Commit d20c20a6 authored by Mirza Halilcevic's avatar Mirza Halilcevic
Browse files

Merge remote-tracking branch 'upstream/develop' into gemm_elementwise_gemm

parents 250a89f3 10158b0f
......@@ -85,6 +85,9 @@ auto create_args(int argc, char* argv[])
.insert("p_drop", "0", "0~1 probability of dropout")
.insert("drop_seed", "1", "seed for random number generator")
.insert("drop_offset", "0", "offset for random number generator")
.insert("drop_prefs",
"0",
"seed and offset values are present on GPU; 0 - host, 1 - device/GPU")
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer")
.insert("warmup", "5", "number of iterations before benchmark the kernel")
.insert("repeat", "20", "number of iterations to benchmark the kernel")
......@@ -158,6 +161,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
float p_drop = arg_parser.get_float("p_drop");
uint64_t drop_seed = arg_parser.get_uint64("drop_seed");
uint64_t drop_offset = arg_parser.get_uint64("drop_offset");
bool drop_prefs = arg_parser.get_bool("drop_prefs");
if(use_dbias && bias.type != bias_enum::elementwise_bias)
{
std::cerr << "dbias only exists when bias type is elementwise" << std::endl;
......@@ -381,6 +386,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
ck_tile::DeviceMem dbias_buf(dbias_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem seqstart_q(seqstart_q_host.size() * sizeof(int32_t));
ck_tile::DeviceMem seqstart_k(seqstart_k_host.size() * sizeof(int32_t));
ck_tile::DeviceMem drop_seed_buf(drop_prefs ? sizeof(uint64_t) : 0);
ck_tile::DeviceMem drop_offset_buf(drop_prefs ? sizeof(uint64_t) : 0);
ck_tile::DeviceMem alibi_slope_buf(alibi_slope_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem dq_acc_buf(dq_acc_host.get_element_space_size_in_bytes());
......@@ -391,6 +398,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
do_buf.ToDevice(do_host.data());
seqstart_q.ToDevice(seqstart_q_host.data());
seqstart_k.ToDevice(seqstart_k_host.data());
drop_seed_buf.ToDevice(drop_prefs ? &drop_seed : nullptr);
drop_offset_buf.ToDevice(drop_prefs ? &drop_offset : nullptr);
alibi_slope_buf.ToDevice(alibi_slope_host.data());
// clang-format off
......@@ -472,6 +481,18 @@ bool run(const ck_tile::ArgParser& arg_parser)
const ck_tile::index_t split_stride_dq_acc =
(shape_batch * nhead * shape_seqlen_q * hdim_q);
const auto drop_seed_offset = [&]() -> decltype(fmha_bwd_args::drop_seed_offset) {
if(drop_prefs)
{
return std::make_pair(drop_seed_buf.GetDeviceBuffer(),
drop_offset_buf.GetDeviceBuffer());
}
else
{
return std::make_pair(drop_seed, drop_offset);
}
}();
return fmha_bwd_args{q_buf.GetDeviceBuffer(),
k_buf.GetDeviceBuffer(),
v_buf.GetDeviceBuffer(),
......@@ -545,7 +566,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
static_cast<ck_tile::index_t>(mask.type),
p_drop,
p_undrop,
{drop_seed, drop_offset}};
drop_seed_offset};
}();
float ave_time = fmha_bwd(fmha_traits, fmha_args, stream_config);
......
......@@ -9,7 +9,10 @@
#include "ck_tile/ops/epilogue.hpp"
#include "mask.hpp"
#include "bias.hpp"
#include <type_traits>
#include <utility>
#include <variant>
template <typename DataType>
struct FmhaBwdTypeConfig;
......@@ -135,7 +138,8 @@ struct fmha_bwd_args
ck_tile::index_t mask_type;
float p_drop;
float p_undrop;
std::tuple<uint64_t, uint64_t> drop_seed_offset;
std::variant<std::pair<uint64_t, uint64_t>, std::pair<const void*, const void*>>
drop_seed_offset;
};
template <typename FmhaBwdDQDKDVKernel>
......
......@@ -122,6 +122,9 @@ auto create_args(int argc, char* argv[])
.insert("p_drop", "0", "0~1 probability of dropout")
.insert("drop_seed", "1", "seed for random number generator")
.insert("drop_offset", "0", "offset for random number generator")
.insert("drop_prefs",
"0",
"seed and offset values are present on GPU; 0 - host, 1 - device/GPU")
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer")
.insert(
"rotary_dim", "0", "RoPE rotary dimension. rotary_dim <= 0 means not apply RoPE at all")
......@@ -442,6 +445,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
float p_drop = arg_parser.get_float("p_drop");
uint64_t drop_seed = arg_parser.get_uint64("drop_seed");
uint64_t drop_offset = arg_parser.get_uint64("drop_offset");
bool drop_prefs = arg_parser.get_bool("drop_prefs");
if(p_drop < 0.0f || p_drop > 1.0f)
{
std::cerr << "The value of p_drop should be 0~1" << std::endl;
......@@ -756,6 +761,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
need_append_kvcache ? cache_seqlen_ks.size() * sizeof(int32_t) : 0);
ck_tile::DeviceMem rotary_cos_buf(rotary_cos_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem rotary_sin_buf(rotary_sin_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem drop_seed_buf(drop_prefs ? sizeof(uint64_t) : 0);
ck_tile::DeviceMem drop_offset_buf(drop_prefs ? sizeof(uint64_t) : 0);
ck_tile::DeviceMem randval_buf(randval_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem alibi_slope_buf(alibi_slope_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem block_table_buf(block_table_host.get_element_space_size_in_bytes());
......@@ -774,6 +781,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
cache_seqlen_k_buf.ToDevice(need_append_kvcache ? cache_seqlen_ks.data() : nullptr);
rotary_cos_buf.ToDevice(rotary_cos_host.data());
rotary_sin_buf.ToDevice(rotary_sin_host.data());
drop_seed_buf.ToDevice(drop_prefs ? &drop_seed : nullptr);
drop_offset_buf.ToDevice(drop_prefs ? &drop_offset : nullptr);
alibi_slope_buf.ToDevice(alibi_slope_host.data());
block_table_buf.ToDevice(block_table_host.data());
cache_batch_idx_buf.ToDevice(cache_batch_idx_host.data());
......@@ -1013,9 +1022,17 @@ bool run(const ck_tile::ArgParser& arg_parser)
args.nhead_stride_randval = nhead_stride_randval;
args.batch_stride_randval = batch_stride_randval;
args.p_drop = p_drop;
args.s_randval = s_randval;
args.drop_seed_offset = std::tie(drop_seed, drop_offset);
args.p_drop = p_drop;
args.s_randval = s_randval;
if(drop_prefs)
{
args.drop_seed_offset = std::make_pair(drop_seed_buf.GetDeviceBuffer(),
drop_offset_buf.GetDeviceBuffer());
}
else
{
args.drop_seed_offset = std::make_pair(drop_seed, drop_offset);
}
}
else if constexpr(std::is_same_v<fmha_fwd_splitkv_args, std::decay_t<decltype(args)>>)
{
......
......@@ -13,6 +13,8 @@
#include "rotary.hpp"
#include <type_traits>
#include <utility>
#include <variant>
template <typename DataType>
struct FmhaFwdTypeConfig;
......@@ -144,7 +146,9 @@ struct fmha_fwd_args
float p_drop;
bool s_randval;
std::tuple<uint64_t, uint64_t> drop_seed_offset;
std::variant<std::pair<uint64_t, uint64_t>, std::pair<const void*, const void*>>
drop_seed_offset;
};
struct fmha_fwd_splitkv_args
......
......@@ -6,7 +6,8 @@ This folder contains example for Layernorm2D forward using ck_tile tile-programm
```
# in the root of ck_tile
mkdir build && cd build
sh ../script/cmake-ck-dev.sh ../ <arch> # you can replace this <arch> to gfx90a, gfx942...
# you can replace <arch> with the appropriate architecture (for example gfx90a or gfx942) or leave it blank
sh ../script/cmake-ck-dev.sh ../ <arch>
make tile_example_layernorm2d_fwd -j
```
This will result in an executable `build/bin/tile_example_layernorm2d_fwd`
......
......@@ -35,7 +35,9 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
YDataType,
MeanDataType,
InvStdDataType,
Shape>;
Shape,
true,
true>;
using Kernel = ck_tile::Layernorm2dFwd<PipelineProblem>;
......
......@@ -6,7 +6,8 @@ This folder contains example for GEMM using ck_tile tile-programming implementat
```
# in the root of ck_tile
mkdir build && cd build
sh ../script/cmake-ck-dev.sh ../ <arch> # you can replace this <arch> to gfx90a, gfx942...
# you can replace <arch> with the appropriate architecture (for example gfx90a or gfx942) or leave it blank
sh ../script/cmake-ck-dev.sh ../ <arch>
make tile_example_gemm_basic -j
```
This will result in an executable `build/bin/tile_example_gemm_basic`
......@@ -14,10 +15,17 @@ This will result in an executable `build/bin/tile_example_gemm_basic`
## example
```
args:
-m m dimension (default:3328)
-n m dimension (default:4096)
-b batch size (default:1)
-m m dimension (default:1024)
-n n dimension (default:2048)
-k k dimension (default:64)
-e epsilon (default:1e-5)
-v cpu validation or not (default:1)
-prec precision (default:fp16)
-stride_a Tensor A stride (default:0)
-stride_b Tensor B stride (default:0)
-stride_c Tensor C stride (default:0)
-v 0. No validation, 1. Validation on CPU, 2. Validation on GPU (default:2)
-e Absolute error tolerance (default:1e-5)
-prec data type. fp16/bf16/fp8/bf8 (default:fp16)
-warmup number of iterations before benchmark the kernel (default:10)
-repeat number of iterations to benchmark the kernel (default:100)
-timer gpu:gpu timer, cpu:cpu timer (default:gpu)
```
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
......@@ -41,18 +40,39 @@ template <typename LayoutA,
float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s)
{
// The kPadA, kPadB, kPadC & kBlockPerCu should also come from the Codegen part.
constexpr bool kPadA = true;
constexpr bool kPadB = true;
constexpr bool kPadA = true;
constexpr bool kPadB = true;
constexpr bool kTilePermute = false;
constexpr int kBlockPerCu = 1;
using TilePartitioner = ck_tile::GemmTilePartitioner<GemmShape>;
using GemmEpilogue = ck_tile::Default2DEpilogue<
ck_tile::Default2DEpilogueProblem<AccDataType, CDataType, kPadA, kPadB>>;
// The rank and permutation will also be generate out by the CodeGen part.
constexpr ck_tile::index_t kOutputRank = 2;
// Whether doing the CShuffle (transpose before the global memory), depending on the output
// layout.
constexpr bool CShuffleEpilogue =
std::is_same_v<LayoutC, ck_tile::tensor_layout::gemm::ColumnMajor>;
using GemmEpilogue = std::conditional_t<
CShuffleEpilogue,
ck_tile::CShuffleEpilogue<ck_tile::CShuffleEpilogueProblem<AccDataType,
CDataType,
kPadA,
kPadB,
kTilePermute,
kOutputRank,
1,
0,
TilePartitioner::kM,
TilePartitioner::kN>>,
ck_tile::Default2DEpilogue<
ck_tile::Default2DEpilogueProblem<AccDataType, CDataType, kPadA, kPadB>>>;
// ToDo: Will add the codegen part to test different pipeline policies in GEMM.
// Now we only use the BlockGemmASmemBSmemCRegV1DefaultPolicy.
using Kernel =
ck_tile::GemmKernel<TilePartitioner, GemmPipeline, GemmEpilogue, LayoutA, LayoutB, LayoutC>;
using Kernel = ck_tile::GemmKernel<TilePartitioner, GemmPipeline, GemmEpilogue>;
auto kargs = Kernel::MakeKargs(args.p_a,
args.p_b,
......@@ -255,15 +275,17 @@ int main(int argc, char* argv[])
ck_tile::sequence<M_Warp, N_Warp, K_Warp>,
ck_tile::sequence<M_Warp_Tile, N_Warp_Tile, K_Warp_Tile>>;
using CodegenPipelineProblem = ck_tile::BlockGemmPipelineProblem<ADataType,
BDataType,
AccDataType,
CodegenGemmShape,
kPadA,
kPadB,
kPadC>;
using CodegenGemmTraits = ck_tile::
TileGemmTraits<kPadA, kPadB, kPadC, matrix_a_layout, matrix_b_layout, matrix_c_layout>;
using CodegenPipelineProblem = ck_tile::
GemmPipelineProblem<ADataType, BDataType, AccDataType, CodegenGemmShape, CodegenGemmTraits>;
using CodegenGemmPolicy = ck_tile::
UniversalGemmPipelineAgBgCrPolicy<matrix_a_layout, matrix_b_layout, matrix_c_layout>;
using CodegenGemmPipeline = ck_tile::BlockGemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem>;
using CodegenGemmPipeline =
ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem, CodegenGemmPolicy>;
invoke_gemm<ck_tile::half_t,
matrix_a_layout,
......@@ -341,7 +363,13 @@ int main(int argc, char* argv[])
ck_tile::HostTensor<CDataType> c_host_gpu_ref(c_dimensions);
ck_tile::DeviceMem c_gpu_buf(c_host_gpu_ref.get_element_space_size_in_bytes());
ck_tile::reference_gemm_gpu<ADataType, BDataType, AccDataType, CDataType>(
ck_tile::reference_gemm_gpu<ADataType,
BDataType,
AccDataType,
CDataType,
matrix_a_layout,
matrix_b_layout,
matrix_c_layout>(
a_buf, b_buf, c_gpu_buf, M, N, K, stride_a, stride_b, stride_c);
c_buf.FromDevice(c_host_gpu_ref.data());
......
......@@ -6,7 +6,8 @@ This folder contains example for Image to Column using ck_tile tile-programming
```
# in the root of ck_tile
mkdir build && cd build
sh ../script/cmake-ck-dev.sh ../ <arch> # you can replace this <arch> to gfx90a, gfx942...
# you can replace <arch> with the appropriate architecture (for example gfx90a or gfx942) or leave it blank
sh ../script/cmake-ck-dev.sh ../ <arch>
make tile_example_img2col -j
```
This will result in an executable `build/bin/tile_example_img2col`
......@@ -97,13 +97,6 @@
#cmakedefine CK_ENABLE_DL_KERNELS @CK_ENABLE_DL_KERNELS@
#endif
//
// Instances supports in the current CK build
//
#ifndef CK_ENABLE_INSTANCES_ONLY
#cmakedefine CK_ENABLE_INSTANCES_ONLY @CK_ENABLE_INSTANCES_ONLY@
#endif
//
// CK kernels which support XDL (MI series)
//
......
......@@ -66,6 +66,9 @@ float launch_and_time_kernel(const StreamConfig& stream_config,
hip_check_error(hipEventElapsedTime(&total_time, start, stop));
hip_check_error(hipEventDestroy(start));
hip_check_error(hipEventDestroy(stop));
return total_time / nrepeat;
}
else
......@@ -143,6 +146,9 @@ float launch_and_time_kernel_with_preprocess(const StreamConfig& stream_config,
hip_check_error(hipEventElapsedTime(&total_time, start, stop));
hip_check_error(hipEventDestroy(start));
hip_check_error(hipEventDestroy(stop));
return total_time / nrepeat;
}
else
......
......@@ -308,7 +308,7 @@ struct BlockwiseGemmXdlops_pipeline_v1_ab_scale<BlockGemmPipelineScheduler::Intr
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
xdlops_gemm.template Run(
xdlops_gemm.template Run<>(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf_per_scale.GetVectorTypeReference(I0));
......@@ -390,9 +390,10 @@ struct BlockwiseGemmXdlops_pipeline_v1_ab_scale<BlockGemmPipelineScheduler::Intr
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
xdlops_gemm.template Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf_per_scale.GetVectorTypeReference(I0));
xdlops_gemm.template Run<>(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf_per_scale.GetVectorTypeReference(I0));
});
static_for<0, xdlops_gemm.GetRegSizePerXdlops(), 1>{}([&](auto t) {
constexpr index_t c_offset =
......
......@@ -350,7 +350,7 @@ struct BlockwiseGemmXdlops_pipeline_v2_ab_scale<BlockGemmPipelineScheduler::Intr
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
xdlops_gemm.template Run(
xdlops_gemm.template Run<>(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf_per_scale.GetVectorTypeReference(I0));
......@@ -443,7 +443,7 @@ struct BlockwiseGemmXdlops_pipeline_v2_ab_scale<BlockGemmPipelineScheduler::Intr
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
xdlops_gemm.template Run(
xdlops_gemm.template Run<>(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf_per_scale.GetVectorTypeReference(I0));
......@@ -518,9 +518,10 @@ struct BlockwiseGemmXdlops_pipeline_v2_ab_scale<BlockGemmPipelineScheduler::Intr
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
xdlops_gemm.template Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf_per_scale.GetVectorTypeReference(I0));
xdlops_gemm.template Run<>(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf_per_scale.GetVectorTypeReference(I0));
});
static_for<0, xdlops_gemm.GetRegSizePerXdlops(), 1>{}([&](auto t) {
constexpr index_t c_offset =
......@@ -575,9 +576,10 @@ struct BlockwiseGemmXdlops_pipeline_v2_ab_scale<BlockGemmPipelineScheduler::Intr
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
xdlops_gemm.template Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf_per_scale.GetVectorTypeReference(I0));
xdlops_gemm.template Run<>(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf_per_scale.GetVectorTypeReference(I0));
});
static_for<0, xdlops_gemm.GetRegSizePerXdlops(), 1>{}([&](auto t) {
constexpr index_t c_offset =
......
......@@ -427,7 +427,7 @@ struct BlockwiseGemmXdlops_pipeline_v3_ab_scale<BlockGemmPipelineScheduler::Intr
typename vector_type<ComputeDataType,
xdlops_gemm.K1PerXdlops>::type;
xdlops_gemm.template Run(
xdlops_gemm.template Run<>(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf_per_scale.GetVectorTypeReference(I0));
......@@ -504,9 +504,10 @@ struct BlockwiseGemmXdlops_pipeline_v3_ab_scale<BlockGemmPipelineScheduler::Intr
using mfma_input_type =
typename vector_type<ComputeDataType, xdlops_gemm.K1PerXdlops>::type;
xdlops_gemm.template Run(a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf_per_scale.GetVectorTypeReference(I0));
xdlops_gemm.template Run<>(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf_per_scale.GetVectorTypeReference(I0));
});
static_for<0, xdlops_gemm.GetRegSizePerXdlops(), 1>{}([&](auto t) {
constexpr index_t c_offset =
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "device_base.hpp"
......@@ -31,13 +31,13 @@ struct DeviceCGemm : public BaseOperator
CElementwiseOperation c_element_op,
ck::index_t KBatch = 1) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
virtual std::size_t GetWorkspaceSize(index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC) = 0;
index_t StrideC) const = 0;
};
template <typename AElementwiseOperation,
......
......@@ -598,10 +598,26 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
[[maybe_unused]] index_t K,
[[maybe_unused]] index_t StrideA,
[[maybe_unused]] index_t StrideB,
index_t StrideC) override
index_t StrideC) const override
{
return 2 * sizeof(CDataType) * GetCElementSpaceSize(M, N, StrideC);
}
std::size_t GetWorkSpaceSize(const BaseArgument* base_arg) const override
{
const auto* parg = dynamic_cast<const Argument*>(base_arg);
if(!parg)
{
std::ostringstream err;
err << "Provided argument pointer is not of an Argument class!"
<< " In " << __FILE__ << ":" << __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
return GetWorkspaceSize(
parg->M, parg->N, parg->K, parg->StrideA, parg->StrideB, parg->StrideC);
}
};
} // namespace device
......
......@@ -64,7 +64,7 @@ __global__ void
const index_t N = gemm_desc_ptr[group_id].N;
const index_t K = gemm_desc_ptr[group_id].K;
if(M * N * K == 0)
if(M == 0 || N == 0 || K == 0)
return;
const auto StrideAs = gemm_desc_ptr[group_id].StrideAs;
......
......@@ -345,7 +345,7 @@ struct DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage
const index_t N = gemm_descs[i].N_;
const index_t K = gemm_descs[i].K_;
if(M * N * K == 0)
if(M == 0 || N == 0 || K == 0)
{
skipped_group_count_++;
continue;
......
......@@ -109,7 +109,7 @@ __global__ void
N = gemm_desc_ptr[group_id].N;
K = gemm_desc_ptr[group_id].K;
if(M * N * K == 0)
if(M == 0 || N == 0 || K == 0)
{
grid_size_grp = 0;
continue;
......
......@@ -68,7 +68,7 @@ __global__ void
const index_t N = gemm_desc_ptr[group_id].N;
const index_t K = gemm_desc_ptr[group_id].K;
if(M * N * K == 0)
if(M == 0 || N == 0 || K == 0)
return;
const auto StrideA = gemm_desc_ptr[group_id].StrideA;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment