Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
d39c3f5d
Commit
d39c3f5d
authored
Jun 06, 2024
by
Jun Liu
Browse files
Merge branch 'develop' into amd-develop
parents
88b978c5
ac58cc5d
Changes
120
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
3083 additions
and
138 deletions
+3083
-138
Jenkinsfile
Jenkinsfile
+4
-4
client_example/24_grouped_conv_activation/CMakeLists.txt
client_example/24_grouped_conv_activation/CMakeLists.txt
+4
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/common.hpp
...d_conv_activation/grouped_convnd_fwd_convscale/common.hpp
+316
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8.cpp
...grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8.cpp
+50
-0
docs/sphinx/requirements.in
docs/sphinx/requirements.in
+1
-1
docs/sphinx/requirements.txt
docs/sphinx/requirements.txt
+1
-1
example/62_convnd_activ/CMakeLists.txt
example/62_convnd_activ/CMakeLists.txt
+1
-0
example/62_convnd_activ/convscale/CMakeLists.txt
example/62_convnd_activ/convscale/CMakeLists.txt
+10
-0
example/62_convnd_activ/convscale/convnd_fwd_convscale_common.hpp
...62_convnd_activ/convscale/convnd_fwd_convscale_common.hpp
+301
-0
example/62_convnd_activ/convscale/convnd_fwd_xdl_convscale_fp8.cpp
...2_convnd_activ/convscale/convnd_fwd_xdl_convscale_fp8.cpp
+88
-0
example/62_convnd_activ/convscale/run_convnd_fwd_convscale_example.inc
...nvnd_activ/convscale/run_convnd_fwd_convscale_example.inc
+104
-0
example/ck_tile/01_fmha/CMakeLists.txt
example/ck_tile/01_fmha/CMakeLists.txt
+35
-4
example/ck_tile/01_fmha/fmha_bwd.cpp
example/ck_tile/01_fmha/fmha_bwd.cpp
+932
-0
example/ck_tile/01_fmha/fmha_bwd.hpp
example/ck_tile/01_fmha/fmha_bwd.hpp
+359
-0
example/ck_tile/01_fmha/fmha_fwd.cpp
example/ck_tile/01_fmha/fmha_fwd.cpp
+88
-47
example/ck_tile/01_fmha/fmha_fwd.hpp
example/ck_tile/01_fmha/fmha_fwd.hpp
+72
-42
example/ck_tile/01_fmha/generate.py
example/ck_tile/01_fmha/generate.py
+663
-39
example/ck_tile/01_fmha/script/benchmark_bwd.sh
example/ck_tile/01_fmha/script/benchmark_bwd.sh
+21
-0
example/ck_tile/01_fmha/script/benchmark_fwd.sh
example/ck_tile/01_fmha/script/benchmark_fwd.sh
+0
-0
example/ck_tile/01_fmha/script/smoke_test_bwd.sh
example/ck_tile/01_fmha/script/smoke_test_bwd.sh
+33
-0
No files found.
Jenkinsfile
View file @
d39c3f5d
...
@@ -652,8 +652,8 @@ def process_results(Map conf=[:]){
...
@@ -652,8 +652,8 @@ def process_results(Map conf=[:]){
}
}
//launch develop branch daily at 23:00 UT in FULL_QA mode and at 19:00 UT with latest staging compiler version
//launch develop branch daily at 23:00 UT in FULL_QA mode and at 19:00 UT with latest staging compiler version
CRON_SETTINGS
=
BRANCH_NAME
==
"develop"
?
'''0 23 * * * % RUN_FULL_QA=true;ROCMVERSION=6.1;
COMPILER_VERSION=
CRON_SETTINGS
=
BRANCH_NAME
==
"develop"
?
'''0 23 * * * % RUN_FULL_QA=true;ROCMVERSION=6.1;
0 21 * * * % ROCMVERSION=6.1;
COMPILER_VERSION=;COMPILER_COMMIT=
0 21 * * * % ROCMVERSION=6.1;
hipTensor_test=true
0 19 * * * % BUILD_DOCKER=true;DL_KERNELS=true;COMPILER_VERSION=amd-staging;COMPILER_COMMIT=;USE_SCCACHE=false
0 19 * * * % BUILD_DOCKER=true;DL_KERNELS=true;COMPILER_VERSION=amd-staging;COMPILER_COMMIT=;USE_SCCACHE=false
0 17 * * * % BUILD_DOCKER=true;DL_KERNELS=true;COMPILER_VERSION=amd-mainline-open;COMPILER_COMMIT=;USE_SCCACHE=false
0 17 * * * % BUILD_DOCKER=true;DL_KERNELS=true;COMPILER_VERSION=amd-mainline-open;COMPILER_COMMIT=;USE_SCCACHE=false
0 15 * * * % BUILD_INSTANCES_ONLY=true;RUN_CODEGEN_TESTS=false;RUN_PERFORMANCE_TESTS=false;USE_SCCACHE=false'''
:
""
0 15 * * * % BUILD_INSTANCES_ONLY=true;RUN_CODEGEN_TESTS=false;RUN_PERFORMANCE_TESTS=false;USE_SCCACHE=false'''
:
""
...
@@ -701,8 +701,8 @@ pipeline {
...
@@ -701,8 +701,8 @@ pipeline {
description:
"Select whether to build DL kernels (default: OFF)"
)
description:
"Select whether to build DL kernels (default: OFF)"
)
booleanParam
(
booleanParam
(
name:
"hipTensor_test"
,
name:
"hipTensor_test"
,
defaultValue:
tru
e
,
defaultValue:
fals
e
,
description:
"Use the CK build to verify hipTensor build and tests (default: O
N
)"
)
description:
"Use the CK build to verify hipTensor build and tests (default: O
FF
)"
)
string
(
string
(
name:
'hipTensor_branch'
,
name:
'hipTensor_branch'
,
defaultValue:
'mainline'
,
defaultValue:
'mainline'
,
...
...
client_example/24_grouped_conv_activation/CMakeLists.txt
View file @
d39c3f5d
...
@@ -35,6 +35,10 @@ target_link_libraries(client_grouped_convnd_fwd_scaleadd_ab_int8 PRIVATE composa
...
@@ -35,6 +35,10 @@ target_link_libraries(client_grouped_convnd_fwd_scaleadd_ab_int8 PRIVATE composa
add_executable
(
client_grouped_convnd_fwd_bilinear_residual_fp16
add_executable
(
client_grouped_convnd_fwd_bilinear_residual_fp16
grouped_convnd_fwd_bilinear/grouped_conv_fwd_bilinear_residual_fp16.cpp
)
grouped_convnd_fwd_bilinear/grouped_conv_fwd_bilinear_residual_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_bilinear_residual_fp16 PRIVATE composable_kernel::device_conv_operations
)
target_link_libraries
(
client_grouped_convnd_fwd_bilinear_residual_fp16 PRIVATE composable_kernel::device_conv_operations
)
# Fwd convscale
add_executable
(
client_conv3d_fwd_convscale_fp8
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8.cpp
)
target_link_libraries
(
client_conv3d_fwd_convscale_fp8 PRIVATE composable_kernel::device_conv_operations
)
# Bwd data bilinear
# Bwd data bilinear
add_executable
(
client_grouped_convnd_bwd_data_bilinear_residual_fp16
add_executable
(
client_grouped_convnd_bwd_data_bilinear_residual_fp16
grouped_convnd_bwd_data_bilinear/grouped_conv_bwd_data_bilinear_residual_fp16.cpp
)
grouped_convnd_bwd_data_bilinear/grouped_conv_bwd_data_bilinear_residual_fp16.cpp
)
...
...
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/common.hpp
0 → 100644
View file @
d39c3f5d
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <string>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convscale.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ConvScale
=
ck
::
tensor_operation
::
element_wise
::
ConvScale
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
template
<
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetFlops
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
,
const
std
::
size_t
&
ds_size
)
{
// G * N * C * <output spatial lengths product> * (2 * K * <filter spatial lengths product> +
// <number of scale factors>)
ck
::
index_t
G
=
weights_lengths
[
0
];
ck
::
index_t
N
=
output_lengths
[
1
];
ck
::
index_t
K
=
weights_lengths
[
1
];
ck
::
index_t
C
=
weights_lengths
[
2
];
return
G
*
N
*
C
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
output_lengths
),
NumNonSpatialDim
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
*
(
static_cast
<
std
::
size_t
>
(
2
)
*
K
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
weights_lengths
),
NumNonSpatialDim
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
+
ds_size
);
}
template
<
typename
InDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetInputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
input_lengths
)
{
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return
sizeof
(
InDataType
)
*
std
::
accumulate
(
std
::
begin
(
input_lengths
),
std
::
end
(
input_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
WeiDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetWeightByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
)
{
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return
sizeof
(
WeiDataType
)
*
std
::
accumulate
(
std
::
begin
(
weights_lengths
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
OutDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetOutputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
)
{
// sizeof(OutDataType) * (G * N * K * <output spatial lengths product>);
return
sizeof
(
OutDataType
)
*
std
::
accumulate
(
std
::
begin
(
output_lengths
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<
std
::
size_t
>
());
}
template
<
ck
::
index_t
NumDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
ck
::
index_t
NumNonSpatialDim
=
3
,
typename
AComputeType
=
InDataType
,
typename
BComputeType
=
AComputeType
>
bool
run_grouped_conv_fwd_convscale
(
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_lengths
)
{
std
::
size_t
in_mem_size
=
GetInputByte
<
InDataType
,
NumDimSpatial
>
(
in_lengths
);
std
::
size_t
wei_mem_size
=
GetWeightByte
<
WeiDataType
,
NumDimSpatial
>
(
wei_lengths
);
std
::
size_t
out_mem_size
=
GetOutputByte
<
OutDataType
,
NumDimSpatial
>
(
out_lengths
);
SimpleDeviceMem
in
(
in_mem_size
);
SimpleDeviceMem
wei
(
wei_mem_size
);
SimpleDeviceMem
out
(
out_mem_size
);
float
scale_in
;
float
scale_wei
;
float
scale_out
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_strides
;
in_strides
.
fill
(
0
);
wei_strides
.
fill
(
0
);
out_strides
.
fill
(
0
);
in_strides
.
back
()
=
1
;
wei_strides
.
back
()
=
1
;
out_strides
.
back
()
=
1
;
std
::
partial_sum
(
rbegin
(
in_lengths
),
std
::
prev
(
rend
(
in_lengths
)),
std
::
next
(
rbegin
(
in_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
wei_lengths
),
std
::
prev
(
rend
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
out_lengths
),
std
::
prev
(
rend
(
out_lengths
)),
std
::
next
(
rbegin
(
out_strides
)),
std
::
multiplies
<>
{});
// transpose NDHWGC/KZYXGC/NDHWGK to GNDHWC/GKZYXC/GNDHWK to GNCDHW/GKCZYX/GNKDHW
std
::
rotate
(
std
::
next
(
rbegin
(
in_lengths
)),
std
::
next
(
rbegin
(
in_lengths
),
2
),
rend
(
in_lengths
));
std
::
rotate
(
rbegin
(
in_lengths
),
std
::
next
(
rbegin
(
in_lengths
)),
std
::
next
(
rbegin
(
in_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
in_strides
)),
std
::
next
(
rbegin
(
in_strides
),
2
),
rend
(
in_strides
));
std
::
rotate
(
rbegin
(
in_strides
),
std
::
next
(
rbegin
(
in_strides
)),
std
::
next
(
rbegin
(
in_strides
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
wei_lengths
),
std
::
next
(
rbegin
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
wei_strides
),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
next
(
rbegin
(
wei_strides
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
out_lengths
)),
std
::
next
(
rbegin
(
out_lengths
),
2
),
rend
(
out_lengths
));
std
::
rotate
(
rbegin
(
out_lengths
),
std
::
next
(
rbegin
(
out_lengths
)),
std
::
next
(
rbegin
(
out_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
out_strides
)),
std
::
next
(
rbegin
(
out_strides
),
2
),
rend
(
out_strides
));
std
::
rotate
(
rbegin
(
out_strides
),
std
::
next
(
rbegin
(
out_strides
)),
std
::
next
(
rbegin
(
out_strides
),
NumDimSpatial
+
1
));
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_dilations
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
;
conv_filter_strides
.
fill
(
1
);
conv_filter_dilations
.
fill
(
1
);
input_left_pads
.
fill
(
1
);
input_right_pads
.
fill
(
1
);
std
::
size_t
ds_size
=
3
;
// 3 element-wise scale multipliers
std
::
size_t
flop
=
GetFlops
<
NumDimSpatial
>
(
out_lengths
,
wei_lengths
,
ds_size
);
std
::
size_t
num_bytes
=
in_mem_size
+
wei_mem_size
+
sizeof
(
float
)
+
sizeof
(
float
)
+
sizeof
(
float
)
+
out_mem_size
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
PassThrough
,
PassThrough
,
ConvScale
,
AComputeType
,
BComputeType
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
out_lengths
,
out_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
ConvScale
{
scale_in
,
scale_wei
,
scale_out
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
false
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
out_lengths
,
out_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
ConvScale
{
scale_in
,
scale_wei
,
scale_out
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
true
;
}
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8.cpp
0 → 100644
View file @
d39c3f5d
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
CShuffleDataType
=
float
;
using
OutDataType
=
ck
::
f8_t
;
using
AComputeDataType
=
ck
::
f8_t
;
using
BComputeDataType
=
ck
::
f8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd_convscale
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
3
,
AComputeDataType
,
BComputeDataType
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
G
,
K
,
Z
,
Y
,
X
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
docs/sphinx/requirements.in
View file @
d39c3f5d
rocm-docs-core==1.
2
.0
rocm-docs-core==1.
3
.0
sphinxcontrib-bibtex==2.6.2
sphinxcontrib-bibtex==2.6.2
docs/sphinx/requirements.txt
View file @
d39c3f5d
...
@@ -103,7 +103,7 @@ requests==2.31.0
...
@@ -103,7 +103,7 @@ requests==2.31.0
# via
# via
# pygithub
# pygithub
# sphinx
# sphinx
rocm-docs-core==1.
2
.0
rocm-docs-core==1.
3
.0
# via -r requirements.in
# via -r requirements.in
six==1.16.0
six==1.16.0
# via
# via
...
...
example/62_convnd_activ/CMakeLists.txt
View file @
d39c3f5d
add_subdirectory
(
binary
)
add_subdirectory
(
binary
)
add_subdirectory
(
convscale
)
add_subdirectory
(
multi_AB
)
add_subdirectory
(
multi_AB
)
add_subdirectory
(
unary
)
add_subdirectory
(
unary
)
...
...
example/62_convnd_activ/convscale/CMakeLists.txt
0 → 100644
View file @
d39c3f5d
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_custom_target
(
example_convnd_activ_xdl_convscale
)
add_example_executable
(
example_convnd_fwd_xdl_convscale_fp8 convnd_fwd_xdl_convscale_fp8.cpp
)
add_example_dependencies
(
example_convnd_activ_xdl_convscale example_convnd_fwd_xdl_convscale_fp8
)
set
(
target 1
)
endif
()
endforeach
()
example/62_convnd_activ/convscale/convnd_fwd_convscale_common.hpp
0 → 100644
View file @
d39c3f5d
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ConvScale
=
ck
::
tensor_operation
::
element_wise
::
ConvScale
;
void
print_helper_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
}
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_rtol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1e-6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5e-2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
1e-1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
1.5e-1
;
// 57344 and 49152 are acceptable
}
else
{
return
1e-3
;
}
}
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_atol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1e-6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5e-2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
16.1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
8192.1
;
// 57344 and 49152 are acceptable
}
else
{
return
1e-3
;
}
}
template
<
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetFlops
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
,
const
std
::
size_t
&
ds_size
)
{
// G * N * C * <output spatial lengths product> * (2 * K * <filter spatial lengths product> +
// <number of scale factors>)
ck
::
index_t
G
=
weights_lengths
[
0
];
ck
::
index_t
N
=
output_lengths
[
1
];
ck
::
index_t
K
=
weights_lengths
[
1
];
ck
::
index_t
C
=
weights_lengths
[
2
];
return
G
*
N
*
C
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
output_lengths
),
NumNonSpatialDim
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
*
(
static_cast
<
std
::
size_t
>
(
2
)
*
K
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
weights_lengths
),
NumNonSpatialDim
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
+
ds_size
);
}
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
OutDataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
DeviceConvNDFwdInstance
>
bool
run_grouped_conv_fwd
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
)
{
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
CShuffleDataType
>
c
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_host
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
// random scale values
float
scale_in
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_wei
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_out
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
// initialize out_element_op for each iteration
const
auto
out_element_op
=
OutElementOp
{
scale_in
,
scale_wei
,
scale_out
};
// do Conv
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
ds_size
=
3
;
// 3 element-wise scale multipliers
std
::
size_t
flop
=
GetFlops
<
NDimSpatial
>
(
e_g_n_k_wos_lengths
,
b_g_k_c_xs_lengths
,
ds_size
);
std
::
size_t
num_btype
=
conv_param
.
GetInputByte
<
InDataType
>
()
+
conv_param
.
GetWeightByte
<
WeiDataType
>
()
+
sizeof
(
float
)
+
sizeof
(
float
)
+
sizeof
(
float
)
+
conv_param
.
GetOutputByte
<
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
CShuffleDataType
,
InElementOp
,
WeiElementOp
,
PassThrough
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei
,
c
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
out_host
.
ForEach
([
&
](
auto
&
,
auto
idx
)
{
out_element_op
(
out_host
(
idx
),
c
(
idx
));
});
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
out_device
,
out_host
,
"Error: incorrect results!"
,
get_rtol
<
OutDataType
>
(),
get_atol
<
OutDataType
>
());
}
return
true
;
}
example/62_convnd_activ/convscale/convnd_fwd_xdl_convscale_fp8.cpp
0 → 100644
View file @
d39c3f5d
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_convscale_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
float
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
OutDataType
=
ck
::
f8_t
;
using
AComputeDataType
=
ck
::
f8_t
;
using
BComputeDataType
=
ck
::
f8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ConvScale
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
DsLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
DsLayout
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
AComputeDataType
,
BComputeDataType
>
;
#include "run_convnd_fwd_convscale_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_convnd_fwd_example
(
argc
,
argv
)
?
0
:
1
;
}
example/62_convnd_activ/convscale/run_convnd_fwd_convscale_example.inc
0 → 100644
View file @
d39c3f5d
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
bool
run_convnd_fwd_example
(
int
argc
,
char
*
argv
[])
{
print_helper_msg
();
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
ck
::
utils
::
conv
::
ConvParam
conv_param
{
2
,
1
,
128
,
256
,
192
,
{
3
,
3
},
{
71
,
71
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
conv_param
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
5
,
argv
);
}
// instantiate in and wei element ops, will
// instantiate out_element_op below for every iteration
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
run
=
[
&
](
auto
ndim_spatial
,
auto
in_layout
,
auto
wei_layout
,
auto
ds_layout
,
auto
out_layout
)
{
constexpr
ck
::
index_t
ndim_spatial_value
=
ndim_spatial
.
value
;
using
InLayout
=
decltype
(
in_layout
);
using
WeiLayout
=
decltype
(
wei_layout
);
using
DsLayout
=
decltype
(
ds_layout
);
using
OutLayout
=
decltype
(
out_layout
);
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_grouped_conv_fwd
<
ndim_spatial_value
,
InDataType
,
WeiDataType
,
CShuffleDataType
,
DsDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceGroupedConvNDFwdInstance
<
ndim_spatial_value
,
InLayout
,
WeiLayout
,
DsLayout
,
OutLayout
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
);
};
namespace
ctc
=
ck
::
tensor_layout
::
convolution
;
if
(
conv_param
.
num_dim_spatial_
==
1
)
{
return
run
(
ck
::
Number
<
1
>
{},
ctc
::
GNWC
{},
ctc
::
GKXC
{},
ck
::
Tuple
<>
{},
ctc
::
GNWK
{});
}
else
if
(
conv_param
.
num_dim_spatial_
==
2
)
{
return
run
(
ck
::
Number
<
2
>
{},
ctc
::
GNHWC
{},
ctc
::
GKYXC
{},
ck
::
Tuple
<>
{},
ctc
::
GNHWK
{});
}
else
if
(
conv_param
.
num_dim_spatial_
==
3
)
{
return
run
(
ck
::
Number
<
3
>
{},
ctc
::
GNDHWC
{},
ctc
::
GKZYXC
{},
ck
::
Tuple
<>
{},
ctc
::
GNDHWK
{});
}
return
true
;
}
example/ck_tile/01_fmha/CMakeLists.txt
View file @
d39c3f5d
# generate a list of kernels, but not actually emit files at config stage
# generate a list of kernels, but not actually emit files at config stage
execute_process
(
execute_process
(
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
--list_blobs
${
CMAKE_CURRENT_BINARY_DIR
}
/blob_list.txt
--direction fwd
--list_blobs
${
CMAKE_CURRENT_BINARY_DIR
}
/
fwd_
blob_list.txt
)
)
# NOTE: for cmake, the FMHA_FWD_GEN_BLOBS files must be in the same directory
execute_process
(
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
--direction bwd --list_blobs
${
CMAKE_CURRENT_BINARY_DIR
}
/bwd_blob_list.txt
)
# NOTE: for cmake, the FMHA_FWD_GEN_BLOBS/FMHA_BWD_GEN_BLOBS files must be in the same directory
# as current cmake list, otherwise will not figure out the dependency properly
# as current cmake list, otherwise will not figure out the dependency properly
file
(
STRINGS
${
CMAKE_CURRENT_BINARY_DIR
}
/blob_list.txt FMHA_FWD_GEN_BLOBS
)
file
(
STRINGS
${
CMAKE_CURRENT_BINARY_DIR
}
/fwd_blob_list.txt FMHA_FWD_GEN_BLOBS
)
file
(
STRINGS
${
CMAKE_CURRENT_BINARY_DIR
}
/bwd_blob_list.txt FMHA_BWD_GEN_BLOBS
)
add_custom_command
(
add_custom_command
(
OUTPUT
${
FMHA_FWD_GEN_BLOBS
}
OUTPUT
${
FMHA_FWD_GEN_BLOBS
}
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
--output_dir
${
CMAKE_CURRENT_BINARY_DIR
}
--direction fwd --output_dir
${
CMAKE_CURRENT_BINARY_DIR
}
)
add_custom_command
(
OUTPUT
${
FMHA_BWD_GEN_BLOBS
}
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
--direction bwd --output_dir
${
CMAKE_CURRENT_BINARY_DIR
}
)
)
set
(
EXAMPLE_FMHA_FWD
"tile_example_fmha_fwd"
)
set
(
EXAMPLE_FMHA_FWD
"tile_example_fmha_fwd"
)
...
@@ -22,6 +34,14 @@ add_executable(${EXAMPLE_FMHA_FWD} EXCLUDE_FROM_ALL fmha_fwd.cpp)
...
@@ -22,6 +34,14 @@ add_executable(${EXAMPLE_FMHA_FWD} EXCLUDE_FROM_ALL fmha_fwd.cpp)
target_include_directories
(
${
EXAMPLE_FMHA_FWD
}
PRIVATE
${
CMAKE_CURRENT_LIST_DIR
}
)
target_include_directories
(
${
EXAMPLE_FMHA_FWD
}
PRIVATE
${
CMAKE_CURRENT_LIST_DIR
}
)
target_sources
(
${
EXAMPLE_FMHA_FWD
}
PRIVATE
${
FMHA_FWD_GEN_BLOBS
}
)
target_sources
(
${
EXAMPLE_FMHA_FWD
}
PRIVATE
${
FMHA_FWD_GEN_BLOBS
}
)
set
(
EXAMPLE_FMHA_BWD
"tile_example_fmha_bwd"
)
# not using add_example_executable() to add this target, since we don't want this to have
# to be included in "make all/install/check"
message
(
"adding example
${
EXAMPLE_FMHA_BWD
}
"
)
add_executable
(
${
EXAMPLE_FMHA_BWD
}
EXCLUDE_FROM_ALL fmha_bwd.cpp
)
target_include_directories
(
${
EXAMPLE_FMHA_BWD
}
PRIVATE
${
CMAKE_CURRENT_LIST_DIR
}
)
target_sources
(
${
EXAMPLE_FMHA_BWD
}
PRIVATE
${
FMHA_BWD_GEN_BLOBS
}
)
# NOTE: this is dangerous since will change the whole kernel to flush denormals
# NOTE: this is dangerous since will change the whole kernel to flush denormals
# WIP with compiler team for an exp2 intrinsic..., then remove this
# WIP with compiler team for an exp2 intrinsic..., then remove this
if
(
NOT DEFINED FMHA_FWD_FAST_EXP2
)
if
(
NOT DEFINED FMHA_FWD_FAST_EXP2
)
...
@@ -29,16 +49,27 @@ if(NOT DEFINED FMHA_FWD_FAST_EXP2)
...
@@ -29,16 +49,27 @@ if(NOT DEFINED FMHA_FWD_FAST_EXP2)
endif
()
endif
()
set
(
EXAMPLE_FMHA_FWD_COMPILE_OPTIONS
)
set
(
EXAMPLE_FMHA_FWD_COMPILE_OPTIONS
)
set
(
EXAMPLE_FMHA_BWD_COMPILE_OPTIONS
)
# NOTE: we turn off undefined-func-template to let source compile without explicit declare function specializations
# NOTE: we turn off undefined-func-template to let source compile without explicit declare function specializations
# ... because they are auto-generated
# ... because they are auto-generated
if
(
FMHA_FWD_FAST_EXP2
)
if
(
FMHA_FWD_FAST_EXP2
)
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=1 -fgpu-flush-denormals-to-zero
)
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=1 -fgpu-flush-denormals-to-zero
)
list
(
APPEND EXAMPLE_FMHA_BWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=1 -fgpu-flush-denormals-to-zero
)
else
()
else
()
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=0
)
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=0
)
list
(
APPEND EXAMPLE_FMHA_BWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=0
)
endif
()
endif
()
# Allow comparing floating points directly in order to check sentinel values
# Allow comparing floating points directly in order to check sentinel values
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-float-equal
)
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-float-equal
)
list
(
APPEND EXAMPLE_FMHA_BWD_COMPILE_OPTIONS -Wno-float-equal
)
target_compile_options
(
${
EXAMPLE_FMHA_FWD
}
PRIVATE
${
EXAMPLE_FMHA_FWD_COMPILE_OPTIONS
}
)
target_compile_options
(
${
EXAMPLE_FMHA_FWD
}
PRIVATE
${
EXAMPLE_FMHA_FWD_COMPILE_OPTIONS
}
)
target_compile_options
(
${
EXAMPLE_FMHA_BWD
}
PRIVATE
${
EXAMPLE_FMHA_BWD_COMPILE_OPTIONS
}
)
# TODO: we have to turn off this global prop, otherwise the progress bar generated
# by cmake will print too many files, execvp: /bin/sh: Argument list too long
# however, this property may affect global
# TODO: consider codegen a makefile by us
set_property
(
GLOBAL PROPERTY RULE_MESSAGES OFF
)
example/ck_tile/01_fmha/fmha_bwd.cpp
0 → 100644
View file @
d39c3f5d
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "fmha_bwd.hpp"
#include "ck_tile/host.hpp"
#include "mask.hpp"
#include "utils.hpp"
#include <array>
#include <cstring>
#include <functional>
#include <numeric>
#include <ostream>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
template
<
typename
T
>
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
std
::
vector
<
T
>&
v
)
{
using
size_type
=
typename
std
::
vector
<
T
>::
size_type
;
os
<<
"["
;
for
(
size_type
idx
=
0
;
idx
<
v
.
size
();
++
idx
)
{
if
(
0
<
idx
)
{
os
<<
", "
;
}
os
<<
v
[
idx
];
}
return
os
<<
"]"
;
}
auto
create_args
(
int
argc
,
char
*
argv
[])
{
ck_tile
::
ArgParser
arg_parser
;
arg_parser
.
insert
(
"v"
,
"1"
,
"weather do CPU validation or not"
)
.
insert
(
"mode"
,
"0"
,
"kernel mode. 0:batch, 1:group"
)
.
insert
(
"b"
,
"2"
,
"batch size"
)
.
insert
(
"h"
,
"8"
,
"num of head, for q"
)
.
insert
(
"h_k"
,
"-1"
,
"num of head, for k/v, -1 means equal to h
\n
"
"if not equal to h, then this is GQA/MQA case"
)
.
insert
(
"s"
,
"3328"
,
"seqlen_q. if group-mode, means the average value of seqlen_q
\n
"
"total_seqlen_q = seqlen_q * batch, and seqlen_q per batch may vary"
)
.
insert
(
"s_k"
,
"-1"
,
"seqlen_k, -1 means equal to s"
)
.
insert
(
"d"
,
"128"
,
"head dim for q, k"
)
.
insert
(
"d_v"
,
"-1"
,
"head dim for v, -1 means equal to d"
)
.
insert
(
"scale"
,
"0"
,
"scale factor. 0 means equal to 1/sqrt(hdim)"
)
.
insert
(
"iperm"
,
"1"
,
"permute input
\n
"
"if true, will be b*h*s*d, else b*s*h*d"
)
.
insert
(
"operm"
,
"1"
,
"permute output"
)
.
insert
(
"bias"
,
"n"
,
"n or 0, no bias
\n
"
"e(lementwise) or 1, elementwise bias with 1*1*s*s. e:1, 1*h*s*s. e:2, b*h*s*s
\n
"
"a(libi) or 2, alibi with 1*h. a:1, b*h"
)
.
insert
(
"dbias"
,
"0"
,
"output bias gradient or not"
)
.
insert
(
"prec"
,
"fp16"
,
"data type. fp16 or bf16"
)
.
insert
(
"mask"
,
"0"
,
"0: no mask, 1: top-left(same as 't'), 2:bottom-right(same as 'b')
\n
"
"'t', top-left causal mask, 'b', bottom-r causal mask
\n
"
"'t:l,r', top-left sliding window attn(swa) with FA style left right size
\n
"
"'b:l,r', bottom-r sliding window attn(swa) with FA style left right size
\n
"
"'xt:window_size', xformer style masking from top-left, window_size negative is "
"causal, positive is swa
\n
"
"'xb:window_size', xformer style masking from bottom-r, window_size negative is "
"causal, positive is swa
\n
"
"'g:y,x', generic attention mask coordinate with y/x size (only debug purpose for "
"now)"
)
.
insert
(
"kname"
,
"0"
,
"if set to 1 will print kernel name"
)
.
insert
(
"init"
,
"1"
,
"init method. 0:random int, 1:random float, 2:trig float"
)
.
insert
(
"seed"
,
"11939"
,
"random seed used for initializing input tensors. 0 for "
"non-deterministic seed"
)
.
insert
(
"p_drop"
,
"0"
,
"0~1 probability of dropout"
)
.
insert
(
"drop_seed"
,
"1"
,
"seed for random number generator"
)
.
insert
(
"drop_offset"
,
"0"
,
"offset for random number generator"
)
.
insert
(
"timer"
,
"gpu"
,
"gpu:gpu timer, cpu:cpu timer"
)
.
insert
(
"warmup"
,
"5"
,
"number of iterations before benchmark the kernel"
)
.
insert
(
"repeat"
,
"20"
,
"number of iterations to benchmark the kernel"
);
bool
result
=
arg_parser
.
parse
(
argc
,
argv
);
return
std
::
make_tuple
(
result
,
arg_parser
);
}
// different threshold for different dtype
template
<
typename
DataType
>
auto
get_elimit
(
int
/*init_method*/
)
{
double
rtol
=
1e-2
;
double
atol
=
1e-2
;
return
ck_tile
::
make_tuple
(
rtol
,
atol
);
}
template
<
typename
DataType
>
bool
run
(
const
ck_tile
::
ArgParser
&
arg_parser
)
{
std
::
string
data_type
=
arg_parser
.
get_str
(
"prec"
);
int
do_validation
=
arg_parser
.
get_int
(
"v"
);
auto
mode
=
static_cast
<
mode_enum
>
(
arg_parser
.
get_uint32
(
"mode"
));
ck_tile
::
index_t
batch
=
arg_parser
.
get_int
(
"b"
);
ck_tile
::
index_t
nhead
=
arg_parser
.
get_int
(
"h"
);
ck_tile
::
index_t
nhead_k
=
arg_parser
.
get_int
(
"h_k"
);
if
(
nhead_k
<
0
)
nhead_k
=
nhead
;
if
(
nhead
%
nhead_k
!=
0
)
{
std
::
cerr
<<
"nhead:"
<<
nhead
<<
" must be multiple of nhead_k:"
<<
nhead_k
<<
std
::
endl
;
return
false
;
}
ck_tile
::
index_t
seqlen_q
=
arg_parser
.
get_int
(
"s"
);
ck_tile
::
index_t
seqlen_k
=
arg_parser
.
get_int
(
"s_k"
);
if
(
seqlen_k
<
0
)
seqlen_k
=
seqlen_q
;
ck_tile
::
index_t
hdim_q
=
arg_parser
.
get_int
(
"d"
);
ck_tile
::
index_t
hdim_v
=
arg_parser
.
get_int
(
"d_v"
);
if
(
hdim_v
<
0
)
hdim_v
=
hdim_q
;
if
(
hdim_q
%
2
!=
0
||
hdim_v
%
2
!=
0
)
{
std
::
cerr
<<
"FMHA Bwd kernel currently only supports even headdim"
<<
std
::
endl
;
return
false
;
}
bool
i_perm
=
arg_parser
.
get_bool
(
"iperm"
);
// if true, will be batch * nhead * seqlen * hdim
bool
o_perm
=
arg_parser
.
get_bool
(
"operm"
);
// if false, will be batch * seqlen * nhead * hdim
float
scale
=
arg_parser
.
get_float
(
"scale"
);
if
(
scale
==
.0
f
)
scale
=
1.0
/
ck_tile
::
sqrt
(
static_cast
<
float
>
(
hdim_q
));
bias_info
bias
=
bias_info
::
decode
(
arg_parser
.
get_str
(
"bias"
));
bool
use_dbias
=
arg_parser
.
get_bool
(
"dbias"
);
float
p_drop
=
arg_parser
.
get_float
(
"p_drop"
);
uint64_t
drop_seed
=
arg_parser
.
get_uint64
(
"drop_seed"
);
uint64_t
drop_offset
=
arg_parser
.
get_uint64
(
"drop_offset"
);
if
(
use_dbias
&&
bias
.
type
!=
bias_enum
::
elementwise_bias
)
{
std
::
cerr
<<
"dbias only exists when bias type is elementwise"
<<
std
::
endl
;
return
false
;
}
if
(
p_drop
<
0.0
f
||
p_drop
>
1.0
f
)
{
std
::
cerr
<<
"The value of p_drop should be 0~1"
<<
std
::
endl
;
return
false
;
}
float
p_undrop
=
1.0
-
p_drop
;
uint8_t
p_undrop_in_uint8_t
=
uint8_t
(
std
::
floor
(
p_undrop
*
std
::
numeric_limits
<
uint8_t
>::
max
()));
float
rp_undrop
=
1.0
/
p_undrop
;
bool
s_randval
=
false
;
if
(
p_drop
>
0.0
f
&&
do_validation
)
{
s_randval
=
true
;
}
mask_info
mask
=
mask_info
::
decode
(
arg_parser
.
get_str
(
"mask"
),
seqlen_q
,
seqlen_k
);
int
init_method
=
arg_parser
.
get_int
(
"init"
);
std
::
optional
<
uint32_t
>
seed
=
arg_parser
.
get_uint32
(
"seed"
);
if
(
*
seed
==
0
)
{
seed
.
reset
();
}
int
stream_warmup
=
arg_parser
.
get_int
(
"warmup"
);
int
stream_repeat
=
arg_parser
.
get_int
(
"repeat"
);
bool
kname
=
arg_parser
.
get_bool
(
"kname"
);
ck_tile
::
stream_config
stream_config
{
nullptr
,
true
,
/* log_level = */
(
kname
?
1
:
0
),
stream_warmup
,
stream_repeat
,
arg_parser
.
get_str
(
"timer"
)
==
std
::
string
(
"gpu"
)};
const
auto
seqstart_q_host
=
generate_seqstarts
(
mode
,
batch
,
seqlen_q
);
const
auto
seqstart_k_host
=
generate_seqstarts
(
mode
,
batch
,
seqlen_k
);
using
TypeConfig
=
FmhaBwdTypeConfig
<
DataType
>
;
using
QDataType
=
typename
TypeConfig
::
QDataType
;
using
KDataType
=
typename
TypeConfig
::
KDataType
;
using
VDataType
=
typename
TypeConfig
::
VDataType
;
using
GemmDataType
=
typename
TypeConfig
::
GemmDataType
;
using
BiasDataType
=
typename
TypeConfig
::
BiasDataType
;
using
LSEDataType
=
typename
TypeConfig
::
LSEDataType
;
using
AccDataType
=
typename
TypeConfig
::
AccDataType
;
using
DDataType
=
typename
TypeConfig
::
DDataType
;
using
RandValOutputDataType
=
typename
TypeConfig
::
RandValOutputDataType
;
using
ODataType
=
typename
TypeConfig
::
ODataType
;
using
OGradDataType
=
typename
TypeConfig
::
OGradDataType
;
using
QGradDataType
=
typename
TypeConfig
::
QGradDataType
;
using
KGradDataType
=
typename
TypeConfig
::
KGradDataType
;
using
VGradDataType
=
typename
TypeConfig
::
VGradDataType
;
using
BiasGradDataType
=
typename
TypeConfig
::
BiasGradDataType
;
// accumulation numbers for performance evaluation
std
::
size_t
flop
=
0
,
num_byte
=
0
;
auto
max_seqlen_q
=
std
::
numeric_limits
<
int32_t
>::
min
();
// we will use max seqlen to decide grid size
auto
max_seqlen_k
=
std
::
numeric_limits
<
int32_t
>::
min
();
// we will use max seqlen to decide grid size
{
for
(
ck_tile
::
index_t
wb
=
0
;
wb
<
batch
;
++
wb
)
{
const
int32_t
real_seqlen_q
=
seqstart_q_host
[
wb
+
1
]
-
seqstart_q_host
[
wb
];
const
int32_t
real_seqlen_k
=
seqstart_k_host
[
wb
+
1
]
-
seqstart_k_host
[
wb
];
if
(
max_seqlen_q
<
real_seqlen_q
)
{
max_seqlen_q
=
real_seqlen_q
;
}
if
(
max_seqlen_k
<
real_seqlen_k
)
{
max_seqlen_k
=
real_seqlen_k
;
}
flop
+=
nhead
*
(
static_cast
<
std
::
size_t
>
(
3
)
*
static_cast
<
std
::
size_t
>
(
2
)
*
real_seqlen_q
*
real_seqlen_k
*
hdim_q
+
// Q@K/dS^T@Q^T/dS@K^T
static_cast
<
std
::
size_t
>
(
2
)
*
static_cast
<
std
::
size_t
>
(
2
)
*
real_seqlen_q
*
real_seqlen_k
*
hdim_v
);
// dO@V/P^T@dO^T
num_byte
+=
nhead
*
(
sizeof
(
QDataType
)
*
real_seqlen_q
*
hdim_q
+
sizeof
(
KDataType
)
*
real_seqlen_k
*
hdim_q
+
sizeof
(
VDataType
)
*
real_seqlen_k
*
hdim_v
+
sizeof
(
ODataType
)
*
real_seqlen_q
*
hdim_v
+
sizeof
(
OGradDataType
)
*
real_seqlen_q
*
hdim_v
+
sizeof
(
QGradDataType
)
*
real_seqlen_q
*
hdim_q
+
sizeof
(
KGradDataType
)
*
real_seqlen_k
*
hdim_q
+
sizeof
(
VGradDataType
)
*
real_seqlen_k
*
hdim_v
+
sizeof
(
LSEDataType
)
*
real_seqlen_q
);
}
}
auto
get_lengths
=
[
&
](
bool
permute
,
ck_tile
::
index_t
b
/*batch*/
,
ck_tile
::
index_t
h
/*nhead*/
,
ck_tile
::
index_t
s
/*seqlen*/
,
ck_tile
::
index_t
d
/*hdim*/
)
{
if
(
permute
)
return
std
::
array
<
ck_tile
::
index_t
,
4
>
{
b
,
h
,
s
,
d
};
else
return
std
::
array
<
ck_tile
::
index_t
,
4
>
{
b
,
s
,
h
,
d
};
};
// host memory for storing all the tensor elements
const
ck_tile
::
index_t
shape_batch
=
(
mode
==
mode_enum
::
batch
?
batch
:
1
);
const
ck_tile
::
index_t
shape_seqlen_q
=
(
mode
==
mode_enum
::
batch
?
seqlen_q
:
seqstart_q_host
.
back
());
const
ck_tile
::
index_t
shape_seqlen_k
=
(
mode
==
mode_enum
::
batch
?
seqlen_k
:
seqstart_k_host
.
back
());
ck_tile
::
HostTensor
<
QDataType
>
q_host
(
get_lengths
(
i_perm
,
shape_batch
,
nhead
,
shape_seqlen_q
,
hdim_q
));
ck_tile
::
HostTensor
<
KDataType
>
k_host
(
get_lengths
(
i_perm
,
shape_batch
,
nhead_k
,
shape_seqlen_k
,
hdim_q
));
ck_tile
::
HostTensor
<
VDataType
>
v_host
(
get_lengths
(
i_perm
,
shape_batch
,
nhead_k
,
shape_seqlen_k
,
hdim_v
));
ck_tile
::
HostTensor
<
BiasDataType
>
bias_host
(
bias
.
type
==
bias_enum
::
elementwise_bias
?
get_lengths
(
i_perm
,
1
,
1
,
shape_seqlen_q
,
max_seqlen_k
)
:
std
::
array
<
ck_tile
::
index_t
,
4
>
{
1
,
1
,
1
,
1
}
/* dummy shape for simplifying code */
);
ck_tile
::
HostTensor
<
AccDataType
>
alibi_slope_host
(
bias
.
type
==
bias_enum
::
alibi
?
(
bias
.
rank_info
==
0
?
std
::
array
<
ck_tile
::
index_t
,
2
>
{
1
,
nhead
}
:
std
::
array
<
ck_tile
::
index_t
,
2
>
{
batch
,
nhead
})
:
std
::
array
<
ck_tile
::
index_t
,
2
>
{
1
,
1
});
ck_tile
::
HostTensor
<
ODataType
>
o_host
(
get_lengths
(
o_perm
,
shape_batch
,
nhead
,
shape_seqlen_q
,
hdim_v
));
ck_tile
::
HostTensor
<
LSEDataType
>
lse_host
(
std
::
array
<
ck_tile
::
index_t
,
3
>
{
batch
,
nhead
,
max_seqlen_q
});
ck_tile
::
HostTensor
<
DDataType
>
d_host
(
std
::
array
<
ck_tile
::
index_t
,
3
>
{
batch
,
nhead
,
max_seqlen_q
});
ck_tile
::
HostTensor
<
RandValOutputDataType
>
randval_host
(
p_drop
>
0
?
get_lengths
(
true
,
shape_batch
,
nhead
,
shape_seqlen_q
,
max_seqlen_k
)
:
std
::
array
<
ck_tile
::
index_t
,
4
>
{
1
,
1
,
1
,
1
});
ck_tile
::
HostTensor
<
QGradDataType
>
dq_host
(
get_lengths
(
i_perm
,
shape_batch
,
nhead
,
shape_seqlen_q
,
hdim_q
));
ck_tile
::
HostTensor
<
KGradDataType
>
dk_host
(
get_lengths
(
i_perm
,
shape_batch
,
nhead
,
shape_seqlen_k
,
hdim_q
));
ck_tile
::
HostTensor
<
VGradDataType
>
dv_host
(
get_lengths
(
i_perm
,
shape_batch
,
nhead
,
shape_seqlen_k
,
hdim_v
));
ck_tile
::
HostTensor
<
OGradDataType
>
do_host
(
get_lengths
(
o_perm
,
shape_batch
,
nhead
,
shape_seqlen_q
,
hdim_v
));
ck_tile
::
HostTensor
<
BiasGradDataType
>
dbias_host
(
use_dbias
?
get_lengths
(
i_perm
,
shape_batch
,
nhead
,
shape_seqlen_q
,
max_seqlen_k
)
:
std
::
array
<
ck_tile
::
index_t
,
4
>
{
1
,
1
,
1
,
1
}
/* dummy shape for simplifying code */
);
if
(
init_method
==
0
)
{
ck_tile
::
FillUniformDistributionIntegerValue
<
QDataType
>
{
-
2.
f
,
2.
f
,
seed
}(
q_host
);
ck_tile
::
FillUniformDistributionIntegerValue
<
KDataType
>
{
-
2.
f
,
2.
f
,
seed
}(
k_host
);
ck_tile
::
FillUniformDistributionIntegerValue
<
VDataType
>
{
-
2.
f
,
2.
f
,
seed
}(
v_host
);
ck_tile
::
FillUniformDistributionIntegerValue
<
BiasDataType
>
{
-
2.
f
,
2.
f
,
seed
}(
bias_host
);
ck_tile
::
FillUniformDistributionIntegerValue
<
OGradDataType
>
{
-
2.
f
,
2.
f
,
seed
}(
do_host
);
}
else
if
(
init_method
==
1
)
{
ck_tile
::
FillUniformDistribution
<
QDataType
>
{
0.
f
,
1.
f
,
seed
}(
q_host
);
ck_tile
::
FillUniformDistribution
<
KDataType
>
{
0.
f
,
1.
f
,
seed
}(
k_host
);
ck_tile
::
FillUniformDistribution
<
VDataType
>
{
0.
f
,
1.
f
,
seed
}(
v_host
);
ck_tile
::
FillUniformDistribution
<
BiasDataType
>
{
0.
f
,
1.
f
,
seed
}(
bias_host
);
ck_tile
::
FillUniformDistribution
<
OGradDataType
>
{
0.
f
,
1.
f
,
seed
}(
do_host
);
}
else
if
(
init_method
==
2
)
{
ck_tile
::
FillTrigValue
<
QDataType
>
{}(
q_host
);
ck_tile
::
FillTrigValue
<
KDataType
>
{}(
k_host
);
ck_tile
::
FillTrigValue
<
VDataType
>
{}(
v_host
);
ck_tile
::
FillTrigValue
<
BiasDataType
>
{}(
bias_host
);
ck_tile
::
FillTrigValue
<
OGradDataType
>
{}(
do_host
);
}
if
(
bias
.
type
==
bias_enum
::
alibi
)
{
auto
slopes
=
ck_tile
::
get_alibi_slopes
<
AccDataType
>
(
nhead
);
assert
(
slopes
.
size
()
==
nhead
);
if
(
bias
.
rank_info
==
0
)
{
// alibi in 1*h
std
::
copy
(
slopes
.
begin
(),
slopes
.
end
(),
alibi_slope_host
.
begin
());
}
else
{
// alibi in b*h
for
(
auto
i_b
=
0
;
i_b
<
batch
;
i_b
++
)
{
std
::
copy
(
slopes
.
begin
(),
slopes
.
end
(),
alibi_slope_host
.
begin
()
+
i_b
*
nhead
);
}
}
}
ck_tile
::
DeviceMem
q_buf
(
q_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
k_buf
(
k_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
v_buf
(
v_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
bias_buf
(
bias_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
o_buf
(
o_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
lse_buf
(
lse_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
d_buf
(
d_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
randval_buf
(
randval_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
dq_buf
(
dq_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
dk_buf
(
dk_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
dv_buf
(
dv_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
do_buf
(
do_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
dbias_buf
(
dbias_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
seqstart_q
(
seqstart_q_host
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
seqstart_k
(
seqstart_k_host
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
alibi_slope_buf
(
alibi_slope_host
.
get_element_space_size_in_bytes
());
q_buf
.
ToDevice
(
q_host
.
data
());
k_buf
.
ToDevice
(
k_host
.
data
());
v_buf
.
ToDevice
(
v_host
.
data
());
bias_buf
.
ToDevice
(
bias_host
.
data
());
do_buf
.
ToDevice
(
do_host
.
data
());
seqstart_q
.
ToDevice
(
seqstart_q_host
.
data
());
seqstart_k
.
ToDevice
(
seqstart_k_host
.
data
());
alibi_slope_buf
.
ToDevice
(
alibi_slope_host
.
data
());
// clang-format off
auto
layout_str
=
[
&
](
bool
permute
){
if
(
permute
)
return
std
::
string
(
"bhsd"
);
else
return
std
::
string
(
"bshd"
);
};
auto
io_layout
=
[
&
](
bool
iperm_
,
bool
operm_
)
{
if
(
iperm_
==
operm_
)
return
layout_str
(
iperm_
);
else
return
layout_str
(
iperm_
)
+
std
::
string
(
"-"
)
+
layout_str
(
operm_
);
};
// clang-format on
const
std
::
string
prec
=
arg_parser
.
get_str
(
"prec"
);
std
::
cout
<<
"["
<<
prec
<<
"|"
<<
mode
<<
"|"
<<
io_layout
(
i_perm
,
o_perm
)
<<
"] b:"
<<
batch
<<
", h:"
<<
nhead
<<
"/"
<<
nhead_k
<<
", s:"
<<
seqlen_q
<<
"/"
<<
seqlen_k
<<
", d:"
<<
hdim_q
<<
"/"
<<
hdim_v
<<
", scale:"
<<
scale
<<
", bias:"
<<
bias
<<
", dbias:"
<<
use_dbias
<<
", p_drop:"
<<
p_drop
<<
", mask:"
<<
mask
<<
std
::
flush
;
auto
fmha_traits
=
fmha_bwd_traits
{
hdim_q
,
hdim_v
,
data_type
,
mode
==
mode_enum
::
group
,
mask
.
type
,
bias
.
type
,
use_dbias
,
p_drop
>
0.0
f
};
auto
fmha_args
=
[
&
]()
{
assert
(
nhead
%
nhead_k
==
0
);
/// NOTE: we broadcast bias from [1, 1, seqlen_q, seqlen_k] to [batch, nhead, seqlen_q,
/// seqlen_k] in this example, hence both the 'batch_stride_bias' &
/// 'nhead_stride_bias' are 0.
// setup stride_* arguments
const
ck_tile
::
index_t
stride_q
=
(
i_perm
?
hdim_q
:
nhead
*
hdim_q
);
const
ck_tile
::
index_t
stride_k
=
(
i_perm
?
hdim_q
:
nhead_k
*
hdim_q
);
const
ck_tile
::
index_t
stride_v
=
(
i_perm
?
hdim_v
:
nhead_k
*
hdim_v
);
const
ck_tile
::
index_t
stride_bias
=
(
max_seqlen_k
);
const
ck_tile
::
index_t
stride_o
=
(
o_perm
?
hdim_v
:
nhead
*
hdim_v
);
const
ck_tile
::
index_t
stride_randval
=
(
max_seqlen_k
);
const
ck_tile
::
index_t
stride_do
=
(
o_perm
?
hdim_v
:
nhead
*
hdim_v
);
const
ck_tile
::
index_t
stride_dk
=
(
i_perm
?
hdim_q
:
nhead
*
hdim_q
);
const
ck_tile
::
index_t
stride_dv
=
(
i_perm
?
hdim_v
:
nhead
*
hdim_v
);
const
ck_tile
::
index_t
stride_dbias
=
(
i_perm
?
max_seqlen_k
:
nhead
*
max_seqlen_k
);
// setup nhead_stride_* arguments
const
ck_tile
::
index_t
nhead_stride_q
=
(
i_perm
?
shape_seqlen_q
*
hdim_q
:
hdim_q
);
const
ck_tile
::
index_t
nhead_stride_k
=
(
i_perm
?
shape_seqlen_k
*
hdim_q
:
hdim_q
);
const
ck_tile
::
index_t
nhead_stride_v
=
(
i_perm
?
shape_seqlen_k
*
hdim_v
:
hdim_v
);
const
ck_tile
::
index_t
nhead_stride_bias
=
0
;
const
ck_tile
::
index_t
nhead_stride_o
=
(
o_perm
?
shape_seqlen_q
*
hdim_v
:
hdim_v
);
const
ck_tile
::
index_t
nhead_stride_randval
=
(
shape_seqlen_q
*
max_seqlen_k
);
const
ck_tile
::
index_t
nhead_stride_do
=
(
o_perm
?
shape_seqlen_q
*
hdim_v
:
hdim_v
);
const
ck_tile
::
index_t
nhead_stride_lsed
=
max_seqlen_q
;
const
ck_tile
::
index_t
nhead_stride_dbias
=
(
i_perm
?
shape_seqlen_q
*
max_seqlen_k
:
max_seqlen_k
);
// setup batch_stride_* arguments
const
ck_tile
::
index_t
batch_stride_q
=
(
nhead
*
shape_seqlen_q
*
hdim_q
);
const
ck_tile
::
index_t
batch_stride_k
=
(
nhead_k
*
shape_seqlen_k
*
hdim_q
);
const
ck_tile
::
index_t
batch_stride_v
=
(
nhead_k
*
shape_seqlen_k
*
hdim_v
);
const
ck_tile
::
index_t
batch_stride_bias
=
0
;
const
ck_tile
::
index_t
batch_stride_o
=
(
nhead
*
shape_seqlen_q
*
hdim_v
);
const
ck_tile
::
index_t
batch_stride_randval
=
(
nhead
*
shape_seqlen_q
*
max_seqlen_k
);
const
ck_tile
::
index_t
batch_stride_do
=
(
nhead
*
shape_seqlen_q
*
hdim_v
);
const
ck_tile
::
index_t
batch_stride_lsed
=
(
nhead
*
max_seqlen_q
);
const
ck_tile
::
index_t
batch_stride_dk
=
(
nhead
*
shape_seqlen_k
*
hdim_q
);
const
ck_tile
::
index_t
batch_stride_dv
=
(
nhead
*
shape_seqlen_k
*
hdim_v
);
const
ck_tile
::
index_t
batch_stride_dbias
=
(
nhead
*
shape_seqlen_q
*
max_seqlen_k
);
return
fmha_bwd_args
{
q_buf
.
GetDeviceBuffer
(),
k_buf
.
GetDeviceBuffer
(),
v_buf
.
GetDeviceBuffer
(),
bias
.
type
==
bias_enum
::
alibi
?
alibi_slope_buf
.
GetDeviceBuffer
()
:
bias_buf
.
GetDeviceBuffer
(),
o_buf
.
GetDeviceBuffer
(),
lse_buf
.
GetDeviceBuffer
(),
do_buf
.
GetDeviceBuffer
(),
d_buf
.
GetDeviceBuffer
(),
randval_buf
.
GetDeviceBuffer
(),
dq_buf
.
GetDeviceBuffer
(),
dk_buf
.
GetDeviceBuffer
(),
dv_buf
.
GetDeviceBuffer
(),
dbias_buf
.
GetDeviceBuffer
(),
seqstart_q
.
GetDeviceBuffer
(),
seqstart_k
.
GetDeviceBuffer
(),
nullptr
,
shape_seqlen_q
,
shape_seqlen_k
,
batch
,
max_seqlen_q
,
max_seqlen_k
,
hdim_q
,
hdim_v
,
nhead
,
nhead_k
,
scale
,
stride_q
,
stride_k
,
stride_v
,
bias
.
type
==
bias_enum
::
alibi
?
(
bias
.
rank_info
==
0
?
0
:
nhead
)
:
stride_bias
,
stride_o
,
stride_randval
,
stride_do
,
stride_dk
,
stride_dv
,
stride_dbias
,
nhead_stride_q
,
nhead_stride_k
,
nhead_stride_v
,
nhead_stride_bias
,
nhead_stride_o
,
nhead_stride_randval
,
nhead_stride_do
,
nhead_stride_lsed
,
nhead_stride_dbias
,
batch_stride_q
,
batch_stride_k
,
batch_stride_v
,
batch_stride_bias
,
batch_stride_o
,
batch_stride_randval
,
batch_stride_do
,
batch_stride_lsed
,
batch_stride_dk
,
batch_stride_dv
,
batch_stride_dbias
,
mask
.
left
,
mask
.
right
,
static_cast
<
ck_tile
::
index_t
>
(
mask
.
type
),
p_drop
,
p_undrop
,
s_randval
,
{
drop_seed
,
drop_offset
}};
}();
float
ave_time
=
fmha_bwd
(
fmha_traits
,
fmha_args
,
stream_config
);
if
(
ave_time
<
0
)
{
std
::
cout
<<
", not supported yet"
<<
std
::
flush
<<
std
::
endl
;
return
false
;
}
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
std
::
fixed
<<
", "
<<
std
::
setprecision
(
3
)
<<
ave_time
<<
" ms, "
<<
std
::
setprecision
(
2
)
<<
tflops
<<
" TFlops, "
<<
std
::
setprecision
(
2
)
<<
gb_per_sec
<<
" GB/s"
<<
std
::
flush
;
if
(
!
do_validation
)
{
std
::
cout
<<
std
::
flush
<<
std
::
endl
;
return
true
;
}
bool
pass
=
true
;
std
::
vector
<
ck_tile
::
HostTensor
<
QDataType
>>
q_host_refs
;
std
::
vector
<
ck_tile
::
HostTensor
<
KDataType
>>
k_host_refs
;
std
::
vector
<
ck_tile
::
HostTensor
<
VDataType
>>
v_host_refs
;
std
::
vector
<
ck_tile
::
HostTensor
<
ODataType
>>
o_host_refs
;
std
::
vector
<
ck_tile
::
HostTensor
<
RandValOutputDataType
>>
randval_host_refs
;
std
::
vector
<
ck_tile
::
HostTensor
<
AccDataType
>>
p_hp_host_refs
;
std
::
vector
<
ck_tile
::
HostTensor
<
GemmDataType
>>
p_lp_host_refs
;
randval_buf
.
FromDevice
(
randval_host
.
data
());
for
(
ck_tile
::
index_t
wb
=
0
;
wb
<
batch
;
++
wb
)
{
const
ck_tile
::
index_t
real_seqlen_q
=
seqstart_q_host
[
wb
+
1
]
-
seqstart_q_host
[
wb
];
const
ck_tile
::
index_t
real_seqlen_k
=
seqstart_k_host
[
wb
+
1
]
-
seqstart_k_host
[
wb
];
// adjust matrix index according to the mode
const
ck_tile
::
index_t
b
=
(
mode
==
mode_enum
::
batch
?
wb
:
0
);
const
ck_tile
::
index_t
query_offset
=
(
mode
==
mode_enum
::
batch
?
0
:
seqstart_q_host
[
wb
]);
const
ck_tile
::
index_t
key_offset
=
(
mode
==
mode_enum
::
batch
?
0
:
seqstart_k_host
[
wb
]);
ck_tile
::
HostTensor
<
QDataType
>
q_host_ref
({
nhead
,
real_seqlen_q
,
hdim_q
});
// q_g_m_k
ck_tile
::
HostTensor
<
KDataType
>
k_host_ref
({
nhead
,
real_seqlen_k
,
hdim_q
});
// k_g_n_k
ck_tile
::
HostTensor
<
VDataType
>
v_host_ref
({
nhead
,
hdim_v
,
real_seqlen_k
});
// v_g_o_n
ck_tile
::
HostTensor
<
ODataType
>
o_host_ref
({
nhead
,
real_seqlen_q
,
hdim_v
});
// o_g_m_o
ck_tile
::
HostTensor
<
LSEDataType
>
lse_host_ref
({
nhead
,
real_seqlen_q
});
// lse_g_m
ck_tile
::
HostTensor
<
RandValOutputDataType
>
randval_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
// randval_g_m_n
ck_tile
::
HostTensor
<
AccDataType
>
s_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
// s_g_m_n
ck_tile
::
HostTensor
<
AccDataType
>
p_hp_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
// p_hp_g_m_n high precision
ck_tile
::
HostTensor
<
AccDataType
>
p_dropped_hp_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
// p_dropped_hp_g_m_n high precision
ck_tile
::
HostTensor
<
GemmDataType
>
p_lp_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
// p_lp_g_m_n low precision
ck_tile
::
index_t
nr
=
nhead
/
nhead_k
;
// clang-format off
// permute
if
(
i_perm
)
q_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
i
)
{
self
(
i
)
=
q_host
(
b
,
i
[
0
],
i
[
1
]
+
query_offset
,
i
[
2
]);
});
else
q_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
i
)
{
self
(
i
)
=
q_host
(
b
,
i
[
1
]
+
query_offset
,
i
[
0
],
i
[
2
]);
});
if
(
i_perm
)
k_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
i
)
{
self
(
i
)
=
k_host
(
b
,
i
[
0
]
/
nr
,
i
[
1
]
+
key_offset
,
i
[
2
]);
});
else
k_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
i
)
{
self
(
i
)
=
k_host
(
b
,
i
[
1
]
+
key_offset
,
i
[
0
]
/
nr
,
i
[
2
]);
});
// v_host_ref: [nhead, hdim, seq], v_host: [b, h_k, s, d]
if
(
i_perm
)
v_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
i
)
{
self
(
i
)
=
v_host
(
b
,
i
[
0
]
/
nr
,
i
[
2
]
+
key_offset
,
i
[
1
]);
});
// v_host_ref: [nhead, hdim, seq], v_host: [b, s, h_k, d]
else
v_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
i
)
{
self
(
i
)
=
v_host
(
b
,
i
[
2
]
+
key_offset
,
i
[
0
]
/
nr
,
i
[
1
]);
});
// clang-format on
// reference
// S = scale * Q * K^T
ck_tile
::
reference_batched_gemm
<
QDataType
,
KDataType
,
AccDataType
,
AccDataType
>
(
q_host_ref
,
k_host_ref
,
s_host_ref
,
ck_tile
::
identity
{},
ck_tile
::
identity
{},
ck_tile
::
scales
(
scale
));
// s_g_m_n = scale * q_g_m_k@k_g_n_k
if
(
bias
.
type
==
bias_enum
::
elementwise_bias
)
{
// elementwise bias
ck_tile
::
HostTensor
<
BiasDataType
>
bias_host_ref
({
1
,
real_seqlen_q
,
real_seqlen_k
});
// clang-format off
if
(
i_perm
)
bias_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
i
)
{
self
(
i
)
=
bias_host
(
0
,
0
,
i
[
1
]
+
query_offset
,
i
[
2
]);
});
else
bias_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
i
)
{
self
(
i
)
=
bias_host
(
0
,
i
[
1
]
+
query_offset
,
0
,
i
[
2
]);
});
// clang-format on
// broadcast from [1, real_seqlen_q, real_seqlen_k] to [nhead, real_seqlen_q,
// real_seqlen_k]
ck_tile
::
reference_batched_elementwise
<
AccDataType
,
BiasDataType
,
AccDataType
,
AccDataType
>
(
s_host_ref
,
bias_host_ref
,
s_host_ref
);
}
else
if
(
bias
.
type
==
bias_enum
::
alibi
)
{
// alibi construct elementwise bias to verify
auto
alibi_host
=
[
&
]()
{
if
(
mask
.
type
!=
mask_enum
::
no_mask
)
{
return
ck_tile
::
make_alibi_from_lr_mask
<
AccDataType
,
false
>
(
0
,
mask
.
left
,
mask
.
right
,
real_seqlen_q
,
real_seqlen_k
,
static_cast
<
ck_tile
::
GenericAttentionMaskEnum
>
(
mask
.
type
));
}
else
{
return
ck_tile
::
Alibi
<
AccDataType
,
false
>
{
0
,
real_seqlen_q
,
real_seqlen_k
,
ck_tile
::
AlibiMode
::
FROM_BOTTOM_RIGHT
};
}
}();
ck_tile
::
HostTensor
<
AccDataType
>
alibi_bias_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
auto
i_b_slope
=
bias
.
rank_info
==
0
?
0
:
wb
;
for
(
auto
i_h
=
0
;
i_h
<
nhead
;
i_h
++
)
{
AccDataType
current_slope
=
alibi_slope_host
(
i_b_slope
,
i_h
);
alibi_host
.
slope
=
alibi_host
.
mode
==
ck_tile
::
AlibiMode
::
VERTICAL
?
current_slope
:
-
current_slope
;
for
(
auto
i_r
=
0
;
i_r
<
real_seqlen_q
;
i_r
++
)
{
for
(
auto
i_c
=
0
;
i_c
<
real_seqlen_k
;
i_c
++
)
{
AccDataType
pixel
=
0
;
alibi_host
.
update
(
pixel
,
i_r
,
i_c
);
alibi_bias_host_ref
(
i_h
,
i_r
,
i_c
)
=
pixel
;
}
}
}
// [nhead, real_seqlen_q, real_seqlen_k]
ck_tile
::
reference_batched_elementwise
<
AccDataType
,
AccDataType
,
AccDataType
,
AccDataType
>
(
s_host_ref
,
alibi_bias_host_ref
,
s_host_ref
);
}
if
(
mask
.
type
==
mask_enum
::
no_mask
)
{
ck_tile
::
reference_batched_masking
<
AccDataType
>
(
s_host_ref
,
FmhaMasks
::
NoMask
{
real_seqlen_q
,
real_seqlen_k
});
}
else
if
(
mask
.
type
==
mask_enum
::
window_generic
)
{
ck_tile
::
reference_batched_masking
<
AccDataType
>
(
s_host_ref
,
ck_tile
::
make_generic_attention_mask_from_lr_window
<
FmhaMasks
::
GenericMask
>
(
mask
.
left
,
mask
.
right
,
real_seqlen_q
,
real_seqlen_k
));
}
else
{
// if left window size is negative, means causal
// else means generic (for current batch)
if
(
mask
.
left
<
0
)
ck_tile
::
reference_batched_masking
<
AccDataType
>
(
s_host_ref
,
ck_tile
::
make_generic_attention_mask_from_lr_window
<
FmhaMasks
::
CausalMask
>
(
mask
.
left
,
mask
.
right
,
real_seqlen_q
,
real_seqlen_k
,
mask
.
type
==
mask_enum
::
mask_top_left
));
else
ck_tile
::
reference_batched_masking
<
AccDataType
>
(
s_host_ref
,
ck_tile
::
make_generic_attention_mask_from_lr_window
<
FmhaMasks
::
GenericMask
>
(
mask
.
left
,
mask
.
right
,
real_seqlen_q
,
real_seqlen_k
,
mask
.
type
==
mask_enum
::
mask_top_left
));
}
ck_tile
::
reference_batched_softmax
<
AccDataType
,
LSEDataType
,
AccDataType
>
(
s_host_ref
,
p_hp_host_ref
,
ck_tile
::
identity
{},
lse_host_ref
);
if
(
p_drop
>
0
)
{
p_hp_host_ref
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
p_dropped_hp_host_ref
(
idx
)
=
self
(
idx
);
});
randval_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
randval_host
(
b
,
idx
[
0
],
idx
[
1
]
+
query_offset
,
idx
[
2
]);
});
ck_tile
::
reference_batched_dropout
(
p_dropped_hp_host_ref
,
randval_host_ref
,
p_undrop_in_uint8_t
,
rp_undrop
);
p_dropped_hp_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
p_lp_host_ref
(
idx
)
=
ck_tile
::
type_convert
<
GemmDataType
>
(
self
(
idx
));
});
}
else
{
p_hp_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
p_lp_host_ref
(
idx
)
=
ck_tile
::
type_convert
<
GemmDataType
>
(
self
(
idx
));
});
}
// O = P * V
ck_tile
::
reference_batched_gemm
<
GemmDataType
,
VDataType
,
AccDataType
,
ODataType
>
(
p_lp_host_ref
,
v_host_ref
,
o_host_ref
);
// o_g_m_o = p_lp_g_m_n@v_g_o_n
// clang-format off
// permute
if
(
o_perm
)
o_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
o_host
(
b
,
idx
[
0
],
idx
[
1
]
+
query_offset
,
idx
[
2
])
=
self
(
idx
);
});
else
o_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
o_host
(
b
,
idx
[
1
]
+
query_offset
,
idx
[
0
],
idx
[
2
])
=
self
(
idx
);
});
lse_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
lse_host
(
wb
,
idx
[
0
],
idx
[
1
])
=
self
(
idx
);
});
// clang-format on
q_host_refs
.
push_back
(
q_host_ref
);
k_host_refs
.
push_back
(
k_host_ref
);
v_host_refs
.
push_back
(
v_host_ref
);
o_host_refs
.
push_back
(
o_host_ref
);
p_hp_host_refs
.
push_back
(
p_hp_host_ref
);
p_lp_host_refs
.
push_back
(
p_lp_host_ref
);
if
(
p_drop
>
0
)
{
randval_host_refs
.
push_back
(
randval_host_ref
);
}
}
o_buf
.
ToDevice
(
o_host
.
data
());
lse_buf
.
ToDevice
(
lse_host
.
data
());
dq_buf
.
SetZero
();
dbias_buf
.
SetZero
();
ck_tile
::
stream_config
stream_config_v
{
nullptr
,
true
,
0
,
0
,
1
,
arg_parser
.
get_str
(
"timer"
)
==
std
::
string
(
"gpu"
)};
fmha_bwd
(
fmha_traits
,
fmha_args
,
stream_config_v
);
dq_buf
.
FromDevice
(
dq_host
.
data
());
dk_buf
.
FromDevice
(
dk_host
.
data
());
dv_buf
.
FromDevice
(
dv_host
.
data
());
dbias_buf
.
FromDevice
(
dbias_host
.
data
());
for
(
ck_tile
::
index_t
wb
=
0
;
wb
<
batch
;
++
wb
)
{
const
ck_tile
::
index_t
real_seqlen_q
=
seqstart_q_host
[
wb
+
1
]
-
seqstart_q_host
[
wb
];
const
ck_tile
::
index_t
real_seqlen_k
=
seqstart_k_host
[
wb
+
1
]
-
seqstart_k_host
[
wb
];
// adjust matrix index according to the mode
const
ck_tile
::
index_t
b
=
(
mode
==
mode_enum
::
batch
?
wb
:
0
);
const
ck_tile
::
index_t
query_offset
=
(
mode
==
mode_enum
::
batch
?
0
:
seqstart_q_host
[
wb
]);
const
ck_tile
::
index_t
key_offset
=
(
mode
==
mode_enum
::
batch
?
0
:
seqstart_k_host
[
wb
]);
ck_tile
::
HostTensor
<
OGradDataType
>
do_host_ref
({
nhead
,
real_seqlen_q
,
hdim_v
});
// do_g_m_o
ck_tile
::
HostTensor
<
AccDataType
>
ds_hp_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
// ds_g_m_n high precision
ck_tile
::
HostTensor
<
GemmDataType
>
ds_lp_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
// ds_g_m_n low precision
ck_tile
::
HostTensor
<
AccDataType
>
dp_hp_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
// dp_g_m_n high precision
ck_tile
::
HostTensor
<
BiasGradDataType
>
dbias_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
// dbias_g_m_n
ck_tile
::
HostTensor
<
QGradDataType
>
dq_host_ref
({
nhead
,
real_seqlen_q
,
hdim_q
});
// dq_g_m_k
ck_tile
::
HostTensor
<
KGradDataType
>
dk_host_ref
({
nhead
,
real_seqlen_k
,
hdim_q
});
// dk_g_n_k
ck_tile
::
HostTensor
<
VGradDataType
>
dv_host_ref
({
nhead
,
real_seqlen_k
,
hdim_v
});
// dv_g_n_o
// clang-format off
if
(
o_perm
)
do_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
i
)
{
self
(
i
)
=
do_host
(
b
,
i
[
0
],
i
[
1
]
+
query_offset
,
i
[
2
]);
});
else
do_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
i
)
{
self
(
i
)
=
do_host
(
b
,
i
[
1
]
+
query_offset
,
i
[
0
],
i
[
2
]);
});
// clang-format on
// dP = dO@V x Z w/ dropout
// dP = dO@V w/o dropout
auto
v_t_host_ref
=
v_host_refs
[
wb
].
transpose
({
0
,
2
,
1
});
// v_g_o_n -> v_g_n_o
ck_tile
::
reference_batched_gemm
<
OGradDataType
,
VDataType
,
AccDataType
,
AccDataType
>
(
do_host_ref
,
v_t_host_ref
,
dp_hp_host_ref
);
// dp_g_m_n = do_g_m_o@v_g_n_o
if
(
p_drop
>
0
)
{
ck_tile
::
reference_batched_dropout
(
dp_hp_host_ref
,
randval_host_refs
[
wb
],
p_undrop_in_uint8_t
,
rp_undrop
);
}
// dS_i_j = P_i_j .* (dP_i_j - dO_i dot O_i)
ds_hp_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx_gmn
)
{
AccDataType
do_dot_o
=
0
;
for
(
int
o
=
0
;
o
<
hdim_v
;
o
++
)
{
auto
idx_gmo
=
idx_gmn
;
idx_gmo
[
2
]
=
o
;
do_dot_o
+=
ck_tile
::
type_convert
<
AccDataType
>
(
do_host_ref
(
idx_gmo
))
*
ck_tile
::
type_convert
<
AccDataType
>
(
o_host_refs
[
wb
](
idx_gmo
));
}
self
(
idx_gmn
)
=
ck_tile
::
type_convert
<
AccDataType
>
(
p_hp_host_refs
[
wb
](
idx_gmn
)
*
(
dp_hp_host_ref
(
idx_gmn
)
-
do_dot_o
));
});
if
(
use_dbias
)
{
ds_hp_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
dbias_host_ref
(
idx
)
=
ck_tile
::
type_convert
<
BiasGradDataType
>
(
self
(
idx
));
});
}
ds_hp_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
ds_lp_host_ref
(
idx
)
=
ck_tile
::
type_convert
<
GemmDataType
>
(
self
(
idx
));
});
// dV = P_drop^T@dO^T
// dV = P^T@dO^T w/o dropout
auto
p_t_lp_host_ref
=
p_lp_host_refs
[
wb
].
transpose
({
0
,
2
,
1
});
// p_lp_g_m_n -> p_lp_g_n_m
auto
do_t_host_ref
=
do_host_ref
.
transpose
({
0
,
2
,
1
});
// do_g_m_o -> do_g_o_m
ck_tile
::
reference_batched_gemm
<
GemmDataType
,
OGradDataType
,
AccDataType
,
VGradDataType
>
(
p_t_lp_host_ref
,
do_t_host_ref
,
dv_host_ref
);
// dv_g_n_o = p_lp_g_n_m@do_g_o_m
// dQ = scale * dS@K^T
auto
k_t_host_ref
=
k_host_refs
[
wb
].
transpose
({
0
,
2
,
1
});
// k_g_n_k -> k_g_k_n
ck_tile
::
reference_batched_gemm
<
GemmDataType
,
KDataType
,
AccDataType
,
QGradDataType
>
(
ds_lp_host_ref
,
k_t_host_ref
,
dq_host_ref
,
ck_tile
::
identity
{},
ck_tile
::
identity
{},
ck_tile
::
scales
(
scale
));
// dq_g_m_k = ds_g_m_n@k_g_k_n
// dK = scale * dS^T@Q^T
auto
ds_t_lp_host_ref
=
ds_lp_host_ref
.
transpose
({
0
,
2
,
1
});
// ds_g_m_n -> ds_g_n_m
auto
q_t_host_ref
=
q_host_refs
[
wb
].
transpose
({
0
,
2
,
1
});
// q_g_m_k -> q_g_k_m
ck_tile
::
reference_batched_gemm
<
GemmDataType
,
QDataType
,
AccDataType
,
KGradDataType
>
(
ds_t_lp_host_ref
,
q_t_host_ref
,
dk_host_ref
,
ck_tile
::
identity
{},
ck_tile
::
identity
{},
ck_tile
::
scales
(
scale
));
// dk_g_n_k = ds_g_n_m@q_g_k_m
ck_tile
::
HostTensor
<
QGradDataType
>
dq_host_result
(
{
nhead
,
real_seqlen_q
,
hdim_q
});
// dq_g_m_k
ck_tile
::
HostTensor
<
KGradDataType
>
dk_host_result
(
{
nhead
,
real_seqlen_k
,
hdim_q
});
// dk_g_n_k
ck_tile
::
HostTensor
<
VGradDataType
>
dv_host_result
(
{
nhead
,
real_seqlen_k
,
hdim_v
});
// dv_g_n_o
ck_tile
::
HostTensor
<
BiasGradDataType
>
dbias_host_result
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
// dbias_g_m_n
// clang-format off
// permute
if
(
i_perm
)
dq_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
dq_host
(
b
,
idx
[
0
],
idx
[
1
]
+
query_offset
,
idx
[
2
]);
});
else
dq_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
dq_host
(
b
,
idx
[
1
]
+
query_offset
,
idx
[
0
],
idx
[
2
]);
});
if
(
i_perm
)
dk_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
dk_host
(
b
,
idx
[
0
],
idx
[
1
]
+
key_offset
,
idx
[
2
]);
});
else
dk_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
dk_host
(
b
,
idx
[
1
]
+
key_offset
,
idx
[
0
],
idx
[
2
]);
});
if
(
i_perm
)
dv_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
dv_host
(
b
,
idx
[
0
],
idx
[
1
]
+
key_offset
,
idx
[
2
]);
});
else
dv_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
dv_host
(
b
,
idx
[
1
]
+
key_offset
,
idx
[
0
],
idx
[
2
]);
});
if
(
use_dbias
)
{
if
(
i_perm
)
dbias_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
dbias_host
(
b
,
idx
[
0
],
idx
[
1
]
+
query_offset
,
idx
[
2
]);
});
else
dbias_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
dbias_host
(
b
,
idx
[
1
]
+
query_offset
,
idx
[
0
],
idx
[
2
]);
});
}
// clang-format on
auto
[
rtol
,
atol
]
=
get_elimit
<
DataType
>
(
init_method
);
bool
dq_cur_pass
=
ck_tile
::
check_err
(
dq_host_result
,
dq_host_ref
,
std
::
string
(
"Error: QGrad Incorrect results!"
),
rtol
,
atol
);
bool
dk_cur_pass
=
ck_tile
::
check_err
(
dk_host_result
,
dk_host_ref
,
std
::
string
(
"Error: KGrad Incorrect results!"
),
rtol
,
atol
);
bool
dv_cur_pass
=
ck_tile
::
check_err
(
dv_host_result
,
dv_host_ref
,
std
::
string
(
"Error: VGrad Incorrect results!"
),
rtol
,
atol
);
bool
dbias_cur_pass
=
true
;
if
(
use_dbias
)
{
dbias_cur_pass
=
ck_tile
::
check_err
(
dbias_host_result
,
dbias_host_ref
,
std
::
string
(
"Error: BiasGrad Incorrect results!"
),
rtol
,
atol
);
}
pass
&=
(
dq_cur_pass
&
dk_cur_pass
&
dv_cur_pass
&
dbias_cur_pass
);
if
(
!
(
dq_cur_pass
&
dk_cur_pass
&
dv_cur_pass
&
dbias_cur_pass
))
{
std
::
cerr
<<
"mismatch found at batch: "
<<
wb
<<
std
::
endl
<<
"
\t
seqlen_q: "
<<
real_seqlen_q
<<
std
::
endl
<<
"
\t
seqlen_k: "
<<
real_seqlen_k
<<
std
::
endl
<<
"
\t
seqstart_q: "
<<
seqstart_q_host
<<
std
::
endl
<<
"
\t
seqstart_k: "
<<
seqstart_k_host
<<
std
::
endl
;
break
;
}
}
std
::
cout
<<
", valid:"
<<
(
pass
?
"y"
:
"n"
)
<<
std
::
flush
<<
std
::
endl
;
return
pass
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
auto
[
result
,
arg_parser
]
=
create_args
(
argc
,
argv
);
if
(
!
result
)
return
-
1
;
const
std
::
string
data_type
=
arg_parser
.
get_str
(
"prec"
);
if
(
data_type
==
"fp16"
)
{
return
run
<
ck_tile
::
half_t
>
(
arg_parser
)
?
0
:
-
2
;
}
else
if
(
data_type
==
"bf16"
)
{
return
run
<
ck_tile
::
bf16_t
>
(
arg_parser
)
?
0
:
-
2
;
}
return
-
3
;
}
example/ck_tile/01_fmha/fmha_bwd.hpp
0 → 100644
View file @
d39c3f5d
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host/kernel_launch.hpp"
#include "ck_tile/ops/fmha.hpp"
#include "ck_tile/ops/epilogue.hpp"
#include "mask.hpp"
#include "bias.hpp"
#include <type_traits>
template
<
typename
DataType
>
struct
FmhaBwdTypeConfig
;
template
<
>
struct
FmhaBwdTypeConfig
<
ck_tile
::
half_t
>
{
using
QDataType
=
ck_tile
::
half_t
;
using
KDataType
=
ck_tile
::
half_t
;
using
VDataType
=
ck_tile
::
half_t
;
using
GemmDataType
=
ck_tile
::
half_t
;
using
BiasDataType
=
ck_tile
::
half_t
;
using
LSEDataType
=
float
;
using
AccDataType
=
float
;
// data type for gemm accumulation
using
DDataType
=
float
;
using
RandValOutputDataType
=
uint8_t
;
using
ODataType
=
ck_tile
::
half_t
;
using
OGradDataType
=
ck_tile
::
half_t
;
using
QGradDataType
=
ck_tile
::
half_t
;
using
KGradDataType
=
ck_tile
::
half_t
;
using
VGradDataType
=
ck_tile
::
half_t
;
using
BiasGradDataType
=
ck_tile
::
half_t
;
};
template
<
>
struct
FmhaBwdTypeConfig
<
ck_tile
::
bf16_t
>
{
using
QDataType
=
ck_tile
::
bf16_t
;
using
KDataType
=
ck_tile
::
bf16_t
;
using
VDataType
=
ck_tile
::
bf16_t
;
using
GemmDataType
=
ck_tile
::
bf16_t
;
using
BiasDataType
=
ck_tile
::
bf16_t
;
using
LSEDataType
=
float
;
using
AccDataType
=
float
;
// data type for gemm accumulation
using
DDataType
=
float
;
using
RandValOutputDataType
=
uint8_t
;
using
ODataType
=
ck_tile
::
bf16_t
;
using
OGradDataType
=
ck_tile
::
bf16_t
;
using
QGradDataType
=
ck_tile
::
bf16_t
;
using
KGradDataType
=
ck_tile
::
bf16_t
;
using
VGradDataType
=
ck_tile
::
bf16_t
;
using
BiasGradDataType
=
ck_tile
::
bf16_t
;
};
struct
FmhaMasks
{
using
NoMask
=
ck_tile
::
GenericAttentionMask
<
false
>
;
using
GenericMask
=
ck_tile
::
GenericAttentionMask
<
true
,
true
>
;
using
CausalMask
=
ck_tile
::
GenericAttentionMask
<
true
,
false
>
;
};
// runtime args, some will passed to karg, some will used to compute grids/blocks
struct
fmha_bwd_args
{
const
void
*
q_ptr
;
const
void
*
k_ptr
;
const
void
*
v_ptr
;
const
void
*
bias_ptr
;
// bias or alibi_slope pointer
const
void
*
o_ptr
;
const
void
*
lse_ptr
;
const
void
*
do_ptr
;
void
*
d_ptr
;
void
*
rand_val_ptr
;
void
*
dq_ptr
;
void
*
dk_ptr
;
void
*
dv_ptr
;
void
*
dbias_ptr
;
const
void
*
seqstart_q_ptr
;
const
void
*
seqstart_k_ptr
;
const
void
*
seqlen_k_ptr
;
ck_tile
::
index_t
seqlen_q
;
ck_tile
::
index_t
seqlen_k
;
ck_tile
::
index_t
batch
;
ck_tile
::
index_t
max_seqlen_q
;
ck_tile
::
index_t
max_seqlen_k
;
ck_tile
::
index_t
hdim_q
;
ck_tile
::
index_t
hdim_v
;
ck_tile
::
index_t
nhead_q
;
ck_tile
::
index_t
nhead_k
;
float
scale
;
ck_tile
::
index_t
stride_q
;
ck_tile
::
index_t
stride_k
;
ck_tile
::
index_t
stride_v
;
ck_tile
::
index_t
stride_bias
;
// if alibi, b*h need set this to h, 1*h need set this to 0
ck_tile
::
index_t
stride_o
;
ck_tile
::
index_t
stride_randval
;
ck_tile
::
index_t
stride_do
;
ck_tile
::
index_t
stride_dk
;
ck_tile
::
index_t
stride_dv
;
ck_tile
::
index_t
stride_dbias
;
ck_tile
::
index_t
nhead_stride_q
;
ck_tile
::
index_t
nhead_stride_k
;
ck_tile
::
index_t
nhead_stride_v
;
ck_tile
::
index_t
nhead_stride_bias
;
ck_tile
::
index_t
nhead_stride_o
;
ck_tile
::
index_t
nhead_stride_randval
;
ck_tile
::
index_t
nhead_stride_do
;
ck_tile
::
index_t
nhead_stride_lsed
;
ck_tile
::
index_t
nhead_stride_dbias
;
ck_tile
::
index_t
batch_stride_q
;
ck_tile
::
index_t
batch_stride_k
;
ck_tile
::
index_t
batch_stride_v
;
ck_tile
::
index_t
batch_stride_bias
;
ck_tile
::
index_t
batch_stride_o
;
ck_tile
::
index_t
batch_stride_randval
;
ck_tile
::
index_t
batch_stride_do
;
ck_tile
::
index_t
batch_stride_lsed
;
ck_tile
::
index_t
batch_stride_dk
;
ck_tile
::
index_t
batch_stride_dv
;
ck_tile
::
index_t
batch_stride_dbias
;
ck_tile
::
index_t
window_size_left
;
ck_tile
::
index_t
window_size_right
;
ck_tile
::
index_t
mask_type
;
float
p_drop
;
float
p_undrop
;
bool
s_randval
;
std
::
tuple
<
uint64_t
,
uint64_t
>
drop_seed_offset
;
};
template
<
typename
FmhaBwdDQDKDVKernel
>
auto
fmha_bwd_dq_dk_dv_create_kargs_and_grids
(
fmha_bwd_args
args
)
{
assert
(
args
.
nhead_q
%
args
.
nhead_k
==
0
);
auto
kargs
=
[
&
]
{
// create group mode kernel arguments
if
constexpr
(
FmhaBwdDQDKDVKernel
::
kIsGroupMode
)
{
return
FmhaBwdDQDKDVKernel
::
MakeKargs
(
args
.
q_ptr
,
args
.
k_ptr
,
args
.
v_ptr
,
args
.
bias_ptr
,
args
.
lse_ptr
,
args
.
do_ptr
,
args
.
d_ptr
,
args
.
rand_val_ptr
,
args
.
dq_ptr
,
args
.
dk_ptr
,
args
.
dv_ptr
,
args
.
dbias_ptr
,
args
.
seqstart_q_ptr
,
args
.
seqstart_k_ptr
,
args
.
seqlen_k_ptr
,
args
.
hdim_q
,
args
.
hdim_v
,
args
.
nhead_q
,
args
.
nhead_q
/
args
.
nhead_k
,
args
.
scale
,
args
.
stride_q
,
args
.
stride_k
,
args
.
stride_v
,
args
.
stride_bias
,
args
.
stride_randval
,
args
.
stride_do
,
args
.
stride_dk
,
args
.
stride_dv
,
args
.
stride_dbias
,
args
.
nhead_stride_q
,
args
.
nhead_stride_k
,
args
.
nhead_stride_v
,
args
.
nhead_stride_bias
,
args
.
nhead_stride_randval
,
args
.
nhead_stride_do
,
args
.
nhead_stride_lsed
,
args
.
nhead_stride_dbias
,
args
.
batch_stride_lsed
,
args
.
window_size_left
,
args
.
window_size_right
,
args
.
mask_type
,
args
.
p_drop
,
args
.
s_randval
,
args
.
drop_seed_offset
);
}
else
{
// create batch mode kernel arguments
return
FmhaBwdDQDKDVKernel
::
MakeKargs
(
args
.
q_ptr
,
args
.
k_ptr
,
args
.
v_ptr
,
args
.
bias_ptr
,
args
.
lse_ptr
,
args
.
do_ptr
,
args
.
d_ptr
,
args
.
rand_val_ptr
,
args
.
dq_ptr
,
args
.
dk_ptr
,
args
.
dv_ptr
,
args
.
dbias_ptr
,
args
.
seqlen_q
,
args
.
seqlen_k
,
args
.
hdim_q
,
args
.
hdim_v
,
args
.
nhead_q
,
args
.
nhead_q
/
args
.
nhead_k
,
args
.
scale
,
args
.
stride_q
,
args
.
stride_k
,
args
.
stride_v
,
args
.
stride_bias
,
args
.
stride_randval
,
args
.
stride_do
,
args
.
stride_dk
,
args
.
stride_dv
,
args
.
stride_dbias
,
args
.
nhead_stride_q
,
args
.
nhead_stride_k
,
args
.
nhead_stride_v
,
args
.
nhead_stride_bias
,
args
.
nhead_stride_randval
,
args
.
nhead_stride_do
,
args
.
nhead_stride_lsed
,
args
.
nhead_stride_dbias
,
args
.
batch_stride_q
,
args
.
batch_stride_k
,
args
.
batch_stride_v
,
args
.
batch_stride_bias
,
args
.
batch_stride_randval
,
args
.
batch_stride_do
,
args
.
batch_stride_lsed
,
args
.
batch_stride_dk
,
args
.
batch_stride_dv
,
args
.
batch_stride_dbias
,
args
.
window_size_left
,
args
.
window_size_right
,
args
.
mask_type
,
args
.
p_drop
,
args
.
s_randval
,
args
.
drop_seed_offset
);
}
}();
dim3
grids
=
FmhaBwdDQDKDVKernel
::
GridSize
(
args
.
batch
,
args
.
nhead_q
,
args
.
max_seqlen_k
);
return
ck_tile
::
make_tuple
(
kargs
,
grids
);
}
template
<
typename
FmhaBwdOGradDotOKernel
>
auto
fmha_bwd_dot_do_o_create_kargs_and_grids
(
fmha_bwd_args
args
)
{
auto
kargs
=
[
&
]
{
// create group mode kernel arguments
if
constexpr
(
FmhaBwdOGradDotOKernel
::
kIsGroupMode
)
{
return
FmhaBwdOGradDotOKernel
::
MakeKargs
(
args
.
o_ptr
,
args
.
do_ptr
,
args
.
d_ptr
,
args
.
p_undrop
,
args
.
seqstart_q_ptr
,
args
.
hdim_v
,
args
.
stride_do
,
args
.
stride_o
,
args
.
nhead_stride_do
,
args
.
nhead_stride_o
,
args
.
nhead_stride_lsed
,
args
.
batch_stride_lsed
);
}
else
{
// create batch mode kernel arguments
return
FmhaBwdOGradDotOKernel
::
MakeKargs
(
args
.
o_ptr
,
args
.
do_ptr
,
args
.
d_ptr
,
args
.
p_undrop
,
args
.
seqlen_q
,
args
.
hdim_v
,
args
.
stride_do
,
args
.
stride_o
,
args
.
nhead_stride_do
,
args
.
nhead_stride_o
,
args
.
nhead_stride_lsed
,
args
.
batch_stride_do
,
args
.
batch_stride_o
,
args
.
batch_stride_lsed
);
}
}();
dim3
grids
=
FmhaBwdOGradDotOKernel
::
GridSize
(
args
.
batch
,
args
.
nhead_q
,
args
.
max_seqlen_q
);
return
ck_tile
::
make_tuple
(
kargs
,
grids
);
}
// this is used to pattern-match internl kernel implementation, not to instantiate kernel
template
<
ck_tile
::
index_t
HDim_
,
typename
DataType_
,
bool
kIsGroupMode_
,
ck_tile
::
BlockFmhaBwdPipelineEnum
FmhaBwdPipelineEnum_
,
typename
FmhaMask_
,
ck_tile
::
BlockAttentionBiasEnum
BiasEnum_
,
bool
kHasBiasGrad_
,
bool
kHasDropout_
,
bool
kPadS_
,
bool
kPadSK_
,
bool
kPadD_
,
bool
kPadDv_
>
struct
fmha_bwd_dq_dk_dv_traits_
{
static
constexpr
ck_tile
::
index_t
HDim
=
HDim_
;
using
DataType
=
ck_tile
::
remove_cvref_t
<
DataType_
>
;
static
constexpr
bool
kIsGroupMode
=
kIsGroupMode_
;
static
constexpr
auto
FmhaBwdPipelineEnum
=
FmhaBwdPipelineEnum_
;
using
FmhaMask
=
ck_tile
::
remove_cvref_t
<
FmhaMask_
>
;
static
constexpr
auto
BiasEnum
=
BiasEnum_
;
static
constexpr
bool
kHasBiasGrad
=
kHasBiasGrad_
;
static
constexpr
bool
kHasDropout
=
kHasDropout_
;
static
constexpr
bool
kPadS
=
kPadS_
;
static
constexpr
bool
kPadSK
=
kPadSK_
;
static
constexpr
bool
kPadD
=
kPadD_
;
static
constexpr
bool
kPadDv
=
kPadDv_
;
};
template
<
typename
Traits_
>
float
fmha_bwd_dq_dk_dv_
(
const
ck_tile
::
stream_config
&
,
fmha_bwd_args
);
template
<
typename
Traits_
>
void
fmha_bwd_dq_dk_dv_oneshot_
(
const
ck_tile
::
stream_config
&
,
fmha_bwd_args
);
template
<
typename
Traits_
>
std
::
string
fmha_bwd_dq_dk_dv_get_name_
();
template
<
ck_tile
::
index_t
HDim_
,
typename
DataType_
,
bool
kIsGroupMode_
,
bool
kPadS_
,
bool
kPadDv_
>
struct
fmha_bwd_dot_do_o_traits_
{
static
constexpr
ck_tile
::
index_t
HDim
=
HDim_
;
using
DataType
=
ck_tile
::
remove_cvref_t
<
DataType_
>
;
static
constexpr
bool
kIsGroupMode
=
kIsGroupMode_
;
static
constexpr
bool
kPadS
=
kPadS_
;
static
constexpr
bool
kPadDv
=
kPadDv_
;
};
template
<
typename
Traits_
>
float
fmha_bwd_dot_do_o_
(
const
ck_tile
::
stream_config
&
,
fmha_bwd_args
);
template
<
typename
Traits_
>
void
fmha_bwd_dot_do_o_oneshot_
(
const
ck_tile
::
stream_config
&
,
fmha_bwd_args
);
template
<
typename
Traits_
>
std
::
string
fmha_bwd_dot_do_o_get_name_
();
// This is the public API, will be generated by script
struct
fmha_bwd_traits
{
int
hdim_q
;
int
hdim_v
;
std
::
string
data_type
;
bool
is_group_mode
;
mask_enum
mask_type
;
bias_enum
bias_type
;
// 0:no bias, 1:elementwise bias, 2:alibi. sync with BlockAttentionBiasEnum
bool
has_dbias
;
bool
has_dropout
;
// TODO: padding check is inside this api
};
float
fmha_bwd
(
fmha_bwd_traits
,
fmha_bwd_args
,
const
ck_tile
::
stream_config
&
);
example/ck_tile/01_fmha/fmha_fwd.cpp
View file @
d39c3f5d
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include "fmha_fwd.hpp"
#include "fmha_fwd.hpp"
#include "ck_tile/host.hpp"
#include "ck_tile/host.hpp"
...
@@ -110,6 +110,9 @@ auto create_args(int argc, char* argv[])
...
@@ -110,6 +110,9 @@ auto create_args(int argc, char* argv[])
"11939"
,
"11939"
,
"random seed used for initializing input tensors. 0 for "
"random seed used for initializing input tensors. 0 for "
"non-deterministic seed"
)
"non-deterministic seed"
)
.
insert
(
"p_drop"
,
"0"
,
"0~1 probability of dropout"
)
.
insert
(
"drop_seed"
,
"1"
,
"seed for random number generator"
)
.
insert
(
"drop_offset"
,
"0"
,
"offset for random number generator"
)
.
insert
(
"timer"
,
"gpu"
,
"gpu:gpu timer, cpu:cpu timer"
)
.
insert
(
"timer"
,
"gpu"
,
"gpu:gpu timer, cpu:cpu timer"
)
.
insert
(
"warmup"
,
"5"
,
"number of iterations before benchmark the kernel"
)
.
insert
(
"warmup"
,
"5"
,
"number of iterations before benchmark the kernel"
)
.
insert
(
"repeat"
,
"20"
,
"number of iterations to benchmark the kernel"
);
.
insert
(
"repeat"
,
"20"
,
"number of iterations to benchmark the kernel"
);
...
@@ -128,26 +131,11 @@ auto get_elimit(std::string /*init_method*/)
...
@@ -128,26 +131,11 @@ auto get_elimit(std::string /*init_method*/)
}
}
template
<
>
template
<
>
auto
get_elimit
<
ck_tile
::
bf16_t
>
(
std
::
string
init_method
)
auto
get_elimit
<
ck_tile
::
bf16_t
>
(
std
::
string
/*
init_method
*/
)
{
{
if
(
init_method
==
"ui"
||
init_method
==
"ni"
)
double
rtol
=
1e-2
;
{
double
atol
=
1e-2
;
double
rtol
=
1e-2
;
return
ck_tile
::
make_tuple
(
rtol
,
atol
);
double
atol
=
1e-2
;
return
ck_tile
::
make_tuple
(
rtol
,
atol
);
}
else
if
(
init_method
==
"nf"
)
{
double
rtol
=
1e-2
;
double
atol
=
1e-2
;
return
ck_tile
::
make_tuple
(
rtol
,
atol
);
}
else
{
double
rtol
=
3e-3
;
double
atol
=
3e-3
;
return
ck_tile
::
make_tuple
(
rtol
,
atol
);
}
}
}
template
<
>
template
<
>
...
@@ -250,6 +238,21 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -250,6 +238,21 @@ bool run(const ck_tile::ArgParser& arg_parser)
mask_info
mask
=
mask_info
::
decode
(
mask_info
mask
=
mask_info
::
decode
(
arg_parser
.
get_str
(
"mask"
),
seqlen_qs
[
0
],
seqlen_ks
[
0
]);
// TODO: we don't need x/y anymore
arg_parser
.
get_str
(
"mask"
),
seqlen_qs
[
0
],
seqlen_ks
[
0
]);
// TODO: we don't need x/y anymore
float
p_drop
=
arg_parser
.
get_float
(
"p_drop"
);
uint64_t
drop_seed
=
arg_parser
.
get_uint64
(
"drop_seed"
);
uint64_t
drop_offset
=
arg_parser
.
get_uint64
(
"drop_offset"
);
if
(
p_drop
<
0.0
f
||
p_drop
>
1.0
f
)
{
std
::
cerr
<<
"The value of p_drop should be 0~1"
<<
std
::
endl
;
return
false
;
}
bool
s_randval
=
false
;
if
(
p_drop
>
0.0
f
&&
do_validation
)
{
s_randval
=
true
;
}
std
::
string
init_method
=
arg_parser
.
get_str
(
"init"
);
std
::
string
init_method
=
arg_parser
.
get_str
(
"init"
);
std
::
optional
<
uint32_t
>
seed
=
arg_parser
.
get_uint32
(
"seed"
);
std
::
optional
<
uint32_t
>
seed
=
arg_parser
.
get_uint32
(
"seed"
);
if
(
*
seed
==
0
)
if
(
*
seed
==
0
)
...
@@ -274,21 +277,23 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -274,21 +277,23 @@ bool run(const ck_tile::ArgParser& arg_parser)
using
TypeConfig
=
FmhaFwdTypeConfig
<
DataType
>
;
using
TypeConfig
=
FmhaFwdTypeConfig
<
DataType
>
;
using
QDataType
=
typename
TypeConfig
::
QDataType
;
using
QDataType
=
typename
TypeConfig
::
QDataType
;
using
KDataType
=
typename
TypeConfig
::
KDataType
;
using
KDataType
=
typename
TypeConfig
::
KDataType
;
using
VDataType
=
typename
TypeConfig
::
VDataType
;
using
VDataType
=
typename
TypeConfig
::
VDataType
;
using
BiasDataType
=
typename
TypeConfig
::
BiasDataType
;
using
BiasDataType
=
typename
TypeConfig
::
BiasDataType
;
using
LSEDataType
=
typename
TypeConfig
::
LSEDataType
;
using
RandValOutputDataType
=
typename
TypeConfig
::
RandValOutputDataType
;
using
SaccDataType
=
typename
TypeConfig
::
SaccDataType
;
using
LSEDataType
=
typename
TypeConfig
::
LSEDataType
;
using
SMPLComputeDataType
=
typename
TypeConfig
::
SMPLComputeDataType
;
using
SaccDataType
=
typename
TypeConfig
::
SaccDataType
;
using
PDataType
=
typename
TypeConfig
::
PDataType
;
using
SMPLComputeDataType
=
typename
TypeConfig
::
SMPLComputeDataType
;
using
OaccDataType
=
typename
TypeConfig
::
OaccDataType
;
using
PDataType
=
typename
TypeConfig
::
PDataType
;
using
ODataType
=
typename
TypeConfig
::
ODataType
;
using
OaccDataType
=
typename
TypeConfig
::
OaccDataType
;
using
ODataType
=
typename
TypeConfig
::
ODataType
;
// accumulation numbers for performance evaluation
// accumulation numbers for performance evaluation
std
::
size_t
flop
=
0
,
num_byte
=
0
;
std
::
size_t
flop
=
0
,
num_byte
=
0
;
auto
max_seqlen_q
=
auto
max_seqlen_q
=
std
::
numeric_limits
<
int32_t
>::
min
();
// we will use max seqlen to decide grid size
std
::
numeric_limits
<
int32_t
>::
min
();
// we will use max seqlen to decide grid size
auto
max_seqlen_k
=
std
::
numeric_limits
<
int32_t
>::
min
();
{
{
for
(
ck_tile
::
index_t
wb
=
0
;
wb
<
batch
;
++
wb
)
for
(
ck_tile
::
index_t
wb
=
0
;
wb
<
batch
;
++
wb
)
{
{
...
@@ -300,6 +305,11 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -300,6 +305,11 @@ bool run(const ck_tile::ArgParser& arg_parser)
max_seqlen_q
=
real_seqlen_q
;
max_seqlen_q
=
real_seqlen_q
;
}
}
if
(
max_seqlen_k
<
real_seqlen_k
)
{
max_seqlen_k
=
real_seqlen_k
;
}
flop
+=
nhead
*
(
static_cast
<
std
::
size_t
>
(
2
)
*
real_seqlen_q
*
real_seqlen_k
*
hdim_q
+
flop
+=
nhead
*
(
static_cast
<
std
::
size_t
>
(
2
)
*
real_seqlen_q
*
real_seqlen_k
*
hdim_q
+
static_cast
<
std
::
size_t
>
(
2
)
*
real_seqlen_q
*
hdim_v
*
real_seqlen_k
);
static_cast
<
std
::
size_t
>
(
2
)
*
real_seqlen_q
*
hdim_v
*
real_seqlen_k
);
...
@@ -353,12 +363,16 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -353,12 +363,16 @@ bool run(const ck_tile::ArgParser& arg_parser)
// self define lse data layout as [shape_batch, nhead, shape_seqlen_q]
// self define lse data layout as [shape_batch, nhead, shape_seqlen_q]
ck_tile
::
HostTensor
<
LSEDataType
>
lse_host
(
ck_tile
::
HostTensor
<
LSEDataType
>
lse_host
(
lse
?
std
::
array
<
ck_tile
::
index_t
,
3
>
{
shape_
batch
,
nhead
,
shape
_seqlen_q
}
lse
?
std
::
array
<
ck_tile
::
index_t
,
3
>
{
batch
,
nhead
,
max
_seqlen_q
}
:
std
::
array
<
ck_tile
::
index_t
,
3
>
{
1
,
1
,
1
}
/* dummy shape for simplifying code */
);
:
std
::
array
<
ck_tile
::
index_t
,
3
>
{
1
,
1
,
1
}
/* dummy shape for simplifying code */
);
ck_tile
::
HostTensor
<
ODataType
>
o_host
(
ck_tile
::
HostTensor
<
ODataType
>
o_host
(
get_lengths
(
o_perm
,
shape_batch
,
nhead
,
shape_seqlen_q
,
hdim_v
));
get_lengths
(
o_perm
,
shape_batch
,
nhead
,
shape_seqlen_q
,
hdim_v
));
ck_tile
::
HostTensor
<
RandValOutputDataType
>
randval_host
(
p_drop
>
0
?
get_lengths
(
true
,
shape_batch
,
nhead
,
shape_seqlen_q
,
max_seqlen_k
)
:
std
::
array
<
ck_tile
::
index_t
,
4
>
{
1
,
1
,
1
,
1
});
if
(
init_method
==
"ui"
||
init_method
==
"0"
)
if
(
init_method
==
"ui"
||
init_method
==
"0"
)
{
{
ck_tile
::
FillUniformDistributionIntegerValue
<
QDataType
>
{
-
3.
f
,
3.
f
,
seed
}(
q_host
);
ck_tile
::
FillUniformDistributionIntegerValue
<
QDataType
>
{
-
3.
f
,
3.
f
,
seed
}(
q_host
);
...
@@ -434,6 +448,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -434,6 +448,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
ck_tile
::
DeviceMem
seqstart_q
(
seqstart_q_host
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
seqstart_q
(
seqstart_q_host
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
seqstart_k
(
seqstart_k_host
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
seqstart_k
(
seqstart_k_host
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
seqlen_k_buf
(
seqlen_kpads
[
0
]
<
0
?
0
:
seqlen_ks
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
seqlen_k_buf
(
seqlen_kpads
[
0
]
<
0
?
0
:
seqlen_ks
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
randval_buf
(
randval_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
alibi_slope_buf
(
alibi_slope_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
alibi_slope_buf
(
alibi_slope_host
.
get_element_space_size_in_bytes
());
q_buf
.
ToDevice
(
q_host
.
data
());
q_buf
.
ToDevice
(
q_host
.
data
());
...
@@ -463,8 +478,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -463,8 +478,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
<<
(
seqlen_kpads
[
0
]
<
0
?
""
<<
(
seqlen_kpads
[
0
]
<
0
?
""
:
(
std
::
string
(
"("
)
+
std
::
to_string
(
seqlen_kpads
[
0
])
+
")"
))
:
(
std
::
string
(
"("
)
+
std
::
to_string
(
seqlen_kpads
[
0
])
+
")"
))
<<
", d:"
<<
hdim_q
<<
"/"
<<
hdim_v
<<
", scale_s:"
<<
scale_s
<<
", bias:"
<<
bias
<<
", d:"
<<
hdim_q
<<
"/"
<<
hdim_v
<<
", scale_s:"
<<
scale_s
<<
", bias:"
<<
bias
<<
", lse:"
<<
lse
<<
", squant:"
<<
squan
t
<<
", mask:"
<<
mask
<<
", v:"
<<
vlayou
t
<<
",
p_drop:"
<<
p_drop
<<
",
lse:"
<<
lse
<<
", squant:"
<<
squant
<<
std
::
flush
;
<<
", mask:"
<<
mask
<<
", v:"
<<
vlayout
<<
std
::
flush
;
auto
fmha_traits
=
fmha_fwd_traits
{
hdim_q
,
auto
fmha_traits
=
fmha_fwd_traits
{
hdim_q
,
hdim_v
,
hdim_v
,
...
@@ -474,6 +489,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -474,6 +489,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
mask
.
type
,
mask
.
type
,
bias
.
type
,
bias
.
type
,
lse
,
lse
,
p_drop
>
0.0
f
,
squant
};
squant
};
auto
p_compute_element_func
=
[
&
]()
{
auto
p_compute_element_func
=
[
&
]()
{
...
@@ -505,8 +521,9 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -505,8 +521,9 @@ bool run(const ck_tile::ArgParser& arg_parser)
else
else
return
i_perm
?
shape_seqlen_k
:
nhead_k
*
shape_seqlen_k
;
return
i_perm
?
shape_seqlen_k
:
nhead_k
*
shape_seqlen_k
;
}();
}();
const
ck_tile
::
index_t
stride_bias
=
(
i_perm
?
shape_seqlen_k
:
1
*
shape_seqlen_k
);
const
ck_tile
::
index_t
stride_bias
=
(
i_perm
?
shape_seqlen_k
:
1
*
shape_seqlen_k
);
const
ck_tile
::
index_t
stride_o
=
(
o_perm
?
hdim_v
:
nhead
*
hdim_v
);
const
ck_tile
::
index_t
stride_randval
=
(
max_seqlen_k
);
const
ck_tile
::
index_t
stride_o
=
(
o_perm
?
hdim_v
:
nhead
*
hdim_v
);
// setup nhead_stride_* arguments
// setup nhead_stride_* arguments
const
ck_tile
::
index_t
nhead_stride_q
=
(
i_perm
?
shape_seqlen_q
*
hdim_q
:
hdim_q
);
const
ck_tile
::
index_t
nhead_stride_q
=
(
i_perm
?
shape_seqlen_q
*
hdim_q
:
hdim_q
);
const
ck_tile
::
index_t
nhead_stride_k
=
(
i_perm
?
shape_seqlen_k
*
hdim_q
:
hdim_q
);
const
ck_tile
::
index_t
nhead_stride_k
=
(
i_perm
?
shape_seqlen_k
*
hdim_q
:
hdim_q
);
...
@@ -518,21 +535,24 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -518,21 +535,24 @@ bool run(const ck_tile::ArgParser& arg_parser)
}();
}();
const
ck_tile
::
index_t
nhead_stride_bias
=
const
ck_tile
::
index_t
nhead_stride_bias
=
(
i_perm
?
0
*
shape_seqlen_q
*
shape_seqlen_k
:
0
*
shape_seqlen_k
);
(
i_perm
?
0
*
shape_seqlen_q
*
shape_seqlen_k
:
0
*
shape_seqlen_k
);
const
ck_tile
::
index_t
nhead_stride_lse
=
(
shape_seqlen_q
*
1
);
const
ck_tile
::
index_t
nhead_stride_randval
=
(
shape_seqlen_q
*
max_seqlen_k
);
const
ck_tile
::
index_t
nhead_stride_o
=
(
o_perm
?
shape_seqlen_q
*
hdim_v
:
hdim_v
);
const
ck_tile
::
index_t
nhead_stride_lse
=
max_seqlen_q
;
const
ck_tile
::
index_t
nhead_stride_o
=
(
o_perm
?
shape_seqlen_q
*
hdim_v
:
hdim_v
);
// setup batch_stride_* arguments
// setup batch_stride_* arguments
const
ck_tile
::
index_t
batch_stride_q
=
(
nhead
*
shape_seqlen_q
*
hdim_q
);
const
ck_tile
::
index_t
batch_stride_q
=
(
nhead
*
shape_seqlen_q
*
hdim_q
);
const
ck_tile
::
index_t
batch_stride_k
=
(
nhead_k
*
shape_seqlen_k
*
hdim_q
);
const
ck_tile
::
index_t
batch_stride_k
=
(
nhead_k
*
shape_seqlen_k
*
hdim_q
);
const
ck_tile
::
index_t
batch_stride_v
=
(
nhead_k
*
hdim_v
*
shape_seqlen_k
);
const
ck_tile
::
index_t
batch_stride_v
=
(
nhead_k
*
hdim_v
*
shape_seqlen_k
);
const
ck_tile
::
index_t
batch_stride_bias
=
(
0
*
nhead
*
shape_seqlen_q
*
shape_seqlen_k
);
const
ck_tile
::
index_t
batch_stride_bias
=
(
0
*
nhead
*
shape_seqlen_q
*
shape_seqlen_k
);
const
ck_tile
::
index_t
batch_stride_lse
=
(
nhead
*
shape_seqlen_q
*
1
);
const
ck_tile
::
index_t
batch_stride_randval
=
(
nhead
*
shape_seqlen_q
*
max_seqlen_k
);
const
ck_tile
::
index_t
batch_stride_o
=
(
nhead
*
shape_seqlen_q
*
hdim_v
);
const
ck_tile
::
index_t
batch_stride_lse
=
(
nhead
*
max_seqlen_q
);
const
ck_tile
::
index_t
batch_stride_o
=
(
nhead
*
shape_seqlen_q
*
hdim_v
);
return
fmha_fwd_args
{
q_buf
.
GetDeviceBuffer
(),
return
fmha_fwd_args
{
q_buf
.
GetDeviceBuffer
(),
k_buf
.
GetDeviceBuffer
(),
k_buf
.
GetDeviceBuffer
(),
v_buf
.
GetDeviceBuffer
(),
v_buf
.
GetDeviceBuffer
(),
bias
.
type
==
bias_enum
::
alibi
?
alibi_slope_buf
.
GetDeviceBuffer
()
bias
.
type
==
bias_enum
::
alibi
?
alibi_slope_buf
.
GetDeviceBuffer
()
:
bias_buf
.
GetDeviceBuffer
(),
:
bias_buf
.
GetDeviceBuffer
(),
randval_buf
.
GetDeviceBuffer
(),
lse_buf
.
GetDeviceBuffer
(),
lse_buf
.
GetDeviceBuffer
(),
o_buf
.
GetDeviceBuffer
(),
o_buf
.
GetDeviceBuffer
(),
seqstart_q
.
GetDeviceBuffer
(),
seqstart_q
.
GetDeviceBuffer
(),
...
@@ -554,22 +574,28 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -554,22 +574,28 @@ bool run(const ck_tile::ArgParser& arg_parser)
stride_v
,
stride_v
,
bias
.
type
==
bias_enum
::
alibi
?
(
bias
.
rank_info
==
0
?
0
:
nhead
)
bias
.
type
==
bias_enum
::
alibi
?
(
bias
.
rank_info
==
0
?
0
:
nhead
)
:
stride_bias
,
:
stride_bias
,
stride_randval
,
stride_o
,
stride_o
,
nhead_stride_q
,
nhead_stride_q
,
nhead_stride_k
,
nhead_stride_k
,
nhead_stride_v
,
nhead_stride_v
,
nhead_stride_bias
,
nhead_stride_bias
,
nhead_stride_randval
,
nhead_stride_lse
,
nhead_stride_lse
,
nhead_stride_o
,
nhead_stride_o
,
batch_stride_q
,
batch_stride_q
,
batch_stride_k
,
batch_stride_k
,
batch_stride_v
,
batch_stride_v
,
batch_stride_bias
,
batch_stride_bias
,
batch_stride_randval
,
batch_stride_lse
,
batch_stride_lse
,
batch_stride_o
,
batch_stride_o
,
mask
.
left
,
mask
.
left
,
mask
.
right
,
mask
.
right
,
static_cast
<
ck_tile
::
index_t
>
(
mask
.
type
)};
static_cast
<
ck_tile
::
index_t
>
(
mask
.
type
),
p_drop
,
s_randval
,
{
drop_seed
,
drop_offset
}};
}();
}();
float
ave_time
=
fmha_fwd
(
fmha_traits
,
fmha_args
,
stream_config
);
float
ave_time
=
fmha_fwd
(
fmha_traits
,
fmha_args
,
stream_config
);
...
@@ -596,6 +622,11 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -596,6 +622,11 @@ bool run(const ck_tile::ArgParser& arg_parser)
o_buf
.
FromDevice
(
o_host
.
data
());
o_buf
.
FromDevice
(
o_host
.
data
());
lse_buf
.
FromDevice
(
lse_host
.
data
());
lse_buf
.
FromDevice
(
lse_host
.
data
());
randval_buf
.
FromDevice
(
randval_host
.
data
());
float
p_undrop
=
1.0
-
p_drop
;
uint8_t
p_undrop_in_uint8_t
=
uint8_t
(
std
::
floor
(
p_undrop
*
std
::
numeric_limits
<
uint8_t
>::
max
()));
float
rp_undrop
=
1.0
/
p_undrop
;
bool
pass
=
true
;
bool
pass
=
true
;
...
@@ -771,6 +802,17 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -771,6 +802,17 @@ bool run(const ck_tile::ArgParser& arg_parser)
s_host_ref
,
p_host_ref
,
p_compute_element_func
);
s_host_ref
,
p_host_ref
,
p_compute_element_func
);
}
}
if
(
p_drop
>
0
)
{
ck_tile
::
HostTensor
<
RandValOutputDataType
>
randval_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
randval_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
randval_host
(
b
,
idx
[
0
],
idx
[
1
]
+
query_offset
,
idx
[
2
]);
});
ck_tile
::
reference_batched_dropout
(
p_host_ref
,
randval_host_ref
,
p_undrop_in_uint8_t
,
rp_undrop
);
}
ck_tile
::
reference_batched_gemm
<
PDataType
,
VDataType
,
OaccDataType
,
ODataType
>
(
ck_tile
::
reference_batched_gemm
<
PDataType
,
VDataType
,
OaccDataType
,
ODataType
>
(
p_host_ref
,
p_host_ref
,
v_host_ref
,
v_host_ref
,
...
@@ -804,9 +846,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -804,9 +846,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
if
(
lse
)
if
(
lse
)
{
{
ck_tile
::
HostTensor
<
SMPLComputeDataType
>
lse_host_result
({
nhead
,
real_seqlen_q
});
ck_tile
::
HostTensor
<
SMPLComputeDataType
>
lse_host_result
({
nhead
,
real_seqlen_q
});
lse_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
lse_host_result
.
ForEach
(
self
(
idx
)
=
lse_host
(
b
,
idx
[
0
],
idx
[
1
]
+
query_offset
);
[
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
lse_host
(
wb
,
idx
[
0
],
idx
[
1
]);
});
});
bool
lse_pass
=
ck_tile
::
check_err
(
lse_host_result
,
bool
lse_pass
=
ck_tile
::
check_err
(
lse_host_result
,
lse_host_ref
,
lse_host_ref
,
...
...
example/ck_tile/01_fmha/fmha_fwd.hpp
View file @
d39c3f5d
...
@@ -17,61 +17,65 @@ struct FmhaFwdTypeConfig;
...
@@ -17,61 +17,65 @@ struct FmhaFwdTypeConfig;
template
<
>
template
<
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
half_t
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
half_t
>
{
{
using
QDataType
=
ck_tile
::
half_t
;
using
QDataType
=
ck_tile
::
half_t
;
using
KDataType
=
ck_tile
::
half_t
;
using
KDataType
=
ck_tile
::
half_t
;
using
VDataType
=
ck_tile
::
half_t
;
using
VDataType
=
ck_tile
::
half_t
;
using
BiasDataType
=
ck_tile
::
half_t
;
using
BiasDataType
=
ck_tile
::
half_t
;
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
RandValOutputDataType
=
uint8_t
;
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
PDataType
=
ck_tile
::
half_t
;
// data type for A matrix of second gemm
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
PDataType
=
ck_tile
::
half_t
;
// data type for A matrix of second gemm
using
ODataType
=
ck_tile
::
half_t
;
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
ODataType
=
ck_tile
::
half_t
;
};
};
template
<
>
template
<
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
bf16_t
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
bf16_t
>
{
{
using
QDataType
=
ck_tile
::
bf16_t
;
using
QDataType
=
ck_tile
::
bf16_t
;
using
KDataType
=
ck_tile
::
bf16_t
;
using
KDataType
=
ck_tile
::
bf16_t
;
using
VDataType
=
ck_tile
::
bf16_t
;
using
VDataType
=
ck_tile
::
bf16_t
;
using
BiasDataType
=
ck_tile
::
bf16_t
;
using
BiasDataType
=
ck_tile
::
bf16_t
;
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
RandValOutputDataType
=
uint8_t
;
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
PDataType
=
ck_tile
::
bf16_t
;
// data type for A matrix of second gemm
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
PDataType
=
ck_tile
::
bf16_t
;
// data type for A matrix of second gemm
using
ODataType
=
ck_tile
::
bf16_t
;
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
ODataType
=
ck_tile
::
bf16_t
;
};
};
template
<
>
template
<
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
fp8_t
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
fp8_t
>
{
{
using
QDataType
=
ck_tile
::
fp8_t
;
using
QDataType
=
ck_tile
::
fp8_t
;
using
KDataType
=
ck_tile
::
fp8_t
;
using
KDataType
=
ck_tile
::
fp8_t
;
using
VDataType
=
ck_tile
::
fp8_t
;
using
VDataType
=
ck_tile
::
fp8_t
;
using
BiasDataType
=
float
;
using
BiasDataType
=
float
;
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
RandValOutputDataType
=
uint8_t
;
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
PDataType
=
ck_tile
::
fp8_t
;
// data type for A matrix of second gemm
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
PDataType
=
ck_tile
::
fp8_t
;
// data type for A matrix of second gemm
using
ODataType
=
ck_tile
::
fp8_t
;
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
ODataType
=
ck_tile
::
fp8_t
;
};
};
template
<
>
template
<
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
bf8_t
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
bf8_t
>
{
{
using
QDataType
=
ck_tile
::
bf8_t
;
using
QDataType
=
ck_tile
::
bf8_t
;
using
KDataType
=
ck_tile
::
bf8_t
;
using
KDataType
=
ck_tile
::
bf8_t
;
using
VDataType
=
ck_tile
::
bf8_t
;
using
VDataType
=
ck_tile
::
bf8_t
;
using
BiasDataType
=
ck_tile
::
bf8_t
;
using
BiasDataType
=
ck_tile
::
bf8_t
;
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
RandValOutputDataType
=
uint8_t
;
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
PDataType
=
ck_tile
::
bf8_t
;
// data type for A matrix of second gemm
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
PDataType
=
ck_tile
::
bf8_t
;
// data type for A matrix of second gemm
using
ODataType
=
ck_tile
::
bf8_t
;
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
ODataType
=
ck_tile
::
bf8_t
;
};
};
struct
FmhaMasks
struct
FmhaMasks
...
@@ -88,6 +92,7 @@ struct fmha_fwd_args
...
@@ -88,6 +92,7 @@ struct fmha_fwd_args
const
void
*
k_ptr
;
const
void
*
k_ptr
;
const
void
*
v_ptr
;
const
void
*
v_ptr
;
const
void
*
bias_ptr
;
// bias or alibi_slope pointer
const
void
*
bias_ptr
;
// bias or alibi_slope pointer
void
*
rand_val_ptr
;
void
*
lse_ptr
;
void
*
lse_ptr
;
void
*
o_ptr
;
void
*
o_ptr
;
const
void
*
seqstart_q_ptr
;
const
void
*
seqstart_q_ptr
;
...
@@ -108,22 +113,28 @@ struct fmha_fwd_args
...
@@ -108,22 +113,28 @@ struct fmha_fwd_args
ck_tile
::
index_t
stride_k
;
ck_tile
::
index_t
stride_k
;
ck_tile
::
index_t
stride_v
;
ck_tile
::
index_t
stride_v
;
ck_tile
::
index_t
stride_bias
;
// if alibi, b*h need set this to h, 1*h need set this to 0
ck_tile
::
index_t
stride_bias
;
// if alibi, b*h need set this to h, 1*h need set this to 0
ck_tile
::
index_t
stride_randval
;
ck_tile
::
index_t
stride_o
;
ck_tile
::
index_t
stride_o
;
ck_tile
::
index_t
nhead_stride_q
;
ck_tile
::
index_t
nhead_stride_q
;
ck_tile
::
index_t
nhead_stride_k
;
ck_tile
::
index_t
nhead_stride_k
;
ck_tile
::
index_t
nhead_stride_v
;
ck_tile
::
index_t
nhead_stride_v
;
ck_tile
::
index_t
nhead_stride_bias
;
ck_tile
::
index_t
nhead_stride_bias
;
ck_tile
::
index_t
nhead_stride_randval
;
ck_tile
::
index_t
nhead_stride_lse
;
ck_tile
::
index_t
nhead_stride_lse
;
ck_tile
::
index_t
nhead_stride_o
;
ck_tile
::
index_t
nhead_stride_o
;
ck_tile
::
index_t
batch_stride_q
;
ck_tile
::
index_t
batch_stride_q
;
ck_tile
::
index_t
batch_stride_k
;
ck_tile
::
index_t
batch_stride_k
;
ck_tile
::
index_t
batch_stride_v
;
ck_tile
::
index_t
batch_stride_v
;
ck_tile
::
index_t
batch_stride_bias
;
ck_tile
::
index_t
batch_stride_bias
;
ck_tile
::
index_t
batch_stride_randval
;
ck_tile
::
index_t
batch_stride_lse
;
ck_tile
::
index_t
batch_stride_lse
;
ck_tile
::
index_t
batch_stride_o
;
ck_tile
::
index_t
batch_stride_o
;
ck_tile
::
index_t
window_size_left
;
ck_tile
::
index_t
window_size_left
;
ck_tile
::
index_t
window_size_right
;
ck_tile
::
index_t
window_size_right
;
ck_tile
::
index_t
mask_type
;
ck_tile
::
index_t
mask_type
;
float
p_drop
;
bool
s_randval
;
std
::
tuple
<
uint64_t
,
uint64_t
>
drop_seed_offset
;
};
};
template
<
typename
FmhaKernel
>
template
<
typename
FmhaKernel
>
...
@@ -138,6 +149,7 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
...
@@ -138,6 +149,7 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
args
.
k_ptr
,
args
.
k_ptr
,
args
.
v_ptr
,
args
.
v_ptr
,
args
.
bias_ptr
,
args
.
bias_ptr
,
args
.
rand_val_ptr
,
args
.
lse_ptr
,
args
.
lse_ptr
,
args
.
o_ptr
,
args
.
o_ptr
,
args
.
seqstart_q_ptr
,
args
.
seqstart_q_ptr
,
...
@@ -145,6 +157,7 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
...
@@ -145,6 +157,7 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
args
.
seqlen_k_ptr
,
args
.
seqlen_k_ptr
,
args
.
hdim_q
,
args
.
hdim_q
,
args
.
hdim_v
,
args
.
hdim_v
,
args
.
nhead_q
,
args
.
nhead_q
/
args
.
nhead_k
,
args
.
nhead_q
/
args
.
nhead_k
,
args
.
scale_s
,
args
.
scale_s
,
args
.
scale_p
,
args
.
scale_p
,
...
@@ -153,16 +166,22 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
...
@@ -153,16 +166,22 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
args
.
stride_k
,
args
.
stride_k
,
args
.
stride_v
,
args
.
stride_v
,
args
.
stride_bias
,
args
.
stride_bias
,
args
.
stride_randval
,
args
.
stride_o
,
args
.
stride_o
,
args
.
nhead_stride_q
,
args
.
nhead_stride_q
,
args
.
nhead_stride_k
,
args
.
nhead_stride_k
,
args
.
nhead_stride_v
,
args
.
nhead_stride_v
,
args
.
nhead_stride_bias
,
args
.
nhead_stride_bias
,
args
.
nhead_stride_randval
,
args
.
nhead_stride_lse
,
args
.
nhead_stride_lse
,
args
.
nhead_stride_o
,
args
.
nhead_stride_o
,
args
.
batch_stride_lse
,
args
.
window_size_left
,
args
.
window_size_left
,
args
.
window_size_right
,
args
.
window_size_right
,
args
.
mask_type
);
args
.
mask_type
,
args
.
p_drop
,
args
.
s_randval
,
args
.
drop_seed_offset
);
}
}
else
else
{
// create batch mode kernel arguments
{
// create batch mode kernel arguments
...
@@ -170,12 +189,14 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
...
@@ -170,12 +189,14 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
args
.
k_ptr
,
args
.
k_ptr
,
args
.
v_ptr
,
args
.
v_ptr
,
args
.
bias_ptr
,
args
.
bias_ptr
,
args
.
rand_val_ptr
,
args
.
lse_ptr
,
args
.
lse_ptr
,
args
.
o_ptr
,
args
.
o_ptr
,
args
.
seqlen_q
,
args
.
seqlen_q
,
args
.
seqlen_k
,
args
.
seqlen_k
,
args
.
hdim_q
,
args
.
hdim_q
,
args
.
hdim_v
,
args
.
hdim_v
,
args
.
nhead_q
,
args
.
nhead_q
/
args
.
nhead_k
,
args
.
nhead_q
/
args
.
nhead_k
,
args
.
scale_s
,
args
.
scale_s
,
args
.
scale_p
,
args
.
scale_p
,
...
@@ -184,22 +205,28 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
...
@@ -184,22 +205,28 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
args
.
stride_k
,
args
.
stride_k
,
args
.
stride_v
,
args
.
stride_v
,
args
.
stride_bias
,
args
.
stride_bias
,
args
.
stride_randval
,
args
.
stride_o
,
args
.
stride_o
,
args
.
nhead_stride_q
,
args
.
nhead_stride_q
,
args
.
nhead_stride_k
,
args
.
nhead_stride_k
,
args
.
nhead_stride_v
,
args
.
nhead_stride_v
,
args
.
nhead_stride_bias
,
args
.
nhead_stride_bias
,
args
.
nhead_stride_randval
,
args
.
nhead_stride_lse
,
args
.
nhead_stride_lse
,
args
.
nhead_stride_o
,
args
.
nhead_stride_o
,
args
.
batch_stride_q
,
args
.
batch_stride_q
,
args
.
batch_stride_k
,
args
.
batch_stride_k
,
args
.
batch_stride_v
,
args
.
batch_stride_v
,
args
.
batch_stride_bias
,
args
.
batch_stride_bias
,
args
.
batch_stride_randval
,
args
.
batch_stride_lse
,
args
.
batch_stride_lse
,
args
.
batch_stride_o
,
args
.
batch_stride_o
,
args
.
window_size_left
,
args
.
window_size_left
,
args
.
window_size_right
,
args
.
window_size_right
,
args
.
mask_type
);
args
.
mask_type
,
args
.
p_drop
,
args
.
s_randval
,
args
.
drop_seed_offset
);
}
}
}();
}();
...
@@ -222,6 +249,7 @@ template <ck_tile::index_t HDim_,
...
@@ -222,6 +249,7 @@ template <ck_tile::index_t HDim_,
typename
FmhaMask_
,
typename
FmhaMask_
,
ck_tile
::
BlockAttentionBiasEnum
BiasEnum_
,
ck_tile
::
BlockAttentionBiasEnum
BiasEnum_
,
bool
kStoreLse_
,
bool
kStoreLse_
,
bool
kHasDropout_
,
bool
kDoFp8StaticQuant_
,
bool
kDoFp8StaticQuant_
,
bool
kPadS_
,
bool
kPadS_
,
bool
kPadSK_
,
bool
kPadSK_
,
...
@@ -243,6 +271,7 @@ struct fmha_fwd_traits_
...
@@ -243,6 +271,7 @@ struct fmha_fwd_traits_
using
FmhaMask
=
ck_tile
::
remove_cvref_t
<
FmhaMask_
>
;
using
FmhaMask
=
ck_tile
::
remove_cvref_t
<
FmhaMask_
>
;
static
constexpr
auto
BiasEnum
=
BiasEnum_
;
static
constexpr
auto
BiasEnum
=
BiasEnum_
;
static
constexpr
bool
kStoreLse
=
kStoreLse_
;
static
constexpr
bool
kStoreLse
=
kStoreLse_
;
static
constexpr
bool
kHasDropout
=
kHasDropout_
;
static
constexpr
bool
kDoFp8StaticQuant
=
kDoFp8StaticQuant_
;
static
constexpr
bool
kDoFp8StaticQuant
=
kDoFp8StaticQuant_
;
static
constexpr
bool
kPadS
=
kPadS_
;
static
constexpr
bool
kPadS
=
kPadS_
;
static
constexpr
bool
kPadSK
=
kPadSK_
;
static
constexpr
bool
kPadSK
=
kPadSK_
;
...
@@ -264,6 +293,7 @@ struct fmha_fwd_traits
...
@@ -264,6 +293,7 @@ struct fmha_fwd_traits
mask_enum
mask_type
;
mask_enum
mask_type
;
bias_enum
bias_type
;
// 0:no bias, 1:elementwise bias, 2:alibi. sync with BlockAttentionBiasEnum
bias_enum
bias_type
;
// 0:no bias, 1:elementwise bias, 2:alibi. sync with BlockAttentionBiasEnum
bool
has_lse
;
bool
has_lse
;
bool
has_dropout
;
bool
do_fp8_static_quant
;
bool
do_fp8_static_quant
;
// TODO: padding check is inside this api
// TODO: padding check is inside this api
};
};
...
...
example/ck_tile/01_fmha/generate.py
View file @
d39c3f5d
...
@@ -83,7 +83,6 @@ TILE_PARTITIONER_MAP = {
...
@@ -83,7 +83,6 @@ TILE_PARTITIONER_MAP = {
"hbs"
:
"ck_tile::FmhaFwdTilePartitioner_HBS"
,
"hbs"
:
"ck_tile::FmhaFwdTilePartitioner_HBS"
,
}
}
DIRECTIONS
=
[
"fwd"
]
GEN_DIR
=
""
# in Cmake, have to generate files in same folder
GEN_DIR
=
""
# in Cmake, have to generate files in same folder
FMHA_FWD_KERNEL_HEADER
=
"""// SPDX-License-Identifier: MIT
FMHA_FWD_KERNEL_HEADER
=
"""// SPDX-License-Identifier: MIT
...
@@ -111,8 +110,10 @@ using fmha_trait_{F_idx} = ck_tile::TileFmhaTraits<{F_spad},
...
@@ -111,8 +110,10 @@ using fmha_trait_{F_idx} = ck_tile::TileFmhaTraits<{F_spad},
{F_dpad},
{F_dpad},
{F_dvpad},
{F_dvpad},
{F_bias},
{F_bias},
false,
{F_lse},
{F_lse},
{F_squant},
{F_dropout},
{F_squant},
{F_occupancy}>;
{F_occupancy}>;
using fmha_mask_{F_idx} = {F_mask};
using fmha_mask_{F_idx} = {F_mask};
...
@@ -123,6 +124,7 @@ using fmha_pipeline_problem_{F_idx} = ck_tile::BlockFmhaPipelineProblem<
...
@@ -123,6 +124,7 @@ using fmha_pipeline_problem_{F_idx} = ck_tile::BlockFmhaPipelineProblem<
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::SaccDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::SaccDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::SMPLComputeDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::SMPLComputeDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::BiasDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::BiasDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::RandValOutputDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::LSEDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::LSEDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::PDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::PDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::OaccDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::OaccDataType,
...
@@ -146,7 +148,7 @@ using fmha_kernel_{F_idx} =
...
@@ -146,7 +148,7 @@ using fmha_kernel_{F_idx} =
fmha_epilogue_{F_idx}>;
fmha_epilogue_{F_idx}>;
using trait_{F_idx} = fmha_fwd_traits_<{F_hdim}, {F_dtype}, {F_mode},{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}, {F_vlayout},
using trait_{F_idx} = fmha_fwd_traits_<{F_hdim}, {F_dtype}, {F_mode},{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}, {F_vlayout},
{F_pipeline_enum}, fmha_mask_{F_idx}, {F_bias}, {F_lse}, {F_squant}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
{F_pipeline_enum}, fmha_mask_{F_idx}, {F_bias}, {F_lse},
{F_dropout},
{F_squant}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
#include <iostream>
#include <iostream>
...
@@ -191,9 +193,9 @@ MASK_SIMPLIFIED_CHECK_MAP = {
...
@@ -191,9 +193,9 @@ MASK_SIMPLIFIED_CHECK_MAP = {
"s_mask"
:
"t.mask_type != mask_enum::no_mask"
,
"s_mask"
:
"t.mask_type != mask_enum::no_mask"
,
}
}
FMHA_FWD_API_INNER_DISPATCH
=
""" {F_if}((t.is_group_mode == {F_mode}) && (t.is_v_rowmajor == {F_vlayout}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.has_lse == {F_lse}) && (t.do_fp8_static_quant == {F_squant}) &&
FMHA_FWD_API_INNER_DISPATCH
=
""" {F_if}((t.is_group_mode == {F_mode}) && (t.is_v_rowmajor == {F_vlayout}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.has_lse == {F_lse})
&& (t.has_dropout == {F_dropout})
&& (t.do_fp8_static_quant == {F_squant}) &&
({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck})) {{
({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck})) {{
using trait_ = fmha_fwd_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, {F_lse}, {F_squant}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
using trait_ = fmha_fwd_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, {F_lse},
{F_dropout},
{F_squant}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
return fmha_fwd_<trait_>(s, a);
return fmha_fwd_<trait_>(s, a);
}}
}}
"""
"""
...
@@ -233,6 +235,7 @@ class FmhaFwdApiTrait:
...
@@ -233,6 +235,7 @@ class FmhaFwdApiTrait:
mask
:
str
mask
:
str
bias
:
str
#
bias
:
str
#
lse
:
str
#
lse
:
str
#
dropout
:
str
squant
:
str
#
squant
:
str
#
spad
:
str
spad
:
str
skpad
:
str
skpad
:
str
...
@@ -242,7 +245,7 @@ class FmhaFwdApiTrait:
...
@@ -242,7 +245,7 @@ class FmhaFwdApiTrait:
@
property
@
property
def
name
(
self
)
->
str
:
def
name
(
self
)
->
str
:
return
f
'
{
self
.
hdim
}
-
{
self
.
dtype
}
-
{
self
.
mode
}
-
{
self
.
bm0
}
-
{
self
.
bn0
}
-
{
self
.
bk0
}
-
{
self
.
bn0
}
-
{
self
.
bk1
}
-
{
self
.
bk0blen
}
-'
+
\
return
f
'
{
self
.
hdim
}
-
{
self
.
dtype
}
-
{
self
.
mode
}
-
{
self
.
bm0
}
-
{
self
.
bn0
}
-
{
self
.
bk0
}
-
{
self
.
bn0
}
-
{
self
.
bk1
}
-
{
self
.
bk0blen
}
-'
+
\
f
'
{
self
.
vlayout
}
-
{
self
.
mask
}
-
{
self
.
bias
}
-
{
self
.
lse
}
-
{
self
.
squant
}
-
{
self
.
spad
}
-
{
self
.
skpad
}
-
{
self
.
dpad
}
-
{
self
.
dvpad
}
'
f
'
{
self
.
vlayout
}
-
{
self
.
mask
}
-
{
self
.
bias
}
-
{
self
.
lse
}
-
{
self
.
dropout
}
-
{
self
.
squant
}
-
{
self
.
spad
}
-
{
self
.
skpad
}
-
{
self
.
dpad
}
-
{
self
.
dvpad
}
'
@
property
@
property
def
scheck
(
self
)
->
str
:
def
scheck
(
self
)
->
str
:
...
@@ -299,6 +302,7 @@ class FmhaFwdPipeline:
...
@@ -299,6 +302,7 @@ class FmhaFwdPipeline:
F_dvpad
:
str
#
F_dvpad
:
str
#
F_bias
:
str
# true/false
F_bias
:
str
# true/false
F_lse
:
str
#
F_lse
:
str
#
F_dropout
:
str
#
F_squant
:
str
#
F_squant
:
str
#
F_mask
:
str
# value from MASK_MAP
F_mask
:
str
# value from MASK_MAP
...
@@ -321,6 +325,7 @@ class FmhaFwdPipeline:
...
@@ -321,6 +325,7 @@ class FmhaFwdPipeline:
else
:
else
:
if
self
.
F_mask
!=
'no'
:
n
+=
f
'_m
{
self
.
F_mask
[
0
]
}
'
if
self
.
F_mask
!=
'no'
:
n
+=
f
'_m
{
self
.
F_mask
[
0
]
}
'
if
self
.
F_lse
==
't'
:
n
+=
'_lse'
if
self
.
F_lse
==
't'
:
n
+=
'_lse'
if
self
.
F_dropout
==
't'
:
n
+=
'_dropout'
if
self
.
F_squant
==
't'
:
n
+=
'_squant'
if
self
.
F_squant
==
't'
:
n
+=
'_squant'
return
n
return
n
...
@@ -351,7 +356,7 @@ class FmhaFwdApiPool:
...
@@ -351,7 +356,7 @@ class FmhaFwdApiPool:
inners
=
inners
+
FMHA_FWD_API_INNER_DISPATCH
.
format
(
F_if
=
if_k
,
F_mode
=
MODE_MAP
[
trait
.
mode
],
F_vlayout
=
LAYOUT_MAP
[
trait
.
vlayout
],
inners
=
inners
+
FMHA_FWD_API_INNER_DISPATCH
.
format
(
F_if
=
if_k
,
F_mode
=
MODE_MAP
[
trait
.
mode
],
F_vlayout
=
LAYOUT_MAP
[
trait
.
vlayout
],
F_pipeline_enum
=
PIPELINE_ENUM_MAP
[
trait
.
pipeline_tag
],
F_mask
=
get_mask_map
(
self
.
mask_impl
)[
trait
.
mask
],
F_pipeline_enum
=
PIPELINE_ENUM_MAP
[
trait
.
pipeline_tag
],
F_mask
=
get_mask_map
(
self
.
mask_impl
)[
trait
.
mask
],
F_mask_check
=
get_mask_check_map
(
self
.
mask_impl
)[
trait
.
mask
],
F_bias_check
=
BIAS_CHECK_MAP
[
trait
.
bias
],
F_bias
=
BIAS_MAP
[
trait
.
bias
],
F_mask_check
=
get_mask_check_map
(
self
.
mask_impl
)[
trait
.
mask
],
F_bias_check
=
BIAS_CHECK_MAP
[
trait
.
bias
],
F_bias
=
BIAS_MAP
[
trait
.
bias
],
F_lse
=
BOOL_MAP
[
trait
.
lse
],
F_lse
=
BOOL_MAP
[
trait
.
lse
],
F_dropout
=
BOOL_MAP
[
trait
.
dropout
]
,
F_squant
=
BOOL_MAP
[
trait
.
squant
],
F_scheck
=
trait
.
scheck
,
F_skcheck
=
trait
.
skcheck
,
F_dcheck
=
trait
.
dcheck
,
F_dvcheck
=
trait
.
dvcheck
,
F_squant
=
BOOL_MAP
[
trait
.
squant
],
F_scheck
=
trait
.
scheck
,
F_skcheck
=
trait
.
skcheck
,
F_dcheck
=
trait
.
dcheck
,
F_dvcheck
=
trait
.
dvcheck
,
F_spad
=
BOOL_MAP
[
trait
.
spad
],
F_skpad
=
BOOL_MAP
[
trait
.
skpad
],
F_dpad
=
BOOL_MAP
[
trait
.
dpad
],
F_dvpad
=
BOOL_MAP
[
trait
.
dvpad
],
F_spad
=
BOOL_MAP
[
trait
.
spad
],
F_skpad
=
BOOL_MAP
[
trait
.
skpad
],
F_dpad
=
BOOL_MAP
[
trait
.
dpad
],
F_dvpad
=
BOOL_MAP
[
trait
.
dvpad
],
F_bm0
=
trait
.
bm0
,
F_bn0
=
trait
.
bn0
,
F_bk0
=
trait
.
bk0
,
F_bn1
=
trait
.
bn1
,
F_bk1
=
trait
.
bk1
,
F_bk0blen
=
trait
.
bk0blen
,
F_bm0
=
trait
.
bm0
,
F_bn0
=
trait
.
bn0
,
F_bk0
=
trait
.
bk0
,
F_bn1
=
trait
.
bn1
,
F_bk1
=
trait
.
bk1
,
F_bk0blen
=
trait
.
bk0blen
,
...
@@ -365,7 +370,7 @@ class FmhaFwdApiPool:
...
@@ -365,7 +370,7 @@ class FmhaFwdApiPool:
@
dataclass
@
dataclass
class
FmhaFwdTileSize
:
class
FmhaFwdTileSize
:
F_bm0
:
int
# tile size along q seqlen (block size)
F_bm0
:
int
# tile size along q seqlen (block size)
F_bn0
:
int
# tile size along
q
k seqlen
F_bn0
:
int
# tile size along k seqlen
F_bk0
:
int
# tile size along qk gemm unroll
F_bk0
:
int
# tile size along qk gemm unroll
F_bn1
:
int
# tile size along v head_dim
F_bn1
:
int
# tile size along v head_dim
F_bk1
:
int
# tile size along kv gemm unroll
F_bk1
:
int
# tile size along kv gemm unroll
...
@@ -424,9 +429,10 @@ class FmhaFwdKernel:
...
@@ -424,9 +429,10 @@ class FmhaFwdKernel:
F_spad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_spad
],
F_spad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_spad
],
F_skpad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_skpad
],
F_skpad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_skpad
],
F_dpad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_dpad
],
F_dpad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_dpad
],
F_dvpad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_dvpad
],
F_dvpad
=
BOOL_MAP
[
self
.
F_pipeline
.
F_dvpad
],
F_bias
=
BIAS_MAP
[
self
.
F_pipeline
.
F_bias
],
F_bias
=
BIAS_MAP
[
self
.
F_pipeline
.
F_bias
],
F_lse
=
BOOL_MAP
[
self
.
F_pipeline
.
F_lse
],
F_lse
=
BOOL_MAP
[
self
.
F_pipeline
.
F_lse
],
F_dropout
=
BOOL_MAP
[
self
.
F_pipeline
.
F_dropout
],
F_squant
=
BOOL_MAP
[
self
.
F_pipeline
.
F_squant
],
F_squant
=
BOOL_MAP
[
self
.
F_pipeline
.
F_squant
],
F_occupancy
=
self
.
F_tile
.
F_occupancy
,
F_occupancy
=
self
.
F_tile
.
F_occupancy
,
F_pipeline_enum
=
PIPELINE_ENUM_MAP
[
self
.
F_pipeline
.
tag
],
F_pipeline_enum
=
PIPELINE_ENUM_MAP
[
self
.
F_pipeline
.
tag
],
...
@@ -461,6 +467,7 @@ class FmhaFwdKernel:
...
@@ -461,6 +467,7 @@ class FmhaFwdKernel:
mask
=
self
.
F_pipeline
.
F_mask
,
mask
=
self
.
F_pipeline
.
F_mask
,
bias
=
self
.
F_pipeline
.
F_bias
,
bias
=
self
.
F_pipeline
.
F_bias
,
lse
=
self
.
F_pipeline
.
F_lse
,
lse
=
self
.
F_pipeline
.
F_lse
,
dropout
=
self
.
F_pipeline
.
F_dropout
,
squant
=
self
.
F_pipeline
.
F_squant
,
squant
=
self
.
F_pipeline
.
F_squant
,
spad
=
self
.
F_pipeline
.
F_spad
,
spad
=
self
.
F_pipeline
.
F_spad
,
skpad
=
self
.
F_pipeline
.
F_skpad
,
skpad
=
self
.
F_pipeline
.
F_skpad
,
...
@@ -489,7 +496,7 @@ def get_fmha_fwd_tile_dict_from_dtype(direction : str, dtype : str) -> Optional[
...
@@ -489,7 +496,7 @@ def get_fmha_fwd_tile_dict_from_dtype(direction : str, dtype : str) -> Optional[
else
:
else
:
return
None
return
None
def
get_blobs
(
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
Tuple
[
FmhaFwdApiPool
,
List
[
FmhaFwdKernel
]]:
def
get_
fwd_
blobs
(
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
Tuple
[
FmhaFwdApiPool
,
List
[
FmhaFwdKernel
]]:
# TODO: we don't support tuning yet, so pick up one value for vlayout/pipeline/pad
# TODO: we don't support tuning yet, so pick up one value for vlayout/pipeline/pad
# support this in future
# support this in future
def
get_pipelines
(
dtype
,
hdim
)
->
List
[
FmhaFwdPipeline
]:
def
get_pipelines
(
dtype
,
hdim
)
->
List
[
FmhaFwdPipeline
]:
...
@@ -500,26 +507,26 @@ def get_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> Tuple[FmhaFw
...
@@ -500,26 +507,26 @@ def get_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> Tuple[FmhaFw
squant
=
't'
if
dtype
==
'fp8'
else
'f'
squant
=
't'
if
dtype
==
'fp8'
else
'f'
pipelines
=
[]
pipelines
=
[]
if
dtype
in
[
'fp16'
,
'bf16'
]:
if
dtype
in
[
'fp16'
,
'bf16'
]:
for
mask
,
bias
,
lse
in
itertools
.
product
(
get_mask_map
(
mask_impl
).
keys
(),
BIAS_MAP
.
keys
(),
[
"t"
,
"f"
]):
for
mask
,
bias
,
lse
,
dropout
in
itertools
.
product
(
get_mask_map
(
mask_impl
).
keys
(),
BIAS_MAP
.
keys
(),
[
"t"
,
"f"
],
[
"t"
,
"f"
]):
if
hdim
==
256
:
if
hdim
==
256
:
# if True:
# if True:
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'row'
,
'f'
,
'f'
,
'f'
,
'f'
,
bias
,
lse
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'row'
,
'f'
,
'f'
,
'f'
,
'f'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'col'
,
'f'
,
'f'
,
'f'
,
'f'
,
bias
,
lse
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'col'
,
'f'
,
'f'
,
'f'
,
'f'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'row'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'row'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'col'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'col'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
else
:
else
:
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'row'
,
't'
,
'f'
,
't'
,
't'
,
bias
,
lse
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'row'
,
't'
,
'f'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'row'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'row'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'col'
,
't'
,
'f'
,
't'
,
't'
,
bias
,
lse
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'col'
,
't'
,
'f'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'col'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr_async'
,
'col'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
if
receipt
==
1
:
if
receipt
==
1
:
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'row'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
squant
,
mask
))
# TODO: cover arbitraty hdim
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'row'
,
't'
,
't'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
# TODO: cover arbitraty hdim
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'col'
,
't'
,
'f'
,
't'
,
't'
,
bias
,
lse
,
squant
,
mask
))
# TODO: cover arbitraty hdim
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'col'
,
't'
,
'f'
,
't'
,
't'
,
bias
,
lse
,
dropout
,
squant
,
mask
))
# TODO: cover arbitraty hdim
elif
dtype
in
[
'fp8'
,
'bf8'
]:
elif
dtype
in
[
'fp8'
,
'bf8'
]:
# no need lse kernels
# no need lse
/dropout
kernels
for
mask
,
bias
in
itertools
.
product
(
get_mask_map
(
mask_impl
).
keys
(),
BIAS_MAP
.
keys
()):
for
mask
,
bias
in
itertools
.
product
(
get_mask_map
(
mask_impl
).
keys
(),
BIAS_MAP
.
keys
()):
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'col'
,
'f'
,
'f'
,
'f'
,
'f'
,
bias
,
'f'
,
squant
,
mask
))
pipelines
.
append
(
FmhaFwdPipeline
(
'qr'
,
'col'
,
'f'
,
'f'
,
'f'
,
'f'
,
bias
,
'f'
,
'f'
,
squant
,
mask
))
else
:
else
:
assert
False
assert
False
return
pipelines
return
pipelines
...
@@ -527,7 +534,7 @@ def get_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> Tuple[FmhaFw
...
@@ -527,7 +534,7 @@ def get_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> Tuple[FmhaFw
gen
=
list
()
gen
=
list
()
api_pool
=
FmhaFwdApiPool
(
mask_impl
)
api_pool
=
FmhaFwdApiPool
(
mask_impl
)
for
direction
,
dtype
in
itertools
.
product
(
DIRECTIONS
,
DTYPE_MAP
.
keys
()):
for
direction
,
dtype
in
itertools
.
product
(
[
"fwd"
]
,
DTYPE_MAP
.
keys
()):
d
=
get_fmha_fwd_tile_dict_from_dtype
(
direction
,
dtype
)
d
=
get_fmha_fwd_tile_dict_from_dtype
(
direction
,
dtype
)
if
d
==
None
:
if
d
==
None
:
continue
continue
...
@@ -551,44 +558,660 @@ def get_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> Tuple[FmhaFw
...
@@ -551,44 +558,660 @@ def get_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> Tuple[FmhaFw
if
kernel_filter
!=
None
:
if
kernel_filter
!=
None
:
if
not
fnmatch
.
fnmatch
(
k
.
name
,
kernel_filter
):
if
not
fnmatch
.
fnmatch
(
k
.
name
,
kernel_filter
):
continue
continue
if
receipt
==
2
:
cond
=
dtype
in
[
'fp16'
,
'bf16'
]
cond
&=
pipeline
.
F_vlayout
==
'row'
cond
&=
pipeline
.
F_bias
in
[
'no'
,
'alibi'
]
cond
&=
pipeline
.
F_squant
==
'f'
if
not
cond
:
continue
api_pool
.
register_traits
(
k
.
api_trait
())
api_pool
.
register_traits
(
k
.
api_trait
())
gen
.
append
(
k
)
gen
.
append
(
k
)
return
(
api_pool
,
gen
)
return
(
api_pool
,
gen
)
def
write_single_kernel
(
kernel
:
FmhaFwdKernel
,
autogen_dir
:
Path
)
->
None
:
BWD_DQDKDV_PIPELINE_MAP
=
{
"ks_kts_vr"
:
"ck_tile::BlockFmhaBwdDQDKDVPipelineKSKTSVR"
,
"qs_ks_vr_dos"
:
"ck_tile::BlockFmhaBwdDQDKDVPipelineQSKSVROGradS"
,
"ks_vr"
:
"ck_tile::BlockFmhaBwdDQDKDVPipelineKSVR"
,
}
BWD_DQDKDV_PIPELINE_ENUM_MAP
=
{
"ks_kts_vr"
:
"ck_tile::BlockFmhaBwdPipelineEnum::KSKTSVR"
,
"qs_ks_vr_dos"
:
"ck_tile::BlockFmhaBwdPipelineEnum::QSKSVROGradS"
,
"ks_vr"
:
"ck_tile::BlockFmhaBwdPipelineEnum::KSVR"
,
}
FMHA_BWD_KERNEL_HEADER
=
"""// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
\n
// auto generated by generate.py
#include "fmha_bwd.hpp"
"""
FMHA_BWD_DQ_DK_DV_KERNEL_BODY
=
"""
using fmha_dtype_{F_idx} = {F_dtype};
using fmha_block_tile_{F_idx} = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bk1}, {F_bk2}, {F_bk3}, {F_bk4}, {F_bhdq}, {F_bhdv}>;
using fmha_block_warps0_{F_idx} = ck_tile::sequence<{F_rm0}, {F_rn0}, {F_rk0}>;
using fmha_block_warps1_{F_idx} = ck_tile::sequence<{F_rm1}, {F_rn1}, {F_rk1}>;
using fmha_block_warps2_{F_idx} = ck_tile::sequence<{F_rm2}, {F_rn2}, {F_rk2}>;
using fmha_warp_tile_{F_idx} = ck_tile::sequence<{F_wm}, {F_wn}, {F_wk}>;
// TODO: simplify Gemm0~4BlockWarps in TileFmhaBwdShape
// G0&G2 -> GSdP
// G1&G3 -> GdKV
// G4 -> GdQ
using fmha_bwd_shape_{F_idx} = ck_tile::TileFmhaBwdShape<fmha_block_tile_{F_idx},
fmha_block_warps0_{F_idx},
fmha_warp_tile_{F_idx},
fmha_block_warps1_{F_idx},
fmha_warp_tile_{F_idx},
fmha_block_warps0_{F_idx},
fmha_warp_tile_{F_idx},
fmha_block_warps1_{F_idx},
fmha_warp_tile_{F_idx},
fmha_block_warps2_{F_idx},
fmha_warp_tile_{F_idx}>;
using fmha_bwd_trait_{F_idx} = ck_tile::TileFmhaTraits<{F_spad},
{F_skpad},
{F_dpad},
{F_dvpad},
{F_bias},
{F_dbias},
false,
{F_dropout},
false,
{F_occupancy}>;
using fmha_mask_{F_idx} = {F_mask};
using fmha_bwd_pipeline_problem_{F_idx} = ck_tile::BlockFmhaBwdPipelineProblem<
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::QDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::KDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::VDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::GemmDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::LSEDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::AccDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::DDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::BiasDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::RandValOutputDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::ODataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::OGradDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::QGradDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::KGradDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::VGradDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::BiasGradDataType,
fmha_bwd_shape_{F_idx},
{F_mode},
fmha_mask_{F_idx},
fmha_bwd_trait_{F_idx}>;
using fmha_bwd_pipeline_{F_idx} = {F_pipeline}<
fmha_bwd_pipeline_problem_{F_idx}>;
using fmha_bwd_dk_epilogue_{F_idx} =
ck_tile::Default2DEpilogue<ck_tile::Default2DEpilogueProblem<typename FmhaBwdTypeConfig<{F_dtype}>::AccDataType,
typename FmhaBwdTypeConfig<{F_dtype}>::KGradDataType,
false, false>>;
using fmha_bwd_dv_epilogue_{F_idx} =
ck_tile::Default2DEpilogue<ck_tile::Default2DEpilogueProblem<typename FmhaBwdTypeConfig<{F_dtype}>::AccDataType,
typename FmhaBwdTypeConfig<{F_dtype}>::VGradDataType,
false, false>>;
using fmha_bwd_dq_dk_dv_kernel_{F_idx} =
ck_tile::FmhaBwdDQDKDVKernel<ck_tile::FmhaBwdTilePartitioner<fmha_bwd_shape_{F_idx}>,
fmha_bwd_pipeline_{F_idx},
fmha_bwd_dk_epilogue_{F_idx},
fmha_bwd_dv_epilogue_{F_idx}>;
using dq_dk_dv_trait_{F_idx} = fmha_bwd_dq_dk_dv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_pipeline_enum}, fmha_mask_{F_idx}, {F_bias}, {F_dbias}, {F_dropout}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
#include <iostream>
template<>
float fmha_bwd_dq_dk_dv_<dq_dk_dv_trait_{F_idx}>(const ck_tile::stream_config& s, fmha_bwd_args a)
{{
using k_ = fmha_bwd_dq_dk_dv_kernel_{F_idx};
if(s.log_level_ > 0)
std::cout << ", " << k_::GetName() << std::flush;
auto [kargs, grids] = fmha_bwd_dq_dk_dv_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks = k_::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
return ck_tile::launch_kernel(s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs));
}}
template<>
void fmha_bwd_dq_dk_dv_oneshot_<dq_dk_dv_trait_{F_idx}>(const ck_tile::stream_config& s, fmha_bwd_args a)
{{
using k_ = fmha_bwd_dq_dk_dv_kernel_{F_idx};
auto [kargs, grids] = fmha_bwd_dq_dk_dv_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks = k_::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs)(ck_tile::stream_config{{s.stream_id_}});
}}
template<>
std::string fmha_bwd_dq_dk_dv_get_name_<dq_dk_dv_trait_{F_idx}>()
{{
using k_ = fmha_bwd_dq_dk_dv_kernel_{F_idx};
return k_::GetName();
}}
"""
FMHA_BWD_API_FILENAME
=
"fmha_bwd_api.cpp"
FMHA_BWD_API
=
"""
#include <iostream>
template<typename dot_do_o_trait_, typename dq_dk_dv_trait_>
float fmha_bwd_(const ck_tile::stream_config& s, fmha_bwd_args a)
{{
if(s.log_level_ > 0)
std::cout << ", " << fmha_bwd_dot_do_o_get_name_<dot_do_o_trait_>() << ", " << fmha_bwd_dq_dk_dv_get_name_<dq_dk_dv_trait_>() << std::flush;
return ck_tile::launch_kernel(s,
[=](const ck_tile::stream_config& s_){{ fmha_bwd_dot_do_o_oneshot_<dot_do_o_trait_>(s_, a); }},
[=](const ck_tile::stream_config& s_){{ fmha_bwd_dq_dk_dv_oneshot_<dq_dk_dv_trait_>(s_, a); }}
);
}}
float fmha_bwd(fmha_bwd_traits t, fmha_bwd_args a, const ck_tile::stream_config& s){{
float r = -1;
{F_dispatch}
return r;
}}
"""
FMHA_BWD_API_PER_DTYPE
=
""" {F_if}(t.data_type.compare(
\"
{F_dtype}
\"
) == 0){{
{F_hdim_case}
}}
"""
FMHA_BWD_API_PER_HDIM_CASE
=
""" {F_if} (t.hdim_q <= {F_hdim} && t.hdim_v <= {F_hdim}) {{
{F_inner_dispatch}
}}
"""
FMHA_BWD_API_INNER_DISPATCH
=
""" {F_if}((t.is_group_mode == {F_mode}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.has_dbias == {F_dbias}) && (t.has_dropout == {F_dropout}) &&
({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck})) {{
using dq_dk_dv_trait_ = fmha_bwd_dq_dk_dv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_pipeline_enum}, {F_mask}, {F_bias}, {F_dbias}, {F_dropout}, {F_spad0}, {F_skpad}, {F_dpad}, {F_dvpad}>;
using dot_do_o_trait_ = fmha_bwd_dot_do_o_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_spad1}, {F_dvpad}>;
r = fmha_bwd_<dot_do_o_trait_, dq_dk_dv_trait_>(s, a);
return r;
}}
"""
@
dataclass
class
FmhaBwdDQDKDVApiTrait
:
pipeline
:
str
# sync with fmha_bwd_traits<>, to generate fallback calls
hdim
:
str
dtype
:
str
# data type
mode
:
str
# value from MODE_MAP
bm0
:
int
# tile size along q seqlen (block size)
bn0
:
int
# tile size along k seqlen
bhdq
:
int
# q head_dim
bhdv
:
int
# v head_dim
mask
:
str
bias
:
str
dbias
:
str
dropout
:
str
spad
:
str
skpad
:
str
dpad
:
str
dvpad
:
str
@
property
def
name
(
self
)
->
str
:
return
f
'
{
self
.
pipeline
}
-
{
self
.
hdim
}
-
{
self
.
dtype
}
-
{
self
.
mode
}
-
{
self
.
mask
}
-
{
self
.
bias
}
-
{
self
.
dbias
}
-
{
self
.
dropout
}
-
{
self
.
spad
}
-
{
self
.
skpad
}
-
{
self
.
dpad
}
-
{
self
.
dvpad
}
'
def
scheck
(
self
,
spad1
:
str
)
->
str
:
if
self
.
mode
==
'group'
:
return
'true'
# always support
elif
self
.
spad
==
't'
and
spad1
==
't'
:
return
f
'a.seqlen_q %
{
self
.
bm0
}
!= 0'
elif
self
.
spad
==
'f'
and
spad1
==
't'
:
return
f
'a.seqlen_q %
{
self
.
bm0
}
== 0 and a.seqlen_q % 256 != 0'
# BlockSize
else
:
# self.skpad == 'f' and skpad1 == 'f'
return
f
'a.seqlen_q % 256 == 0'
# BlockSize
@
property
def
skcheck
(
self
)
->
str
:
if
self
.
mode
==
'group'
:
return
'true'
# always support
elif
self
.
skpad
==
't'
:
return
f
'a.seqlen_k %
{
self
.
bn0
}
!= 0'
else
:
return
f
'a.seqlen_k %
{
self
.
bn0
}
== 0'
@
property
def
dcheck
(
self
)
->
str
:
if
self
.
dpad
==
't'
:
return
f
'a.hdim_q %
{
self
.
bhdq
}
!= 0'
else
:
return
f
'a.hdim_q %
{
self
.
bhdq
}
== 0'
@
property
def
dvcheck
(
self
)
->
str
:
if
self
.
dvpad
==
't'
:
return
f
'a.hdim_v %
{
self
.
bhdv
}
!= 0'
else
:
return
f
'a.hdim_v %
{
self
.
bhdv
}
== 0'
class
FmhaBwdApiPool
:
def
__init__
(
self
,
mask_impl
):
self
.
dq_dk_dv_pool
=
dict
()
self
.
mask_impl
=
mask_impl
def
register_dq_dk_dv_traits
(
self
,
trait
:
FmhaBwdDQDKDVApiTrait
)
->
None
:
# TODO: do we need to check duplication?
if
trait
.
dtype
not
in
self
.
dq_dk_dv_pool
.
keys
():
self
.
dq_dk_dv_pool
[
trait
.
dtype
]
=
dict
()
if
trait
.
hdim
not
in
self
.
dq_dk_dv_pool
[
trait
.
dtype
].
keys
():
self
.
dq_dk_dv_pool
[
trait
.
dtype
][
trait
.
hdim
]
=
list
()
self
.
dq_dk_dv_pool
[
trait
.
dtype
][
trait
.
hdim
].
append
(
copy
.
copy
(
trait
))
@
property
def
api
(
self
)
->
str
:
per_dtypes
=
str
()
for
i
,
dtype
in
enumerate
(
self
.
dq_dk_dv_pool
.
keys
()):
per_hdim_case
=
str
()
for
j
,
hdim
in
enumerate
(
self
.
dq_dk_dv_pool
[
dtype
].
keys
()):
traits
=
self
.
dq_dk_dv_pool
[
dtype
][
hdim
]
inners
=
str
()
for
k
,
trait
in
enumerate
(
traits
):
if_k
=
'if'
if
k
==
0
else
'else if'
for
spad1
in
[
"t"
,
"f"
]:
if
((
spad1
==
"f"
and
trait
.
spad
==
"t"
)
or
(
trait
.
mode
==
"group"
and
spad1
==
"f"
)):
continue
inners
=
inners
+
FMHA_BWD_API_INNER_DISPATCH
.
format
(
F_if
=
if_k
,
F_mode
=
MODE_MAP
[
trait
.
mode
],
F_mask
=
get_mask_map
(
self
.
mask_impl
)[
trait
.
mask
],
F_pipeline_enum
=
BWD_DQDKDV_PIPELINE_ENUM_MAP
[
trait
.
pipeline
],
F_mask_check
=
get_mask_check_map
(
self
.
mask_impl
)[
trait
.
mask
],
F_bias_check
=
BIAS_CHECK_MAP
[
trait
.
bias
],
F_bias
=
BIAS_MAP
[
trait
.
bias
],
F_dbias
=
BOOL_MAP
[
trait
.
dbias
],
F_dropout
=
BOOL_MAP
[
trait
.
dropout
],
F_scheck
=
trait
.
scheck
(
spad1
=
spad1
),
F_skcheck
=
trait
.
skcheck
,
F_dcheck
=
trait
.
dcheck
,
F_dvcheck
=
trait
.
dvcheck
,
F_hdim
=
hdim
,
F_dtype
=
DTYPE_MAP
[
dtype
],
F_spad0
=
BOOL_MAP
[
trait
.
spad
],
F_spad1
=
BOOL_MAP
[
spad1
],
F_skpad
=
BOOL_MAP
[
trait
.
skpad
],
F_dpad
=
BOOL_MAP
[
trait
.
dpad
],
F_dvpad
=
BOOL_MAP
[
trait
.
dvpad
])
if_j
=
'if'
if
j
==
0
else
'else if'
per_hdim_case
=
per_hdim_case
+
FMHA_BWD_API_PER_HDIM_CASE
.
format
(
F_if
=
if_j
,
F_hdim
=
hdim
,
F_inner_dispatch
=
inners
)
if_i
=
'if'
if
i
==
0
else
'else if'
per_dtypes
=
per_dtypes
+
FMHA_BWD_API_PER_DTYPE
.
format
(
F_if
=
if_i
,
F_dtype
=
dtype
,
F_hdim_case
=
per_hdim_case
)
return
FMHA_BWD_KERNEL_HEADER
+
FMHA_BWD_API
.
format
(
F_dispatch
=
per_dtypes
)
# GEMM0: Q@K=S^T
# GEMM1: P^T@dO^T=dV(This was chosen as G1 to match fwd, but N1 must be equal to headdim_v)
# GEMM2: dO@V=dP^T(This was chosen as G2 because of the calculation order)
# GEMM3: dS^T@Q^T=dK(Similar to G1, but N3 must be equal to headdim_qk)
# GEMM4: dS@K^T=dQ(N4 must be equal to headdim_qk)
# Is it necessary to distinguish between K0~K4?
@
dataclass
class
FmhaBwdDQDKDVTileSize
:
F_bm0
:
int
# tile size along q seqlen (block size)
F_bn0
:
int
# tile size along k seqlen
F_bk0
:
int
# tile size along gemm0 unroll(F_bhdq)
F_bk1
:
int
# tile size along gemm1 unroll(F_bm0)
F_bk2
:
int
# tile size along gemm2 unroll(F_bhdv)
F_bk3
:
int
# tile size along gemm3 unroll(F_bm0)
F_bk4
:
int
# tile size along gemm4 unroll(F_bn0)
F_bhdq
:
int
# q head_dim
F_bhdv
:
int
# v head_dim
F_rm0
:
int
# number of warps along q seqlen (block warps) in gemm0/gemm2
F_rn0
:
int
# number of warps along k seqlen (block warps) in gemm0/gemm2
F_rk0
:
int
# number of warps along gemm-k (not used) in gemm0/gemm2
F_rm1
:
int
# number of warps along k seqlen (block warps) in gemm1/gemm3
F_rn1
:
int
# number of warps along q seqlen (block warps) in gemm1/gemm3
F_rk1
:
int
# number of warps along gemm-k (not used) in gemm1/gemm3
F_rm2
:
int
# number of warps along k seqlen (block warps) in gemm4
F_rn2
:
int
# number of warps along q seqlen (block warps) in gemm4
F_rk2
:
int
# number of warps along gemm-k (not used) in gemm4
F_wm
:
int
# warp size along m (warp size)
F_wn
:
int
# warp size along n
F_wk
:
int
# warp size along k
F_occupancy
:
int
# occupancy
@
property
def
name
(
self
)
->
str
:
return
f
"b
{
self
.
F_bm0
}
x
{
self
.
F_bn0
}
x
{
self
.
F_bk0
}
x
{
self
.
F_bk1
}
x
{
self
.
F_bk2
}
x
{
self
.
F_bk3
}
x
{
self
.
F_bk4
}
x
{
self
.
F_bhdq
}
x
{
self
.
F_bhdv
}
"
+
\
f
"_r
{
self
.
F_rm0
}
x
{
self
.
F_rn0
}
x
{
self
.
F_rk0
}
_r
{
self
.
F_rm1
}
x
{
self
.
F_rn1
}
x
{
self
.
F_rk1
}
_r
{
self
.
F_rm2
}
x
{
self
.
F_rn2
}
x
{
self
.
F_rk2
}
"
+
\
f
"_w
{
self
.
F_wm
}
x
{
self
.
F_wn
}
x
{
self
.
F_wk
}
_o
{
self
.
F_occupancy
}
"
@
dataclass
class
FmhaBwdDQDKDVKernel
:
direction
:
str
F_idx
:
int
# this is not a tunable, but a counter to differentiate symbol
F_hdim
:
int
# hdim
F_dtype
:
str
# data type
F_tile
:
FmhaBwdDQDKDVTileSize
F_spad
:
str
# true/false
F_skpad
:
str
#
F_dpad
:
str
#
F_dvpad
:
str
#
F_bias
:
str
#
F_dbias
:
str
#
F_dropout
:
str
#
F_mask
:
str
# value from MASK_MAP
F_mode
:
str
# value from MODE_MAP
F_pipeline
:
str
mask_impl
:
str
@
property
def
template
(
self
)
->
str
:
return
FMHA_BWD_KERNEL_HEADER
+
\
FMHA_BWD_DQ_DK_DV_KERNEL_BODY
.
format
(
F_idx
=
self
.
F_idx
,
F_hdim
=
self
.
F_hdim
,
F_dtype
=
DTYPE_MAP
[
self
.
F_dtype
],
F_bm0
=
self
.
F_tile
.
F_bm0
,
F_bn0
=
self
.
F_tile
.
F_bn0
,
F_bk0
=
self
.
F_tile
.
F_bk0
,
F_bk1
=
self
.
F_tile
.
F_bk1
,
F_bk2
=
self
.
F_tile
.
F_bk2
,
F_bk3
=
self
.
F_tile
.
F_bk3
,
F_bk4
=
self
.
F_tile
.
F_bk4
,
F_bhdq
=
self
.
F_tile
.
F_bhdq
,
F_bhdv
=
self
.
F_tile
.
F_bhdv
,
F_rm0
=
self
.
F_tile
.
F_rm0
,
F_rn0
=
self
.
F_tile
.
F_rn0
,
F_rk0
=
self
.
F_tile
.
F_rk0
,
F_rm1
=
self
.
F_tile
.
F_rm1
,
F_rn1
=
self
.
F_tile
.
F_rn1
,
F_rk1
=
self
.
F_tile
.
F_rk1
,
F_rm2
=
self
.
F_tile
.
F_rm2
,
F_rn2
=
self
.
F_tile
.
F_rn2
,
F_rk2
=
self
.
F_tile
.
F_rk2
,
F_wm
=
self
.
F_tile
.
F_wm
,
F_wn
=
self
.
F_tile
.
F_wn
,
F_wk
=
self
.
F_tile
.
F_wk
,
F_spad
=
BOOL_MAP
[
self
.
F_spad
],
F_skpad
=
BOOL_MAP
[
self
.
F_skpad
],
F_dpad
=
BOOL_MAP
[
self
.
F_dpad
],
F_dvpad
=
BOOL_MAP
[
self
.
F_dvpad
],
F_bias
=
BIAS_MAP
[
self
.
F_bias
],
F_dbias
=
BOOL_MAP
[
self
.
F_dbias
],
F_dropout
=
BOOL_MAP
[
self
.
F_dropout
],
F_occupancy
=
self
.
F_tile
.
F_occupancy
,
F_mask
=
get_mask_map
(
self
.
mask_impl
)[
self
.
F_mask
],
F_mode
=
MODE_MAP
[
self
.
F_mode
],
F_pipeline_enum
=
BWD_DQDKDV_PIPELINE_ENUM_MAP
[
self
.
F_pipeline
],
F_pipeline
=
BWD_DQDKDV_PIPELINE_MAP
[
self
.
F_pipeline
])
@
property
def
name
(
self
)
->
str
:
def
pad_name
()
->
str
:
n
=
''
if
self
.
F_spad
==
't'
:
n
+=
's'
if
self
.
F_skpad
==
't'
:
n
+=
'sk'
if
self
.
F_dpad
==
't'
:
n
+=
'd'
if
self
.
F_dvpad
==
't'
:
n
+=
'dv'
if
n
!=
''
:
n
=
'p'
+
n
return
n
pn
=
pad_name
()
n
=
f
"fmha_
{
self
.
direction
}
_d
{
self
.
F_hdim
}
_
{
self
.
F_dtype
}
_
{
self
.
F_mode
}
_"
+
self
.
F_tile
.
name
if
pn
!=
''
:
n
+=
f
'_
{
pn
}
'
if
self
.
F_bias
!=
'no'
:
n
+=
f
'_
{
self
.
F_bias
}
'
if
self
.
F_dbias
==
't'
:
n
+=
'_dbias'
if
self
.
F_mask
[
0
:
2
]
==
's_'
:
if
self
.
F_mask
==
's_mask'
:
n
+=
f
'_mask'
else
:
if
self
.
F_mask
!=
'no'
:
n
+=
f
'_m
{
self
.
F_mask
[
0
]
}
'
if
self
.
F_dropout
==
't'
:
n
+=
'_dropout'
return
n
@
property
def
filename
(
self
)
->
str
:
return
self
.
name
+
".cpp"
def
api_trait
(
self
)
->
FmhaBwdDQDKDVApiTrait
:
return
FmhaBwdDQDKDVApiTrait
(
pipeline
=
self
.
F_pipeline
,
hdim
=
str
(
self
.
F_hdim
),
dtype
=
self
.
F_dtype
,
mode
=
self
.
F_mode
,
bm0
=
self
.
F_tile
.
F_bm0
,
bn0
=
self
.
F_tile
.
F_bn0
,
bhdq
=
self
.
F_tile
.
F_bhdq
,
bhdv
=
self
.
F_tile
.
F_bhdv
,
mask
=
self
.
F_mask
,
bias
=
self
.
F_bias
,
dbias
=
self
.
F_dbias
,
dropout
=
self
.
F_dropout
,
spad
=
self
.
F_spad
,
skpad
=
self
.
F_skpad
,
dpad
=
self
.
F_dpad
,
dvpad
=
self
.
F_dvpad
)
# TODO: design a more practical way to do it
# this is current supported tile size & pipeline.
def
get_fmha_bwd_dq_dk_dv_tile_ppl_dict_from_dtype
(
direction
:
str
,
dtype
:
str
)
->
Optional
[
dict
]:
if
direction
==
'bwd'
:
if
dtype
==
'fp16'
or
dtype
==
'bf16'
:
return
{
'32'
:
[
FmhaBwdDQDKDVTileSize
(
128
,
128
,
32
,
32
,
32
,
32
,
32
,
32
,
32
,
1
,
4
,
1
,
4
,
1
,
1
,
4
,
1
,
1
,
32
,
32
,
16
,
1
),
"qs_ks_vr_dos"
],
'64'
:
[
FmhaBwdDQDKDVTileSize
(
64
,
128
,
32
,
32
,
32
,
32
,
32
,
64
,
64
,
1
,
4
,
1
,
4
,
1
,
1
,
2
,
2
,
1
,
32
,
32
,
16
,
1
),
"qs_ks_vr_dos"
],
'128'
:
[
FmhaBwdDQDKDVTileSize
(
64
,
128
,
32
,
32
,
32
,
32
,
32
,
128
,
128
,
1
,
4
,
1
,
4
,
1
,
1
,
2
,
2
,
1
,
32
,
32
,
16
,
1
),
"ks_vr"
]
}
else
:
return
None
else
:
return
None
def
get_bwd_dq_dk_dv_blobs
(
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
Tuple
[
FmhaBwdApiPool
,
List
[
FmhaBwdDQDKDVKernel
]]:
# TODO: we don't support tuning yet, so pick up one value for pad
# support this in future
gen
=
list
()
api_pool
=
FmhaBwdApiPool
(
mask_impl
)
for
direction
,
dtype
in
itertools
.
product
([
"bwd"
],
DTYPE_MAP
.
keys
()):
d
=
get_fmha_bwd_dq_dk_dv_tile_ppl_dict_from_dtype
(
direction
,
dtype
)
if
d
==
None
:
continue
for
hdim_str
,
mode
,
mask
,
bias
,
dbias
,
dropout
,
spad
,
skpad
,
dpad
,
dvpad
in
itertools
.
product
(
d
.
keys
(),
MODE_MAP
.
keys
(),
get_mask_map
(
mask_impl
).
keys
(),
BIAS_MAP
.
keys
(),
[
"t"
,
"f"
],
[
"t"
,
"f"
],
[
"t"
,
"f"
],
[
"t"
,
"f"
],
[
"t"
,
"f"
],
[
"t"
,
"f"
]):
tile
=
d
[
hdim_str
][
0
]
ppl
=
d
[
hdim_str
][
1
]
hdim
=
int
(
hdim_str
)
if
(
mode
==
"group"
)
and
(
spad
==
"f"
or
skpad
==
"f"
):
continue
if
((
bias
==
"no"
or
bias
==
"alibi"
)
and
dbias
==
"t"
):
continue
k
=
FmhaBwdDQDKDVKernel
(
direction
=
direction
,
F_idx
=
0
,
F_hdim
=
hdim
,
F_dtype
=
dtype
,
F_tile
=
tile
,
F_spad
=
spad
,
F_skpad
=
skpad
,
F_dpad
=
dpad
,
F_dvpad
=
dvpad
,
F_bias
=
bias
,
F_dbias
=
dbias
,
F_dropout
=
dropout
,
F_mask
=
mask
,
F_mode
=
mode
,
F_pipeline
=
ppl
,
mask_impl
=
mask_impl
)
if
kernel_filter
!=
None
:
if
not
fnmatch
.
fnmatch
(
k
.
name
,
kernel_filter
):
continue
if
receipt
==
2
:
cond
=
dtype
in
[
'fp16'
,
'bf16'
]
cond
&=
bias
in
[
'no'
,
'alibi'
]
if
not
cond
:
continue
api_pool
.
register_dq_dk_dv_traits
(
k
.
api_trait
())
gen
.
append
(
k
)
return
(
api_pool
,
gen
)
FMHA_BWD_DOT_DO_O_KERNEL_BODY
=
"""
using fmha_dtype_{F_idx} = {F_dtype};
using fmha_bwd_dot_do_o_trait_{F_idx} = ck_tile::TileFmhaBwdOGradDotOTraits<{F_spad},
{F_dvpad},
{F_occupancy}>;
using fmha_bwd_dot_do_o_pipeline_problem_{F_idx} = ck_tile::BlockFmhaBwdOGradDotOPipelineProblem<
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::ODataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::OGradDataType,
typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::DDataType,
/* BlockSize = */ 256,
{F_hdim},
{F_mode},
fmha_bwd_dot_do_o_trait_{F_idx}>;
using fmha_bwd_dot_do_o_{F_idx} = typename ck_tile::BlockFmhaBwdOGradDotO<
fmha_bwd_dot_do_o_pipeline_problem_{F_idx}>;
using fmha_bwd_dot_do_o_kernel_{F_idx} =
ck_tile::FmhaBwdOGradDotOKernel<ck_tile::FmhaBwdOGradDotOTilePartitioner</* BlockSize = */ 256>,
fmha_bwd_dot_do_o_{F_idx}>;
using dot_do_o_trait_{F_idx} = fmha_bwd_dot_do_o_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_spad}, {F_dvpad}>;
#include <iostream>
template<>
float fmha_bwd_dot_do_o_<dot_do_o_trait_{F_idx}>(const ck_tile::stream_config& s, fmha_bwd_args a)
{{
using k_ = fmha_bwd_dot_do_o_kernel_{F_idx};
if(s.log_level_ > 0)
std::cout << ", " << k_::GetName() << std::flush;
auto [kargs, grids] = fmha_bwd_dot_do_o_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks = k_::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
return ck_tile::launch_kernel(s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs));
}}
template<>
void fmha_bwd_dot_do_o_oneshot_<dot_do_o_trait_{F_idx}>(const ck_tile::stream_config& s, fmha_bwd_args a)
{{
using k_ = fmha_bwd_dot_do_o_kernel_{F_idx};
auto [kargs, grids] = fmha_bwd_dot_do_o_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks = k_::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs)(ck_tile::stream_config{{s.stream_id_}});
}}
template<>
std::string fmha_bwd_dot_do_o_get_name_<dot_do_o_trait_{F_idx}>()
{{
using k_ = fmha_bwd_dot_do_o_kernel_{F_idx};
return k_::GetName();
}}
"""
@
dataclass
class
FmhaBwdOGradDotOKernel
:
direction
:
str
F_idx
:
int
# this is not a tunable, but a counter to differentiate symbol
F_hdim
:
int
# hdim
F_dtype
:
str
# data type
F_spad
:
str
# true/false
F_dvpad
:
str
#
F_mode
:
str
# value from MODE_MAP
F_occupancy
:
int
@
property
def
template
(
self
)
->
str
:
return
FMHA_BWD_KERNEL_HEADER
+
\
FMHA_BWD_DOT_DO_O_KERNEL_BODY
.
format
(
F_idx
=
self
.
F_idx
,
F_hdim
=
self
.
F_hdim
,
F_dtype
=
DTYPE_MAP
[
self
.
F_dtype
],
F_spad
=
BOOL_MAP
[
self
.
F_spad
],
F_dvpad
=
BOOL_MAP
[
self
.
F_dvpad
],
F_mode
=
MODE_MAP
[
self
.
F_mode
],
F_occupancy
=
self
.
F_occupancy
)
@
property
def
name
(
self
)
->
str
:
def
pad_name
()
->
str
:
n
=
''
if
self
.
F_spad
==
't'
:
n
+=
's'
if
self
.
F_dvpad
==
't'
:
n
+=
'dv'
if
n
!=
''
:
n
=
'p'
+
n
return
n
pn
=
pad_name
()
n
=
f
"fmha_
{
self
.
direction
}
_d
{
self
.
F_hdim
}
_
{
self
.
F_dtype
}
_
{
self
.
F_mode
}
_o
{
self
.
F_occupancy
}
"
if
pn
!=
''
:
n
+=
f
'_
{
pn
}
'
return
n
@
property
def
filename
(
self
)
->
str
:
return
self
.
name
+
".cpp"
def
get_bwd_dot_do_o_blobs
()
->
List
[
FmhaBwdOGradDotOKernel
]:
# TODO: we don't support tuning yet, so pick up one value for pad/occupancy
# support this in future
def
get_occupancy
(
dtype
,
hdim
):
return
2
gen
=
list
()
for
direction
,
dtype
in
itertools
.
product
([
"bwd"
],
DTYPE_MAP
.
keys
()):
d
=
get_fmha_bwd_dq_dk_dv_tile_ppl_dict_from_dtype
(
direction
,
dtype
)
if
d
==
None
:
continue
for
hdim_str
,
mode
,
spad
,
dvpad
in
itertools
.
product
(
d
.
keys
(),
MODE_MAP
.
keys
(),
[
"t"
,
"f"
],
[
"t"
,
"f"
]):
hdim
=
int
(
hdim_str
)
if
(
mode
==
"group"
and
spad
==
"f"
):
continue
k
=
FmhaBwdOGradDotOKernel
(
direction
=
direction
+
"_dot_do_o"
,
F_idx
=
0
,
F_hdim
=
hdim
,
F_dtype
=
dtype
,
F_spad
=
spad
,
F_dvpad
=
dvpad
,
F_mode
=
mode
,
F_occupancy
=
get_occupancy
(
dtype
,
hdim
))
gen
.
append
(
k
)
return
gen
def
write_single_fwd_kernel
(
kernel
:
FmhaFwdKernel
,
autogen_dir
:
Path
)
->
None
:
(
autogen_dir
/
kernel
.
filename
).
write_text
(
kernel
.
template
)
(
autogen_dir
/
kernel
.
filename
).
write_text
(
kernel
.
template
)
def
write_api
(
api_pool
:
FmhaFwdApiPool
,
autogen_dir
:
Path
)
->
None
:
def
write_
fwd_
api
(
api_pool
:
FmhaFwdApiPool
,
autogen_dir
:
Path
)
->
None
:
(
autogen_dir
/
FMHA_FWD_API_FILENAME
).
write_text
(
api_pool
.
api
)
(
autogen_dir
/
FMHA_FWD_API_FILENAME
).
write_text
(
api_pool
.
api
)
def
write_blobs
(
output_dir
:
Optional
[
str
],
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
None
:
def
write_single_bwd_dq_dk_dv_kernel
(
kernel
:
FmhaBwdDQDKDVKernel
,
autogen_dir
:
Path
)
->
None
:
(
autogen_dir
/
kernel
.
filename
).
write_text
(
kernel
.
template
)
def
write_single_bwd_dot_do_o_kernel
(
kernel
:
FmhaBwdOGradDotOKernel
,
autogen_dir
:
Path
)
->
None
:
(
autogen_dir
/
kernel
.
filename
).
write_text
(
kernel
.
template
)
def
write_bwd_api
(
api_pool
:
FmhaBwdApiPool
,
autogen_dir
:
Path
)
->
None
:
(
autogen_dir
/
FMHA_BWD_API_FILENAME
).
write_text
(
api_pool
.
api
)
def
write_blobs
(
output_dir
:
Optional
[
str
],
direction
:
str
,
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
None
:
if
output_dir
is
None
:
if
output_dir
is
None
:
output_dir
=
Path
(
__file__
).
parent
output_dir
=
Path
(
__file__
).
parent
else
:
else
:
output_dir
=
Path
(
output_dir
)
/
GEN_DIR
output_dir
=
Path
(
output_dir
)
/
GEN_DIR
output_dir
.
mkdir
(
parents
=
True
,
exist_ok
=
True
)
output_dir
.
mkdir
(
parents
=
True
,
exist_ok
=
True
)
api_pool
,
kernels
=
get_blobs
(
kernel_filter
,
receipt
,
mask_impl
)
if
direction
==
'fwd'
:
for
kernel
in
kernels
:
api_pool
,
kernels
=
get_fwd_blobs
(
kernel_filter
,
receipt
,
mask_impl
)
write_single_kernel
(
kernel
,
output_dir
)
for
kernel
in
kernels
:
write_api
(
api_pool
,
output_dir
)
write_single_fwd_kernel
(
kernel
,
output_dir
)
write_fwd_api
(
api_pool
,
output_dir
)
else
:
kernels
=
get_bwd_dot_do_o_blobs
()
for
kernel
in
kernels
:
write_single_bwd_dot_do_o_kernel
(
kernel
,
output_dir
)
api_pool
,
kernels
=
get_bwd_dq_dk_dv_blobs
(
kernel_filter
,
receipt
,
mask_impl
)
for
kernel
in
kernels
:
write_single_bwd_dq_dk_dv_kernel
(
kernel
,
output_dir
)
write_bwd_api
(
api_pool
,
output_dir
)
# list all the files that will be generated
# list all the files that will be generated
def
list_blobs
(
output_file
:
Optional
[
str
],
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
None
:
def
list_blobs
(
output_file
:
Optional
[
str
],
direction
:
str
,
kernel_filter
:
Optional
[
str
],
receipt
,
mask_impl
)
->
None
:
assert
output_file
is
not
None
assert
output_file
is
not
None
file_path
=
Path
(
output_file
)
file_path
=
Path
(
output_file
)
with
file_path
.
open
(
'a'
)
as
f
:
with
file_path
.
open
(
'a'
)
as
f
:
_
,
kernels
=
get_blobs
(
kernel_filter
,
receipt
,
mask_impl
)
if
direction
==
'fwd'
:
for
kernel
in
kernels
:
_
,
kernels
=
get_fwd_blobs
(
kernel_filter
,
receipt
,
mask_impl
)
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
kernel
.
filename
)
+
"
\n
"
)
for
kernel
in
kernels
:
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
FMHA_FWD_API_FILENAME
)
+
"
\n
"
)
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
kernel
.
filename
)
+
"
\n
"
)
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
FMHA_FWD_API_FILENAME
)
+
"
\n
"
)
else
:
kernels
=
get_bwd_dot_do_o_blobs
()
for
kernel
in
kernels
:
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
kernel
.
filename
)
+
"
\n
"
)
_
,
kernels
=
get_bwd_dq_dk_dv_blobs
(
kernel_filter
,
receipt
,
mask_impl
)
for
kernel
in
kernels
:
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
kernel
.
filename
)
+
"
\n
"
)
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
FMHA_BWD_API_FILENAME
)
+
"
\n
"
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
parser
=
argparse
.
ArgumentParser
(
parser
=
argparse
.
ArgumentParser
(
prog
=
"generate"
,
prog
=
"generate"
,
description
=
"gen api for CK fmha kernel"
,
description
=
"gen api for CK fmha kernel"
,
)
)
parser
.
add_argument
(
"-d"
,
"--direction"
,
default
=
'fwd'
,
choices
=
[
'fwd'
,
'bwd'
],
required
=
False
,
help
=
"choose the direction of kernels(default: fwd)"
)
parser
.
add_argument
(
parser
.
add_argument
(
"-o"
,
"-o"
,
"--output_dir"
,
"--output_dir"
,
...
@@ -623,11 +1246,12 @@ if __name__ == "__main__":
...
@@ -623,11 +1246,12 @@ if __name__ == "__main__":
default
=
0
,
default
=
0
,
required
=
False
,
required
=
False
,
help
=
"codegen receipt. 0: generate only 8xhdim coverage
\n
"
+
\
help
=
"codegen receipt. 0: generate only 8xhdim coverage
\n
"
+
\
" 1: generate more instance to cover all hdim"
" 1: generate more instance to cover all hdim
\n
"
+
\
" 2: Only generate instance for Flash attention integration"
)
)
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
if
args
.
list_blobs
is
not
None
:
if
args
.
list_blobs
is
not
None
:
list_blobs
(
args
.
list_blobs
,
args
.
filter
,
args
.
receipt
,
mask_impl
=
args
.
mask
)
list_blobs
(
args
.
list_blobs
,
args
.
direction
,
args
.
filter
,
int
(
args
.
receipt
)
,
mask_impl
=
args
.
mask
)
else
:
else
:
write_blobs
(
args
.
output_dir
,
args
.
filter
,
args
.
receipt
,
mask_impl
=
args
.
mask
)
write_blobs
(
args
.
output_dir
,
args
.
direction
,
args
.
filter
,
int
(
args
.
receipt
)
,
mask_impl
=
args
.
mask
)
example/ck_tile/01_fmha/script/benchmark_bwd.sh
0 → 100644
View file @
d39c3f5d
#!/bin/sh
# TODO: run this script from CK root
BUILD
=
build
EXE
=
$BUILD
/bin/tile_example_fmha_bwd
VALID
=
0
for
prec
in
"fp16"
"bf16"
;
do
for
perm
in
0 1
;
do
for
hdim
in
32 64 128
;
do
nhead
=
$((
2048
/
$hdim
))
# follow fav2 setup
$EXE
-prec
=
$prec
-b
=
32
-h
=
$nhead
-d
=
$hdim
-s
=
512
-iperm
=
$perm
-operm
=
$perm
-kname
=
1
-v
=
$VALID
;
sleep
3
$EXE
-prec
=
$prec
-b
=
16
-h
=
$nhead
-d
=
$hdim
-s
=
1024
-iperm
=
$perm
-operm
=
$perm
-kname
=
1
-v
=
$VALID
;
sleep
3
$EXE
-prec
=
$prec
-b
=
8
-h
=
$nhead
-d
=
$hdim
-s
=
2048
-iperm
=
$perm
-operm
=
$perm
-kname
=
1
-v
=
$VALID
;
sleep
3
$EXE
-prec
=
$prec
-b
=
4
-h
=
$nhead
-d
=
$hdim
-s
=
4096
-iperm
=
$perm
-operm
=
$perm
-kname
=
1
-v
=
$VALID
;
sleep
3
$EXE
-prec
=
$prec
-b
=
2
-h
=
$nhead
-d
=
$hdim
-s
=
8192
-iperm
=
$perm
-operm
=
$perm
-kname
=
1
-v
=
$VALID
;
sleep
3
$EXE
-prec
=
$prec
-b
=
1
-h
=
$nhead
-d
=
$hdim
-s
=
16384
-iperm
=
$perm
-operm
=
$perm
-kname
=
1
-v
=
$VALID
;
sleep
3
done
done
done
example/ck_tile/01_fmha/script/benchmark.sh
→
example/ck_tile/01_fmha/script/benchmark
_fwd
.sh
View file @
d39c3f5d
File moved
example/ck_tile/01_fmha/script/smoke_test_bwd.sh
0 → 100644
View file @
d39c3f5d
#!/bin/sh
# TODO: run this script from CK root
BUILD
=
build
EXE
=
$BUILD
/bin/tile_example_fmha_bwd
KNAME
=
1
export
CK_WARMUP
=
0
export
CK_REPEAT
=
1
COMMON_ARGS
=
'-v=1'
for
prec
in
"fp16"
"bf16"
;
do
for
perm
in
0 1
;
do
for
hdim
in
32 64 128
;
do
for
mode
in
0 1
;
do
for
bias
in
"n"
"e"
"a"
;
do
for
dbias
in
0 1
;
do
for
p_drop
in
0.0 0.2
;
do
$EXE
-prec
=
$prec
-b
=
1
-h
=
4
-h_k
=
2
-d
=
$hdim
-s
=
259
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
2
-h
=
2
-d
=
$hdim
-s
=
516
-s_k
=
253
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
1
-h
=
4
-h_k
=
1
-d
=
$hdim
-s
=
500
-s_k
=
251
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-mask
=
1
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
1
-h
=
2
-d
=
$hdim
-s
=
900
-s_k
=
258
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-mask
=
2
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
2
-h
=
1
-d
=
$hdim
-s
=
987
-s_k
=
219
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-mask
=
t:128,30
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
2
-h
=
3
-h_k
=
1
-d
=
$hdim
-s
=
244
-s_k
=
499
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-mask
=
b:4,35
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
done
done
done
done
done
done
done
Prev
1
2
3
4
5
6
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment