Unverified Commit d1db6a0c authored by Chao Liu's avatar Chao Liu Committed by GitHub
Browse files

Absolute include path (#281)

* ad gelu and fast_gelu

* added GeLU and fast GeLU

* clean up

* add gemm+fastgelu example

* add gemm+gelu instances

* update profiler

* clean up

* clean up

* adding gemm+bias+activation

* clean

* adding bias

* clean

* adding gemm multiple d

* debugging

* add gemm bias add fastgelu

* rename, clean

* refactoring; add readme

* refactor

* refactor

* refactor

* refactor

* refactor

* refactor

* fix

* fix

* update example

* update example

* rename

* update example

* add ckProfiler

* clean

* clean

* clean

* clean

* add client app example

* update readme

* delete obselete files

* remove old client app

* delete old file

* cleaning

* clean

* remove half

* fix header path

* fix header path

* fix header path

* fix header path

* fix header path

* fix header path for all examples

* fix header path

* fix header path

* fix header path

* fix header path

* fix header path

* fix header path

* fix header path

* fix header path

* fix header path

* revert client app example

* clean build

* fix build

* temporary disable client test on Jenkins

* clean

* clean

* clean
parent a49115b9
#ifndef CK_SYNCHRONIZATION_AMD_HPP #pragma once
#define CK_SYNCHRONIZATION_AMD_HPP
#include "config.hpp" #include "ck/ck.hpp"
namespace ck { namespace ck {
...@@ -18,4 +17,3 @@ __device__ void block_sync_lds() ...@@ -18,4 +17,3 @@ __device__ void block_sync_lds()
} }
} // namespace ck } // namespace ck
#endif
#pragma once #pragma once
#include "get_id.hpp" #include "get_id.hpp"
namespace ck { namespace ck {
......
#ifndef CK_TRANSPOSE_VECTORS_AMD_HPP #pragma once
#define CK_TRANSPOSE_VECTORS_AMD_HPP
#include "config.hpp" #include "ck/ck.hpp"
#include "statically_indexed_array.hpp" #include "statically_indexed_array.hpp"
#include "data_type.hpp" #include "data_type.hpp"
...@@ -165,4 +164,3 @@ struct transpose_vectors<int8_t, NX, NY> ...@@ -165,4 +164,3 @@ struct transpose_vectors<int8_t, NX, NY>
}; };
} // namespace ck } // namespace ck
#endif
#ifndef CK_TYPE_HPP #pragma once
#define CK_TYPE_HPP
#include "config.hpp" #include "ck/ck.hpp"
#include "integral_constant.hpp" #include "integral_constant.hpp"
#include "enable_if.hpp" #include "enable_if.hpp"
...@@ -56,4 +55,3 @@ __host__ __device__ constexpr Y bit_cast(const X& x) ...@@ -56,4 +55,3 @@ __host__ __device__ constexpr Y bit_cast(const X& x)
} }
} // namespace ck } // namespace ck
#endif
#pragma once
#include <memory>
#include <string>
#include "stream_config.hpp"
#include "config.hpp"
#include "device_base.hpp"
struct DeviceConvFwdPtr_t
{
using BaseArgument = ck::tensor_operation::device::BaseArgument;
using BaseInvoker = ck::tensor_operation::device::BaseInvoker;
struct DeviceConvFwdPtrImpl;
std::unique_ptr<DeviceConvFwdPtrImpl> pImpl;
DeviceConvFwdPtr_t();
~DeviceConvFwdPtr_t();
DeviceConvFwdPtr_t(DeviceConvFwdPtr_t&&);
DeviceConvFwdPtr_t(DeviceConvFwdPtrImpl&);
DeviceConvFwdPtr_t& operator=(DeviceConvFwdPtr_t&) = delete;
DeviceConvFwdPtr_t& operator=(const DeviceConvFwdPtr_t&) = delete;
std::unique_ptr<BaseArgument>
MakeArgumentPointer(void* in_ptr,
void* wei_ptr,
void* out_ptr,
size_t N,
size_t K,
size_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads)
const; // in,wei and out element ops are ignored for now since even if we change them, they
// cant be linked
std::unique_ptr<BaseInvoker>
MakeInvokerPointer() const; // requires including BaseInvoker headers
std::string GetTypeString();
bool IsSupportedArgument(const BaseArgument* arg_ptr);
};
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances_t(
std::vector<DeviceConvFwdPtr_t>& instances);
void add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances_t(
std::vector<DeviceConvFwdPtr_t>& instances);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances_t(
std::vector<DeviceConvFwdPtr_t>& instances);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances_t(
std::vector<DeviceConvFwdPtr_t>& instances);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances_t(
std::vector<DeviceConvFwdPtr_t>& instances);
#ifndef CONV_COMMON_HPP #pragma once
#define CONV_COMMON_HPP
#include "tensor_descriptor.hpp" #include "ck/tensor_description/tensor_descriptor.hpp"
template <typename... InDesc, template <typename... InDesc,
typename... WeiDesc, typename... WeiDesc,
...@@ -73,18 +72,3 @@ calculate_convolution_flops(const InDesc&, const WeiDesc& wei_desc, const OutDes ...@@ -73,18 +72,3 @@ calculate_convolution_flops(const InDesc&, const WeiDesc& wei_desc, const OutDes
return std::size_t(2) * N * K * Ho * Wo * C * Y * X; return std::size_t(2) * N * K * Ho * Wo * C * Y * X;
} }
template <typename T>
inline auto activ(T v, const ck::ActivTypeEnum activ_type)
{
const T alpha = 0.3;
switch(activ_type)
{
case ck::ActivTypeEnum::None: return v;
case ck::ActivTypeEnum::LeakyRelu: return (v >= 0 ? v : alpha * v);
case ck::ActivTypeEnum::Sigmoid: return (1 / (1 + exp(-v)));
default: throw std::runtime_error("unsupported activ type"); break;
}
}
#endif
#pragma once
#include <hip/hip_runtime.h>
template <typename T>
__global__ void set_buffer_value(T* p, T x, uint64_t buffer_element_size)
{
for(uint64_t i = threadIdx.x; i < buffer_element_size; i += blockDim.x)
{
p[i] = x;
}
}
struct DeviceMem
{
DeviceMem() = delete;
DeviceMem(std::size_t mem_size);
void* GetDeviceBuffer();
std::size_t GetBufferSize();
void ToDevice(const void* p);
void FromDevice(void* p);
void SetZero();
template <typename T>
void SetValue(T x)
{
if(mMemSize % sizeof(T) != 0)
{
throw std::runtime_error("wrong! not entire DeviceMem will be set");
}
set_buffer_value<T><<<1, 1024>>>(static_cast<T*>(mpDeviceBuf), x, mMemSize / sizeof(T));
}
~DeviceMem();
void* mpDeviceBuf;
std::size_t mMemSize;
};
#pragma once
#include "host_tensor.hpp"
template <typename TensorDesc>
void ostream_tensor_descriptor(TensorDesc, std::ostream& os = std::cout)
{
ostream_HostTensorDescriptor(make_HostTensorDescriptor(TensorDesc{}), os);
}
/******************************************************************************* #pragma once
*
* MIT License
*
* Copyright (c) 2020 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#ifndef GUARD_HOST_COMMON_UTIL_HPP
#define GUARD_HOST_COMMON_UTIL_HPP
#include <vector> #include <vector>
#include <iostream> #include <iostream>
#include <fstream> #include <fstream>
#include <string> #include <string>
#include "config.hpp" #include "ck/ck.hpp"
namespace ck { namespace ck {
...@@ -95,8 +69,5 @@ static inline std::vector<T> getTypeValuesFromString(const char* cstr_values) ...@@ -95,8 +69,5 @@ static inline std::vector<T> getTypeValuesFromString(const char* cstr_values)
return (values); return (values);
} }
}; // namespace host_common } // namespace host_common
} // namespace ck
}; // namespace ck
#endif
#pragma once #pragma once
#include "host_tensor.hpp" #include "host_tensor.hpp"
template <typename AType, template <typename AType,
......
#pragma once
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2020 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#ifndef HOST_REDUCTION_HPP_
#define HOST_REDUCTION_HPP_
#include <vector> #include <vector>
#include <array> #include <array>
#include <functional> #include <functional>
#include "reduction_enums.hpp" #include "ck/utility/data_type.hpp"
#include "reduction_common.hpp" #include "ck/utility/reduction_enums.hpp"
#include "host_common_util.hpp" #include "ck/utility/reduction_common.hpp"
#include "host_tensor.hpp" #include "ck/utility/reduction_functions_accumulate.hpp"
#include "data_type.hpp" #include "ck/library/host_tensor/host_common_util.hpp"
#include "reduction_functions_accumulate.hpp" #include "ck/library/host_tensor/host_tensor.hpp"
template <int NDim> template <int NDim>
static void get_all_indexes(const std::array<size_t, NDim>& dimLengths, static void get_all_indexes(const std::array<size_t, NDim>& dimLengths,
...@@ -400,5 +373,3 @@ struct ReductionHost ...@@ -400,5 +373,3 @@ struct ReductionHost
}; };
}; };
}; };
#endif
#ifndef HOST_TENSOR_HPP #pragma once
#define HOST_TENSOR_HPP
#include <thread> #include <thread>
#include <vector> #include <vector>
...@@ -8,7 +7,8 @@ ...@@ -8,7 +7,8 @@
#include <utility> #include <utility>
#include <cassert> #include <cassert>
#include <iostream> #include <iostream>
#include "data_type.hpp"
#include "ck/utility/data_type.hpp"
template <typename Range> template <typename Range>
std::ostream& LogRange(std::ostream& os, Range&& range, std::string delim) std::ostream& LogRange(std::ostream& os, Range&& range, std::string delim)
...@@ -413,5 +413,3 @@ float check_error(const Tensor<T>& ref, const Tensor<T>& result) ...@@ -413,5 +413,3 @@ float check_error(const Tensor<T>& ref, const Tensor<T>& result)
return linf_error; return linf_error;
} }
#endif
...@@ -3,7 +3,7 @@ ...@@ -3,7 +3,7 @@
#include <cmath> #include <cmath>
#include <numeric> #include <numeric>
#include "config.hpp" #include "ck/ck.hpp"
template <typename T> template <typename T>
struct GeneratorTensor_0 struct GeneratorTensor_0
......
#ifndef DEBUG_HPP
#define DEBUG_HPP
namespace debug {
namespace debug_driver_gemm_xdlops_v2r3 {
// these vars are on host, they control block_id to C matrix tile idx (m0, n0) mapping
static ck::index_t M01 = 1;
static ck::index_t N01 = 1;
} // namespace debug_driver_gemm_xdlops_v2r3
} // namespace debug
#endif
#include <unistd.h>
#include "device.hpp"
#include "host_tensor.hpp"
#include "driver_convolution_add_forward_implicit_gemm_v5r1_dlops_nc0hwc1_kc0yxc1_nk0hwk1.hpp"
template <typename TInWei,
typename TAcc,
typename TOut,
ck::ActivTypeEnum activ_type,
typename InLengths,
typename WeiLengths,
typename AddLengths,
typename OutLengths,
typename ConvStrides,
typename ConvDilations,
typename InLeftPads,
typename InRightPads>
void device_convolution_add_forward_implicit_gemm_v5r1_dlops_nc0hwc1_kc0yxc1_nk0hwk1(
const InLengths& in_n_c0_hi_wi_c1_lengths,
const WeiLengths& wei_k_c0_y_x_c1_lengths,
const AddLengths& add_n_k0_hox2_wox2_k1_lengths,
const OutLengths& out_n_k0_ho_wo_k1_lengths,
const ConvStrides& conv_strides,
const ConvDilations& conv_dilations,
const InLeftPads& in_left_pads,
const InRightPads& in_right_pads,
const Tensor<TInWei>& in_n_c0_hi_wi_c1,
const Tensor<TInWei>& wei_k_c0_y_x_c1,
const Tensor<TOut>& bias_k0_k1,
const Tensor<TOut>& add_n_k0_hox2_wox2_k1,
Tensor<TOut>& add_n_k0_hox2_wox2_k1_out,
ck::index_t nrepeat)
{
using namespace ck;
std::cout << __func__ << std::endl;
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
constexpr auto I4 = Number<4>{};
const auto N = out_n_k0_ho_wo_k1_lengths[I0];
const auto K0 = out_n_k0_ho_wo_k1_lengths[I1];
const auto Ho = out_n_k0_ho_wo_k1_lengths[I2];
const auto Wo = out_n_k0_ho_wo_k1_lengths[I3];
const auto K1 = out_n_k0_ho_wo_k1_lengths[I4];
const auto C0 = in_n_c0_hi_wi_c1_lengths[I1];
const auto Hi = in_n_c0_hi_wi_c1_lengths[I2];
const auto Wi = in_n_c0_hi_wi_c1_lengths[I3];
const auto C1 = in_n_c0_hi_wi_c1_lengths[I4];
const auto K = wei_k_c0_y_x_c1_lengths[I0];
const auto Y = wei_k_c0_y_x_c1_lengths[I2];
const auto X = wei_k_c0_y_x_c1_lengths[I3];
const auto Hox2 = add_n_k0_hox2_wox2_k1_lengths[I2];
const auto Wox2 = add_n_k0_hox2_wox2_k1_lengths[I3];
DeviceMem in_n_c0_hi_wi_c1_device_buf(sizeof(TInWei) *
in_n_c0_hi_wi_c1.mDesc.GetElementSpace());
DeviceMem wei_k_c0_y_x_c1_device_buf(sizeof(TInWei) * wei_k_c0_y_x_c1.mDesc.GetElementSpace());
DeviceMem bias_k0_k1_device_buf(sizeof(TOut) * bias_k0_k1.mDesc.GetElementSpace());
DeviceMem add_n_k0_hox2_wox2_k1_device_buf(sizeof(TOut) *
add_n_k0_hox2_wox2_k1.mDesc.GetElementSpace());
in_n_c0_hi_wi_c1_device_buf.ToDevice(in_n_c0_hi_wi_c1.mData.data());
wei_k_c0_y_x_c1_device_buf.ToDevice(wei_k_c0_y_x_c1.mData.data());
bias_k0_k1_device_buf.ToDevice(bias_k0_k1.mData.data());
add_n_k0_hox2_wox2_k1_device_buf.ToDevice(add_n_k0_hox2_wox2_k1.mData.data());
constexpr index_t InWeiVectorSize = 8;
if(C1 % InWeiVectorSize != 0)
{
throw std::runtime_error("wrong! C1 cannot be divided by InWeiVectorSize");
}
#if 0
constexpr index_t BlockSize = 256;
constexpr index_t KPerBlock = 32;
constexpr index_t HoPerBlock = 8;
constexpr index_t WoPerBlock = 64;
constexpr index_t E1 = C0 * 9;
constexpr index_t E2 = 1;
constexpr index_t E1PerBlock = C0;
constexpr index_t KPerThread = 16;
constexpr index_t HoPerThread = 2;
constexpr index_t WoPerThread = 2;
constexpr index_t EPerThread = 1;
using ABlockTransferThreadSliceLengths_E0_E1_K0_K1_E2 = Sequence<1, 9, 1, E2>;
using ABlockTransferThreadClusterLengths_E0_E1_K0_K1_E2 = Sequence<1, E1PerBlock, KPerBlock, 1>;
constexpr index_t ABlockTransferSrcScalarPerVector_E2 = E2;
constexpr index_t ABlockTransferDstScalarPerVector_E2 = E2;
constexpr index_t BThreadTransferSrcScalarPerVector_E2 = E2;
constexpr index_t CThreadTransferDstScalarPerVector_K = K1;
#elif 1
constexpr auto BlockSize = 64;
constexpr auto KPerBlock = 8;
constexpr auto HoPerBlock = 8;
constexpr auto WoPerBlock = 32;
constexpr auto E1 = 2 * 9;
constexpr auto E2 = 1;
constexpr auto K2 = 2;
constexpr auto E1PerBlock = 2;
constexpr auto KPerThread = KPerBlock;
constexpr auto HoPerThread = 2;
constexpr auto WoPerThread = 2;
constexpr auto EPerThread = 1;
using ABlockTransferThreadSliceLengths_E0_E1_K0_K1_E2 = Sequence<1, 9, 1, 1, E2>;
using ABlockTransferThreadClusterLengths_E0_E1_K0_K1_E2 =
Sequence<1, E1PerBlock, 1, KPerBlock, 1>;
constexpr auto ABlockTransferSrcScalarPerVector_E2 = E2;
constexpr auto ABlockTransferDstScalarPerVector_E2 = E2;
constexpr auto BThreadTransferSrcScalarPerVector_E2 = E2;
constexpr auto CThreadTransferDstScalarPerVector_K = InWeiVectorSize;
#endif
const auto in_n_c0_hi_wi_c1_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, C0, Hi, Wi, E2));
const auto wei_k_c0_y_x_c1_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, C0, Y, X, E2));
const auto add_n_k0_hox2_wox2_k1_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, K0, Hox2, Wox2, K1));
const auto out_n_k0_ho_wo_k1_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, K0, Ho, Wo, K1));
constexpr auto conv_driver =
DriverDynamicConvolutionForwardImplicitGemmDlops_v5r1_nc0hwc1_kc0yxc1_nk0hwk1_add<
BlockSize,
typename vector_type<TInWei, InWeiVectorSize>::type,
TAcc,
TOut,
E1,
E2,
K2,
KPerBlock,
HoPerBlock,
WoPerBlock,
E1PerBlock,
KPerThread,
HoPerThread,
WoPerThread,
EPerThread,
ABlockTransferThreadSliceLengths_E0_E1_K0_K1_E2,
ABlockTransferThreadClusterLengths_E0_E1_K0_K1_E2,
ABlockTransferSrcScalarPerVector_E2,
ABlockTransferDstScalarPerVector_E2,
BThreadTransferSrcScalarPerVector_E2,
CThreadTransferDstScalarPerVector_K,
activ_type>{};
std::cerr << "conv_bias_activ_resize_add_input_"
<< "n" << N << "c" << C0 << "h" << Hi << "w" << Wi << "c" << C1 << "_filter_k" << K
<< "c" << C0 << "y" << Y << "x" << X << "c" << C1 << "_addout_n" << N << "k" << K0
<< "h" << Ho * 2 << "w" << Wo * 2 << "k" << K1 << std::endl;
for(int i = 0; i < 5; i++)
{
const auto ave_time =
conv_driver.Run(wei_k_c0_y_x_c1_desc,
in_n_c0_hi_wi_c1_desc,
out_n_k0_ho_wo_k1_desc,
add_n_k0_hox2_wox2_k1_desc,
conv_strides,
conv_dilations,
in_left_pads,
in_right_pads,
static_cast<typename vector_type<TInWei, InWeiVectorSize>::type*>(
wei_k_c0_y_x_c1_device_buf.GetDeviceBuffer()),
static_cast<typename vector_type<TInWei, InWeiVectorSize>::type*>(
in_n_c0_hi_wi_c1_device_buf.GetDeviceBuffer()),
static_cast<TOut*>(bias_k0_k1_device_buf.GetDeviceBuffer()),
static_cast<TOut*>(add_n_k0_hox2_wox2_k1_device_buf.GetDeviceBuffer()),
nrepeat);
{
float perf = static_cast<float>(std::size_t(2) * N * K * Ho * Wo * C0 * C1 * Y * X) /
(std::size_t(1000) * 1000 * 1000) / ave_time;
std::cout << "Average time : " << ave_time << " ms, " << perf << " TFlop/s"
<< std::endl;
}
}
add_n_k0_hox2_wox2_k1_device_buf.ToDevice(add_n_k0_hox2_wox2_k1.mData.data());
conv_driver.Run(wei_k_c0_y_x_c1_desc,
in_n_c0_hi_wi_c1_desc,
out_n_k0_ho_wo_k1_desc,
add_n_k0_hox2_wox2_k1_desc,
conv_strides,
conv_dilations,
in_left_pads,
in_right_pads,
static_cast<typename vector_type<TInWei, InWeiVectorSize>::type*>(
wei_k_c0_y_x_c1_device_buf.GetDeviceBuffer()),
static_cast<typename vector_type<TInWei, InWeiVectorSize>::type*>(
in_n_c0_hi_wi_c1_device_buf.GetDeviceBuffer()),
static_cast<TOut*>(bias_k0_k1_device_buf.GetDeviceBuffer()),
static_cast<TOut*>(add_n_k0_hox2_wox2_k1_device_buf.GetDeviceBuffer()),
0);
add_n_k0_hox2_wox2_k1_device_buf.FromDevice(add_n_k0_hox2_wox2_k1_out.mData.data());
}
#include <unistd.h>
#include "device.hpp"
#include "host_tensor.hpp"
#include "transform_backward_data_convolution_into_gemm_v4r1_nhwc_kyxc_nhwk.hpp"
#include "driver_gemm_xdlops_v2r3.hpp"
#include "debug.hpp"
template <typename TInWei,
typename TAcc,
typename TOut,
typename InLengths,
typename WeiLengths,
typename OutLengths,
typename ConvStrides,
typename ConvDilations,
typename InLeftPads,
typename InRightPads>
void device_convolution_backward_data_implicit_gemm_v4r1_xdlops_nhwc_kyxc_nhwk(
const InLengths& in_n_hi_wi_c_lengths,
const WeiLengths& wei_k_y_x_c_lengths,
const OutLengths& out_n_ho_wo_k_lengths,
const ConvStrides& conv_strides,
const ConvDilations& conv_dilations,
const InLeftPads& in_left_pads,
const InRightPads& in_right_pads,
Tensor<TInWei>& in_n_hi_wi_c,
const Tensor<TInWei>& wei_k_y_x_c,
const Tensor<TOut>& out_n_ho_wo_k,
ck::index_t nrepeat)
{
using namespace ck;
std::cout << __func__ << std::endl;
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
DeviceMem in_n_hi_wi_c_device_buf(sizeof(TInWei) * in_n_hi_wi_c.mDesc.GetElementSpace());
DeviceMem wei_k_y_x_c_device_buf(sizeof(TInWei) * wei_k_y_x_c.mDesc.GetElementSpace());
DeviceMem out_n_ho_wo_k_device_buf(sizeof(TOut) * out_n_ho_wo_k.mDesc.GetElementSpace());
in_n_hi_wi_c_device_buf.ToDevice(in_n_hi_wi_c.mData.data());
wei_k_y_x_c_device_buf.ToDevice(wei_k_y_x_c.mData.data());
out_n_ho_wo_k_device_buf.ToDevice(out_n_ho_wo_k.mData.data());
const auto in_n_hi_wi_c_desc = make_naive_tensor_descriptor_packed(in_n_hi_wi_c_lengths);
const auto wei_k_y_x_c_desc = make_naive_tensor_descriptor_packed(wei_k_y_x_c_lengths);
const auto out_n_ho_wo_k_desc = make_naive_tensor_descriptor_packed(out_n_ho_wo_k_lengths);
#if 0
// [M, N, K0, K1] = [128, 128, 4, 4], C = 64, for fp32
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerXDL = 32;
constexpr index_t GemmNPerXDL = 32;
constexpr index_t GemmK1 = 4;
constexpr index_t MRepeat = 2;
constexpr index_t NRepeat = 2;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 2, 4>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmM = 2;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 4;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 2, 4>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmK1 = 4;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 4;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 4;
#elif 0
// [M, N, K0, K1] = [128, 128, 4, 8] for fp16
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerXDL = 32;
constexpr index_t GemmNPerXDL = 32;
constexpr index_t GemmK1 = 8;
constexpr index_t MRepeat = 2;
constexpr index_t NRepeat = 2;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 2, 8>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmM = 2;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 8;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 2, 8>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmK1 = 8;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 8;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 4;
#elif 1
// [M, N, K0, K1] = [256, 128, 4, 8], C = 128, for fp16
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 256;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerXDL = 32;
constexpr index_t GemmNPerXDL = 32;
constexpr index_t GemmK1 = 8;
constexpr index_t MRepeat = 4;
constexpr index_t NRepeat = 2;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 4, 8>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmM = 4;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 8;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 2, 8>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmK1 = 8;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 8;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 4;
#elif 1
// [M, N, K0, K1] = [128, 256, 4, 8], C = 128, for fp16
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 256;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerXDL = 32;
constexpr index_t GemmNPerXDL = 32;
constexpr index_t GemmK1 = 8;
constexpr index_t MRepeat = 2;
constexpr index_t NRepeat = 4;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 2, 8>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmM = 2;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 8;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 4, 8>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmK1 = 8;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 8;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 4;
#endif
const auto descs =
transform_backward_data_convolution_into_gemm_v4r1_nhwc_kyxc_nhwk(wei_k_y_x_c_desc,
out_n_ho_wo_k_desc,
in_n_hi_wi_c_desc,
conv_strides,
conv_dilations,
in_left_pads,
in_right_pads,
I0,
I0,
Number<GemmK1>{});
const auto wei_gemmk0_gemmm_gemmk1_grid_desc = descs[I0];
const auto out_gemmk0_gemmn_gemmk1_grid_desc = descs[I1];
const auto in_gemmm_gemmn_grid_desc = descs[I2];
// HACK: hacks that control index calculation when iterating over A, B, C matrix
constexpr auto wei_gemmk0_gemmm_gemmk1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0>{}, // 0+: GemmK0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1+: GemmM
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}), // 2+: GemmK1
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0>{}, // 0-: GemmK0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1-: GemmM
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{})); // 2-: GemmK1
constexpr auto out_gemmk0_gemmn_gemmk1_grid_step_hacks = make_tuple(
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0>{}, // 0+: GemmK0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0>{}, // 1+: GemmN
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}), // 2+: GemmK1
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0>{}, // 0-: GemmK0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0>{}, // 1-: GemmN
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{})); // 2-: GemmK1
// clang-format off
constexpr auto in_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks = make_tuple(
make_tuple(
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0+: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1+: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2+: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3+: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4+: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5+: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6+: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0>{}), // 7+: N2
make_tuple(
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0-: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1-: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2-: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3-: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4-: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5-: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6-: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0>{})); // 7-: N2
//clang-format on
constexpr auto wei_gemmk0_gemmm_gemmk1_grid_move_slice_window_step_hacks =
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0>{};
constexpr auto out_gemmk0_gemmn_gemmk1_grid_move_slice_window_step_hacks =
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0>{};
for(index_t i = 0; i < 5; ++i)
{
float ave_time = driver_gemm_xdlops_v2r3<
BlockSize,
TInWei,
TAcc,
TOut,
InMemoryDataOperationEnum::Set,
decltype(wei_gemmk0_gemmm_gemmk1_grid_desc),
decltype(out_gemmk0_gemmn_gemmk1_grid_desc),
decltype(in_gemmm_gemmn_grid_desc),
GemmMPerBlock,
GemmNPerBlock,
GemmKPerBlock,
GemmMPerXDL,
GemmNPerXDL,
GemmK1,
MRepeat,
NRepeat,
GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1,
GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1,
Sequence<2, 0, 1>,
Sequence<0, 2, 1>,
1,
GemmABlockTransferSrcScalarPerVector_GemmM,
GemmABlockTransferDstScalarPerVector_GemmK1,
false, // don't move back src coordinate after threadwise copy
GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1,
GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1,
Sequence<1, 0, 2>,
Sequence<1, 0, 2>,
2,
GemmBBlockTransferSrcScalarPerVector_GemmK1,
GemmBBlockTransferDstScalarPerVector_GemmK1,
false, // don't move back src coordinate after threadwise copy
Sequence<1, 3, 7, 0, 2, 4, 5, 6>,
6,
GemmCThreadTransferDstScalarPerVector,
decltype(wei_gemmk0_gemmm_gemmk1_grid_step_hacks),
decltype(out_gemmk0_gemmn_gemmk1_grid_step_hacks),
decltype(in_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks),
decltype(wei_gemmk0_gemmm_gemmk1_grid_move_slice_window_step_hacks),
decltype(out_gemmk0_gemmn_gemmk1_grid_move_slice_window_step_hacks),
false, // CAccessOrderMRepeatNRepeat
false, // ABlockLdsExtraM
false // BBlockLdsExtraN
>(static_cast<TInWei*>(wei_k_y_x_c_device_buf.GetDeviceBuffer()),
static_cast<TOut*>(out_n_ho_wo_k_device_buf.GetDeviceBuffer()),
static_cast<TInWei*>(in_n_hi_wi_c_device_buf.GetDeviceBuffer()),
wei_gemmk0_gemmm_gemmk1_grid_desc,
out_gemmk0_gemmn_gemmk1_grid_desc,
in_gemmm_gemmn_grid_desc,
debug::debug_driver_gemm_xdlops_v2r3::M01,
debug::debug_driver_gemm_xdlops_v2r3::N01,
wei_gemmk0_gemmm_gemmk1_grid_step_hacks,
out_gemmk0_gemmn_gemmk1_grid_step_hacks,
in_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks,
wei_gemmk0_gemmm_gemmk1_grid_move_slice_window_step_hacks,
out_gemmk0_gemmn_gemmk1_grid_move_slice_window_step_hacks,
nrepeat);
{
const auto N = out_n_ho_wo_k_lengths[I0];
const auto K = out_n_ho_wo_k_lengths[I3];
const auto C = wei_k_y_x_c_lengths[I3];
const auto Ho = out_n_ho_wo_k_lengths[I1];
const auto Wo = out_n_ho_wo_k_lengths[I2];
const auto Y = wei_k_y_x_c_lengths[I1];
const auto X = wei_k_y_x_c_lengths[I2];
float perf = static_cast<float>((std::size_t(2) * N * K * Ho * Wo * C * Y * X)) /
(std::size_t(1000) * 1000 * 1000) / ave_time;
std::cout << "Average time : " << ave_time << " ms, " << perf << " TFlop/s"
<< std::endl;
}
}
// copy result back to host
in_n_hi_wi_c_device_buf.FromDevice(in_n_hi_wi_c.mData.data());
}
#include <unistd.h>
#include "device.hpp"
#include "host_tensor.hpp"
#include "transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk.hpp"
#include "driver_gemm_xdlops_v2r3.hpp"
template <typename TInWei,
typename TAcc,
typename TOut,
typename InLengths,
typename WeiLengths,
typename OutLengths,
typename ConvStrides,
typename ConvDilations,
typename InLeftPads,
typename InRightPads>
void device_convolution_backward_data_implicit_gemm_v4r1r2_xdlops_nhwc_kyxc_nhwk(
const InLengths& in_n_hi_wi_c_lengths,
const WeiLengths& wei_k_y_x_c_lengths,
const OutLengths& out_n_ho_wo_k_lengths,
const ConvStrides& conv_strides,
const ConvDilations& conv_dilations,
const InLeftPads& in_left_pads,
const InRightPads& in_right_pads,
Tensor<TInWei>& in_n_hi_wi_c,
const Tensor<TInWei>& wei_k_y_x_c,
const Tensor<TOut>& out_n_ho_wo_k,
ck::index_t nrepeat)
{
using namespace ck;
std::cout << __func__ << std::endl;
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
DeviceMem in_n_hi_wi_c_device_buf(sizeof(TInWei) * in_n_hi_wi_c.mDesc.GetElementSpace());
DeviceMem wei_k_y_x_c_device_buf(sizeof(TInWei) * wei_k_y_x_c.mDesc.GetElementSpace());
DeviceMem out_n_ho_wo_k_device_buf(sizeof(TOut) * out_n_ho_wo_k.mDesc.GetElementSpace());
in_n_hi_wi_c_device_buf.ToDevice(in_n_hi_wi_c.mData.data());
wei_k_y_x_c_device_buf.ToDevice(wei_k_y_x_c.mData.data());
out_n_ho_wo_k_device_buf.ToDevice(out_n_ho_wo_k.mData.data());
const auto in_n_hi_wi_c_desc = make_naive_tensor_descriptor_packed(in_n_hi_wi_c_lengths);
const auto wei_k_y_x_c_desc = make_naive_tensor_descriptor_packed(wei_k_y_x_c_lengths);
const auto out_n_ho_wo_k_desc = make_naive_tensor_descriptor_packed(out_n_ho_wo_k_lengths);
#if 0
// [M, N, K0, K1] = [256, 128, 4, 4], C = 128, for fp32
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 256;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerWave = 32;
constexpr index_t GemmNPerWave = 32;
constexpr index_t GemmK1 = 4;
constexpr index_t MRepeat = 4;
constexpr index_t NRepeat = 2;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 4, 4>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK1 = 4;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 4;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 2, 4>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 2;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 4;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 1;
#elif 0
// [M, N, K0, K1] = [128, 128, 4, 4], C = 64, for fp32
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerWave = 32;
constexpr index_t GemmNPerWave = 32;
constexpr index_t GemmK1 = 4;
constexpr index_t MRepeat = 2;
constexpr index_t NRepeat = 2;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 2, 4>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK1 = 4;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 4;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 2, 4>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 2;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 4;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 1;
#elif 0
// [M, N, K0, K1] = [256, 128, 4, 8], C = 128, for fp16
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 256;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerWave = 32;
constexpr index_t GemmNPerWave = 32;
constexpr index_t GemmK1 = 8;
constexpr index_t MRepeat = 4;
constexpr index_t NRepeat = 2;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 4, 8>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK1 = 8;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 8;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 2, 8>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 2;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 8;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 1;
#elif 1
// [M, N, K0, K1] = [128, 256, 4, 8], C = 128, for fp16
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 256;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerWave = 32;
constexpr index_t GemmNPerWave = 32;
constexpr index_t GemmK1 = 8;
constexpr index_t MRepeat = 2;
constexpr index_t NRepeat = 4;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 2, 8>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK1 = 8;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 8;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 4, 8>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 4;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 8;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 1;
#elif 1
// [M, N, K0, K1] = [128, 128, 4, 8], C = 64, for fp16
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerWave = 32;
constexpr index_t GemmNPerWave = 32;
constexpr index_t GemmK1 = 8;
constexpr index_t MRepeat = 2;
constexpr index_t NRepeat = 2;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 2, 8>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK1 = 8;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 8;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 2, 8>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 2;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 8;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 1;
#elif 0
// [M, N, K0, K1] = [128, 64, 4, 8], C = 64, for fp16
constexpr index_t BlockSize = 128;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 64;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerWave = 32;
constexpr index_t GemmNPerWave = 32;
constexpr index_t GemmK1 = 8;
constexpr index_t MRepeat = 2;
constexpr index_t NRepeat = 2;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 4, 8>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 32, 1>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK1 = 8;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 8;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 2, 8>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 32, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 2;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 8;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 1;
#elif 0
// [M, N, K0, K1] = [128, 64, 4, 8], C = 32, for fp16
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 64;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerWave = 32;
constexpr index_t GemmNPerWave = 32;
constexpr index_t GemmK1 = 8;
constexpr index_t MRepeat = 2;
constexpr index_t NRepeat = 1;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 2, 8>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK1 = 8;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 8;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 1, 8>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 1;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 8;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 1;
#endif
// HACK: hacks that control index calculation when iterating over A, B, C matrix
constexpr auto out_gemmk0_gemmm_gemmk1_grid_step_hacks = make_tuple(
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0>{}, // 0+: gemmk0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0>{}, // 1+: gemmm
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}), // 2+: gemmk1
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0>{}, // 0-: gemmk0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0>{}, // 1-: gemmm
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{})); // 2-:
// gemmk1
constexpr auto wei_gemmk0_gemmn_gemmk1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0>{}, // 0+: gemmk0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1+: gemmn
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}), // 2+: gemmk1
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0>{}, // 0-: Gemmk0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1-: Gemmn
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{})); // 2-: Gemmk1
// clang-format off
constexpr auto in_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks = make_tuple(
make_tuple(
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0+: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1+: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2+: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3+: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4+: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5+: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6+: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}), // 7+: N2
make_tuple(
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0-: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1-: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2-: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3-: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4-: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5-: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6-: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{})); // 7-: N2
// clang-format on
constexpr auto out_gemmk0_gemmm_gemmk1_grid_move_slice_window_step_hacks =
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0>{};
constexpr auto wei_gemmk0_gemmn_gemmk1_grid_move_slice_window_step_hacks =
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0>{};
for(index_t i = 0; i < 5; ++i)
{
const auto ConvStrideH = conv_strides[I0];
const auto ConvStrideW = conv_strides[I1];
const auto ConvDilationH = conv_dilations[I0];
const auto ConvDilationW = conv_dilations[I1];
const auto GcdStrideDilationH = math::gcd(ConvStrideH, ConvDilationH);
const auto GcdStrideDilationW = math::gcd(ConvStrideW, ConvDilationW);
const auto YTilde = ConvStrideH / GcdStrideDilationH;
const auto XTilde = ConvStrideW / GcdStrideDilationW;
float ave_time = 0;
for(index_t i_ytilde = 0; i_ytilde < YTilde; ++i_ytilde)
{
for(index_t i_xtilde = 0; i_xtilde < XTilde; ++i_xtilde)
{
const auto descs =
transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk(
out_n_ho_wo_k_desc,
wei_k_y_x_c_desc,
in_n_hi_wi_c_desc,
conv_strides,
conv_dilations,
in_left_pads,
in_right_pads,
i_ytilde,
i_xtilde,
Number<GemmK1>{});
const auto out_gemmk0_gemmm_gemmk1_grid_desc = descs[I0];
const auto wei_gemmk0_gemmn_gemmk1_grid_desc = descs[I1];
const auto in_gemmm_gemmn_grid_desc = descs[I2];
const auto GemmK0 = out_gemmk0_gemmm_gemmk1_grid_desc.GetLength(I0);
if(GemmK0 != 0)
{
ave_time += driver_gemm_xdlops_v2r3<
BlockSize,
TInWei,
TAcc,
TOut,
InMemoryDataOperationEnum::Set,
decltype(out_gemmk0_gemmm_gemmk1_grid_desc),
decltype(wei_gemmk0_gemmn_gemmk1_grid_desc),
decltype(in_gemmm_gemmn_grid_desc),
GemmMPerBlock,
GemmNPerBlock,
GemmKPerBlock,
GemmMPerWave,
GemmNPerWave,
GemmK1,
MRepeat,
NRepeat,
GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1,
GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1,
Sequence<1, 0, 2>,
Sequence<1, 0, 2>,
2,
GemmABlockTransferSrcScalarPerVector_GemmK1,
GemmABlockTransferDstScalarPerVector_GemmK1,
false, // don't move back src coordinate after threadwise copy
GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1,
GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1,
Sequence<2, 0, 1>,
Sequence<0, 2, 1>,
1,
GemmBBlockTransferSrcScalarPerVector_GemmN,
GemmBBlockTransferDstScalarPerVector_GemmK1,
false, // don't move back src coordinate after threadwise copy
#if 0
Sequence<0, 2, 4, 5, 6, 1, 3, 7>,
#else
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
#endif
7,
GemmCThreadTransferDstScalarPerVector,
decltype(out_gemmk0_gemmm_gemmk1_grid_step_hacks),
decltype(wei_gemmk0_gemmn_gemmk1_grid_step_hacks),
decltype(in_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks),
decltype(out_gemmk0_gemmm_gemmk1_grid_move_slice_window_step_hacks),
decltype(wei_gemmk0_gemmn_gemmk1_grid_move_slice_window_step_hacks),
true, // CAccessOrderMRepeatNRepeat
false, // ABlockLdsExtraM
false // BBlockLdsExtraN
>(static_cast<TOut*>(out_n_ho_wo_k_device_buf.GetDeviceBuffer()),
static_cast<TInWei*>(wei_k_y_x_c_device_buf.GetDeviceBuffer()),
static_cast<TInWei*>(in_n_hi_wi_c_device_buf.GetDeviceBuffer()),
out_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
in_gemmm_gemmn_grid_desc,
debug::debug_driver_gemm_xdlops_v2r3::M01,
debug::debug_driver_gemm_xdlops_v2r3::N01,
out_gemmk0_gemmm_gemmk1_grid_step_hacks,
wei_gemmk0_gemmn_gemmk1_grid_step_hacks,
in_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks,
out_gemmk0_gemmm_gemmk1_grid_move_slice_window_step_hacks,
wei_gemmk0_gemmn_gemmk1_grid_move_slice_window_step_hacks,
nrepeat);
}
}
}
{
const auto N = out_n_ho_wo_k_lengths[I0];
const auto K = out_n_ho_wo_k_lengths[I3];
const auto C = wei_k_y_x_c_lengths[I3];
const auto Ho = out_n_ho_wo_k_lengths[I1];
const auto Wo = out_n_ho_wo_k_lengths[I2];
const auto Y = wei_k_y_x_c_lengths[I1];
const auto X = wei_k_y_x_c_lengths[I2];
float perf = static_cast<float>((std::size_t(2) * N * K * Ho * Wo * C * Y * X)) /
(std::size_t(1000) * 1000 * 1000) / ave_time;
std::cout << "Average time : " << ave_time << " ms, " << perf << " TFlop/s"
<< std::endl;
}
}
// copy result back to host
in_n_hi_wi_c_device_buf.FromDevice(in_n_hi_wi_c.mData.data());
}
#include <unistd.h>
#include "device.hpp"
#include "host_tensor.hpp"
#include "transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk.hpp"
#include "driver_gemm_xdlops_v2r3.hpp"
template <typename TInWei,
typename TAcc,
typename TOut,
typename InLengths,
typename WeiLengths,
typename OutLengths,
typename ConvStrides,
typename ConvDilations,
typename InLeftPads,
typename InRightPads>
void device_convolution_backward_data_implicit_gemm_v4r1r2_xdlops_nhwc_kyxc_nhwk_1x1(
const InLengths& in_n_hi_wi_c_lengths,
const WeiLengths& wei_k_y_x_c_lengths,
const OutLengths& out_n_ho_wo_k_lengths,
const ConvStrides& conv_strides,
const ConvDilations&,
const InLeftPads&,
const InRightPads&,
Tensor<TInWei>& in_n_hi_wi_c,
const Tensor<TInWei>& wei_k_y_x_c,
const Tensor<TOut>& out_n_ho_wo_k,
ck::index_t nrepeat)
{
using namespace ck;
std::cout << __func__ << std::endl;
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
DeviceMem in_n_hi_wi_c_device_buf(sizeof(TInWei) * in_n_hi_wi_c.mDesc.GetElementSpace());
DeviceMem wei_k_y_x_c_device_buf(sizeof(TInWei) * wei_k_y_x_c.mDesc.GetElementSpace());
DeviceMem out_n_ho_wo_k_device_buf(sizeof(TOut) * out_n_ho_wo_k.mDesc.GetElementSpace());
in_n_hi_wi_c_device_buf.ToDevice(in_n_hi_wi_c.mData.data());
wei_k_y_x_c_device_buf.ToDevice(wei_k_y_x_c.mData.data());
out_n_ho_wo_k_device_buf.ToDevice(out_n_ho_wo_k.mData.data());
const auto in_n_hi_wi_c_desc = make_naive_tensor_descriptor_packed(in_n_hi_wi_c_lengths);
const auto wei_k_y_x_c_desc = make_naive_tensor_descriptor_packed(wei_k_y_x_c_lengths);
const auto out_n_ho_wo_k_desc = make_naive_tensor_descriptor_packed(out_n_ho_wo_k_lengths);
#if 0
// [M, N, K0, K1] = [256, 128, 4, 4], C = 128, for fp32
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 256;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerWave = 32;
constexpr index_t GemmNPerWave = 32;
constexpr index_t GemmK1 = 4;
constexpr index_t MRepeat = 4;
constexpr index_t NRepeat = 2;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 4, 4>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK1 = 4;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 4;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 2, 4>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 2;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 4;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 1;
#elif 0
// [M, N, K0, K1] = [128, 128, 4, 4], C = 64, for fp32
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerWave = 32;
constexpr index_t GemmNPerWave = 32;
constexpr index_t GemmK1 = 4;
constexpr index_t MRepeat = 2;
constexpr index_t NRepeat = 2;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 2, 4>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK1 = 4;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 4;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 2, 4>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 2;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 4;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 1;
#elif 0
// [M, N, K0, K1] = [256, 128, 4, 8], C = 128, for fp16
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 256;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerWave = 32;
constexpr index_t GemmNPerWave = 32;
constexpr index_t GemmK1 = 8;
constexpr index_t MRepeat = 4;
constexpr index_t NRepeat = 2;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 4, 8>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK1 = 8;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 8;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 2, 8>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 2;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 8;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 1;
#elif 1
// [M, N, K0, K1] = [128, 256, 4, 8], C = 128, for fp16
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 256;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerWave = 32;
constexpr index_t GemmNPerWave = 32;
constexpr index_t GemmK1 = 8;
constexpr index_t MRepeat = 2;
constexpr index_t NRepeat = 4;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 2, 8>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK1 = 8;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 8;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 4, 8>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 4;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 8;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 1;
#elif 0
// [M, N, K0, K1] = [128, 128, 4, 8], C = 64, for fp16
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerWave = 32;
constexpr index_t GemmNPerWave = 32;
constexpr index_t GemmK1 = 8;
constexpr index_t MRepeat = 2;
constexpr index_t NRepeat = 2;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 2, 8>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK1 = 8;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 8;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 2, 8>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 2;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 8;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 1;
#elif 0
// [M, N, K0, K1] = [128, 64, 4, 8], C = 64, for fp16
constexpr index_t BlockSize = 128;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 64;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerWave = 32;
constexpr index_t GemmNPerWave = 32;
constexpr index_t GemmK1 = 8;
constexpr index_t MRepeat = 2;
constexpr index_t NRepeat = 2;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 4, 8>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 32, 1>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK1 = 8;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 8;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 2, 8>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 32, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 2;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 8;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 1;
#elif 0
// [M, N, K0, K1] = [128, 64, 4, 8], C = 32, for fp16
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 64;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerWave = 32;
constexpr index_t GemmNPerWave = 32;
constexpr index_t GemmK1 = 8;
constexpr index_t MRepeat = 2;
constexpr index_t NRepeat = 1;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 2, 8>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK1 = 8;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 8;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 1, 8>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 1;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 8;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 1;
#endif
// HACK: hacks that control index calculation when iterating over A, B, C matrix
constexpr auto out_gemmk0_gemmm_gemmk1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0>{}, // 0+: gemmk0
Sequence<0, 0, 0>{}, // 1+: gemmm
Sequence<0, 0, 0>{}), // 2+: gemmk1
make_tuple(Sequence<0, 0, 0>{}, // 0-: gemmk0
Sequence<0, 0, 0>{}, // 1-: gemmm
Sequence<0, 0, 0>{})); // 2-: gemmk1
constexpr auto wei_gemmk0_gemmn_gemmk1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0>{}, // 0+: gemmk0
Sequence<0, 0, 0>{}, // 1+: gemmn
Sequence<0, 0, 0>{}), // 2+: gemmk1
make_tuple(Sequence<0, 0, 0>{}, // 0-: Gemmk0
Sequence<0, 0, 0>{}, // 1-: Gemmn
Sequence<0, 0, 0>{})); // 2-: Gemmk1
// clang-format off
constexpr auto in_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks = make_tuple(
make_tuple(
Sequence<0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0+: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1+: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2+: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3+: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4+: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5+: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6+: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}), // 7+: N2
make_tuple(
Sequence<0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0-: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1-: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2-: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3-: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4-: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5-: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6-: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{})); // 7-: N2
// clang-format on
constexpr auto out_gemmk0_gemmm_gemmk1_grid_move_slice_window_step_hacks = Sequence<0, 0, 0>{};
constexpr auto wei_gemmk0_gemmn_gemmk1_grid_move_slice_window_step_hacks = Sequence<0, 0, 0>{};
for(index_t i = 0; i < 5; ++i)
{
const auto descs = transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk_1x1(
out_n_ho_wo_k_desc,
wei_k_y_x_c_desc,
in_n_hi_wi_c_desc,
conv_strides,
Number<GemmK1>{});
const auto out_gemmk0_gemmm_gemmk1_grid_desc = descs[I0];
const auto wei_gemmk0_gemmn_gemmk1_grid_desc = descs[I1];
const auto in_gemmm_gemmn_grid_desc = descs[I2];
float ave_time = driver_gemm_xdlops_v2r3<
BlockSize,
TInWei,
TAcc,
TOut,
InMemoryDataOperationEnum::Set,
decltype(out_gemmk0_gemmm_gemmk1_grid_desc),
decltype(wei_gemmk0_gemmn_gemmk1_grid_desc),
decltype(in_gemmm_gemmn_grid_desc),
GemmMPerBlock,
GemmNPerBlock,
GemmKPerBlock,
GemmMPerWave,
GemmNPerWave,
GemmK1,
MRepeat,
NRepeat,
GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1,
GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1,
Sequence<1, 0, 2>,
Sequence<1, 0, 2>,
2,
GemmABlockTransferSrcScalarPerVector_GemmK1,
GemmABlockTransferDstScalarPerVector_GemmK1,
false, // don't move back src coordinate after threadwise copy
GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1,
GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1,
Sequence<2, 0, 1>,
Sequence<0, 2, 1>,
1,
GemmBBlockTransferSrcScalarPerVector_GemmN,
GemmBBlockTransferDstScalarPerVector_GemmK1,
false, // don't move back src coordinate after threadwise copy
#if 0
Sequence<0, 2, 4, 5, 6, 1, 3, 7>,
#else
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
#endif
7,
GemmCThreadTransferDstScalarPerVector,
decltype(out_gemmk0_gemmm_gemmk1_grid_step_hacks),
decltype(wei_gemmk0_gemmn_gemmk1_grid_step_hacks),
decltype(in_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks),
decltype(out_gemmk0_gemmm_gemmk1_grid_move_slice_window_step_hacks),
decltype(wei_gemmk0_gemmn_gemmk1_grid_move_slice_window_step_hacks),
true, // CAccessOrderMRepeatNRepeat
false, // ABlockLdsExtraM
false // BBlockLdsExtraN
>(static_cast<TOut*>(out_n_ho_wo_k_device_buf.GetDeviceBuffer()),
static_cast<TInWei*>(wei_k_y_x_c_device_buf.GetDeviceBuffer()),
static_cast<TInWei*>(in_n_hi_wi_c_device_buf.GetDeviceBuffer()),
out_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
in_gemmm_gemmn_grid_desc,
debug::debug_driver_gemm_xdlops_v2r3::M01,
debug::debug_driver_gemm_xdlops_v2r3::N01,
out_gemmk0_gemmm_gemmk1_grid_step_hacks,
wei_gemmk0_gemmn_gemmk1_grid_step_hacks,
in_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks,
out_gemmk0_gemmm_gemmk1_grid_move_slice_window_step_hacks,
wei_gemmk0_gemmn_gemmk1_grid_move_slice_window_step_hacks,
nrepeat);
{
const auto N = out_n_ho_wo_k_lengths[I0];
const auto K = out_n_ho_wo_k_lengths[I3];
const auto C = wei_k_y_x_c_lengths[I3];
const auto Ho = out_n_ho_wo_k_lengths[I1];
const auto Wo = out_n_ho_wo_k_lengths[I2];
const auto Y = wei_k_y_x_c_lengths[I1];
const auto X = wei_k_y_x_c_lengths[I2];
float perf = static_cast<float>((std::size_t(2) * N * K * Ho * Wo * C * Y * X)) /
(std::size_t(1000) * 1000 * 1000) / ave_time;
std::cout << "Average time : " << ave_time << " ms, " << perf << " TFlop/s"
<< std::endl;
}
}
// copy result back to host
in_n_hi_wi_c_device_buf.FromDevice(in_n_hi_wi_c.mData.data());
}
#include <unistd.h>
#include "device.hpp"
#include "host_tensor.hpp"
#include "transform_backward_weight_convolution_into_gemm_v4r4r2_atomic_nchw_kcyx_nkhw.hpp"
#include "driver_gemm_xdlops_v2r4.hpp"
template <typename TIn,
typename TWei,
typename TAcc,
typename TOut,
typename InLengths,
typename WeiLengths,
typename OutLengths,
typename ConvStrides,
typename ConvDilations,
typename InLeftPads,
typename InRightPads,
typename GridSizeType>
void device_convolution_backward_weight_implicit_gemm_v4r4r2_xdlops_atomic_nchw_kcyx_nkhw(
const InLengths& in_n_c_hi_wi_lengths,
const WeiLengths& wei_k_c_y_x_lengths,
const OutLengths& out_n_k_ho_wo_lengths,
const ConvStrides& conv_strides,
const ConvDilations& conv_dilations,
const InLeftPads& in_left_pads,
const InRightPads& in_right_pads,
const Tensor<TIn>& in_n_c_hi_wi,
Tensor<TWei>& wei_k_c_y_x,
const Tensor<TOut>& out_n_k_ho_wo,
GridSizeType desired_grid_size,
ck::index_t nrepeat)
{
using namespace ck;
std::cout << __func__ << std::endl;
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
DeviceMem in_n_c_hi_wi_device_buf(sizeof(TIn) * in_n_c_hi_wi.mDesc.GetElementSpace());
DeviceMem wei_k_c_y_x_device_buf(sizeof(TWei) * wei_k_c_y_x.mDesc.GetElementSpace());
DeviceMem out_n_k_ho_wo_device_buf(sizeof(TOut) * out_n_k_ho_wo.mDesc.GetElementSpace());
in_n_c_hi_wi_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
wei_k_c_y_x_device_buf.ToDevice(wei_k_c_y_x.mData.data());
out_n_k_ho_wo_device_buf.ToDevice(out_n_k_ho_wo.mData.data());
const auto in_n_c_hi_wi_desc = make_naive_tensor_descriptor_packed(in_n_c_hi_wi_lengths);
const auto wei_k_c_y_x_desc = make_naive_tensor_descriptor_packed(wei_k_c_y_x_lengths);
const auto out_n_k_ho_wo_desc = make_naive_tensor_descriptor_packed(out_n_k_ho_wo_lengths);
#if 1
// [M, N, K0, K1] = [128, 128, 4, 8] for fp32
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerWave = 32;
constexpr index_t GemmNPerWave = 32;
constexpr index_t GemmK1 = 8;
constexpr index_t MRepeat = 2;
constexpr index_t NRepeat = 2;
using GemmABlockTransferThreadSliceLengths_GemmB_GemmK0_GemmM_GemmK1 = Sequence<1, 1, 2, 8>;
using GemmABlockTransferThreadClusterLengths_GemmB_GemmK0_GemmM_GemmK1 = Sequence<1, 4, 64, 1>;
// using vector load 4, so config's wo*ho must be a multiple of 4
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK1 = 4;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 4;
using GemmBBlockTransferThreadSliceLengths_GemmB_GemmK0_GemmN_GemmK1 = Sequence<1, 1, 2, 8>;
using GemmBBlockTransferThreadClusterLengths_GemmB_GemmK0_GemmN_GemmK1 = Sequence<1, 4, 64, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 1;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 8;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 1;
#endif
const auto N = in_n_c_hi_wi_desc.GetLength(I0);
const auto C = in_n_c_hi_wi_desc.GetLength(I1);
const auto K = out_n_k_ho_wo_desc.GetLength(I1);
const auto Ho = out_n_k_ho_wo_desc.GetLength(I2);
const auto Wo = out_n_k_ho_wo_desc.GetLength(I3);
const auto Y = wei_k_c_y_x_desc.GetLength(I2);
const auto X = wei_k_c_y_x_desc.GetLength(I3);
const auto GemmM = K;
const auto GemmN = Y * X * C;
const auto GemmKTotal = N * Ho * Wo;
const auto GridMN = GemmM * GemmN / (GemmMPerBlock * GemmNPerBlock);
const index_t GemmKBatch = std::max(desired_grid_size / GridMN, 1);
const index_t GemmK0 =
math::integer_divide_ceil(GemmKTotal, GemmK1 * GemmKPerBlock * GemmKBatch) * GemmKPerBlock;
const index_t GemmKPad = GemmKBatch * GemmK0 * GemmK1;
std::cout << "GemmKTotal: " << GemmKTotal << " GrideSizeMN: " << GridMN
<< " GemmKBatch: " << GemmKBatch << " GemmK0: " << GemmK0 << " gemmKPad: " << GemmKPad
<< std::endl;
const auto descs =
transform_backward_weight_convolution_into_gemm_v4r4r2_atomic_nchw_kcyx_nkhw_pad(
wei_k_c_y_x_desc,
in_n_c_hi_wi_desc,
out_n_k_ho_wo_desc,
conv_strides,
conv_dilations,
in_left_pads,
in_right_pads,
Number<GemmK1>{},
GemmKBatch,
GemmKPad);
const auto out_gemmk0_gemmm_gemmk1_grid_desc = descs[I0];
const auto in_gemmk0_gemmn_gemmk1_grid_desc = descs[I1];
const auto wei_gemmm_gemmn_grid_desc = descs[I2];
// HACK: hacks that control index calculation when iterating over A, B, C matrix
constexpr auto out_gemmk0_gemmm_gemmk1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 1, 0, 0, 0, 0>{}, // 0+: GemmB
Sequence<0, 0, 1, 0, 0, 0, 0>{}, // 1+: GemmK0
Sequence<0, 0, 0, 0, 0, 0, 0>{}, // 2+: GemmM
Sequence<0, 0, 1, 0, 0, 0, 0>{}), // 3+: GemmK1
make_tuple(Sequence<0, 0, 2, 0, 0, 0, 0>{}, // 0-: GemB
Sequence<0, 0, 2, 0, 0, 0, 0>{}, // 1-: GemmK0
Sequence<0, 0, 0, 0, 0, 0, 0>{}, // 2-: GemmM
Sequence<0, 0, 2, 0, 0, 0, 0>{})); // 3-: GemmK1
constexpr auto in_gemmk0_gemmn_gemmk1_grid_step_hacks = make_tuple(
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0>{}, // 0+: GemmB
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0>{}, // 1+: GemmK0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0>{}, // 2+: GemmN
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0>{}), // 3+: GemmK1
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0>{}, // 0-: GemmB
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0>{}, // 1-: GemmK0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0>{}, // 2-: GemmN
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0>{})); // 3-: GemmK1
constexpr auto wei_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0+: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1+: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2+: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3+: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4+: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5+: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6+: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}), // 7+: N2
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0-: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1-: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2-: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3-: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4-: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5-: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6-: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{})); // 7-: N2
constexpr auto out_gemmk0_gemmm_gemmk1_grid_move_slice_window_step_hacks =
Sequence<0, 0, 1, 0, 0, 0, 0>{};
constexpr auto in_gemmk0_gemmn_gemmk1_grid_move_slice_window_step_hacks =
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0>{};
const auto driver_gemm_xdlops =
driver_gemm_xdlops_v2r4<BlockSize,
TIn,
TAcc,
TWei,
InMemoryDataOperationEnum::AtomicAdd,
decltype(out_gemmk0_gemmm_gemmk1_grid_desc),
decltype(in_gemmk0_gemmn_gemmk1_grid_desc),
decltype(wei_gemmm_gemmn_grid_desc),
GemmMPerBlock,
GemmNPerBlock,
GemmKPerBlock,
GemmMPerWave,
GemmNPerWave,
GemmK1,
MRepeat,
NRepeat,
GemmABlockTransferThreadSliceLengths_GemmB_GemmK0_GemmM_GemmK1,
GemmABlockTransferThreadClusterLengths_GemmB_GemmK0_GemmM_GemmK1,
Sequence<0, 2, 1, 3>,
Sequence<0, 2, 1, 3>,
3,
GemmABlockTransferSrcScalarPerVector_GemmK1,
GemmABlockTransferDstScalarPerVector_GemmK1,
false, // don't move back src coordinate after threadwise copy
GemmBBlockTransferThreadSliceLengths_GemmB_GemmK0_GemmN_GemmK1,
GemmBBlockTransferThreadClusterLengths_GemmB_GemmK0_GemmN_GemmK1,
Sequence<0, 2, 1, 3>,
Sequence<0, 2, 1, 3>,
3,
GemmBBlockTransferSrcScalarPerVector_GemmN,
GemmBBlockTransferDstScalarPerVector_GemmK1,
false, // don't move back src coordinate after threadwise copy
Sequence<3, 0, 1, 2, 7, 5, 4, 6>,
7,
GemmCThreadTransferDstScalarPerVector,
decltype(out_gemmk0_gemmm_gemmk1_grid_step_hacks),
decltype(in_gemmk0_gemmn_gemmk1_grid_step_hacks),
decltype(wei_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks),
decltype(out_gemmk0_gemmm_gemmk1_grid_move_slice_window_step_hacks),
decltype(in_gemmk0_gemmn_gemmk1_grid_move_slice_window_step_hacks),
false,
true,
true>;
for(index_t i = 0; i < 5; ++i)
{
float ave_time =
driver_gemm_xdlops(static_cast<TOut*>(out_n_k_ho_wo_device_buf.GetDeviceBuffer()),
static_cast<TIn*>(in_n_c_hi_wi_device_buf.GetDeviceBuffer()),
static_cast<TWei*>(wei_k_c_y_x_device_buf.GetDeviceBuffer()),
out_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc,
debug::debug_driver_gemm_xdlops_v2r3::M01,
debug::debug_driver_gemm_xdlops_v2r3::N01,
out_gemmk0_gemmm_gemmk1_grid_step_hacks,
in_gemmk0_gemmn_gemmk1_grid_step_hacks,
wei_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks,
out_gemmk0_gemmm_gemmk1_grid_move_slice_window_step_hacks,
in_gemmk0_gemmn_gemmk1_grid_move_slice_window_step_hacks,
nrepeat);
float perf = static_cast<float>(calculate_convolution_flops(
in_n_c_hi_wi_desc, wei_k_c_y_x_desc, out_n_k_ho_wo_desc)) /
(std::size_t(1000) * 1000 * 1000) / ave_time;
std::cout << "Average time : " << ave_time << " ms, " << perf << " TFlop/s" << std::endl;
}
wei_k_c_y_x_device_buf.ToDevice(wei_k_c_y_x.mData.data());
driver_gemm_xdlops(static_cast<TOut*>(out_n_k_ho_wo_device_buf.GetDeviceBuffer()),
static_cast<TIn*>(in_n_c_hi_wi_device_buf.GetDeviceBuffer()),
static_cast<TWei*>(wei_k_c_y_x_device_buf.GetDeviceBuffer()),
out_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc,
debug::debug_driver_gemm_xdlops_v2r3::M01,
debug::debug_driver_gemm_xdlops_v2r3::N01,
out_gemmk0_gemmm_gemmk1_grid_step_hacks,
in_gemmk0_gemmn_gemmk1_grid_step_hacks,
wei_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks,
out_gemmk0_gemmm_gemmk1_grid_move_slice_window_step_hacks,
in_gemmk0_gemmn_gemmk1_grid_move_slice_window_step_hacks,
0);
// copy result back to host
wei_k_c_y_x_device_buf.FromDevice(wei_k_c_y_x.mData.data());
}
#include <unistd.h>
#include "device.hpp"
#include "host_tensor.hpp"
#include "transform_backward_weight_convolution_into_gemm_v4r4r2_nchw_kcyx_nkhw.hpp"
#include "driver_gemm_xdlops_v2r3.hpp"
template <typename TIn,
typename TWei,
typename TAcc,
typename TOut,
typename InLengths,
typename WeiLengths,
typename OutLengths,
typename ConvStrides,
typename ConvDilations,
typename InLeftPads,
typename InRightPads>
void device_convolution_backward_weight_implicit_gemm_v4r4r2_xdlops_nchw_kcyx_nkhw(
const InLengths& in_n_c_hi_wi_lengths,
const WeiLengths& wei_k_c_y_x_lengths,
const OutLengths& out_n_k_ho_wo_lengths,
const ConvStrides& conv_strides,
const ConvDilations& conv_dilations,
const InLeftPads& in_left_pads,
const InRightPads& in_right_pads,
const Tensor<TIn>& in_n_c_hi_wi,
Tensor<TWei>& wei_k_c_y_x,
const Tensor<TOut>& out_n_k_ho_wo,
ck::index_t nrepeat)
{
using namespace ck;
std::cout << __func__ << std::endl;
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
DeviceMem in_n_c_hi_wi_device_buf(sizeof(TIn) * in_n_c_hi_wi.mDesc.GetElementSpace());
DeviceMem wei_k_c_y_x_device_buf(sizeof(TWei) * wei_k_c_y_x.mDesc.GetElementSpace());
DeviceMem out_n_k_ho_wo_device_buf(sizeof(TOut) * out_n_k_ho_wo.mDesc.GetElementSpace());
in_n_c_hi_wi_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
wei_k_c_y_x_device_buf.ToDevice(wei_k_c_y_x.mData.data());
out_n_k_ho_wo_device_buf.ToDevice(out_n_k_ho_wo.mData.data());
const auto in_n_c_hi_wi_desc = make_naive_tensor_descriptor_packed(in_n_c_hi_wi_lengths);
const auto wei_k_c_y_x_desc = make_naive_tensor_descriptor_packed(wei_k_c_y_x_lengths);
const auto out_n_k_ho_wo_desc = make_naive_tensor_descriptor_packed(out_n_k_ho_wo_lengths);
#if 0
// [M, N, K0, K1] = [128, 128, 4, 8] for fp16
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerWave = 32;
constexpr index_t GemmNPerWave = 32;
constexpr index_t GemmK1 = 8;
constexpr index_t MRepeat = 2;
constexpr index_t NRepeat = 2;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 2, 8>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 64, 1>;
// using vector load 4, so config's wo*ho must be a multiple of 4
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK1 = 4;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 4;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 2, 8>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 1;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 8;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 1;
#elif 1
// [M, N, K0, K1] = [128, 128, 4, 8] for fp16
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 256;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerWave = 32;
constexpr index_t GemmNPerWave = 32;
constexpr index_t GemmK1 = 8;
constexpr index_t MRepeat = 4;
constexpr index_t NRepeat = 2;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 4, 8>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 64, 1>;
// using vector load 4, so config's wo*ho must be a multiple of 4
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK1 = 4;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 4;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 2, 8>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 1;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 8;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 1;
#endif
const auto descs = transform_backward_weight_convolution_into_gemm_v4r4r2_nchw_kcyx_nkhw_pad(
wei_k_c_y_x_desc,
in_n_c_hi_wi_desc,
out_n_k_ho_wo_desc,
conv_strides,
conv_dilations,
in_left_pads,
in_right_pads,
Number<GemmK1>{});
const auto out_gemmk0_gemmm_gemmk1_grid_desc = descs[I0];
const auto in_gemmk0_gemmn_gemmk1_grid_desc = descs[I1];
const auto wei_gemmm_gemmn_grid_desc = descs[I2];
// HACK: hacks that control index calculation when iterating over A, B, C matrix
constexpr auto out_gemmk0_gemmm_gemmk1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 1, 0, 0>{}, // 0+: GemmK0
Sequence<0, 0, 0, 0, 0>{}, // 1+: GemmM
Sequence<0, 0, 1, 0, 0>{}), // 2+: GemmK1
make_tuple(Sequence<0, 0, 2, 0, 0>{}, // 0-: GemmK0
Sequence<0, 0, 0, 0, 0>{}, // 1-: GemmM
Sequence<0, 0, 2, 0, 0>{})); // 2-: GemmK1
constexpr auto in_gemmk0_gemmn_gemmk1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0>{}, // 0+: GemmK0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0>{}, // 1+: GemmN
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0>{}), // 2+: GemmK1
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0>{}, // 0-: GemmK0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0>{}, // 1-: GemmN
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0>{})); // 2-: GemmK1
constexpr auto wei_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0+: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1+: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2+: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3+: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4+: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5+: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6+: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}), // 7+: N2
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0-: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1-: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2-: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3-: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4-: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5-: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6-: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{})); // 7-: N2
constexpr auto out_gemmk0_gemmm_gemmk1_grid_move_slice_window_step_hacks =
Sequence<0, 0, 1, 0, 0>{};
constexpr auto in_gemmk0_gemmn_gemmk1_grid_move_slice_window_step_hacks =
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0>{};
for(index_t i = 0; i < 5; ++i)
{
float ave_time = driver_gemm_xdlops_v2r3<
BlockSize,
TIn,
TAcc,
TWei,
InMemoryDataOperationEnum::Set,
decltype(out_gemmk0_gemmm_gemmk1_grid_desc),
decltype(in_gemmk0_gemmn_gemmk1_grid_desc),
decltype(wei_gemmm_gemmn_grid_desc),
GemmMPerBlock,
GemmNPerBlock,
GemmKPerBlock,
GemmMPerWave,
GemmNPerWave,
GemmK1,
MRepeat,
NRepeat,
GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1,
GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1,
Sequence<1, 0, 2>,
Sequence<1, 0, 2>,
2,
GemmABlockTransferSrcScalarPerVector_GemmK1,
GemmABlockTransferDstScalarPerVector_GemmK1,
false, // don't move back src coordinate after threadwise copy
GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1,
GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1,
Sequence<1, 0, 2>,
Sequence<1, 0, 2>,
2,
GemmBBlockTransferSrcScalarPerVector_GemmN,
GemmBBlockTransferDstScalarPerVector_GemmK1,
false, // don't move back src coordinate after threadwise copy
Sequence<3, 0, 1, 2, 7, 5, 4, 6>,
7,
GemmCThreadTransferDstScalarPerVector,
decltype(out_gemmk0_gemmm_gemmk1_grid_step_hacks),
decltype(in_gemmk0_gemmn_gemmk1_grid_step_hacks),
decltype(wei_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks),
decltype(out_gemmk0_gemmm_gemmk1_grid_move_slice_window_step_hacks),
decltype(in_gemmk0_gemmn_gemmk1_grid_move_slice_window_step_hacks),
false, // CAccessOrderMRepeatNRepeat
true, // ABlockLdsExtraM
true // BBlockLdsExtraN
>(static_cast<TOut*>(out_n_k_ho_wo_device_buf.GetDeviceBuffer()),
static_cast<TIn*>(in_n_c_hi_wi_device_buf.GetDeviceBuffer()),
static_cast<TWei*>(wei_k_c_y_x_device_buf.GetDeviceBuffer()),
out_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc,
debug::debug_driver_gemm_xdlops_v2r3::M01,
debug::debug_driver_gemm_xdlops_v2r3::N01,
out_gemmk0_gemmm_gemmk1_grid_step_hacks,
in_gemmk0_gemmn_gemmk1_grid_step_hacks,
wei_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks,
out_gemmk0_gemmm_gemmk1_grid_move_slice_window_step_hacks,
in_gemmk0_gemmn_gemmk1_grid_move_slice_window_step_hacks,
nrepeat);
float perf = static_cast<float>(calculate_convolution_flops(
in_n_c_hi_wi_desc, wei_k_c_y_x_desc, out_n_k_ho_wo_desc)) /
(std::size_t(1000) * 1000 * 1000) / ave_time;
std::cout << "Average time : " << ave_time << " ms, " << perf << " TFlop/s" << std::endl;
}
// copy result back to host
wei_k_c_y_x_device_buf.FromDevice(wei_k_c_y_x.mData.data());
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment