Commit d47461d7 authored by aska-0096's avatar aska-0096
Browse files

Add compute-friendly pipeline for bpreshuffle case; remove enable-post-misched=0 flag.

parent cee23c47
...@@ -227,13 +227,6 @@ if(NOT WIN32 AND ${hip_VERSION_FLAT} GREATER 500500000) ...@@ -227,13 +227,6 @@ if(NOT WIN32 AND ${hip_VERSION_FLAT} GREATER 500500000)
add_compile_options("SHELL: -mllvm --lsr-drop-solution=1") add_compile_options("SHELL: -mllvm --lsr-drop-solution=1")
endif() endif()
endif() endif()
if(NOT WIN32 AND ${hip_VERSION_FLAT} GREATER 600140090)
check_cxx_compiler_flag("-mllvm -enable-post-misched=0" HAS_ENABLE_POST_MISCHED)
if(HAS_ENABLE_POST_MISCHED)
message("Adding the enable-post-misched=0 compiler flag")
add_compile_options("SHELL: -mllvm -enable-post-misched=0")
endif()
endif()
set(check-coerce) set(check-coerce)
check_cxx_compiler_flag(" -mllvm -amdgpu-coerce-illegal-types=1" check-coerce) check_cxx_compiler_flag(" -mllvm -amdgpu-coerce-illegal-types=1" check-coerce)
if(NOT WIN32 AND check-coerce AND ${hip_VERSION_FLAT} GREATER 600241132) if(NOT WIN32 AND check-coerce AND ${hip_VERSION_FLAT} GREATER 600241132)
......
...@@ -2,6 +2,6 @@ add_example_executable(example_gemm_multiply_multiply_xdl_fp8 gemm_multiply_mult ...@@ -2,6 +2,6 @@ add_example_executable(example_gemm_multiply_multiply_xdl_fp8 gemm_multiply_mult
# target_compile_options(example_gemm_multiply_multiply_xdl_fp8 PRIVATE -mllvm -greedy-reverse-local-assignment=1 -save-temps=$PWD -Wno-gnu-line-marker) # target_compile_options(example_gemm_multiply_multiply_xdl_fp8 PRIVATE -mllvm -greedy-reverse-local-assignment=1 -save-temps=$PWD -Wno-gnu-line-marker)
add_example_executable(example_gemm_multiply_multiply_xdl_fp8_ab_scale gemm_multiply_multiply_xdl_fp8_ab_scale.cpp) add_example_executable(example_gemm_multiply_multiply_xdl_fp8_ab_scale gemm_multiply_multiply_xdl_fp8_ab_scale.cpp)
add_example_executable(example_gemm_multiply_multiply_xdl_fp8_bpreshuffle gemm_multiply_multiply_xdl_fp8_bpreshuffle.cpp) add_example_executable(example_gemm_multiply_multiply_xdl_fp8_bpreshuffle gemm_multiply_multiply_xdl_fp8_bpreshuffle.cpp)
target_compile_options(example_gemm_multiply_multiply_xdl_fp8_bpreshuffle PRIVATE -save-temps=$PWD -Wno-gnu-line-marker) target_compile_options(example_gemm_multiply_multiply_xdl_fp8_bpreshuffle PRIVATE -mllvm -greedy-reverse-local-assignment=1 -save-temps=$PWD -Wno-gnu-line-marker)
add_example_executable(example_gemm_add_add_xdl_fp16 gemm_add_add_xdl_fp16.cpp) add_example_executable(example_gemm_add_add_xdl_fp16 gemm_add_add_xdl_fp16.cpp)
add_example_executable(example_gemm_multiply_multiply_xdl_int8 gemm_multiply_multiply_xdl_int8.cpp) add_example_executable(example_gemm_multiply_multiply_xdl_int8 gemm_multiply_multiply_xdl_int8.cpp)
...@@ -149,14 +149,14 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShu ...@@ -149,14 +149,14 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShu
// < Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 256, 32, 128, 256, 16, 16, 32, 32, 1, 1, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v3, FP8>; // < Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 256, 32, 128, 256, 16, 16, 32, 32, 1, 1, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v3, FP8>;
< Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, < Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType,
AElementOp, BElementOp, CDEElementOp, GemmSpec, 256, AElementOp, BElementOp, CDEElementOp, GemmSpec, 256,
32, 512, 128, 256, 256, 128,
16, 16, 16, 16,
32, 32, 32, 32,
1, 4, 4, 4,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0,
1, 1, S<1, 16, 1, 16>, S<8, 8, 1>, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>,
ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v2, FP8>; ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v3, FP8>;
// kernel 2: 128->32x128x128 // kernel 2: 128->32x128x128
// < Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 128, 32, 128, 128, 16, 16, 32, 32, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v1, FP8>; // < Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 128, 32, 128, 128, 16, 16, 32, 32, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v1, FP8>;
......
...@@ -5,6 +5,7 @@ ...@@ -5,6 +5,7 @@
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle_v1.hpp" #include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle_v1.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle_v2.hpp" #include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle_v2.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_b_preshuffle_v3.hpp"
namespace ck { namespace ck {
template <BlockGemmPipelineVersion BlkGemmPipelineVer, template <BlockGemmPipelineVersion BlkGemmPipelineVer,
...@@ -76,6 +77,30 @@ constexpr auto BlockGemmBPreshufflePipeline_Selector() ...@@ -76,6 +77,30 @@ constexpr auto BlockGemmBPreshufflePipeline_Selector()
NRepeat, NRepeat,
KPack>{}; KPack>{};
} }
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v3)
{
static_assert(MRepeat >= 4, "MRepeat should at least be 4 in BlockGemmPipelineVersion::v3");
return BlockwiseGemmXdlops_pipeline_bpreshuffle_v3<BlkGemmPipeSche,
BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>{};
}
else else
{ {
std::cerr << "BlockGemmPipeline configuration is not available" << std::endl; std::cerr << "BlockGemmPipeline configuration is not available" << std::endl;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_base.hpp"
namespace ck {
// Compute optimized pipeline
// GlobalPrefetchStages: 2
// LocalPreFillStages: 1
// LocalPreFetchStages: 1
// LocalSharedMemoryBuffer: 1
template <BlockGemmPipelineScheduler BlkGemmPipelineVer,
index_t BlockSize,
typename ADataType,
typename BDataType,
typename ComputeDataType,
typename AccDataType,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t ABlockTransferSrcScalarPerVector,
index_t BBlockTransferSrcScalarPerVector,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPacks>
struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v3
{
};
template <index_t BlockSize,
typename ADataType,
typename BDataType,
typename ComputeDataType,
typename AccDataType,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t ABlockTransferSrcScalarPerVector,
index_t BBlockTransferSrcScalarPerVector,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPack
// ,bool TransposeC //disable transposec right now...
>
struct BlockwiseGemmXdlops_pipeline_bpreshuffle_v3<BlockGemmPipelineScheduler::Intrawave,
BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>
: BlockwiseGemmXdlops_pipeline_base<BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>
{
using Base = BlockwiseGemmXdlops_pipeline_base<BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>;
using Base::A_K1;
using Base::B_K1;
using Base::I0;
using Base::I1;
using Base::I2;
using Base::KRepeat;
using Base::xdlops_gemm;
using typename Base::HotLoopInstList;
using Base::a_block_desc_m0_m1_m2_k;
using Base::CalculateCThreadOriginDataIndex;
using Base::CalculateCThreadOriginDataIndex8D;
using Base::GetCBlockDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4;
using Base::GetCThreadBuffer;
using Base::GetCThreadDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4;
using Base::MakeCGridDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2;
using Base::AMmaKStride;
using Base::BMmaKStride;
using Base::MWaves;
static constexpr index_t PrefetchStages = 2;
static constexpr index_t PrefillStages = 1;
static constexpr index_t GlobalBufferNum = 1;
template <typename TileDesc_M0_M1_M2_K>
__host__ __device__ static constexpr auto MakeAGemmMmaTileDescriptor(const TileDesc_M0_M1_M2_K&)
{
constexpr index_t M0 = TileDesc_M0_M1_M2_K{}.GetLength(Number<0>{});
constexpr index_t M1 = TileDesc_M0_M1_M2_K{}.GetLength(Number<1>{});
constexpr index_t M2 = TileDesc_M0_M1_M2_K{}.GetLength(Number<2>{});
constexpr index_t K2 = KPack;
constexpr index_t K1 = 64 / NPerXDL;
constexpr index_t K0 = KRepeat;
return transform_tensor_descriptor(
TileDesc_M0_M1_M2_K{},
make_tuple(
make_pass_through_transform(Number<M0>{}),
make_pass_through_transform(Number<M1>{}),
make_pass_through_transform(Number<M2>{}),
make_unmerge_transform(make_tuple(Number<K0>{}, Number<K1>{}, Number<K2>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3, 4, 5>{}));
}
static constexpr auto a_block_desc_m0_m1_m2_k0_k1_k2 =
MakeAGemmMmaTileDescriptor(a_block_desc_m0_m1_m2_k);
__host__ __device__ static constexpr bool BlockHasHotloop(index_t num_loop)
{
return num_loop > PrefetchStages;
}
__host__ __device__ static constexpr TailNumber BlockLoopTailNum(index_t num_loop)
{
return num_loop % 2 == 0 ? TailNumber::Even : TailNumber::Odd;
}
template <typename Stage>
__device__ static constexpr auto HotLoopScheduler(Stage stage)
{
constexpr auto num_ds_read_inst_a = HotLoopInstList::A_LDS_Read_Inst_Num;
constexpr auto num_ds_write_inst_a = HotLoopInstList::A_LDS_Write_Inst_Num;
constexpr auto num_buffer_load_inst_a = HotLoopInstList::A_Buffer_Load_Inst_Num;
constexpr auto num_buffer_load_inst_b = MWaves * HotLoopInstList::B_Buffer_Load_Inst_Num;
constexpr auto num_mfma = HotLoopInstList::C_MFMA_Inst_Num;
constexpr auto staged_num_ds_read_inst_a = num_ds_read_inst_a / MRepeat;
constexpr auto staged_num_mfma = num_mfma / MRepeat;
constexpr auto staged_num_mfma_per_ds_read_a = staged_num_mfma / staged_num_ds_read_inst_a;
if constexpr(stage.value == 0)
{
constexpr auto staged_num_buffer_load_b_per_ds_read_a =
num_buffer_load_inst_b / staged_num_ds_read_inst_a;
constexpr auto staged_num_mfma_per_buffer_load_b =
staged_num_mfma / num_buffer_load_inst_b;
// B global
static_for<0, staged_num_ds_read_inst_a, 1>{}([&](auto i_inst) {
ignore = i_inst;
static_for<0, staged_num_buffer_load_b_per_ds_read_a - 1, 1>{}([&](auto ibuf_inst) {
ignore = ibuf_inst;
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_buffer_load_b, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
});
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_buffer_load_b - 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
});
__builtin_amdgcn_sched_barrier(0);
}
else if constexpr(stage.value == 1)
{
constexpr auto staged_num_ds_write_a_per_ds_read_a =
num_ds_write_inst_a / staged_num_ds_read_inst_a;
constexpr auto staged_num_mfma_per_ds_write_a = staged_num_mfma / num_ds_write_inst_a;
// A local write
static_for<0, staged_num_ds_read_inst_a, 1>{}([&](auto i_inst) {
ignore = i_inst;
static_for<0, staged_num_ds_write_a_per_ds_read_a, 1>{}([&](auto idswrite_inst) {
ignore = idswrite_inst;
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_ds_write_a - 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x200, 1, 0); // DS Write
});
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_ds_write_a_per_ds_read_a, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
});
__builtin_amdgcn_sched_barrier(0);
}
else if constexpr(stage.value == 2)
{
constexpr auto staged_num_buffer_load_a_per_ds_read_a =
num_buffer_load_inst_a / staged_num_ds_read_inst_a;
constexpr auto staged_num_mfma_per_buffer_load_a =
staged_num_mfma / num_buffer_load_inst_a;
// A global
static_for<0, staged_num_ds_read_inst_a, 1>{}([&](auto i_inst) {
ignore = i_inst;
static_for<0, staged_num_buffer_load_a_per_ds_read_a - 1, 1>{}([&](auto ibuf_inst) {
ignore = ibuf_inst;
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_buffer_load_a, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
});
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_buffer_load_a - 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
});
__builtin_amdgcn_sched_barrier(0);
}
else
{
// A local Read
static_for<0, staged_num_ds_read_inst_a, 1>{}([&](auto i_inst) {
ignore = i_inst;
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_ds_read_a, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
});
__builtin_amdgcn_sched_barrier(0);
}
}
template <typename Stage>
__device__ static constexpr auto EpilogueScheduler_1(Stage stage)
{
constexpr auto num_ds_read_inst_a = HotLoopInstList::A_LDS_Read_Inst_Num;
constexpr auto num_ds_write_inst_a = HotLoopInstList::A_LDS_Write_Inst_Num;
constexpr auto num_buffer_load_inst_b = MWaves * HotLoopInstList::B_Buffer_Load_Inst_Num;
constexpr auto num_mfma = HotLoopInstList::C_MFMA_Inst_Num;
constexpr auto staged_num_ds_read_inst_a = num_ds_read_inst_a / MRepeat;
constexpr auto staged_num_mfma = num_mfma / MRepeat;
constexpr auto staged_num_mfma_per_ds_read_a = staged_num_mfma / staged_num_ds_read_inst_a;
if constexpr(stage.value == 0)
{
constexpr auto staged_num_buffer_load_b_per_ds_read_a =
num_buffer_load_inst_b / staged_num_ds_read_inst_a;
constexpr auto staged_num_mfma_per_buffer_load_b =
staged_num_mfma / num_buffer_load_inst_b;
// B global
static_for<0, staged_num_ds_read_inst_a, 1>{}([&](auto i_inst) {
ignore = i_inst;
static_for<0, staged_num_buffer_load_b_per_ds_read_a, 1>{}([&](auto ibuf_inst) {
ignore = ibuf_inst;
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_buffer_load_b, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
});
__builtin_amdgcn_sched_group_barrier(0x008, 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_buffer_load_b - 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x020, 1, 0); // VMEM read
});
__builtin_amdgcn_sched_barrier(0);
}
else if constexpr(stage.value == 1)
{
constexpr auto staged_num_ds_write_a_per_ds_read_a =
num_ds_write_inst_a / staged_num_ds_read_inst_a;
constexpr auto staged_num_mfma_per_ds_write_a = staged_num_mfma / num_ds_write_inst_a;
// A local write
static_for<0, staged_num_ds_read_inst_a, 1>{}([&](auto i_inst) {
ignore = i_inst;
static_for<0, staged_num_ds_write_a_per_ds_read_a, 1>{}([&](auto idswrite_inst) {
ignore = idswrite_inst;
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_ds_write_a - 1, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x200, 1, 0); // DS Write
});
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_ds_write_a, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
});
__builtin_amdgcn_sched_barrier(0);
}
else
{
// A local Read
static_for<0, staged_num_ds_read_inst_a, 1>{}([&](auto i_inst) {
ignore = i_inst;
__builtin_amdgcn_sched_group_barrier(
0x008, staged_num_mfma_per_ds_read_a, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
});
__builtin_amdgcn_sched_barrier(0);
}
}
__device__ static constexpr auto EpilogueScheduler_2()
{
constexpr auto num_ds_read_inst_a = HotLoopInstList::A_LDS_Read_Inst_Num;
constexpr auto num_mfma = HotLoopInstList::C_MFMA_Inst_Num;
constexpr auto staged_num_ds_read_inst_a = num_ds_read_inst_a / MRepeat;
constexpr auto staged_num_mfma = num_mfma / MRepeat;
constexpr auto staged_num_mfma_per_ds_read_a = staged_num_mfma / staged_num_ds_read_inst_a;
// A local Read
static_for<0, staged_num_ds_read_inst_a, 1>{}([&](auto i_inst) {
ignore = i_inst;
__builtin_amdgcn_sched_group_barrier(0x008, staged_num_mfma_per_ds_read_a, 0); // MFMA
__builtin_amdgcn_sched_group_barrier(0x100, 1, 0); // DS read
});
__builtin_amdgcn_sched_barrier(0);
}
template <bool HasMainLoop,
TailNumber TailNum,
typename AGridDesc,
typename ABlockDesc,
typename ABlockTransfer,
typename AGridBuffer,
typename ABlockBuffer,
typename ABlockTransferStep,
typename BGridDesc,
typename BBlockTransfer,
typename BGridBuffer,
typename BBlockBuffer,
typename BBlockTransferStep,
typename CThreadBuffer>
__device__ void Run(const AGridDesc& a_grid_desc,
const ABlockDesc& a_block_desc,
ABlockTransfer& a_blockwise_copy,
const AGridBuffer& a_grid_buf,
ABlockBuffer& a_block_buf,
const ABlockTransferStep& a_block_copy_step,
const BGridDesc& b_grid_desc,
BBlockTransfer& b_blockwise_copy,
const BGridBuffer& b_grid_buf,
BBlockBuffer& b_block_buf,
const BBlockTransferStep& b_block_copy_step,
CThreadBuffer& c_thread_buf,
index_t num_loop) const
{
ignore = b_block_buf;
__builtin_amdgcn_sched_barrier(0);
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, ComputeDataType>(
b_thread_desc_.GetElementSpaceSize());
StaticallyIndexedArray<decltype(b_thread_buf), Number<2>{}> b_thread_bufs;
constexpr auto b_block_origin_idx = make_tuple(I0, I0, I0, I0);
// Global prefetch A1 B1
b_blockwise_copy.Run(b_grid_desc,
b_grid_buf,
b_block_desc_n0_n1_k0_k1,
b_block_origin_idx,
b_thread_bufs(I0));
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
__builtin_amdgcn_sched_barrier(0);
// // Local prefill A1
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(I0));
// // Global prefetch A2
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
// Local prefetch A1
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k0_k1_k2,
make_tuple(I0, I0, I0, k0, I0, I0),
a_block_buf.At(I0),
a_thread_desc_,
make_tuple(I0, I0, I0, k0, I0, I0),
a_thread_buf);
});
// Initialize C
c_thread_buf.Clear();
__builtin_amdgcn_sched_barrier(0);
// main body
if constexpr(HasMainLoop)
{
index_t i = 0;
do
{
auto LoopFunc = [&](auto mfma_reg_buf, auto local_read_buf) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
if constexpr(m0.value == 0)
{
b_blockwise_copy.Run(b_grid_desc,
b_grid_buf,
b_block_desc_n0_n1_k0_k1,
b_block_origin_idx,
b_thread_bufs(local_read_buf));
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
}
else if constexpr(m0.value == 1)
{
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(local_read_buf));
}
else if constexpr(m0.value == 2)
{
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
}
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0 % 2, I0, I0, k0, I0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_bufs[mfma_reg_buf]
[Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
if constexpr(m0.value == MRepeat - 1)
{
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
a_thread_copy_.Run(
a_block_desc_m0_m1_m2_k0_k1_k2,
make_tuple(Number<(m0 + 1) % MRepeat>{}, I0, I0, k0, I0, I0),
a_block_buf.At(local_read_buf),
a_thread_desc_,
make_tuple(Number<(m0 + 1) % 2>{}, I0, I0, k0, I0, I0),
a_thread_buf);
});
}
else
{
static_for<0, KRepeat, 1>{}([&](auto k0) {
a_thread_copy_.Run(
a_block_desc_m0_m1_m2_k0_k1_k2,
make_tuple(Number<(m0 + 1) % MRepeat>{}, I0, I0, k0, I0, I0),
a_block_buf.At(mfma_reg_buf),
a_thread_desc_,
make_tuple(Number<(m0 + 1) % 2>{}, I0, I0, k0, I0, I0),
a_thread_buf);
});
}
HotLoopScheduler(m0);
});
};
LoopFunc(I0, I1);
LoopFunc(I1, I0);
i += 2;
} while(i < (num_loop - 2));
}
// tail
if constexpr(TailNum == TailNumber::Even)
{
static_for<0, MRepeat, 1>{}([&](auto m0) {
if constexpr(m0.value == 0)
{
b_blockwise_copy.Run(b_grid_desc,
b_grid_buf,
b_block_desc_n0_n1_k0_k1,
b_block_origin_idx,
b_thread_bufs(I1));
}
else if constexpr(m0.value == MRepeat - 1)
{
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(I1));
}
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0 % 2, I0, I0, k0, I0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_bufs[I0][Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
if constexpr(m0.value == MRepeat - 1)
{
block_sync_lds();
static_for<0, KRepeat, 1>{}([&](auto k0) {
a_thread_copy_.Run(
a_block_desc_m0_m1_m2_k0_k1_k2,
make_tuple(Number<(m0 + 1) % MRepeat>{}, I0, I0, k0, I0, I0),
a_block_buf.At(I1),
a_thread_desc_,
make_tuple(Number<(m0 + 1) % 2>{}, I0, I0, k0, I0, I0),
a_thread_buf);
});
}
else
{
static_for<0, KRepeat, 1>{}([&](auto k0) {
a_thread_copy_.Run(
a_block_desc_m0_m1_m2_k0_k1_k2,
make_tuple(Number<(m0 + 1) % MRepeat>{}, I0, I0, k0, I0, I0),
a_block_buf.At(I0),
a_thread_desc_,
make_tuple(Number<(m0 + 1) % 2>{}, I0, I0, k0, I0, I0),
a_thread_buf);
});
}
EpilogueScheduler_1(m0);
});
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0 % 2, I0, I0, k0, I0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_bufs[I1][Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
if constexpr(m0.value != (MRepeat - 1))
{
static_for<0, KRepeat, 1>{}([&](auto k0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k0_k1_k2,
make_tuple(Number<m0 + 1>{}, I0, I0, k0, I0, I0),
a_block_buf.At(I1),
a_thread_desc_,
make_tuple(Number<(m0 + 1) % 2>{}, I0, I0, k0, I0, I0),
a_thread_buf);
});
EpilogueScheduler_2();
}
});
// Let's leak last MFMA block to epilogue region, cover the potential lds-shuffle
// latency
// __builtin_amdgcn_sched_barrier(0);
}
else
{
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<ComputeDataType, KPack> a_thread_vec;
vector_type<ComputeDataType, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<ComputeDataType>()(ik) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(m0 % 2, I0, I0, k0, I0, ik))>{}];
b_thread_vec.template AsType<ComputeDataType>()(ik) =
b_thread_bufs[I0][Number<b_thread_desc_.CalculateOffset(
make_tuple(n0, I0, k0, ik))>{}];
});
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
if constexpr(m0.value != (MRepeat - 1))
{
static_for<0, KRepeat, 1>{}([&](auto k0) {
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k0_k1_k2,
make_tuple(Number<m0 + 1>{}, I0, I0, k0, I0, I0),
a_block_buf.At(I0),
a_thread_desc_,
make_tuple(Number<(m0 + 1) % 2>{}, I0, I0, k0, I0, I0),
a_thread_buf);
});
EpilogueScheduler_2();
}
});
}
}
protected:
// MRepeat MWave MLane KRepeat KLane KPack
// KRepeat -> MRepeat-> Mwave->KLane->MLane->KPack
// Reduce the vgpr usage here.
static constexpr auto a_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(I2, I1, I1, Number<KRepeat>{}, I1, Number<KPack>{}));
using AThreadCopy = ThreadwiseTensorSliceTransfer_v4<ADataType,
ComputeDataType,
decltype(a_block_desc_m0_m1_m2_k0_k1_k2),
decltype(a_thread_desc_),
Sequence<1, 1, 1, 1, 1, KPack>,
Sequence<0, 1, 2, 3, 4, 5>,
5,
A_K1,
A_K1>;
AThreadCopy a_thread_copy_{Base::CalculateAThreadOriginDataIndex6D()};
static constexpr auto b_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<NRepeat>{}, I1, Number<KRepeat>{}, Number<KPack>{}));
static constexpr BTileDesc b_block_desc_n0_n1_k0_k1;
using Base::c_thread_desc_;
};
} // namespace ck
...@@ -249,6 +249,7 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle ...@@ -249,6 +249,7 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
// Tail number always full // Tail number always full
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1) if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1)
{ {
#if 0
if(arg.KBatch > 1) if(arg.KBatch > 1)
{ {
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd) if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
...@@ -295,9 +296,19 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle ...@@ -295,9 +296,19 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
Run(kernel); Run(kernel);
} }
} }
#endif
const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle<
GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
} }
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2) else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2 ||
BlkGemmPipelineVer == BlockGemmPipelineVersion::v3)
{ {
#if 0
if(arg.KBatch > 1) if(arg.KBatch > 1)
{ {
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd) if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
...@@ -348,6 +359,14 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle ...@@ -348,6 +359,14 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
Run(kernel); Run(kernel);
} }
} }
#endif
const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
} }
else else
{ {
...@@ -359,6 +378,7 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle ...@@ -359,6 +378,7 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
{ {
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1) if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1)
{ {
#if 0
if(arg.KBatch > 1) if(arg.KBatch > 1)
{ {
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd) if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
...@@ -405,8 +425,29 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle ...@@ -405,8 +425,29 @@ struct DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle
Run(kernel); Run(kernel);
} }
} }
#endif
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle<
GridwiseGemm,
false,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_multi_d_b_preshuffle<
GridwiseGemm,
false,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
} }
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2) else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2 || BlkGemmPipelineVer == BlockGemmPipelineVersion::v3)
{ {
if(arg.KBatch > 1) if(arg.KBatch > 1)
{ {
......
...@@ -172,7 +172,6 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3_b_preshuffle ...@@ -172,7 +172,6 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3_b_preshuffle
static constexpr index_t KRepeat = KPerBlock / KLane / KPack; static constexpr index_t KRepeat = KPerBlock / KLane / KPack;
static constexpr index_t NLane = NPerXdl; static constexpr index_t NLane = NPerXdl;
static constexpr index_t NWave = NPerBlock / NPerXdl / NXdlPerWave; static constexpr index_t NWave = NPerBlock / NPerXdl / NXdlPerWave;
static_assert(NWave * warpSize == BlockSize);
static constexpr auto MakeDsGridPointer() static constexpr auto MakeDsGridPointer()
{ {
...@@ -1202,7 +1201,7 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3_b_preshuffle ...@@ -1202,7 +1201,7 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3_b_preshuffle
1, 1,
AThreadTransferSrcResetCoordinateAfterRun, AThreadTransferSrcResetCoordinateAfterRun,
true, true,
2>( BlockwiseGemmPipe::GlobalBufferNum>(
a_grid_desc_ak0_m_ak1, a_grid_desc_ak0_m_ak1,
make_multi_index(0, m_block_data_idx_on_grid, 0), make_multi_index(0, m_block_data_idx_on_grid, 0),
a_element_op, a_element_op,
...@@ -1221,13 +1220,13 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3_b_preshuffle ...@@ -1221,13 +1220,13 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3_b_preshuffle
decltype(b_grid_desc_bpreshuffled), decltype(b_grid_desc_bpreshuffled),
decltype(b_block_desc_bk0_n_bk1), decltype(b_block_desc_bk0_n_bk1),
Sequence<Number<NXdlPerWave>{}, I1, Number<KRepeat>{}, Number<BK1Value>{}>, Sequence<Number<NXdlPerWave>{}, I1, Number<KRepeat>{}, Number<BK1Value>{}>,
Sequence<0, 1, 2, 3>, Sequence<1, 2, 0, 3>,
3, 3,
BBlockTransferSrcScalarPerVector, BBlockTransferSrcScalarPerVector,
BThreadTransferSrcResetCoordinateAfterRun, BThreadTransferSrcResetCoordinateAfterRun,
true>(b_grid_desc_bpreshuffled, true>(b_grid_desc_bpreshuffled,
make_multi_index(n_block_data_idx_on_grid, make_multi_index(n_block_data_idx_on_grid,
get_warp_local_1d_id(), get_warp_local_1d_id() % NWave,
0, 0,
KPack * (get_thread_local_1d_id() % warpSize))); KPack * (get_thread_local_1d_id() % warpSize)));
...@@ -1661,13 +1660,13 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3_b_preshuffle ...@@ -1661,13 +1660,13 @@ struct GridwiseGemmMultiD_xdl_cshuffle_v3_b_preshuffle
decltype(b_grid_desc_bpreshuffled), decltype(b_grid_desc_bpreshuffled),
decltype(b_block_desc_bk0_n_bk1), decltype(b_block_desc_bk0_n_bk1),
Sequence<Number<NXdlPerWave>{}, I1, Number<KRepeat>{}, Number<BK1Value>{}>, Sequence<Number<NXdlPerWave>{}, I1, Number<KRepeat>{}, Number<BK1Value>{}>,
Sequence<0, 1, 2, 3>, Sequence<1, 2, 0, 3>,
3, 3,
BBlockTransferSrcScalarPerVector, BBlockTransferSrcScalarPerVector,
BThreadTransferSrcResetCoordinateAfterRun, BThreadTransferSrcResetCoordinateAfterRun,
true>(b_grid_desc_bpreshuffled, true>(b_grid_desc_bpreshuffled,
make_multi_index(n_block_data_idx_on_grid, make_multi_index(n_block_data_idx_on_grid,
get_warp_local_1d_id(), get_warp_local_1d_id() % NWave,
0, 0,
KPack * (get_thread_local_1d_id() % warpSize))); KPack * (get_thread_local_1d_id() % warpSize)));
......
...@@ -17,7 +17,7 @@ fi ...@@ -17,7 +17,7 @@ fi
cmake \ cmake \
-D CMAKE_PREFIX_PATH=/opt/rocm \ -D CMAKE_PREFIX_PATH=/opt/rocm \
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \ -D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-D CMAKE_CXX_FLAGS="-Xclang -mllvm -Xclang -enable-post-misched=0 -std=c++17 -O3 -ftemplate-backtrace-limit=0 -fPIE -Wno-gnu-line-marker" \ -D CMAKE_CXX_FLAGS="-std=c++17 -O3 -ftemplate-backtrace-limit=0 -fPIE -Wno-gnu-line-marker" \
-D CMAKE_BUILD_TYPE=Release \ -D CMAKE_BUILD_TYPE=Release \
-D BUILD_DEV=ON \ -D BUILD_DEV=ON \
-D GPU_TARGETS=$GPU_TARGETS \ -D GPU_TARGETS=$GPU_TARGETS \
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment