Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
db53dba4
Commit
db53dba4
authored
Feb 14, 2025
by
coderfeli
Browse files
hotfix:gemm1 use real tokens and gemm2 ok
parent
58db931e
Changes
5
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
110 additions
and
84 deletions
+110
-84
example/65_gemm_multiply_multiply/moe_gemm1.cpp
example/65_gemm_multiply_multiply/moe_gemm1.cpp
+17
-17
example/65_gemm_multiply_multiply/moe_gemm2.cpp
example/65_gemm_multiply_multiply/moe_gemm2.cpp
+42
-31
include/ck/tensor_operation/gpu/grid/gridwise_moe_gemm_gather.hpp
...ck/tensor_operation/gpu/grid/gridwise_moe_gemm_gather.hpp
+4
-9
include/ck/tensor_operation/gpu/grid/gridwise_moe_gemm_scatter.hpp
...k/tensor_operation/gpu/grid/gridwise_moe_gemm_scatter.hpp
+39
-19
library/include/ck/library/reference_tensor_operation/cpu/reference_moe_gemm2.hpp
...ry/reference_tensor_operation/cpu/reference_moe_gemm2.hpp
+8
-8
No files found.
example/65_gemm_multiply_multiply/moe_gemm1.cpp
View file @
db53dba4
...
...
@@ -35,7 +35,7 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
using
A0DataType
=
F8
;
using
B0DataType
=
F8
;
using
EDataType
=
F
32
;
using
EDataType
=
F
16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
F32
;
...
...
@@ -133,6 +133,8 @@ using BElementOp = PassThrough;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
ck
::
index_t
MPerBlock
=
32
;
static
constexpr
ck
::
index_t
BLOCKSIZE
=
256
;
static
constexpr
ck
::
index_t
NPerBlock
=
128
;
static
constexpr
ck
::
index_t
MNPerXDL
=
32
;
static
constexpr
ck
::
index_t
CShuffleMXDLPerWave
=
MPerBlock
/
32
;
static
constexpr
ck
::
index_t
KPerBlock
=
256
/
sizeof
(
A0DataType
);
...
...
@@ -156,7 +158,7 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceMoeGemm
<
Row
,
Col
,
DsLayout
,
ELayout
,
A0DataType
,
B0DataType
,
DsDataType
,
EDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
//threadnum, mblock, nblock, kblock
256
,
MPerBlock
,
128
,
KPerBlock
,
BLOCKSIZE
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
// ak1, bk1
AK1
,
BK1
,
// mn_perxdl
...
...
@@ -196,10 +198,10 @@ int main(int argc, char* argv[])
ck
::
index_t
valid_tile_num
=
8
;
ck
::
index_t
sorted_size
=
sorted_tile_num
*
MPerBlock
;
ck
::
index_t
valid_size
=
valid_tile_num
*
MPerBlock
;
ck
::
index_t
batch
=
64
;
ck
::
index_t
tokens
=
64
;
ck
::
index_t
topk
=
2
;
ck
::
index_t
tokens
=
batch
*
topk
;
//
ck::index_t tokens = batch * topk;
if
(
argc
==
1
)
{
...
...
@@ -225,7 +227,6 @@ int main(int argc, char* argv[])
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
K
;
// ck::index_t StrideD = 0;
ck
::
index_t
StrideE
=
N
;
constexpr
ck
::
index_t
NumDTensor
=
DsDataType
::
Size
();
constexpr
auto
StrideDs
=
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
0
,
0
};
...
...
@@ -241,14 +242,14 @@ int main(int argc, char* argv[])
for
(
int
i
=
0
;
i
<
sorted_tile_num
;
i
++
)
{
expert_ids
.
mData
[
i
]
=
i
;
}
int
token_per_tile
=
tokens
/
valid_tile_num
;
int
token_per_tile
=
tokens
*
topk
/
valid_tile_num
;
int
tokenid
=
0
;
// sorted_token_ids.mData[0] = 0;
for
(
int
i
=
0
;
i
<
sorted_size
;
i
++
)
{
int
tile_off
=
i
%
valid_size
;
if
(
tile_off
<
token_per_tile
)
{
sorted_token_ids
.
mData
[
i
]
=
(
tokenid
%
batch
)
|
((
tokenid
/
batch
)
<<
24
);
sorted_token_ids
.
mData
[
i
]
=
(
tokenid
%
tokens
)
|
((
tokenid
/
tokens
)
<<
24
);
tokenid
++
;
}
else
...
...
@@ -258,13 +259,13 @@ int main(int argc, char* argv[])
}
expert_ids
.
savetxt
(
"expert_ids.txt"
,
"int"
);
sorted_token_ids
.
savetxt
(
"sorted_token_ids.txt"
,
"int"
);
Tensor
<
A0DataType
>
a0_t_k
(
HostTensorDescriptor
({
batch
,
K
},
{
K
,
1
}));
Tensor
<
A0DataType
>
a0_t_k
(
HostTensorDescriptor
({
tokens
,
K
},
{
K
,
1
}));
Tensor
<
B0DataType
>
b0_e_n_k
(
HostTensorDescriptor
({
experts
,
N
,
K
},
{
N
*
K
,
K
,
1
}));
Tensor
<
B0DataType
>
b0_preshuffled
(
HostTensorDescriptor
({
experts
,
N
,
K
},
{
N
*
K
,
K
,
1
}));
Tensor
<
D0DataType
>
d0_t_n
(
HostTensorDescriptor
({
batch
,
N
},
{
StrideDs
[
0
],
0
}));
Tensor
<
D0DataType
>
d0_t_n
(
HostTensorDescriptor
({
tokens
,
N
},
{
StrideDs
[
0
],
0
}));
Tensor
<
D1DataType
>
d1_e_n
(
HostTensorDescriptor
({
experts
,
N
},
{
1
,
StrideDs
[
1
]}));
Tensor
<
EDataType
>
e_t_n_host_result
(
HostTensorDescriptor
({
batch
,
topk
,
N
},
{
topk
*
N
,
N
,
1
}));
Tensor
<
EDataType
>
e_t_n_device_result
(
HostTensorDescriptor
({
batch
,
topk
,
N
},
{
topk
*
N
,
N
,
1
}));
Tensor
<
EDataType
>
e_t_n_host_result
(
HostTensorDescriptor
({
tokens
,
topk
,
N
},
{
topk
*
N
,
N
,
1
}));
Tensor
<
EDataType
>
e_t_n_device_result
(
HostTensorDescriptor
({
tokens
,
topk
,
N
},
{
topk
*
N
,
N
,
1
}));
std
::
cout
<<
"a0_t_k: "
<<
a0_t_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_e_n_k: "
<<
b0_e_n_k
.
mDesc
<<
std
::
endl
;
...
...
@@ -293,8 +294,6 @@ int main(int argc, char* argv[])
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
d1_e_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
0.0
,
1.0
});
}
d0_t_n
.
savetxt
(
"d0_t_n.txt"
,
"int"
);
d1_e_n
.
savetxt
(
"d1_e_n.txt"
,
"int"
);
DeviceMem
sorted_token_ids_dev
(
sizeof
(
ck
::
index_t
)
*
sorted_token_ids
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
expert_ids_dev
(
sizeof
(
ck
::
index_t
)
*
expert_ids
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
max_token_id_dev
(
sizeof
(
ck
::
index_t
)
*
max_token_id
.
mDesc
.
GetElementSpaceSize
());
...
...
@@ -304,13 +303,14 @@ int main(int argc, char* argv[])
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_e_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_t_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_t_k
.
savetxt
(
"a.txt"
);
d0_t_n
.
savetxt
(
"d0_t_n.txt"
,
"int"
);
d1_e_n
.
savetxt
(
"d1_e_n.txt"
,
"int"
);
sorted_token_ids_dev
.
ToDevice
(
sorted_token_ids
.
mData
.
data
());
expert_ids_dev
.
ToDevice
(
expert_ids
.
mData
.
data
());
max_token_id_dev
.
ToDevice
(
max_token_id
.
mData
.
data
());
a0_device_buf
.
ToDevice
(
a0_t_k
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_t_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_e_n
.
mData
.
data
());
// e_device_buf.ToDevice(e_t_n_device_result.mData.data());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
...
...
@@ -358,9 +358,9 @@ int main(int argc, char* argv[])
if
(
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
sorte
d_size
*
N
*
K
;
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
vali
d_size
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
sorte
d_size
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
*
experts
+
sizeof
(
EDataType
)
*
sorte
d_size
*
N
;
sizeof
(
A0DataType
)
*
vali
d_size
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
*
experts
+
sizeof
(
EDataType
)
*
vali
d_size
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
...
...
@@ -376,7 +376,7 @@ int main(int argc, char* argv[])
e_device_buf
.
FromDevice
(
e_t_n_device_result
.
mData
.
data
());
Tensor
<
CShuffleDataType
>
c_t_k_n
({
batch
,
topk
,
N
},
{
topk
*
N
,
N
,
1
});
Tensor
<
CShuffleDataType
>
c_t_k_n
({
tokens
,
topk
,
N
},
{
topk
*
N
,
N
,
1
});
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceMoeGemm
<
A0DataType
,
B0DataType
,
...
...
example/65_gemm_multiply_multiply/moe_gemm2.cpp
View file @
db53dba4
...
...
@@ -67,7 +67,9 @@ struct MulABScaleExpertWeight
const
float
&
d1
,
const
float
&
d2
)
const
{
e
=
ck
::
type_convert
<
EDataType
>
(
c
*
d0
*
d1
*
d2
);
// e = ck::type_convert<EDataType>(c * d0 * d1 * d2);
(
void
)
d2
;
e
=
ck
::
type_convert
<
EDataType
>
(
c
*
d0
*
d1
);
}
// for reference
template
<
>
...
...
@@ -78,7 +80,8 @@ struct MulABScaleExpertWeight
const
float
&
d1
,
const
float
&
d2
)
const
{
e
=
ck
::
type_convert
<
EDataType
>
(
c
*
d0
*
d1
*
d2
);
(
void
)
d2
;
e
=
ck
::
type_convert
<
EDataType
>
(
c
*
d0
*
d1
);
}
};
...
...
@@ -187,10 +190,12 @@ int main(int argc, char* argv[])
ck
::
index_t
experts
=
8
;
ck
::
index_t
sorted_tile_num
=
9
;
ck
::
index_t
valid_tile_num
=
8
;
ck
::
index_t
sorted_tile_size
=
MPerBlock
;
ck
::
index_t
sorted_size
=
sorted_tile_num
*
sorted_tile_size
;
ck
::
index_t
valid_size
=
valid_tile_num
*
sorted_tile_size
;
ck
::
index_t
tokens
=
64
;
ck
::
index_t
sorted_size
=
sorted_tile_num
*
MPerBlock
;
ck
::
index_t
valid_size
=
valid_tile_num
*
MPerBlock
;
ck
::
index_t
batch
=
64
;
ck
::
index_t
topk
=
2
;
ck
::
index_t
tokens
=
batch
;
if
(
argc
==
1
)
{
...
...
@@ -231,77 +236,83 @@ int main(int argc, char* argv[])
for
(
int
i
=
0
;
i
<
sorted_tile_num
;
i
++
)
{
expert_ids
.
mData
[
i
]
=
i
;
}
int
token_per_tile
=
tokens
/
sorte
d_tile_num
;
int
token_per_tile
=
tokens
*
topk
/
vali
d_tile_num
;
int
tokenid
=
0
;
// sorted_token_ids.mData[0] = 0;
for
(
int
i
=
0
;
i
<
sorted_size
;
i
++
)
{
int
tile_off
=
i
%
sorted_tile
_size
;
int
tile_off
=
i
%
valid
_size
;
if
(
tile_off
<
token_per_tile
)
sorted_token_ids
.
mData
[
i
]
=
tokenid
++
;
{
sorted_token_ids
.
mData
[
i
]
=
(
tokenid
%
batch
)
|
((
tokenid
/
batch
)
<<
24
);
tokenid
++
;
}
else
{
sorted_token_ids
.
mData
[
i
]
=
tokens
;
}
Tensor
<
A0DataType
>
a0_m_k
(
HostTensorDescriptor
({
sorted_size
,
K
},
{
K
,
1
}));
}
expert_ids
.
savetxt
(
"expert_ids.txt"
,
"int"
);
sorted_token_ids
.
savetxt
(
"sorted_token_ids.txt"
,
"int"
);
Tensor
<
A0DataType
>
a0_t_k
(
HostTensorDescriptor
({
batch
,
K
},
{
K
,
1
}));
Tensor
<
B0DataType
>
b0_e_n_k
(
HostTensorDescriptor
({
experts
,
N
,
K
},
{
N
*
K
,
K
,
1
}));
Tensor
<
B0DataType
>
b0_preshuffled
(
HostTensorDescriptor
({
experts
,
N
,
K
},
{
N
*
K
,
K
,
1
}));
Tensor
<
D0DataType
>
d0_
m
_n
(
HostTensorDescriptor
({
sorted_size
,
N
},
{
StrideDs
[
0
],
0
}));
Tensor
<
D0DataType
>
d0_
t
_n
(
HostTensorDescriptor
({
batch
,
N
},
{
StrideDs
[
0
],
0
}));
Tensor
<
D1DataType
>
d1_e_n
(
HostTensorDescriptor
({
experts
,
N
},
{
1
,
StrideDs
[
1
]}));
Tensor
<
D2DataType
>
d2_e_n
(
HostTensorDescriptor
({
sorted_size
,
N
},
{
1
,
0
}));
Tensor
<
EDataType
>
e_t_n_host_result
(
HostTensorDescriptor
({
tokens
,
N
},
{
N
,
1
}));
Tensor
<
EDataType
>
e_t_n_device_result
(
HostTensorDescriptor
({
tokens
,
N
},
{
N
,
1
}));
e_t_n_device_result
.
SetZero
();
std
::
cout
<<
"a0_
m
_k: "
<<
a0_
m
_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a0_
t
_k: "
<<
a0_
t
_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_e_n_k: "
<<
b0_e_n_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d2_e_n: "
<<
d2_e_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_e_n: "
<<
d1_e_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_
m
_n: "
<<
d0_
m
_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_
t
_n: "
<<
d0_
t
_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_t_n: "
<<
e_t_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a0_
m
_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
2
,
2
});
a0_
t
_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
2
,
2
});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
0
,
2
});
d0_
m
_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
2
,
2
});
d0_
t
_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
2
,
2
});
d1_e_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D1DataType
>
{
-
2
,
2
});
d2_e_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D2DataType
>
{
-
2
,
2
});
break
;
case
2
:
a0_
m
_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
A0DataType
>
{});
a0_
t
_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
A0DataType
>
{});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
d0_
m
_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D0DataType
>
{});
d0_
t
_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D0DataType
>
{});
d1_e_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D1DataType
>
{});
d2_e_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D2DataType
>
{});
break
;
default:
a0_
m
_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
a0_
t
_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
-
0.5
,
0.5
});
d0_
m
_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
d0_
t
_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
d1_e_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
0.0
,
1.0
});
d2_e_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D2DataType
>
{
0.0
,
1.0
});
}
DeviceMem
sorted_token_ids_dev
(
sizeof
(
ck
::
index_t
)
*
sorted_token_ids
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
expert_ids_dev
(
sizeof
(
ck
::
index_t
)
*
expert_ids
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
max_token_id_dev
(
sizeof
(
ck
::
index_t
)
*
max_token_id
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
a0_
m
_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
a0_
t
_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
b0_e_n_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
d0_
m
_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
d0_
t
_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_e_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d2_device_buf
(
sizeof
(
D2DataType
)
*
d2_e_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_t_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_
m
_k
.
savetxt
(
"a.txt"
);
a0_
t
_k
.
savetxt
(
"a.txt"
);
expert_ids
.
savetxt
(
"expert_ids.txt"
,
"int"
);
sorted_token_ids
.
savetxt
(
"sorted_token_ids.txt"
,
"int"
);
d0_
m
_n
.
savetxt
(
"d0_
m
_n.txt"
,
"int"
);
d0_
t
_n
.
savetxt
(
"d0_
t
_n.txt"
,
"int"
);
d1_e_n
.
savetxt
(
"d1_e_n.txt"
,
"int"
);
d2_e_n
.
savetxt
(
"d2_e_n.txt"
,
"int"
);
sorted_token_ids_dev
.
ToDevice
(
sorted_token_ids
.
mData
.
data
());
expert_ids_dev
.
ToDevice
(
expert_ids
.
mData
.
data
());
max_token_id_dev
.
ToDevice
(
max_token_id
.
mData
.
data
());
a0_device_buf
.
ToDevice
(
a0_
m
_k
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_
m
_n
.
mData
.
data
());
a0_device_buf
.
ToDevice
(
a0_
t
_k
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_
t
_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_e_n
.
mData
.
data
());
d2_device_buf
.
ToDevice
(
d2_e_n
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_t_n_device_result
.
mData
.
data
());
...
...
@@ -332,6 +343,7 @@ int main(int argc, char* argv[])
d2_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
tokens
,
topk
,
sorted_size
,
N
,
K
,
...
...
@@ -354,9 +366,9 @@ int main(int argc, char* argv[])
// not result correct here because output buf not setzero
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
sorte
d_size
*
N
*
K
;
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
vali
d_size
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
sorte
d_size
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
*
experts
+
sizeof
(
EDataType
)
*
sorte
d_size
*
N
;
sizeof
(
A0DataType
)
*
vali
d_size
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
*
experts
+
sizeof
(
EDataType
)
*
vali
d_size
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
...
...
@@ -387,12 +399,12 @@ int main(int argc, char* argv[])
auto
ref_moe_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_moe_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_moe_gemm
.
MakeArgument
(
sorted_token_ids
,
expert_ids
,
max_token_id
,
sorted_tile_size
,
a0_
m
_k
,
b0_e_n_k
,
d0_
m
_n
,
d1_e_n
,
d2_e_n
,
c_t_n
,
PassThrough
{},
PassThrough
{},
cde_element_op
);
sorted_token_ids
,
expert_ids
,
max_token_id
,
MPerBlock
,
a0_
t
_k
,
b0_e_n_k
,
d0_
t
_n
,
d1_e_n
,
d2_e_n
,
c_t_n
,
PassThrough
{},
PassThrough
{},
cde_element_op
);
ref_invoker
.
Run
(
ref_argument
);
for
(
int
t
=
0
;
t
<
tokens
;
++
t
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
e_t_n_host_result
(
t
,
n
)
=
ck
::
type_convert
<
EDataType
>
(
c_t_n
(
t
,
n
));
...
...
@@ -402,7 +414,6 @@ int main(int argc, char* argv[])
e_device_buf
.
FromDevice
(
e_t_n_device_result
.
mData
.
data
());
e_t_n_device_result
.
savetxt
(
"out.txt"
);
e_t_n_host_result
.
savetxt
(
"ref.txt"
);
return
ck
::
utils
::
check_err
(
e_t_n_device_result
,
e_t_n_host_result
,
"Error: Incorrect results!"
,
1e-3
,
5e-2
)
?
0
...
...
include/ck/tensor_operation/gpu/grid/gridwise_moe_gemm_gather.hpp
View file @
db53dba4
...
...
@@ -638,7 +638,6 @@ struct GridwiseMoeGemmGather
BElementwiseOperation
b_element_op_
,
CElementwiseOperation
c_element_op_
)
:
Problem
{
NumTokens_
,
TopK_
,
M_
,
N_
,
K_
,
StrideA_
,
StrideB_
,
StrideDs_
,
StrideC_
,
k_batch_
},
p_sorted_token_ids
{
p_sorted_token_ids_
},
p_sorted_expert_ids
{
p_sorted_expert_ids_
},
p_max_token_id
{
p_max_token_id_
},
...
...
@@ -663,7 +662,6 @@ struct GridwiseMoeGemmGather
const
index_t
*
p_sorted_token_ids
;
const
index_t
*
p_sorted_expert_ids
;
const
index_t
*
p_max_token_id
;
const
ADataType
*
p_a_grid
;
const
BDataType
*
p_b_grid
;
DsGridPointer
p_ds_grid
;
...
...
@@ -1146,7 +1144,7 @@ struct GridwiseMoeGemmGather
const
auto
b_grid_desc_bpreshuffled
=
MakeBGridDescriptor_Preshuffled
(
problem
.
BN0Shuffled
,
problem
.
BK0Shuffled
);
const
auto
c_grid_desc_m_n
=
MakeCGridDescriptor_M_N
<
CLayout
>
(
problem
.
M
,
problem
.
MPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideC
);
problem
.
NumTokens
*
problem
.
TopK
,
problem
.
MPadded
,
problem
.
N
,
problem
.
NPadded
,
problem
.
StrideC
);
// printf("tido %d size %d %d MNBLOCK %d %d %d %d\n", threadIdx.x, problem.StrideC, c_grid_desc_m_n.GetElementSpaceSize(),
// problem.MBlock, problem.NBlock, MPerBlock, NPerBlock);
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
...
...
@@ -1165,7 +1163,6 @@ struct GridwiseMoeGemmGather
constexpr
auto
AK1Threads
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I2
);
constexpr
auto
AKThreads
=
AK0Threads
*
AK1Threads
;
constexpr
auto
AMRepeats
=
MPerBlock
/
AMThreads
;
// static_assert(MLoadRepeats == 1, "only support 1 line per thread now!");
const
index_t
token_pos
=
block_m_id
*
MPerBlock
+
threadIdx
.
x
/
AKThreads
*
AMRepeats
;
if
(
token_pos
>=
max_token_id
||
token0
>=
problem
.
NumTokens
)
...
...
@@ -1177,8 +1174,6 @@ struct GridwiseMoeGemmGather
gather_offsets
(
m0
)
=
token_offset
*
problem
.
K
;
// printf("init off tid %d m %d off %d\n", threadIdx.x, m0(), gather_offsets(m0));
});
// const index_t m_block_data_idx_on_grid =
// __builtin_amdgcn_readfirstlane(block_m_id * MPerBlock);
const
index_t
expert_stride
=
__builtin_amdgcn_readfirstlane
(
problem
.
N
*
problem
.
K
);
// N0, K0, Blocksize*KPack
...
...
include/ck/tensor_operation/gpu/grid/gridwise_moe_gemm_scatter.hpp
View file @
db53dba4
...
...
@@ -9,7 +9,7 @@
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle_selector.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1
_mod8
.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
...
...
@@ -536,6 +536,7 @@ struct GridwiseMoeGemmScatter
struct
Problem
{
__host__
__device__
Problem
(
index_t
NumTokens_
,
index_t
TopK_
,
index_t
M_
,
index_t
N_
,
index_t
K_
,
...
...
@@ -546,6 +547,7 @@ struct GridwiseMoeGemmScatter
index_t
KBatch_
)
:
NumTokens
{
NumTokens_
},
TopK
{
TopK_
},
M
{
M_
},
N
{
N_
},
K
{
K_
},
...
...
@@ -571,6 +573,7 @@ struct GridwiseMoeGemmScatter
{
std
::
cout
<<
"problem {"
<<
"NumTokens:"
<<
NumTokens
<<
", "
<<
"TopK:"
<<
TopK
<<
", "
<<
"M:"
<<
M
<<
", "
<<
"N:"
<<
N
<<
", "
<<
"K:"
<<
K
<<
", "
...
...
@@ -588,6 +591,7 @@ struct GridwiseMoeGemmScatter
}
index_t
NumTokens
;
index_t
TopK
;
index_t
M
;
index_t
N
;
index_t
K
;
...
...
@@ -621,6 +625,7 @@ struct GridwiseMoeGemmScatter
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid_
,
CDataType
*
p_c_grid_
,
index_t
NumTokens_
,
index_t
TopK_
,
index_t
M_
,
index_t
N_
,
index_t
K_
,
...
...
@@ -632,8 +637,7 @@ struct GridwiseMoeGemmScatter
AElementwiseOperation
a_element_op_
,
BElementwiseOperation
b_element_op_
,
CElementwiseOperation
c_element_op_
)
:
Problem
{
NumTokens_
,
M_
,
N_
,
K_
,
StrideA_
,
StrideB_
,
StrideDs_
,
StrideC_
,
k_batch_
},
:
Problem
{
NumTokens_
,
TopK_
,
M_
,
N_
,
K_
,
StrideA_
,
StrideB_
,
StrideDs_
,
StrideC_
,
k_batch_
},
p_sorted_token_ids
{
p_sorted_token_ids_
},
p_sorted_expert_ids
{
p_sorted_expert_ids_
},
p_max_token_id
{
p_max_token_id_
},
...
...
@@ -1135,7 +1139,7 @@ struct GridwiseMoeGemmScatter
{
ignore
=
b_element_op
;
const
auto
a_grid_desc_ak0_m_ak1
=
MakeAGridDescriptor_AK0_M_AK1
(
problem
.
M
,
problem
.
MPadded
,
problem
.
K
,
problem
.
KPadded
,
problem
.
StrideA
,
problem
.
AK0
);
problem
.
NumTokens
,
problem
.
MPadded
,
problem
.
K
,
problem
.
KPadded
,
problem
.
StrideA
,
problem
.
AK0
);
const
auto
b_grid_desc_bpreshuffled
=
MakeBGridDescriptor_Preshuffled
(
problem
.
BN0Shuffled
,
problem
.
BK0Shuffled
);
...
...
@@ -1151,12 +1155,25 @@ struct GridwiseMoeGemmScatter
const
index_t
max_token_id
=
__builtin_amdgcn_readfirstlane
(
p_max_token_id
[
0
]);
const
index_t
token0
=
__builtin_amdgcn_readfirstlane
(
p_sorted_token_ids
[
block_m_id
*
MPerBlock
]
&
0xffffff
);
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_m_id
*
MPerBlock
);
const
index_t
expert_stride
=
__builtin_amdgcn_readfirstlane
(
problem
.
N
*
problem
.
K
);
// constexpr auto M0 = ABlockTransferThreadClusterLengths_AK0_M_AK1{}.At(I1);
constexpr
auto
AMThreads
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I1
);
constexpr
auto
AK0Threads
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I0
);
constexpr
auto
AK1Threads
=
ABlockTransferThreadClusterLengths_AK0_M_AK1
{}.
At
(
I2
);
constexpr
auto
AKThreads
=
AK0Threads
*
AK1Threads
;
constexpr
auto
AMRepeats
=
MPerBlock
/
AMThreads
;
const
index_t
token_pos
=
block_m_id
*
MPerBlock
+
threadIdx
.
x
/
AKThreads
*
AMRepeats
;
if
(
m_block_data_idx_on_grid
>=
max_token_id
||
token0
>=
problem
.
NumTokens
)
if
(
token_pos
>=
max_token_id
||
token0
>=
problem
.
NumTokens
)
return
;
StaticallyIndexedArray
<
index_t
,
AMRepeats
>
gather_offsets
;
//= p_sorted_token_ids[token_pos];
static_for
<
0
,
AMRepeats
,
1
>
{}([
&
](
auto
m0
)
{
const
index_t
token_offset
=
(
token_pos
+
m0
<
max_token_id
)
?
(
p_sorted_token_ids
[
token_pos
+
m0
]
&
0xffffff
)
:
problem
.
NumTokens
;
gather_offsets
(
m0
)
=
token_offset
*
problem
.
K
;
// printf("init off tid %d m %d off %d\n", threadIdx.x, m0(), gather_offsets(m0));
});
const
index_t
expert_stride
=
__builtin_amdgcn_readfirstlane
(
problem
.
N
*
problem
.
K
);
// N0, K0, Blocksize*KPack
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_n_id
*
NXdlPerWave
);
...
...
@@ -1177,7 +1194,7 @@ struct GridwiseMoeGemmScatter
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
ThreadGroupTensorSliceTransfer_v4r1
_mod8
<
ThisThreadBlock
,
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
...
...
@@ -1198,13 +1215,15 @@ struct GridwiseMoeGemmScatter
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
,
1
,
BlockwiseGemmPipe
::
GlobalBufferNum
>
(
a_grid_desc_ak0_m_ak1
,
make_multi_index
(
0
,
m_block_data_idx_on_grid
,
0
),
make_multi_index
(
0
,
0
,
0
),
a_element_op
,
a_block_desc_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
gather_offsets
);
// Thread-wise copy
// K0 -> N0/NWave -> NWave -> KLane -> NLane -> KPack
...
...
@@ -1384,11 +1403,11 @@ struct GridwiseMoeGemmScatter
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
const
DDataType
*
ptr_
=
p_ds_grid
[
i
];
// hack logic here to support different kind of strides. todo fix it.
// ascale
M
, 1; bscale E, N, 1, move ptr to E
// ascale
t
, 1; bscale E, N, 1, move ptr to E
if
(
i
.
value
==
1
)
{
ptr_
+=
expert_id
*
(
problem
.
StrideDs
[
1
]
?
problem
.
StrideDs
[
1
]
*
problem
.
N
:
1
);
// if ( threadIdx.x ==0)
// if ( threadIdx.x
% 16
==0)
// printf("bid %d eid %d b eoff %d %f\n", blockIdx.y, expert_id, expert_id * (problem.StrideDs[1]? problem.StrideDs[1] * problem.N : 1), ptr_[0]);
}
return
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
...
...
@@ -1428,7 +1447,6 @@ struct GridwiseMoeGemmScatter
using
CDEBlockTransferCluster
=
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
;
const
auto
EGlobalMemoryDataOperation
=
CGlobalMemoryDataOperation
;
constexpr
auto
EMThreads
=
CDEBlockTransferCluster
{}.
At
(
I0
)
*
CDEBlockTransferCluster
{}.
At
(
I1
);
constexpr
auto
EMRepeats
=
MPerBlock
/
EMThreads
;
constexpr
auto
ENThreads
=
CDEBlockTransferCluster
{}.
At
(
I2
)
*
CDEBlockTransferCluster
{}.
At
(
I3
);
...
...
@@ -1436,10 +1454,12 @@ struct GridwiseMoeGemmScatter
StaticallyIndexedArray
<
index_t
,
EMRepeats
>
scatter_offsets
;
//= p_sorted_token_ids[c_token_pos];
StaticallyIndexedArray
<
float
,
EMRepeats
>
scatter_weights
;
//= for topk
// too hack here, 2 specific for topk weights, fixme
const
float
*
p_sorted_weights
=
p_ds_grid
[
I2
];
const
float
*
p_sorted_weights_2
=
p_ds_grid
[
I2
];
const
float
*
p_sorted_weights_0
=
p_ds_grid
[
I0
];
static_for
<
0
,
EMRepeats
,
1
>
{}([
&
](
auto
m0
)
{
scatter_offsets
(
m0
)
=
(
p_sorted_token_ids
[
c_token_pos
+
m0
]
&
0xffffff
)
*
problem
.
N
;
scatter_weights
(
m0
)
=
p_sorted_weights
[
c_token_pos
+
m0
];
scatter_weights
(
m0
)
=
p_sorted_weights_2
[
c_token_pos
+
m0
]
*
p_sorted_weights_0
[(
c_token_pos
+
m0
)
*
problem
.
StrideDs
[
0
]];
// printf("init off bid %d tid %d m %d off %d\n", blockIdx.y, threadIdx.x, m0(), scatter_offsets(m0));
});
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_moe_gemm2.hpp
View file @
db53dba4
...
...
@@ -35,7 +35,7 @@ struct ReferenceMoeGemm2 : public device::BaseOperator
const
Tensor
<
ck
::
index_t
>&
expert_ids
,
const
Tensor
<
ck
::
index_t
>&
max_token_id
,
const
index_t
sorted_tile_size
,
const
Tensor
<
ADataType
>&
a_
m
_k
,
const
Tensor
<
ADataType
>&
a_
t
_k
,
const
Tensor
<
BDataType
>&
b_e_n_k
,
const
Tensor
<
D0DataType
>&
d0
,
const
Tensor
<
D1DataType
>&
d1
,
...
...
@@ -48,7 +48,7 @@ struct ReferenceMoeGemm2 : public device::BaseOperator
expert_ids_
{
expert_ids
},
max_token_id_
{
max_token_id
},
sorted_tile_size_
{
sorted_tile_size
},
a_
m
_k_
{
a_
m
_k
},
a_
t
_k_
{
a_
t
_k
},
b_e_n_k_
{
b_e_n_k
},
d0_
{
d0
},
d1_
{
d1
},
...
...
@@ -64,7 +64,7 @@ struct ReferenceMoeGemm2 : public device::BaseOperator
const
Tensor
<
ck
::
index_t
>&
expert_ids_
;
const
Tensor
<
ck
::
index_t
>&
max_token_id_
;
index_t
sorted_tile_size_
;
const
Tensor
<
ADataType
>&
a_
m
_k_
;
const
Tensor
<
ADataType
>&
a_
t
_k_
;
const
Tensor
<
BDataType
>&
b_e_n_k_
;
const
Tensor
<
D0DataType
>&
d0_
;
const
Tensor
<
D1DataType
>&
d1_
;
...
...
@@ -85,7 +85,7 @@ struct ReferenceMoeGemm2 : public device::BaseOperator
{
arg
.
c_t_n_
.
SetZero
();
auto
f_mk_kn_mn
=
[
&
](
auto
m
,
auto
n
)
{
const
int
K
=
arg
.
a_
m
_k_
.
mDesc
.
GetLengths
()[
1
];
const
int
K
=
arg
.
a_
t
_k_
.
mDesc
.
GetLengths
()[
1
];
AccDataType
v_acc
{
0
};
ComputeTypeA
v_a
{
0
};
ComputeTypeB
v_b
{
0
};
...
...
@@ -101,11 +101,11 @@ struct ReferenceMoeGemm2 : public device::BaseOperator
if
constexpr
(
is_same_v
<
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
ConvertBF16RTN
>
)
{
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}(
v_a
,
arg
.
a_
m
_k_
(
m
,
k
));
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}(
v_a
,
arg
.
a_
t
_k_
(
t
,
k
));
}
else
{
arg
.
a_element_op_
(
v_a
,
arg
.
a_
m
_k_
(
m
,
k
));
arg
.
a_element_op_
(
v_a
,
arg
.
a_
t
_k_
(
t
,
k
));
}
// same for B matrix
if
constexpr
(
is_same_v
<
BElementwiseOperation
,
...
...
@@ -157,7 +157,7 @@ struct ReferenceMoeGemm2 : public device::BaseOperator
const
Tensor
<
ck
::
index_t
>&
expert_ids
,
const
Tensor
<
ck
::
index_t
>&
max_token_id
,
const
index_t
sorted_tile_size
,
const
Tensor
<
ADataType
>&
a_
m
_k
,
const
Tensor
<
ADataType
>&
a_
t
_k
,
const
Tensor
<
BDataType
>&
b_e_n_k
,
const
Tensor
<
D0DataType
>&
d0
,
const
Tensor
<
D1DataType
>&
d1
,
...
...
@@ -167,7 +167,7 @@ struct ReferenceMoeGemm2 : public device::BaseOperator
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
sorted_token_ids
,
expert_ids
,
max_token_id
,
sorted_tile_size
,
a_
m
_k
,
b_e_n_k
,
d0
,
d1
,
d2
,
c_t_n
,
a_element_op
,
b_element_op
,
c_element_op
};
return
Argument
{
sorted_token_ids
,
expert_ids
,
max_token_id
,
sorted_tile_size
,
a_
t
_k
,
b_e_n_k
,
d0
,
d1
,
d2
,
c_t_n
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment