Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
da7ef7e8
Unverified
Commit
da7ef7e8
authored
Jul 08, 2024
by
Jun Liu
Committed by
GitHub
Jul 08, 2024
Browse files
Merge pull request #88 from ROCm/merge_from_public
Merge from public
parents
9f2a6d43
dcd3d21a
Changes
379
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2020 additions
and
61 deletions
+2020
-61
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_comp_mnkpadding_instance.cpp
...ltiply_bf16_i8_bf16_mk_kn_mn_comp_mnkpadding_instance.cpp
+35
-0
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_comp_mnpadding_instance.cpp
...ultiply_bf16_i8_bf16_mk_kn_mn_comp_mnpadding_instance.cpp
+35
-0
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_instance.cpp
...xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_instance.cpp
+129
-61
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v1_default_instance.cpp
...ultiply_bf16_i8_bf16_mk_kn_mn_mem_v1_default_instance.cpp
+36
-0
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v1_kpadding_instance.cpp
...ltiply_bf16_i8_bf16_mk_kn_mn_mem_v1_kpadding_instance.cpp
+36
-0
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v1_mnkpadding_instance.cpp
...iply_bf16_i8_bf16_mk_kn_mn_mem_v1_mnkpadding_instance.cpp
+36
-0
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v1_mnpadding_instance.cpp
...tiply_bf16_i8_bf16_mk_kn_mn_mem_v1_mnpadding_instance.cpp
+36
-0
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v2_default_instance.cpp
...ultiply_bf16_i8_bf16_mk_kn_mn_mem_v2_default_instance.cpp
+36
-0
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v2_kpadding_instance.cpp
...ltiply_bf16_i8_bf16_mk_kn_mn_mem_v2_kpadding_instance.cpp
+36
-0
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v2_mnkpadding_instance.cpp
...iply_bf16_i8_bf16_mk_kn_mn_mem_v2_mnkpadding_instance.cpp
+36
-0
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v2_mnpadding_instance.cpp
...tiply_bf16_i8_bf16_mk_kn_mn_mem_v2_mnpadding_instance.cpp
+36
-0
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bias_bf16_i8_bf16_mk_kn_mn_instance.cpp
...ile_loop_multiply_bias_bf16_i8_bf16_mk_kn_mn_instance.cpp
+40
-0
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bias_fastgelu_bf16_i8_bf16_mk_kn_mn_instance.cpp
...multiply_bias_fastgelu_bf16_i8_bf16_mk_kn_mn_instance.cpp
+41
-0
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_fastgelu_bf16_i8_bf16_mk_kn_mn_instance.cpp
...loop_multiply_fastgelu_bf16_i8_bf16_mk_kn_mn_instance.cpp
+39
-0
profiler/include/profiler/profile_gemm_universal_streamk_impl.hpp
.../include/profiler/profile_gemm_universal_streamk_impl.hpp
+332
-0
profiler/include/profiler/profile_grouped_conv_fwd_outelementop_impl.hpp
...e/profiler/profile_grouped_conv_fwd_outelementop_impl.hpp
+352
-0
profiler/include/profiler/profile_grouped_gemm_multiply_tile_loop_impl.hpp
...profiler/profile_grouped_gemm_multiply_tile_loop_impl.hpp
+347
-0
profiler/src/CMakeLists.txt
profiler/src/CMakeLists.txt
+6
-0
profiler/src/profile_gemm_universal_streamk.cpp
profiler/src/profile_gemm_universal_streamk.cpp
+156
-0
profiler/src/profile_grouped_conv_fwd_outelementop.cpp
profiler/src/profile_grouped_conv_fwd_outelementop.cpp
+220
-0
No files found.
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_comp_mnkpadding_instance.cpp
0 → 100644
View file @
da7ef7e8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_comp_mnkpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmTileLoop
<
Row
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
BF16
,
I8
,
ck
::
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Multiply
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
Multiply
,
GemmMNKPadding
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_comp_mnpadding_instance.cpp
0 → 100644
View file @
da7ef7e8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_comp_mnpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmTileLoop
<
Row
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
BF16
,
I8
,
ck
::
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Multiply
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
Multiply
,
GemmMNPadding
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_instance.cpp
View file @
da7ef7e8
...
@@ -31,51 +31,63 @@ using MultiplyAddFastGelu = ck::tensor_operation::element_wise::MultiplyAddFastG
...
@@ -31,51 +31,63 @@ using MultiplyAddFastGelu = ck::tensor_operation::element_wise::MultiplyAddFastG
using
MultiplyFastGelu
=
ck
::
tensor_operation
::
element_wise
::
MultiplyFastGelu
;
using
MultiplyFastGelu
=
ck
::
tensor_operation
::
element_wise
::
MultiplyFastGelu
;
using
MultiplyAdd
=
ck
::
tensor_operation
::
element_wise
::
MultiplyAdd
;
using
MultiplyAdd
=
ck
::
tensor_operation
::
element_wise
::
MultiplyAdd
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
static
constexpr
auto
GemmDefault
=
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmKPadding
=
GemmSpecialization
::
KPadding
;
template
<
typename
DsLayout
,
typename
DsDataType
,
typename
CDEElementwiseOp
>
static
constexpr
auto
GemmMNPadding
=
GemmSpecialization
::
MNPadding
;
using
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_irregular_tile_instances
=
std
::
tuple
<
static
constexpr
auto
GemmMNKPadding
=
GemmSpecialization
::
MNKPadding
;
// clang-format off
static
constexpr
auto
Intrawave
=
BlockGemmPipelineScheduler
::
Intrawave
;
static
constexpr
auto
Interwave
=
BlockGemmPipelineScheduler
::
Interwave
;
template
<
typename
DsLayout
,
typename
DsDataType
,
typename
CDEElementwiseOp
,
GemmSpecialization
GemmSpec
=
GemmMNKPadding
>
using
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances
=
std
::
tuple
<
// clang-format off
//###########################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//###########################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//###########################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//###########################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//###########################################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//###########################################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//###########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//###########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | S<C,D0...,D_N|
#if 1
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
<
Row
,
Row
,
DsLayout
,
Row
,
BF16
,
I8
,
F32
,
F32
,
DsDataType
,
BF16
,
PassThrough
,
PassThrough
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
<
Row
,
Row
,
DsLayout
,
Row
,
BF16
,
I8
,
F32
,
F32
,
DsDataType
,
BF16
,
PassThrough
,
PassThrough
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
<
Row
,
Row
,
DsLayout
,
Row
,
BF16
,
I8
,
F32
,
F32
,
DsDataType
,
BF16
,
PassThrough
,
PassThrough
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
32
,
8
,
2
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
<
Row
,
Row
,
DsLayout
,
Row
,
BF16
,
I8
,
F32
,
F32
,
DsDataType
,
BF16
,
PassThrough
,
PassThrough
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 224, 256, 64, 8, 4, 16, 16, 7, 8, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 2, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
<
Row
,
Row
,
DsLayout
,
Row
,
BF16
,
I8
,
F32
,
F32
,
DsDataType
,
BF16
,
PassThrough
,
PassThrough
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
2
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
<
Row
,
Row
,
DsLayout
,
Row
,
BF16
,
I8
,
F32
,
F32
,
DsDataType
,
BF16
,
PassThrough
,
PassThrough
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 128, 256, 32, 8, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
<
Row
,
Row
,
DsLayout
,
Row
,
BF16
,
I8
,
F32
,
F32
,
DsDataType
,
BF16
,
PassThrough
,
PassThrough
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
<
Row
,
Row
,
DsLayout
,
Row
,
BF16
,
I8
,
F32
,
F32
,
DsDataType
,
BF16
,
PassThrough
,
PassThrough
,
CDEElementwiseOp
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
8
,
4
,
32
,
32
,
2
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
S
<
8
,
8
,
1
>
,
BlockGemmPipelineScheduler
::
Intrawave
,
BlockGemmPipelineVersion
::
v1
>
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
<
Row
,
Row
,
DsLayout
,
Row
,
BF16
,
I8
,
F32
,
F32
,
DsDataType
,
BF16
,
PassThrough
,
PassThrough
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
<
Row
,
Row
,
DsLayout
,
Row
,
BF16
,
I8
,
F32
,
F32
,
DsDataType
,
BF16
,
PassThrough
,
PassThrough
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
<
Row
,
Row
,
DsLayout
,
Row
,
BF16
,
I8
,
F32
,
F32
,
DsDataType
,
BF16
,
PassThrough
,
PassThrough
,
CDEElementwiseOp
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
#endif
#if 0
//comp
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8>,
//latency
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 64, 16, 16, 256, 8, 4, 16, 16, 1, 1, S<32, 2, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 1, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 128, 16, 32, 256, 8, 4, 16, 16, 1, 1, S<32, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 2, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, 4>,
//mem
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 64, 16, 16, 256, 8, 4, 16, 16, 1, 1, S<32, 2, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 1, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 128, 16, 32, 256, 8, 4, 16, 16, 1, 1, S<32, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 2, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 128, 16, 64, 128, 8, 4, 16, 16, 1, 2, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<32, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 128, 32, 64, 128, 8, 4, 32, 32, 1, 1, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<32, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 128, 16, 128, 64, 8, 4, 16, 16, 1, 4, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 128, 32, 128, 64, 8, 4, 32, 32, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 256, 16, 256, 64, 8, 4, 16, 16, 1, 4, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmMNKPadding, 1, 256, 32, 256, 64, 8, 4, 32, 32, 1, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 16>, 8>
#endif
// clang-format on
// clang-format on
>
;
>
;
template
<
typename
DsLayout
,
typename
DsDataType
,
typename
CDEElementwiseOp
,
GemmSpecialization
GemmSpec
=
GemmMNKPadding
,
BlockGemmPipelineScheduler
BlkGemmPipeSched
=
BlockGemmPipelineScheduler
::
Intrawave
>
using
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
=
std
::
tuple
<
// clang-format off
//###########################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//###########################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//###########################################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//###########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | S<C,D0...,D_N|
// Latency friendly
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 64, 16, 16, 256, 8, 4, 16, 16, 1, 1, S<32, 2, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 1, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 4>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v1>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 128, 16, 32, 256, 8, 4, 16, 16, 1, 1, S<32, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 2, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v1>,
// Memory friendly
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 64, 16, 16, 256, 8, 4, 16, 16, 1, 1, S<32, 2, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 1, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 4>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 128, 16, 32, 256, 8, 4, 16, 16, 1, 1, S<32, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 2, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
<
Row
,
Row
,
DsLayout
,
Row
,
BF16
,
I8
,
F32
,
F32
,
DsDataType
,
BF16
,
PassThrough
,
PassThrough
,
CDEElementwiseOp
,
GemmSpec
,
1
,
128
,
16
,
64
,
128
,
8
,
4
,
16
,
16
,
1
,
2
,
S
<
16
,
8
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
32
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
16
,
4
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
S
<
4
,
4
,
1
>
,
BlkGemmPipeSched
,
BlockGemmPipelineVersion
::
v2
>
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 128, 32, 64, 128, 8, 4, 32, 32, 1, 1, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<32, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, S<8,8,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 128, 16, 128, 64, 8, 4, 16, 16, 1, 4, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 128, 32, 128, 64, 8, 4, 32, 32, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, S<8,8,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 16, 256, 64, 8, 4, 16, 16, 1, 4, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 16>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 32, 256, 64, 8, 4, 32, 32, 1, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 16>, S<8,8,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>
// clang-format on
>
;
void
add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_instances
(
void
add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmTileLoop
<
Row
,
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmTileLoop
<
Row
,
Row
,
Row
,
...
@@ -89,33 +101,89 @@ void add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_instan
...
@@ -89,33 +101,89 @@ void add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_instan
PassThrough
,
PassThrough
,
Multiply
>>>&
instances
)
Multiply
>>>&
instances
)
{
{
// comp
add_device_operation_instances
(
add_device_operation_instances
(
instances
,
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_irregular_tile_instances
<
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
ck
::
Tuple
<
BF16
>
,
Multiply
,
Multiply
>
{});
GemmDefault
>
{});
}
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
Multiply
,
GemmMNKPadding
>
{});
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
Multiply
,
GemmMNPadding
>
{});
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
Multiply
,
GemmKPadding
>
{});
// mem
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
Multiply
,
GemmDefault
,
Intrawave
>
{});
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
Multiply
,
GemmMNKPadding
,
Intrawave
>
{});
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
Multiply
,
GemmMNPadding
,
Intrawave
>
{});
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
Multiply
,
GemmKPadding
,
Intrawave
>
{});
void
add_device_grouped_gemm_xdl_tile_loop_multiply_bias_bf16_i8_bf16_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmTileLoop
<
Row
,
Row
,
ck
::
Tuple
<
Row
,
Row
>
,
Row
,
BF16
,
I8
,
ck
::
Tuple
<
BF16
,
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
MultiplyAdd
>>>&
instances
)
{
add_device_operation_instances
(
add_device_operation_instances
(
instances
,
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_irregular_tile_instances
<
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
Row
,
Row
>
,
ck
::
Tuple
<
BF16
>
,
ck
::
Tuple
<
BF16
,
BF16
>
,
Multiply
,
MultiplyAdd
>
{});
GemmDefault
,
Interwave
>
{});
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
Multiply
,
GemmMNKPadding
,
Interwave
>
{});
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
Multiply
,
GemmMNPadding
,
Interwave
>
{});
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
Multiply
,
GemmKPadding
,
Interwave
>
{});
}
}
void
add_device_grouped_gemm_xdl_tile_loop_multiply_bias_fastgelu_bf16_i8_bf16_mk_kn_mn_instances
(
void
add_device_grouped_gemm_xdl_tile_loop_multiply_bias_fastgelu_bf16_i8_bf16_mk_kn_mn_instances
(
...
...
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v1_default_instance.cpp
0 → 100644
View file @
da7ef7e8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v1_default_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmTileLoop
<
Row
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
BF16
,
I8
,
ck
::
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Multiply
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
Multiply
,
GemmDefault
,
Intrawave
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v1_kpadding_instance.cpp
0 → 100644
View file @
da7ef7e8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v1_kpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmTileLoop
<
Row
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
BF16
,
I8
,
ck
::
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Multiply
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
Multiply
,
GemmKPadding
,
Intrawave
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v1_mnkpadding_instance.cpp
0 → 100644
View file @
da7ef7e8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v1_mnkpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmTileLoop
<
Row
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
BF16
,
I8
,
ck
::
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Multiply
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
Multiply
,
GemmMNKPadding
,
Intrawave
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v1_mnpadding_instance.cpp
0 → 100644
View file @
da7ef7e8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v1_mnpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmTileLoop
<
Row
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
BF16
,
I8
,
ck
::
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Multiply
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
Multiply
,
GemmMNPadding
,
Intrawave
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v2_default_instance.cpp
0 → 100644
View file @
da7ef7e8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v2_default_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmTileLoop
<
Row
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
BF16
,
I8
,
ck
::
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Multiply
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
Multiply
,
GemmDefault
,
Interwave
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v2_kpadding_instance.cpp
0 → 100644
View file @
da7ef7e8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v2_kpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmTileLoop
<
Row
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
BF16
,
I8
,
ck
::
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Multiply
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
Multiply
,
GemmKPadding
,
Interwave
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v2_mnkpadding_instance.cpp
0 → 100644
View file @
da7ef7e8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v2_mnkpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmTileLoop
<
Row
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
BF16
,
I8
,
ck
::
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Multiply
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
Multiply
,
GemmMNKPadding
,
Interwave
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v2_mnpadding_instance.cpp
0 → 100644
View file @
da7ef7e8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_mem_v2_mnpadding_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmTileLoop
<
Row
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
BF16
,
I8
,
ck
::
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Multiply
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
Multiply
,
GemmMNPadding
,
Interwave
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bias_bf16_i8_bf16_mk_kn_mn_instance.cpp
0 → 100644
View file @
da7ef7e8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_gemm_xdl_tile_loop_multiply_bias_bf16_i8_bf16_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmTileLoop
<
Row
,
Row
,
ck
::
Tuple
<
Row
,
Row
>
,
Row
,
BF16
,
I8
,
ck
::
Tuple
<
BF16
,
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
MultiplyAdd
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances
<
ck
::
Tuple
<
Row
,
Row
>
,
ck
::
Tuple
<
BF16
,
BF16
>
,
MultiplyAdd
>
{});
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
<
ck
::
Tuple
<
Row
,
Row
>
,
ck
::
Tuple
<
BF16
,
BF16
>
,
MultiplyAdd
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bias_fastgelu_bf16_i8_bf16_mk_kn_mn_instance.cpp
0 → 100644
View file @
da7ef7e8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_gemm_xdl_tile_loop_multiply_bias_fastgelu_bf16_i8_bf16_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmTileLoop
<
Row
,
Row
,
ck
::
Tuple
<
Row
,
Row
>
,
Row
,
BF16
,
I8
,
ck
::
Tuple
<
BF16
,
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
MultiplyAddFastGelu
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances
<
ck
::
Tuple
<
Row
,
Row
>
,
ck
::
Tuple
<
BF16
,
BF16
>
,
MultiplyAddFastGelu
>
{});
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
<
ck
::
Tuple
<
Row
,
Row
>
,
ck
::
Tuple
<
BF16
,
BF16
>
,
MultiplyAddFastGelu
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_fastgelu_bf16_i8_bf16_mk_kn_mn_instance.cpp
0 → 100644
View file @
da7ef7e8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_gemm_xdl_tile_loop_multiply_fastgelu_bf16_i8_bf16_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmTileLoop
<
Row
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
BF16
,
I8
,
ck
::
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
MultiplyFastGelu
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
MultiplyFastGelu
>
{});
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
MultiplyFastGelu
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
profiler/include/profiler/profile_gemm_universal_streamk_impl.hpp
0 → 100644
View file @
da7ef7e8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_universal_streamk.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
>
bool
profile_gemm_universal_streamk_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideC
,
int
Streamk_sel
,
int
Grid_size
,
int
n_warmup
,
int
n_iter
,
uint64_t
rotating
=
0
)
{
bool
pass
=
true
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
int
total_gemm_needed
=
a_m_k
.
GetElementSpaceSizeInBytes
()
+
b_k_n
.
GetElementSpaceSizeInBytes
();
int
rotating_count
=
std
::
max
(
1
,
std
::
min
(
n_iter
,
static_cast
<
int
>
(
std
::
ceil
(
static_cast
<
double
>
(
rotating
)
/
total_gemm_needed
))));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_device_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"rotating count: "
<<
rotating_count
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
1
,
2
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
1
,
2
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
}
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Streamk_V2
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
// Run reference GEMM
if
(
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
}
std
::
string
best_op_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
float
best_grid_size
=
0
;
float
best_streamk_sel
=
0
;
// profile device GEMM instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
std
::
vector
<
int
>
grid_size_list
=
{
38
,
76
,
114
,
152
,
190
,
228
,
266
,
304
,
342
,
380
};
std
::
vector
<
int
>
streamk_sel_list
=
{
0
,
1
,
2
,
3
,
4
};
// 0: Data Parallel (DP) mode (Stream-K OFF), 1: 1-tile Stream-K+ DP,
// 2:2-tile Stream-K + DP
if
(
Grid_size
==
-
1
)
{
grid_size_list
=
{
Grid_size
};
}
if
(
Streamk_sel
!=
-
1
)
{
streamk_sel_list
=
{
Streamk_sel
};
}
for
(
std
::
size_t
j
=
0
;
j
<
streamk_sel_list
.
size
();
j
++
)
{
for
(
std
::
size_t
i
=
0
;
i
<
grid_size_list
.
size
();
i
++
)
{
auto
grid_size_curr
=
grid_size_list
[
i
];
index_t
streamk_sel_curr
=
streamk_sel_list
[
j
];
printf
(
"streamk_sel_curr=%0d
\n
"
,
streamk_sel_curr
);
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
streamk_sel_curr
,
grid_size_curr
,
a_element_op
,
b_element_op
,
c_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init C to zero before profiling next kernel
c_device_buf
.
SetZero
();
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
,
0
,
n_warmup
,
n_iter
});
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
c_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
0
,
n_warmup
,
n_iter
,
rotating_count
>
1
,
rotating_count
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
", Grid_size "
<<
grid_size_curr
<<
", streamk selection strategy"
<<
streamk_sel_curr
<<
std
::
endl
;
#if defined CK_ENABLE_FP8
// set softer tolerances for fp8
if
constexpr
(
is_same_v
<
ADataType
,
f8_t
>
||
is_same_v
<
BDataType
,
f8_t
>
||
is_same_v
<
CDataType
,
f8_t
>
)
{
std
::
string
msg
=
"Error: Incorrect results!"
;
double
rtol
=
1e-1
;
double
atol
=
1e-1
;
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
,
msg
,
rtol
,
atol
);
}
else
{
#endif
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
#if defined CK_ENABLE_FP8
}
#endif
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
best_grid_size
=
grid_size_curr
;
best_streamk_sel
=
streamk_sel_curr
;
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
}
}
if
constexpr
(
is_same
<
CDataType
,
float
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f32"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
half_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = f16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
bhalf_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = bf16"
;
}
else
if
constexpr
(
is_same
<
CDataType
,
int8_t
>::
value
)
{
std
::
cout
<<
"Best Perf for datatype = int8"
;
}
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" ALayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" ALayout = ColumnMajor"
;
}
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
std
::
cout
<<
" BLayout = RowMajor"
;
}
else
if
constexpr
(
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
)
{
std
::
cout
<<
" BLayout = ColumnMajor"
;
}
std
::
cout
<<
" M = "
<<
M
<<
" N = "
<<
N
<<
" K = "
<<
K
<<
" StrideA = "
<<
StrideA
<<
" StrideB = "
<<
StrideB
<<
" StrideC = "
<<
StrideC
<<
" Grid_size = "
<<
best_grid_size
<<
" Stream-K selection strategy = "
<<
best_streamk_sel
<<
" : "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profiler/profile_grouped_conv_fwd_outelementop_impl.hpp
0 → 100644
View file @
da7ef7e8
#pragma once
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convscale.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convinvscale.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
DataType
>
inline
constexpr
double
get_rtol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1e-6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5e-2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
1e-1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
1.5e-1
;
// 57344 and 49152 are acceptable
}
else
{
return
1e-3
;
}
}
template
<
typename
DataType
>
inline
constexpr
double
get_atol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1e-6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5e-2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
16.1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
8192.1
;
// 57344 and 49152 are acceptable
}
else
{
return
1e-3
;
}
}
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
OutElementOp
,
typename
AComputeType
=
InDataType
,
typename
BComputeType
=
AComputeType
>
bool
profile_grouped_conv_fwd_outelementop_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
{
auto
pass
=
true
;
// return status
using
CShuffleDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
Tensor
<
InDataType
>
input
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
weight
(
wei_g_k_c_xs_desc
);
Tensor
<
CShuffleDataType
>
c
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
host_output
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
device_output
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"input: "
<<
input
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"weight: "
<<
weight
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
host_output
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
input
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
weight
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
1
,
1
});
break
;
default:
input
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
5.0
,
5.0
});
weight
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
1.0
,
1.0
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
input
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
weight
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
device_output
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
input
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
weight
.
mData
.
data
());
// random scale values
auto
scale_in
=
type_convert
<
float
>
(
type_convert
<
f8_t
>
(
2.0
f
*
float
(
RAND_MAX
/
2
-
std
::
rand
())
/
float
(
RAND_MAX
)));
auto
scale_wei
=
type_convert
<
float
>
(
type_convert
<
f8_t
>
(
2.0
f
*
float
(
RAND_MAX
/
2
-
std
::
rand
())
/
float
(
RAND_MAX
)));
auto
scale_out
=
type_convert
<
float
>
(
type_convert
<
f8_t
>
(
2.0
f
*
float
(
RAND_MAX
/
2
-
std
::
rand
())
/
float
(
RAND_MAX
)));
// initialize out_element_op for each iteration
const
auto
out_element_op
=
OutElementOp
{
scale_in
,
scale_wei
,
scale_out
};
std
::
cout
<<
"scale_in: "
<<
scale_in
<<
std
::
endl
;
std
::
cout
<<
"scale_wei: "
<<
scale_wei
<<
std
::
endl
;
std
::
cout
<<
"scale_out: "
<<
scale_out
<<
std
::
endl
;
// run reference op
if
(
do_verification
)
{
std
::
cout
<<
"
\n
Verifying algorithm against reference convolution..."
<<
std
::
endl
;
std
::
cout
<<
"
\t
Using (rel_tol,abs_tol) = ("
<<
std
::
setprecision
(
7
)
<<
get_rtol
<
OutDataType
>
()
<<
", "
<<
get_atol
<
OutDataType
>
()
<<
")"
<<
std
::
endl
;
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
CShuffleDataType
,
InElementOp
,
WeiElementOp
,
PassThrough
>
{};
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
input
,
weight
,
c
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
PassThrough
{});
c
.
SetZero
();
ref_invoker
.
Run
(
ref_argument
);
host_output
.
ForEach
([
&
](
auto
&
,
auto
idx
)
{
out_element_op
(
host_output
(
idx
),
c
(
idx
));
});
}
std
::
string
best_op_name
;
float
best_avg_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
auto
run_impl
=
[
&
](
auto
&
op_ptr
,
auto
&
argument_ptr
)
{
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init output to zero before profiling next kernel
out_device_buf
.
SetZero
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
out_device_buf
.
FromDevice
(
device_output
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
device_output
,
host_output
,
"Error: Device and Host results do not match!"
,
get_rtol
<
OutDataType
>
(),
get_atol
<
OutDataType
>
());
if
(
do_log
)
{
LogRangeAsType
<
InDataType
>
(
std
::
cout
<<
"input : "
,
input
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
WeiDataType
>
(
std
::
cout
<<
"weight: "
,
weight
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
OutDataType
>
(
std
::
cout
<<
"host_output : "
,
host_output
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
OutDataType
>
(
std
::
cout
<<
"device_output: "
,
device_output
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
};
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
AComputeType
,
BComputeType
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"ckProfiler found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
{},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
{},
{},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
run_impl
(
op_ptr
,
argument_ptr
);
}
std
::
cout
<<
"Best configuration parameters:"
<<
"
\n
name: "
<<
best_op_name
<<
"
\n
avg_time: "
<<
best_avg_time
<<
"
\n
tflops: "
<<
best_tflops
<<
"
\n
GB/s: "
<<
best_gb_per_sec
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profiler/profile_grouped_gemm_multiply_tile_loop_impl.hpp
0 → 100644
View file @
da7ef7e8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/host_utility/hip_check_error.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_tile_loop.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_tile_loop_multiply.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
DDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
ALayout
,
typename
BLayout
,
typename
DLayout
,
typename
ELayout
>
bool
profile_grouped_gemm_multiply_tile_loop_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
const
std
::
vector
<
int
>&
Ms
,
const
std
::
vector
<
int
>&
Ns
,
const
std
::
vector
<
int
>&
Ks
,
const
std
::
vector
<
int
>&
StrideAs
,
const
std
::
vector
<
int
>&
StrideBs
,
const
std
::
vector
<
int
>&
StrideDs
,
const
std
::
vector
<
int
>&
StrideEs
,
int
n_warmup
=
10
,
int
n_iter
=
50
)
{
using
CDataType
=
EDataType
;
bool
pass
=
true
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
std
::
size_t
group_count
=
Ms
.
size
();
if
(
!
(
group_count
==
Ns
.
size
()
&&
group_count
==
Ks
.
size
()
&&
group_count
==
StrideAs
.
size
()
&&
group_count
==
StrideBs
.
size
()
&&
group_count
==
StrideEs
.
size
()))
{
throw
std
::
runtime_error
(
"wrong! inconsistent M/N/Ks, StrideA/B/Cs size
\n
"
);
}
std
::
vector
<
Tensor
<
ADataType
>>
a_m_k
;
std
::
vector
<
Tensor
<
BDataType
>>
b_k_n
;
std
::
vector
<
Tensor
<
DDataType
>>
d_m_n
;
std
::
vector
<
Tensor
<
CDataType
>>
e_m_n_host_results
;
std
::
vector
<
Tensor
<
CDataType
>>
e_m_n_device_results
;
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
{
a_m_k
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
Ms
[
i
],
Ks
[
i
],
StrideAs
[
i
],
ALayout
{})));
b_k_n
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
Ks
[
i
],
Ns
[
i
],
StrideBs
[
i
],
BLayout
{})));
d_m_n
.
push_back
(
Tensor
<
DDataType
>
(
f_host_tensor_descriptor
(
Ms
[
i
],
Ns
[
i
],
StrideDs
[
i
],
DLayout
{})));
e_m_n_device_results
.
push_back
(
Tensor
<
CDataType
>
(
f_host_tensor_descriptor
(
Ms
[
i
],
Ns
[
i
],
StrideEs
[
i
],
ELayout
{})));
e_m_n_host_results
.
push_back
(
Tensor
<
CDataType
>
(
f_host_tensor_descriptor
(
Ms
[
i
],
Ns
[
i
],
StrideEs
[
i
],
ELayout
{})));
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
"group: "
<<
i
<<
" a_m_k["
<<
i
<<
"]:"
<<
a_m_k
[
i
].
mDesc
<<
", b_k_n["
<<
i
<<
"]:"
<<
b_k_n
[
i
].
mDesc
<<
", e_m_n_device_results["
<<
i
<<
"]:"
<<
e_m_n_device_results
[
i
].
mDesc
<<
std
::
endl
;
}
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
5
,
5
}(
a_m_k
[
i
]);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
5
,
5
}(
b_k_n
[
i
]);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
DDataType
>
{
-
5
,
5
}(
d_m_n
[
i
]);
break
;
case
2
:
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
.0
,
1.
}(
a_m_k
[
i
]);
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
0.5
,
0.5
}(
b_k_n
[
i
]);
ck
::
utils
::
FillUniformDistribution
<
DDataType
>
{
-
0.5
,
0.5
}(
d_m_n
[
i
]);
break
;
default:
ck
::
utils
::
FillConstant
<
ADataType
>
{
1
}(
a_m_k
[
i
]);
ck
::
utils
::
FillConstant
<
BDataType
>
{
1
}(
b_k_n
[
i
]);
ck
::
utils
::
FillConstant
<
DDataType
>
{
1
}(
d_m_n
[
i
]);
}
}
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Multiply
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{};
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_device_buf
,
b_device_buf
,
d_device_buf
,
e_device_buf
;
a_device_buf
.
reserve
(
group_count
);
b_device_buf
.
reserve
(
group_count
);
d_device_buf
.
reserve
(
group_count
);
e_device_buf
.
reserve
(
group_count
);
std
::
vector
<
const
void
*>
p_a
,
p_b
,
p_d
;
constexpr
ck
::
index_t
NumDTensor
=
1
;
auto
p_ds
=
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>
{};
std
::
vector
<
void
*>
p_e
;
p_a
.
reserve
(
group_count
);
p_b
.
reserve
(
group_count
);
p_ds
.
reserve
(
group_count
);
p_e
.
reserve
(
group_count
);
using
KernelArguments
=
ck
::
tensor_operation
::
device
::
GroupedGemmTileLoopKernelArguments
<
NumDTensor
>
;
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
std
::
vector
<
KernelArguments
>
gemm_kargs
;
gemm_descs
.
reserve
(
group_count
);
gemm_kargs
.
reserve
(
group_count
);
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
{
a_device_buf
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
a_m_k
[
i
].
mDesc
.
GetElementSpaceSize
()));
b_device_buf
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
b_k_n
[
i
].
mDesc
.
GetElementSpaceSize
()));
d_device_buf
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
DDataType
)
*
d_m_n
[
i
].
mDesc
.
GetElementSpaceSize
()));
e_device_buf
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
CDataType
)
*
e_m_n_device_results
[
i
].
mDesc
.
GetElementSpaceSize
()));
a_device_buf
[
i
]
->
ToDevice
(
a_m_k
[
i
].
mData
.
data
());
b_device_buf
[
i
]
->
ToDevice
(
b_k_n
[
i
].
mData
.
data
());
d_device_buf
[
i
]
->
ToDevice
(
d_m_n
[
i
].
mData
.
data
());
e_device_buf
[
i
]
->
SetZero
();
p_a
.
push_back
(
a_device_buf
[
i
]
->
GetDeviceBuffer
());
p_b
.
push_back
(
b_device_buf
[
i
]
->
GetDeviceBuffer
());
p_ds
.
push_back
({
d_device_buf
[
i
]
->
GetDeviceBuffer
()});
p_e
.
push_back
(
e_device_buf
[
i
]
->
GetDeviceBuffer
());
gemm_descs
.
push_back
(
{
0
,
Ns
[
i
],
Ks
[
i
],
StrideAs
[
i
],
StrideBs
[
i
],
StrideEs
[
i
],
{
StrideDs
[
i
]}});
gemm_kargs
.
push_back
({
a_device_buf
[
i
]
->
GetDeviceBuffer
(),
b_device_buf
[
i
]
->
GetDeviceBuffer
(),
{
d_device_buf
[
i
]
->
GetDeviceBuffer
()},
e_device_buf
[
i
]
->
GetDeviceBuffer
(),
Ms
[
i
],
Ns
[
i
],
Ks
[
i
],
StrideAs
[
i
],
StrideBs
[
i
],
{
StrideDs
[
i
]},
StrideEs
[
i
]});
}
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmTileLoop
<
ALayout
,
BLayout
,
ck
::
Tuple
<
DLayout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
DDataType
>
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
if
(
op_ptrs
.
size
()
<=
0
)
{
throw
std
::
runtime_error
(
"wrong! no device GEMM instance found"
);
}
std
::
string
best_gemm_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
if
(
do_verification
)
{
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
Tensor
<
CDataType
>
c_m_n
({
Ms
[
i
],
Ns
[
i
]});
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
[
i
],
b_k_n
[
i
],
c_m_n
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
Ms
[
i
];
++
m
)
{
for
(
int
n
=
0
;
n
<
Ns
[
i
];
++
n
)
{
cde_element_op
(
e_m_n_host_results
[
i
](
m
,
n
),
c_m_n
(
m
,
n
),
d_m_n
[
i
](
m
,
n
));
}
}
}
}
// profile device GEMM instances
for
(
auto
&
gemm_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
gemm_ptr
->
MakeArgumentPointer
(
p_a
,
p_b
,
p_ds
,
p_e
,
gemm_descs
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
cde_element_op
);
auto
invoker_ptr
=
gemm_ptr
->
MakeInvokerPointer
();
std
::
string
gemm_name
=
gemm_ptr
->
GetTypeString
();
DeviceMem
gemm_arg_dev_mem
(
gemm_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()));
hip_check_error
(
hipMemcpy
(
gemm_arg_dev_mem
.
GetDeviceBuffer
(),
gemm_kargs
.
data
(),
gemm_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()),
hipMemcpyHostToDevice
));
gemm_ptr
->
SetDeviceKernelArgs
(
argument_ptr
.
get
(),
gemm_arg_dev_mem
.
GetDeviceBuffer
());
if
(
gemm_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
,
0
,
n_warmup
,
n_iter
});
if
(
do_verification
)
{
bool
instance_pass
=
true
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
e_device_buf
[
i
]
->
FromDevice
(
e_m_n_device_results
[
i
].
mData
.
data
());
instance_pass
=
instance_pass
&&
ck
::
utils
::
check_err
(
e_m_n_device_results
[
i
],
e_m_n_host_results
[
i
]);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
[
i
].
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
[
i
].
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"e_device: "
,
e_m_n_device_results
[
i
].
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"e_host : "
,
e_m_n_host_results
[
i
].
mData
,
","
)
<<
std
::
endl
;
}
}
std
::
cout
<<
"Instance: "
<<
gemm_name
<<
" verification "
<<
(
instance_pass
?
"SUCCEED"
:
"FAILED"
)
<<
std
::
endl
;
pass
=
pass
&&
instance_pass
;
}
if
(
time_kernel
)
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
0
,
n_warmup
,
n_iter
});
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
flop
+=
std
::
size_t
(
2
)
*
Ms
[
i
]
*
Ns
[
i
]
*
Ks
[
i
];
num_btype
+=
sizeof
(
ADataType
)
*
Ms
[
i
]
*
Ks
[
i
]
+
sizeof
(
BDataType
)
*
Ks
[
i
]
*
Ns
[
i
]
+
sizeof
(
EDataType
)
*
Ms
[
i
]
*
Ns
[
i
]
+
// D matrix
sizeof
(
EDataType
)
*
Ms
[
i
]
*
Ns
[
i
];
}
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_gemm_name
=
gemm_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
}
else
{
std
::
cout
<<
"Instance: "
<<
gemm_name
<<
", does not support this GEMM problem"
<<
std
::
endl
;
}
}
if
(
time_kernel
)
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_gemm_name
<<
std
::
endl
;
}
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/src/CMakeLists.txt
100644 → 100755
View file @
da7ef7e8
...
@@ -43,6 +43,7 @@ if(GPU_TARGETS MATCHES "gfx9")
...
@@ -43,6 +43,7 @@ if(GPU_TARGETS MATCHES "gfx9")
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_two_stage.cpp
)
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_two_stage.cpp
)
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp
)
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp
)
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_tile_loop.cpp
)
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_tile_loop.cpp
)
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_multiply_tile_loop.cpp
)
endif
()
endif
()
list
(
APPEND PROFILER_SOURCES profile_gemm_multiply_add.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_multiply_add.cpp
)
list
(
APPEND PROFILER_SOURCES profile_batched_gemm.cpp
)
list
(
APPEND PROFILER_SOURCES profile_batched_gemm.cpp
)
...
@@ -51,10 +52,12 @@ if(GPU_TARGETS MATCHES "gfx9")
...
@@ -51,10 +52,12 @@ if(GPU_TARGETS MATCHES "gfx9")
list
(
APPEND PROFILER_SOURCES profile_gemm_bias_add_reduce.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_bias_add_reduce.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_splitk.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_splitk.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_universal.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_universal.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_universal_streamk.cpp
)
list
(
APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu.cpp
)
list
(
APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu.cpp
)
list
(
APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu_add.cpp
)
list
(
APPEND PROFILER_SOURCES profile_conv_fwd_bias_relu_add.cpp
)
list
(
APPEND PROFILER_SOURCES profile_conv_bwd_data.cpp
)
list
(
APPEND PROFILER_SOURCES profile_conv_bwd_data.cpp
)
list
(
APPEND PROFILER_SOURCES profile_conv_fwd.cpp
)
list
(
APPEND PROFILER_SOURCES profile_conv_fwd.cpp
)
list
(
APPEND PROFILER_SOURCES profile_grouped_conv_fwd_outelementop.cpp
)
endif
()
endif
()
...
@@ -119,6 +122,7 @@ if(GPU_TARGETS MATCHES "gfx9")
...
@@ -119,6 +122,7 @@ if(GPU_TARGETS MATCHES "gfx9")
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_multiply_add_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_multiply_add_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_splitk_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_splitk_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_universal_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_universal_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_universal_streamk_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_add_multiply_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_add_multiply_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_bias_add_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_bias_add_reduce_instance
)
...
@@ -131,6 +135,8 @@ if(GPU_TARGETS MATCHES "gfx9")
...
@@ -131,6 +135,8 @@ if(GPU_TARGETS MATCHES "gfx9")
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_conv2d_bwd_data_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_conv2d_bwd_data_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv1d_bwd_weight_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv1d_bwd_weight_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv2d_bwd_weight_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv2d_bwd_weight_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv3d_fwd_convscale_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv3d_fwd_convinvscale_instance
)
endif
()
endif
()
if
(
GPU_TARGETS MATCHES
"gfx9"
OR GPU_TARGETS MATCHES
"gfx11"
OR GPU_TARGETS MATCHES
"gfx12"
)
if
(
GPU_TARGETS MATCHES
"gfx9"
OR GPU_TARGETS MATCHES
"gfx11"
OR GPU_TARGETS MATCHES
"gfx12"
)
...
...
profiler/src/profile_gemm_universal_streamk.cpp
0 → 100644
View file @
da7ef7e8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_gemm_universal_streamk_impl.hpp"
#include "profiler_operation_registry.hpp"
enum
struct
GemmMatrixLayout
{
MK_KN_MN
,
// 0
MK_NK_MN
,
// 1
KM_KN_MN
,
// 2
KM_NK_MN
,
// 3
};
enum
struct
GemmDataType
{
F32_F32_F32
,
// 0
F16_F16_F16
,
// 1
BF16_BF16_BF16
,
// 2
INT8_INT8_INT8
,
// 3
F8_F16_F16
,
// 4
F16_F8_F16
,
// 5
F16_F16_F16_F8
,
// 6
};
#define OP_NAME "gemm_universal_streamk"
#define OP_DESC "Universal Streamk GEMM"
int
profile_gemm_universal_streamk
(
int
argc
,
char
*
argv
[])
{
if
(
argc
!=
16
&&
argc
!=
19
)
{
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f8@f16; 5: f16@f8; 6: f16, "
"comp f8)
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
);
printf
(
" 2: A[k, m] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 3: A[k, m] * B[n, k] = C[m, n])
\n
"
);
printf
(
"arg4: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg6: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg8 to 13: M, N, K, StrideA, StrideB, StrideC
\n
"
);
printf
(
"arg14: Stream-k select strategy 0: all DP, 1: 1-tile SK, 2: 2-tile SK
\n
"
);
printf
(
"arg15: Grid-size, -1 for max persistent kernel occupancy
\n
"
);
printf
(
"optional:
\n
"
);
printf
(
"arg16: number of warm-up cycles (default 1)
\n
"
);
printf
(
"arg17: number of iterations (default 10)
\n
"
);
printf
(
"arg18: memory for rotating buffer (default 0, size in MB)
\n
"
);
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
GemmDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
GemmMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
M
=
std
::
stoi
(
argv
[
8
]);
const
int
N
=
std
::
stoi
(
argv
[
9
]);
const
int
K
=
std
::
stoi
(
argv
[
10
]);
const
int
StrideA
=
std
::
stoi
(
argv
[
11
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideC
=
std
::
stoi
(
argv
[
13
]);
const
int
Streamk_sel
=
std
::
stoi
(
argv
[
14
]);
const
int
Grid_size
=
std
::
stoi
(
argv
[
15
]);
int
n_warmup
=
20
;
int
n_iter
=
50
;
uint64_t
rotating
=
0
;
if
(
argc
==
19
)
{
n_warmup
=
std
::
stoi
(
argv
[
16
]);
n_iter
=
std
::
stoi
(
argv
[
17
]);
rotating
=
std
::
stoull
(
argv
[
18
])
*
1024
*
1024
;
}
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
// using BF16 = ck::bhalf_t;
// using F8 = ck::f8_t;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
auto
profile
=
[
&
](
auto
a_type
,
auto
b_type
,
auto
acc_type
,
auto
c_type
,
auto
a_layout
,
auto
b_layout
,
auto
c_layout
)
{
using
ADataType
=
decltype
(
a_type
);
using
BDataType
=
decltype
(
b_type
);
using
AccDataType
=
decltype
(
acc_type
);
using
CDataType
=
decltype
(
c_type
);
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
CLayout
=
decltype
(
c_layout
);
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB
=
ck
::
is_same_v
<
BLayout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideC
=
ck
::
is_same_v
<
CLayout
,
Row
>
?
N
:
M
;
bool
pass
=
ck
::
profiler
::
profile_gemm_universal_streamk_impl
<
ADataType
,
BDataType
,
AccDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
,
(
StrideB
<
0
)
?
DefaultStrideB
:
StrideB
,
(
StrideC
<
0
)
?
DefaultStrideC
:
StrideC
,
Streamk_sel
,
Grid_size
,
n_warmup
,
n_iter
,
rotating
);
return
pass
?
0
:
1
;
};
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
Row
{},
Col
{},
Row
{});
}
else
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_gemm_universal_streamk
);
profiler/src/profile_grouped_conv_fwd_outelementop.cpp
0 → 100644
View file @
da7ef7e8
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "profiler/profile_grouped_conv_fwd_outelementop_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "profiler_operation_registry.hpp"
#include <iostream>
enum
struct
ConvLayout
{
GNHWC_GKYXC_GNHWK
=
0
,
NHWGC_GKYXC_NHWGK
=
1
};
enum
struct
OutElementOp
{
ConvScale
=
0
,
ConvInvScale
=
1
};
enum
struct
ConvDataType
{
F8_F8_F8
=
0
,
BF8_BF8_F8
=
1
,
F8_BF8_F8
=
2
,
BF8_F8_F8
=
3
};
#define OP_NAME "grouped_conv_fwd_outelementop"
#define OP_DESC "Grouped Convolution Forward+Elementwise Operation"
static
void
print_helper_msg
()
{
// clang-format off
std
::
cout
<<
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
<<
"arg2: data type (0: Input fp8, Weight fp8, Output fp8
\n
"
<<
" 1: Input bf8, Weight bf8, Output fp8
\n
"
<<
" 2: Input fp8, Weight bf8, Output fp8
\n
"
<<
" 3: Input bf8, Weight fp8, Output fp8)
\n
"
<<
"arg3: element-wise operation (0: ConvScale
\n
"
<<
" 1: ConvInvScale)
\n
"
<<
"arg4: tensor layout (0: Input[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Output[G, N, Ho, Wo, K]
\n
"
<<
" 1: Input[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Output[N, Ho, Wo, G, K])
\n
"
<<
"arg5: verification (0: no, 1: yes)
\n
"
<<
"arg6: initialization (0: no init, 1: integer value, 2: decimal value)
\n
"
<<
"arg7: print tensor value (0: no; 1: yes)
\n
"
<<
"arg8: time kernel (0: no, 1: yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
// clang-format on
}
int
grouped_conv_fwd_outelementop
(
int
argc
,
char
*
argv
[])
{
// 9 total, 1 for num_dim_spatial
if
(
argc
<
10
)
{
print_helper_msg
();
return
1
;
}
const
auto
data_type
=
static_cast
<
ConvDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
op
=
static_cast
<
OutElementOp
>
(
std
::
stoi
(
argv
[
3
]));
const
auto
layout
=
static_cast
<
ConvLayout
>
(
std
::
stoi
(
argv
[
4
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
5
]);
const
int
init_method
=
std
::
stoi
(
argv
[
6
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
7
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
8
]);
const
int
num_dim_spatial
=
std
::
stoi
(
argv
[
9
]);
// 8 for control, 1 for num_dim_spatial, 4 for G/N/K/C, and 6 * num_dim_spatial + 1 for argv[0]
if
(
argc
!=
8
+
1
+
4
+
6
*
num_dim_spatial
+
1
)
{
print_helper_msg
();
return
1
;
}
const
auto
params
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
10
,
argv
);
using
F8
=
ck
::
f8_t
;
using
BF8
=
ck
::
bf8_t
;
using
GKZYXC
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
NDHWGC
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
NDHWGK
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
ConvScale
=
ck
::
tensor_operation
::
element_wise
::
ConvScale
;
using
ConvInvScale
=
ck
::
tensor_operation
::
element_wise
::
ConvInvscale
;
constexpr
auto
I3
=
ck
::
Number
<
3
>
{};
auto
profile
=
[
&
](
auto
num_dim_spatial_tmp
,
auto
in_layout
,
auto
wei_layout
,
auto
out_layout
,
auto
in_type
,
auto
wei_type
,
auto
out_type
,
auto
out_element_op
,
auto
a_compute_type
,
auto
b_compute_type
)
{
constexpr
ck
::
index_t
NDimSpatial
=
num_dim_spatial_tmp
.
value
;
using
InLayout
=
decltype
(
in_layout
);
using
WeiLayout
=
decltype
(
wei_layout
);
using
OutLayout
=
decltype
(
out_layout
);
using
InDataType
=
decltype
(
in_type
);
using
WeiDataType
=
decltype
(
wei_type
);
using
OutDataType
=
decltype
(
out_type
);
using
OutElementOp
=
decltype
(
out_element_op
);
using
AComputeType
=
decltype
(
a_compute_type
);
using
BComputeType
=
decltype
(
b_compute_type
);
bool
pass
=
ck
::
profiler
::
profile_grouped_conv_fwd_outelementop_impl
<
NDimSpatial
,
InLayout
,
WeiLayout
,
OutLayout
,
InDataType
,
WeiDataType
,
OutDataType
,
OutElementOp
,
AComputeType
,
BComputeType
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
params
);
return
pass
?
0
:
1
;
};
if
(
num_dim_spatial
==
3
&&
layout
==
ConvLayout
::
NHWGC_GKYXC_NHWGK
)
{
if
(
op
==
OutElementOp
::
ConvScale
)
{
if
(
data_type
==
ConvDataType
::
F8_F8_F8
)
{
return
profile
(
I3
,
NDHWGC
{},
GKZYXC
{},
NDHWGK
{},
F8
{},
F8
{},
F8
{},
ConvScale
{},
F8
{},
F8
{});
}
else
if
(
data_type
==
ConvDataType
::
BF8_BF8_F8
)
{
return
profile
(
I3
,
NDHWGC
{},
GKZYXC
{},
NDHWGK
{},
BF8
{},
BF8
{},
F8
{},
ConvScale
{},
BF8
{},
BF8
{});
}
else
if
(
data_type
==
ConvDataType
::
F8_BF8_F8
)
{
return
profile
(
I3
,
NDHWGC
{},
GKZYXC
{},
NDHWGK
{},
F8
{},
BF8
{},
F8
{},
ConvScale
{},
F8
{},
BF8
{});
}
else
if
(
data_type
==
ConvDataType
::
BF8_F8_F8
)
{
return
profile
(
I3
,
NDHWGC
{},
GKZYXC
{},
NDHWGK
{},
BF8
{},
F8
{},
F8
{},
ConvScale
{},
BF8
{},
F8
{});
}
}
else
if
(
op
==
OutElementOp
::
ConvInvScale
)
{
if
(
data_type
==
ConvDataType
::
F8_F8_F8
)
{
return
profile
(
I3
,
NDHWGC
{},
GKZYXC
{},
NDHWGK
{},
F8
{},
F8
{},
F8
{},
ConvInvScale
{},
F8
{},
F8
{});
}
else
if
(
data_type
==
ConvDataType
::
BF8_BF8_F8
)
{
return
profile
(
I3
,
NDHWGC
{},
GKZYXC
{},
NDHWGK
{},
BF8
{},
BF8
{},
F8
{},
ConvInvScale
{},
BF8
{},
BF8
{});
}
else
if
(
data_type
==
ConvDataType
::
F8_BF8_F8
)
{
return
profile
(
I3
,
NDHWGC
{},
GKZYXC
{},
NDHWGK
{},
F8
{},
BF8
{},
F8
{},
ConvInvScale
{},
F8
{},
BF8
{});
}
else
if
(
data_type
==
ConvDataType
::
BF8_F8_F8
)
{
return
profile
(
I3
,
NDHWGC
{},
GKZYXC
{},
NDHWGK
{},
BF8
{},
F8
{},
F8
{},
ConvInvScale
{},
BF8
{},
F8
{});
}
}
}
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
grouped_conv_fwd_outelementop
);
Prev
1
…
14
15
16
17
18
19
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment