} = {F_mask};
using fmha_pipeline_problem_{F_idx} = ck_tile::BlockFmhaPipelineProblem<
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::QDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::KDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::VDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::SaccDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::SMPLComputeDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::BiasDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::LSEDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::PDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::OaccDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::ODataType,
fmha_shape_{F_idx},
{F_mode},
fmha_mask_{F_idx},
fmha_trait_{F_idx}>;
using fmha_pipeline_{F_idx} = {F_pipeline}<
class
HandlerId
(
IntEnum
):
fmha_pipeline_problem_{F_idx}>;
LIST_BLOBS
=
0
WRITE_BLOBS
=
1
using fmha_epilogue_{F_idx} =
handlers
=
{
ck_tile::Default2DEpilogue<ck_tile::Default2DEpilogueProblem<typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType,
'fwd'
:
(
fmha_fwd
.
list_blobs
,
fmha_fwd
.
write_blobs
),
typename FmhaFwdTypeConfig<{F_dtype}>::ODataType,
'fwd_splitkv'
:
(
fmha_fwd_splitkv
.
list_blobs
,
fmha_fwd_splitkv
.
write_blobs
),
{F_spad}, {F_dvpad}>>;
'bwd'
:
(
fmha_bwd
.
list_blobs
,
fmha_bwd
.
write_blobs
),
using fmha_kernel_{F_idx} =
ck_tile::FmhaFwdKernel<ck_tile::FmhaFwdTilePartitioner<fmha_shape_{F_idx}>,
fmha_pipeline_{F_idx},
fmha_epilogue_{F_idx}>;
using trait_{F_idx} = fmha_fwd_traits_<{F_hdim}, {F_dtype}, {F_mode},{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}, {F_vlayout},
{F_pipeline_enum}, fmha_mask_{F_idx}, {F_bias}, {F_lse}, {F_squant}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
#include <iostream>
template<>
float fmha_fwd_<trait_{F_idx}>(const ck_tile::stream_config& s, fmha_fwd_args a)
{{
using k_ = fmha_kernel_{F_idx};
if(s.log_level_ > 0)
std::cout << ", " << k_::GetName() << std::flush;
auto [kargs, grids] = fmha_fwd_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks = k_::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
return ck_tile::launch_kernel<blocks.x, kBlockPerCu>(s, k_{{}}, grids, blocks, 0, kargs);
}}
"""
FMHA_FWD_API_FILENAME
=
"fmha_fwd_api.cpp"
FMHA_FWD_API
=
"""
float fmha_fwd(fmha_fwd_traits t, fmha_fwd_args a, const ck_tile::stream_config& s){{
float r = -1;
{F_dispatch}
return r;
}}
"""
FMHA_FWD_API_PER_DTYPE
=
""" {F_if}(t.data_type.compare(
\"
{F_dtype}
\"
) == 0){{
{F_hdim_case}
}}
"""
FMHA_FWD_API_PER_HDIM_CASE
=
""" {F_if} (t.hdim_q <= {F_hdim} && t.hdim_v <= {F_hdim}) {{
{F_inner_dispatch}
}}
"""
MASK_CHECK_MAP
=
{
"no"
:
"t.mask_type == mask_enum::no_mask"
,
"causal"
:
"t.mask_type == mask_enum::mask_top_left || t.mask_type == mask_enum::mask_bottom_right"
,
"generic"
:
"t.mask_type == mask_enum::window_generic"
,
}
MASK_SIMPLIFIED_CHECK_MAP
=
{
"s_no"
:
"t.mask_type == mask_enum::no_mask"
,
"s_mask"
:
"t.mask_type != mask_enum::no_mask"
,
}
}
FMHA_FWD_API_INNER_DISPATCH
=
""" {F_if}((t.is_group_mode == {F_mode}) && (t.is_v_rowmajor == {F_vlayout}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.has_lse == {F_lse}) && (t.do_fp8_static_quant == {F_squant}) &&
def
write_blobs
(
output_dir
:
Optional
[
str
],
api_list
:
List
[
str
],
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
None
:
({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck})) {{
using trait_ = fmha_fwd_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, {F_lse}, {F_squant}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
return fmha_fwd_<trait_>(s, a);
}}
"""
def
get_mask_map
(
mask
:
str
):
if
mask
==
"generic"
:
return
MASK_MAP
elif
mask
==
"simplified"
:
return
MASK_SIMPLIFIED_MAP
else
:
assert
False
return
None
def
get_mask_check_map
(
mask
:
str
):
if
mask
==
"generic"
:
return
MASK_CHECK_MAP
elif
mask
==
"simplified"
:
return
MASK_SIMPLIFIED_CHECK_MAP
else
:
assert
False
return
None
@
dataclass
class
FmhaFwdApiTrait
:
pipeline_tag
:
str
# sync with fmha_fwd_traits<>, to generate fallback calls
hdim
:
str
dtype
:
str
# data type
mode
:
str
# value from MODE_MAP
bm0
:
int
# tile size along q seqlen (block size)
bn0
:
int
# tile size along qk seqlen
bk0
:
int
# tile size along qk gemm unroll
bn1
:
int
# tile size along v head_dim
bk1
:
int
# tile size along kv gemm unroll
bk0blen
:
int
vlayout
:
str
mask
:
str
bias
:
str
#
lse
:
str
#
squant
:
str
#
spad
:
str
skpad
:
str
dpad
:
str
dvpad
:
str
@
property
def
name
(
self
)
->
str
:
return
f
'
{
self
.
hdim
}
-
{
self
.
dtype
}
-
{
self
.
mode
}
-
{
self
.
bm0
}
-
{
self
.
bn0
}
-
{
self
.
bk0
}
-
{
self
.
bn0
}
-
{
self
.
bk1
}
-
{
self
.
bk0blen
}
-'
+
\
f
'
{
self
.
vlayout
}
-
{
self
.
mask
}
-
{
self
.
bias
}
-
{
self
.
lse
}
-
{
self
.
squant
}
-
{
self
.
spad
}
-
{
self
.
skpad
}
-
{
self
.
dpad
}
-
{
self
.
dvpad
}
'
@
property
def
scheck
(
self
)
->
str
:
if
self
.
mode
==
'group'
:
return
'true/*group mode spad always true*/'
# group mode only generate spad/skpad == true
if
self
.
pipeline_tag
==
'qr_async'
:
if
self
.
spad
==
't'
:
return
'true'
# always support
else
:
return
'true'
elif
self
.
pipeline_tag
in
[
'qr'
]:
if
self
.
spad
==
't'
:
return
f
'true /*a.seqlen_q %
{
self
.
bm0
}
!= 0*/'
# TODO: order of get_pipelines() matters! (ugly)
else
:
return
f
'a.seqlen_q %
{
self
.
bm0
}
== 0'
else
:
assert
False
@
property
def
skcheck
(
self
)
->
str
:
if
self
.
mode
==
'group'
:
return
'true/*group mode skpad always true*/'
# group mode only generate spad/skpad == true
if
self
.
pipeline_tag
==
'qr_async'
:
if
self
.
skpad
==
't'
:
return
f
'a.seqlen_k == 0 || a.seqlen_k %
{
self
.
bn0
}
!= 0'
else
:
return
f
'a.seqlen_k != 0 && a.seqlen_k %
{
self
.
bn0
}
== 0'
elif
self
.
pipeline_tag
in
[
'qr'
,
'qr_fp8'
]:
if
self
.
skpad
==
't'
:
return
f
'true /*a.seqlen_k %
{
self
.
bn0
}
!= 0*/'
# TODO: order of get_pipelines() matters! (ugly)
else
:
return
f
'a.seqlen_k %
{
self
.
bn0
}
== 0'
else
:
assert
False
@
property
def
dcheck
(
self
)
->
str
:
if
self
.
pipeline_tag
==
'qr_async'
:
vec
=
int
((
32
*
4
)
/
DTYPE_BITS
[
self
.
dtype
])
if
self
.
dpad
==
't'
:
return
f
'a.hdim_q %
{
vec
}
== 0'
else
:
assert
False
elif
self
.
pipeline_tag
in
[
'qr'
]:
if
self
.
dpad
==
't'
:
return
f
'true /*a.hdim_q %
{
self
.
bk0blen
}
!= 0*/'
# TODO: order of get_pipelines() matters! (ugly)
else
:
return
f
'a.hdim_q %
{
self
.
bk0blen
}
== 0'
else
:
assert
False
@
property
def
dvcheck
(
self
)
->
str
:
if
self
.
pipeline_tag
==
'qr_async'
:
vec
=
int
((
32
*
4
)
/
DTYPE_BITS
[
self
.
dtype
])
if
self
.
dvpad
==
't'
:
return
f
'a.hdim_v %
{
vec
}
== 0'
else
:
assert
False
elif
self
.
pipeline_tag
in
[
'qr'
]:
if
self
.
dvpad
==
't'
:
return
f
'true /*a.hdim_v %
{
self
.
bk0blen
}
!= 0*/'
# TODO: order of get_pipelines() matters! (ugly)
else
:
return
f
'a.hdim_v %
{
self
.
bk0blen
}
== 0'
else
:
assert
False
@
dataclass
class
FmhaFwdPipeline
:
tag
:
str
F_vlayout
:
str
# row/col
F_spad
:
str
# true/false
F_skpad
:
str
#
F_dpad
:
str
#
F_dvpad
:
str
#
F_bias
:
str
# true/false
F_lse
:
str
#
F_squant
:
str
#
F_mask
:
str
# value from MASK_MAP
@
property
def
name
(
self
)
->
str
:
def
pad_name
()
->
str
:
n
=
''
if
self
.
F_spad
==
't'
:
n
+=
's'
if
self
.
F_skpad
==
't'
:
n
+=
'sk'
if
self
.
F_dpad
==
't'
:
n
+=
'd'
if
self
.
F_dvpad
==
't'
:
n
+=
'dv'
if
n
!=
''
:
n
=
'p'
+
n
return
n
pn
=
pad_name
()
n
=
f
'
{
self
.
tag
}
_v
{
self
.
F_vlayout
[
0
]
}
'
if
pn
!=
''
:
n
+=
f
'_
{
pn
}
'
if
self
.
F_bias
!=
'no'
:
n
+=
f
'_
{
self
.
F_bias
}
'
if
self
.
F_mask
[
0
:
2
]
==
's_'
:
if
self
.
F_mask
==
's_mask'
:
n
+=
f
'_mask'
else
:
if
self
.
F_mask
!=
'no'
:
n
+=
f
'_m
{
self
.
F_mask
[
0
]
}
'
if
self
.
F_lse
==
't'
:
n
+=
'_lse'
if
self
.
F_squant
==
't'
:
n
+=
'_squant'
return
n
class
FmhaFwdApiPool
:
def
__init__
(
self
,
mask_impl
):
self
.
pool
=
dict
()
self
.
mask_impl
=
mask_impl
def
register_traits
(
self
,
trait
:
FmhaFwdApiTrait
)
->
None
:
# TODO: do we need to check duplication?
if
trait
.
dtype
not
in
self
.
pool
.
keys
():
self
.
pool
[
trait
.
dtype
]
=
dict
()
if
trait
.
hdim
not
in
self
.
pool
[
trait
.
dtype
].
keys
():
self
.
pool
[
trait
.
dtype
][
trait
.
hdim
]
=
list
()
self
.
pool
[
trait
.
dtype
][
trait
.
hdim
].
append
(
copy
.
copy
(
trait
))
@
property
def
api
(
self
)
->
str
:
per_dtypes
=
str
()
for
i
,
dtype
in
enumerate
(
self
.
pool
.
keys
()):
per_hdim_case
=
str
()
for
j
,
hdim
in
enumerate
(
self
.
pool
[
dtype
].
keys
()):
traits
=
self
.
pool
[
dtype
][
hdim
]
inners
=
str
()
for
k
,
trait
in
enumerate
(
traits
):
if_k
=
'if'
if
k
==
0
else
'else if'
inners
=
inners
+
FMHA_FWD_API_INNER_DISPATCH
.
format
(
F_if
=
if_k
,
F_mode
=
MODE_MAP
[
trait
.
mode
],
F_vlayout
=
LAYOUT_MAP
[
trait
.
vlayout
],
F_pipeline_enum
=
PIPELINE_ENUM_MAP
[
trait
.
pipeline_tag
],
F_mask
=
get_mask_map
(
self
.
mask_impl
)[
trait
.
mask
],
F_mask_check
=
get_mask_check_map
(
self
.
mask_impl
)[
trait
.
mask
],
F_bias_check
=
BIAS_CHECK_MAP
[
trait
.
bias
],
F_bias
=
BIAS_MAP
[
trait
.
bias
],
F_lse
=
BOOL_MAP
[
trait
.
lse
],
F_squant
=
BOOL_MAP
[
trait
.
squant
],
F_scheck
=
trait
.
scheck
,
F_skcheck
=
trait
.
skcheck
,
F_dcheck
=
trait
.
dcheck
,
F_dvcheck
=
trait
.
dvcheck
,
F_spad
=
BOOL_MAP
[
trait
.
spad
],
F_skpad
=
BOOL_MAP
[
trait
.
skpad
],
F_dpad
=
BOOL_MAP
[
trait
.
dpad
],
F_dvpad
=
BOOL_MAP
[
trait
.
dvpad
],
F_bm0
=
trait
.
bm0
,
F_bn0
=
trait
.
bn0
,
F_bk0
=
trait
.
bk0
,
F_bn1
=
trait
.
bn1
,
F_bk1
=
trait
.
bk1
,
F_bk0blen
=
trait
.
bk0blen
,
F_hdim
=
hdim
,
F_dtype
=
DTYPE_MAP
[
dtype
])
if_j
=
'if'
if
j
==
0
else
'else if'
per_hdim_case
=
per_hdim_case
+
FMHA_FWD_API_PER_HDIM_CASE
.
format
(
F_if
=
if_j
,
F_hdim
=
hdim
,
F_inner_dispatch
=
inners
)
if_i
=
'if'
if
i
==
0
else
'else if'
per_dtypes
=
per_dtypes
+
FMHA_FWD_API_PER_DTYPE
.
format
(
F_if
=
if_i
,
F_dtype
=
dtype
,
F_hdim_case
=
per_hdim_case
)
return
FMHA_FWD_KERNEL_HEADER
+
FMHA_FWD_API
.
format
(
F_dispatch
=
per_dtypes
)
@
dataclass
class
FmhaFwdTileSize
:
F_bm0
:
int
# tile size along q seqlen (block size)
F_bn0
:
int
# tile size along qk seqlen
F_bk0
:
int
# tile size along qk gemm unroll
F_bn1
:
int
# tile size along v head_dim
F_bk1
:
int
# tile size along kv gemm unroll
F_bk0blen
:
int
# total length of K0, used for pipeline that need load Q at once (or repeately load Q as a whole tile)
F_rm
:
int
# number of warps along q seqlen (block warps)
F_rn
:
int
# number of warps along k seqlen(not used)
F_rk
:
int
# number of warps along gemm-k(not used)
F_wm
:
int
# warp size along m (warp size)
F_wn
:
int
# warp size along n
F_wk
:
int
# warp size along k
F_occupancy
:
int
# occupancy, -1 will let pipeline decide the occupancy, other value will overwrite occupancy
@
property
def
name
(
self
)
->
str
:
return
f
"b
{
self
.
F_bm0
}
x
{
self
.
F_bn0
}
x
{
self
.
F_bk0
}
x
{
self
.
F_bn1
}
x
{
self
.
F_bk1
}
x
{
self
.
F_bk0blen
}
"
+
\
f
"_r
{
self
.
F_rm
}
x
{
self
.
F_rn
}
x
{
self
.
F_rk
}
_w
{
self
.
F_wm
}
x
{
self
.
F_wn
}
x
{
self
.
F_wk
}
"
+
\
(
""
if
self
.
F_occupancy
==
-
1
else
f
"_o
{
self
.
F_occupancy
}
"
)
@
dataclass
class
FmhaFwdKernel
:
direction
:
str
F_idx
:
int
# this is not a tunable, but a counter to differentiate symbol
F_hdim
:
int
# hdim
F_dtype
:
str
# data type
F_mode
:
str
# value from MODE_MAP
F_tile
:
FmhaFwdTileSize
F_pipeline
:
FmhaFwdPipeline
mask_impl
:
str
@
property
def
template
(
self
)
->
str
:
kernel_body
=
str
()
return
FMHA_FWD_KERNEL_HEADER
+
\
FMHA_FWD_KERNEL_BODY
.
format
(
F_idx
=
self
.
F_idx
,
F_hdim
=
self
.
F_hdim
,
F_dtype
=
DTYPE_MAP
[
self
.
F_dtype
],
F_bm0
=
self
.
F_tile
.
F_bm0
,
F_bn0
=
self
.
F_tile
.
F_bn0
,
F_bk0
=
self
.
F_tile
.
F_bk0
,
F_bn1
=
self
.
F_tile
.
F_bn1
,
F_bk1
=
self
.
F_tile
.
F_bk1
,
F_bk0blen
=
self
.
F_tile
.
F_bk0blen
,
F_rm
=
self
.
F_tile
.
F_rm
,
F_rn
=
self
.
F_tile
.
F_rn
,
F_rk
=
self
.
F_tile
.
F_rk
,
F_wm
=
self
.
F_tile
.
F_wm
,
F_wn
=
self
.
F_tile
.
F_wn
,
F_wk
=
self
.
F_tile
.
F_wk
,
F_vlayout
=
LAYOUT_MAP
[
self
.
F_pipeline
.
F_vlayout
],
F_spad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_spad
],
F_skpad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_skpad
],
F_dpad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_dpad
],
F_dvpad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_dvpad
],
F_bias
=
BIAS_MAP
[
self
.
F_pipeline
.
F_bias
],
F_lse
=
BOOL_MAP
[
self
.
F_pipeline
.
F_lse
],
F_squant
=
BOOL_MAP
[
self
.
F_pipeline
.
F_squant
],
F_occupancy
=
self
.
F_tile
.
F_occupancy
,
F_pipeline_enum
=
PIPELINE_ENUM_MAP
[
self
.
F_pipeline
.
tag
],
F_mask
=
get_mask_map
(
self
.
mask_impl
)[
self
.
F_pipeline
.
F_mask
],
F_mode
=
MODE_MAP
[
self
.
F_mode
],
F_pipeline
=
PIPELINE_MAP
[
self
.
F_pipeline
.
tag
])
@
property
def
name
(
self
)
->
str
:
# TODO: we don't encode idx here
return
f
"fmha_
{
self
.
direction
}
_d
{
self
.
F_hdim
}
_
{
self
.
F_dtype
}
_
{
self
.
F_mode
}
_"
+
\
self
.
F_tile
.
name
+
'_'
+
self
.
F_pipeline
.
name
@
property
def
filename
(
self
)
->
str
:
return
self
.
name
+
".cpp"
def
api_trait
(
self
)
->
FmhaFwdApiTrait
:
return
FmhaFwdApiTrait
(
pipeline_tag
=
self
.
F_pipeline
.
tag
,
hdim
=
str
(
self
.
F_hdim
),
dtype
=
self
.
F_dtype
,
mode
=
self
.
F_mode
,
bm0
=
self
.
F_tile
.
F_bm0
,
bn0
=
self
.
F_tile
.
F_bn0
,
bk0
=
self
.
F_tile
.
F_bk0
,
bn1
=
self
.
F_tile
.
F_bn1
,
bk1
=
self
.
F_tile
.
F_bk1
,
bk0blen
=
self
.
F_tile
.
F_bk0blen
,
vlayout
=
self
.
F_pipeline
.
F_vlayout
,
mask
=
self
.
F_pipeline
.
F_mask
,
bias
=
self
.
F_pipeline
.
F_bias
,
lse
=
self
.
F_pipeline
.
F_lse
,
squant
=
self
.
F_pipeline
.
F_squant
,
spad
=
self
.
F_pipeline
.
F_spad
,
skpad
=
self
.
F_pipeline
.
F_skpad
,
dpad
=
self
.
F_pipeline
.
F_dpad
,
dvpad
=
self
.
F_pipeline
.
F_dvpad
)
# TODO: design a more practical way to do it
# this is current supported tile size per hdim
def
get_fmha_fwd_tile_dict_from_dtype
(
direction
:
str
,
dtype
:
str
)
->
Optional
[
dict
]:
if
direction
==
'fwd'
:
if
dtype
==
'fp16'
or
dtype
==
'bf16'
:
return
{
'32'
:
FmhaFwdTileSize
(
128
,
64
,
16
,
32
,
32
,
32
,
2
,
1
,
1
,
32
,
32
,
16
,
-
1
),
'64'
:
FmhaFwdTileSize
(
128
,
64
,
32
,
64
,
32
,
64
,
4
,
1
,
1
,
32
,
32
,
16
,
-
1
),
'128'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
128
,
32
,
128
,
4
,
1
,
1
,
32
,
32
,
16
,
-
1
),
'256'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
256
,
32
,
256
,
4
,
1
,
1
,
32
,
32
,
16
,
-
1
),
}
elif
dtype
==
'fp8'
or
dtype
==
'bf8'
:
return
{
'64'
:
FmhaFwdTileSize
(
128
,
64
,
32
,
64
,
32
,
64
,
2
,
1
,
1
,
32
,
32
,
32
,
-
1
),
'128'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
128
,
32
,
128
,
4
,
1
,
1
,
32
,
32
,
32
,
-
1
),
'256'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
256
,
32
,
256
,
4
,
1
,
1
,
32
,
32
,
32
,
-
1
)
}
else
:
return
None
else
:
return
None
def
get_blobs
(
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
Tuple
[
FmhaFwdApiPool
,
List
[
FmhaFwdKernel
]]:
# TODO: we don't support tuning yet, so pick up one value for vlayout/pipeline/pad
# support this in future
def
get_pipelines
(
dtype
,
hdim
)
->
List
[
FmhaFwdPipeline
]:
# this function will populate a list possible pipelines
# TODO: the order of List matters! the later in this list will be also be checked later
# TODO: currently for qr pipeline, let 't' padding to appear later!!
# TODO: how to design this more generic?
squant
=
't'
if
dtype
==
'fp8'
else
'f'
pipelines
=
[]
if
dtype
in
[
'fp16'
,
'bf16'
]:
for
mask
,
bias
,
lse
in
itertools
.
product
(
get_mask_map
(
mask_impl
).
keys
(),
BIAS_MAP
.
keys
(),
[
"t"
,
"f"
]):
if
hdim
==
256
:
# if True:
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'row'
,
'f'
,
'f'
,
'f'
,
'f'
,
bias
,
lse
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'col'
,
'f'
,
'f'
,
'f'
,
'f'
,
bias
,
lse
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'row'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'col'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
squant
,
mask
))
else
:
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'row'
,
't'
,
'f'
,
't'
,
't'
,
bias
,
lse
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'row'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'col'
,
't'
,
'f'
,
't'
,
't'
,
bias
,
lse
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'col'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
squant
,
mask
))
if
receipt
==
1
:
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'row'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
squant
,
mask
))
# TODO: cover arbitraty hdim
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'col'
,
't'
,
'f'
,
't'
,
't'
,
bias
,
lse
,
squant
,
mask
))
# TODO: cover arbitraty hdim
elif
dtype
in
[
'fp8'
,
'bf8'
]:
# no need lse kernels
for
mask
,
bias
in
itertools
.
product
(
get_mask_map
(
mask_impl
).
keys
(),
BIAS_MAP
.
keys
()):
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'col'
,
'f'
,
'f'
,
'f'
,
'f'
,
bias
,
'f'
,
squant
,
mask
))
else
:
assert
False
return
pipelines
gen
=
list
()
api_pool
=
FmhaFwdApiPool
(
mask_impl
)
for
direction
,
dtype
in
itertools
.
product
(
DIRECTIONS
,
DTYPE_MAP
.
keys
()):
d
=
get_fmha_fwd_tile_dict_from_dtype
(
direction
,
dtype
)
if
d
==
None
:
continue
#for hdim_str, mode, mask, bias, lse in itertools.product(d.keys(), MODE_MAP.keys(), MASK_MAP.keys(), ["t", "f"], ["t", "f"]):
for
hdim_str
,
mode
in
itertools
.
product
(
d
.
keys
(),
MODE_MAP
.
keys
()):
tile
=
d
[
hdim_str
]
hdim
=
int
(
hdim_str
)
for
pipeline
in
get_pipelines
(
dtype
,
hdim
):
if
mode
==
"group"
:
if
pipeline
.
F_spad
!=
't'
or
pipeline
.
F_skpad
!=
't'
:
# in group mode, spad/skpad must be true, since we can't predict if seqlen of current batch need pad or not
continue
k
=
FmhaFwdKernel
(
direction
=
direction
,
F_idx
=
0
,
F_hdim
=
hdim
,
F_dtype
=
dtype
,
F_mode
=
mode
,
F_tile
=
tile
,
F_pipeline
=
pipeline
,
mask_impl
=
mask_impl
)
if
kernel_filter
!=
None
:
if
not
fnmatch
.
fnmatch
(
k
.
name
,
kernel_filter
):
continue
api_pool
.
register_traits
(
k
.
api_trait
())
gen
.
append
(
k
)
return
(
api_pool
,
gen
)
def
write_single_kernel
(
kernel
:
FmhaFwdKernel
,
autogen_dir
:
Path
)
->
None
:
(
autogen_dir
/
kernel
.
filename
).
write_text
(
kernel
.
template
)
def
write_api
(
api_pool
:
FmhaFwdApiPool
,
autogen_dir
:
Path
)
->
None
:
(
autogen_dir
/
FMHA_FWD_API_FILENAME
).
write_text
(
api_pool
.
api
)
def
write_blobs
(
output_dir
:
Optional
[
str
],
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
None
:
if
output_dir
is
None
:
if
output_dir
is
None
:
output_dir
=
Path
(
__file__
).
parent
output_dir
=
Path
(
__file__
).
parent
else
:
else
:
output_dir
=
Path
(
output_dir
)
/
GEN_DIR
output_dir
=
Path
(
output_dir
)
/
GEN_DIR
output_dir
.
mkdir
(
parents
=
True
,
exist_ok
=
True
)
output_dir
.
mkdir
(
parents
=
True
,
exist_ok
=
True
)
api_pool
,
kernels
=
get_blobs
(
kernel_filter
,
receipt
,
mask_impl
)
for
kernel
in
kernels
:
for
api
in
api_list
:
write_single_kernel
(
kernel
,
output_dir
)
handler
=
handlers
[
api
][
HandlerId
.
WRITE_BLOBS
]
write_api
(
api_pool
,
output_dir
)
handler
(
output_dir
,
kernel_filter
,
receipt
,
mask_impl
)
# list all the files that will be generated
# list all the files that will be generated
def
list_blobs
(
output_file
:
Optional
[
str
],
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
None
:
def
list_blobs
(
output_file
:
Optional
[
str
],
api_list
:
List
[
str
],
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
None
:
assert
output_file
is
not
None
assert
output_file
is
not
None
file_path
=
Path
(
output_file
)
file_path
=
Path
(
output_file
)
with
file_path
.
open
(
'a'
)
as
f
:
_
,
kernels
=
get_blobs
(
kernel_filter
,
receipt
,
mask_impl
)
for
api
in
api_list
:
for
kernel
in
kernels
:
handler
=
handlers
[
api
][
HandlerId
.
LIST_BLOBS
]
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
kernel
.
filename
)
+
"
\n
"
)
handler
(
file_path
,
kernel_filter
,
receipt
,
mask_impl
)
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
FMHA_FWD_API_FILENAME
)
+
"
\n
"
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
parser
=
argparse
.
ArgumentParser
(
parser
=
argparse
.
ArgumentParser
(
prog
=
"generate"
,
prog
=
"generate"
,
description
=
"gen api for CK fmha kernel"
,
description
=
"gen API for CK fmha kernel"
,
)
parser
.
add_argument
(
"-d"
,
"--direction"
,
# we keep 'direction' option for backward compatibility
"-a"
,
"--api"
,
default
=
'fwd'
,
required
=
False
,
help
=
"supply API(s) to generate (default: fwd). separated by comma."
)
)
parser
.
add_argument
(
parser
.
add_argument
(
"-o"
,
"-o"
,
...
@@ -611,11 +94,13 @@ if __name__ == "__main__":
...
@@ -611,11 +94,13 @@ if __name__ == "__main__":
default
=
0
,
default
=
0
,
required
=
False
,
required
=
False
,
help
=
"codegen receipt. 0: generate only 8xhdim coverage
\n
"
+
\
help
=
"codegen receipt. 0: generate only 8xhdim coverage
\n
"
+
\
" 1: generate more instance to cover all hdim"
" 1: generate more instance to cover all hdim
\n
"
+
\
" 2: Only generate instance for Flash attention integration"
)
)
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
api_list
=
args
.
direction
.
split
(
','
)
if
args
.
list_blobs
is
not
None
:
if
args
.
list_blobs
is
not
None
:
list_blobs
(
args
.
list_blobs
,
args
.
filter
,
args
.
receipt
,
mask_impl
=
args
.
mask
)
list_blobs
(
args
.
list_blobs
,
api_list
,
args
.
filter
,
int
(
args
.
receipt
)
,
mask_impl
=
args
.
mask
)
else
:
else
:
write_blobs
(
args
.
output_dir
,
args
.
filter
,
args
.
receipt
,
mask_impl
=
args
.
mask
)
write_blobs
(
args
.
output_dir
,
api_list
,
args
.
filter
,
int
(
args
.
receipt
)
,
mask_impl
=
args
.
mask
)
\ No newline at end of file
example/ck_tile/01_fmha/script/benchmark_bwd.sh
0 → 100644
View file @
dcd3d21a
#!/bin/sh
# TODO: run this script from CK root
BUILD
=
build
EXE
=
$BUILD
/bin/tile_example_fmha_bwd
VALID
=
0
for
prec
in
"fp16"
"bf16"
;
do
for
perm
in
0 1
;
do
for
hdim
in
32 64 128
;
do
nhead
=
$((
2048
/
$hdim
))
# follow fav2 setup
$EXE
-prec
=
$prec
-b
=
32
-h
=
$nhead
-d
=
$hdim
-s
=
512
-iperm
=
$perm
-operm
=
$perm
-kname
=
1
-v
=
$VALID
;
sleep
3
$EXE
-prec
=
$prec
-b
=
16
-h
=
$nhead
-d
=
$hdim
-s
=
1024
-iperm
=
$perm
-operm
=
$perm
-kname
=
1
-v
=
$VALID
;
sleep
3
$EXE
-prec
=
$prec
-b
=
8
-h
=
$nhead
-d
=
$hdim
-s
=
2048
-iperm
=
$perm
-operm
=
$perm
-kname
=
1
-v
=
$VALID
;
sleep
3
$EXE
-prec
=
$prec
-b
=
4
-h
=
$nhead
-d
=
$hdim
-s
=
4096
-iperm
=
$perm
-operm
=
$perm
-kname
=
1
-v
=
$VALID
;
sleep
3
$EXE
-prec
=
$prec
-b
=
2
-h
=
$nhead
-d
=
$hdim
-s
=
8192
-iperm
=
$perm
-operm
=
$perm
-kname
=
1
-v
=
$VALID
;
sleep
3
$EXE
-prec
=
$prec
-b
=
1
-h
=
$nhead
-d
=
$hdim
-s
=
16384
-iperm
=
$perm
-operm
=
$perm
-kname
=
1
-v
=
$VALID
;
sleep
3
done
done
done
example/ck_tile/01_fmha/script/benchmark.sh
→
example/ck_tile/01_fmha/script/benchmark
_fwd
.sh
View file @
dcd3d21a
File moved
example/ck_tile/01_fmha/script/smoke_test_bwd.sh
0 → 100644
View file @
dcd3d21a
#!/bin/sh
# TODO: run this script from CK root
BUILD
=
build
EXE
=
$BUILD
/bin/tile_example_fmha_bwd
KNAME
=
1
export
CK_WARMUP
=
0
export
CK_REPEAT
=
1
COMMON_ARGS
=
'-v=1'
for
prec
in
"fp16"
"bf16"
;
do
for
perm
in
0 1
;
do
for
hdim
in
32 64 128
;
do
for
mode
in
0 1
;
do
for
bias
in
"n"
"e"
"a"
;
do
for
dbias
in
0 1
;
do
for
p_drop
in
0.0 0.2
;
do
$EXE
-prec
=
$prec
-b
=
1
-h
=
4
-h_k
=
2
-d
=
$hdim
-s
=
259
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
2
-h
=
2
-d
=
$hdim
-s
=
516
-s_k
=
253
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
1
-h
=
4
-h_k
=
1
-d
=
$hdim
-s
=
500
-s_k
=
251
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-mask
=
1
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
1
-h
=
2
-d
=
$hdim
-s
=
900
-s_k
=
258
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-mask
=
2
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
2
-h
=
1
-d
=
$hdim
-s
=
987
-s_k
=
219
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-mask
=
t:128,30
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
2
-h
=
3
-h_k
=
1
-d
=
$hdim
-s
=
244
-s_k
=
499
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-mask
=
b:4,35
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
done
done
done
done
done
done
done
Prev
1
2
3
4
5
6
7
8
9
…
19
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment