Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
cfc2be07
Commit
cfc2be07
authored
Jul 03, 2024
by
Adam Osewski
Browse files
Merge remote-tracking branch 'origin/develop' into aosewski/ggemm_multi_d2
parents
30e4f4eb
497ccb87
Changes
257
Hide whitespace changes
Inline
Side-by-side
Showing
17 changed files
with
1156 additions
and
16 deletions
+1156
-16
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bias_fastgelu_bf16_i8_bf16_mk_kn_mn_instance.cpp
...multiply_bias_fastgelu_bf16_i8_bf16_mk_kn_mn_instance.cpp
+41
-0
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_fastgelu_bf16_i8_bf16_mk_kn_mn_instance.cpp
...loop_multiply_fastgelu_bf16_i8_bf16_mk_kn_mn_instance.cpp
+39
-0
profiler/include/profiler/profile_grouped_gemm_multiply_tile_loop_impl.hpp
...profiler/profile_grouped_gemm_multiply_tile_loop_impl.hpp
+347
-0
profiler/src/CMakeLists.txt
profiler/src/CMakeLists.txt
+3
-2
profiler/src/profile_grouped_gemm.cpp
profiler/src/profile_grouped_gemm.cpp
+2
-2
profiler/src/profile_grouped_gemm_multiply_tile_loop.cpp
profiler/src/profile_grouped_gemm_multiply_tile_loop.cpp
+133
-0
test/CMakeLists.txt
test/CMakeLists.txt
+5
-2
test/contraction/test_contraction_xdl.cpp
test/contraction/test_contraction_xdl.cpp
+6
-0
test/grouped_convnd_bwd_weight/test_grouped_convnd_bwd_weight.cpp
...uped_convnd_bwd_weight/test_grouped_convnd_bwd_weight.cpp
+1
-1
test/grouped_convnd_fwd/CMakeLists.txt
test/grouped_convnd_fwd/CMakeLists.txt
+7
-3
test/grouped_convnd_fwd/test_grouped_convnd_fwd.cpp
test/grouped_convnd_fwd/test_grouped_convnd_fwd.cpp
+17
-1
test/grouped_convnd_fwd/test_grouped_convnd_fwd_multi_ab_interface.cpp
...convnd_fwd/test_grouped_convnd_fwd_multi_ab_interface.cpp
+5
-5
test/smfmac_op/CMakeLists.txt
test/smfmac_op/CMakeLists.txt
+2
-0
test/smfmac_op/smfmac_op.cpp
test/smfmac_op/smfmac_op.cpp
+82
-0
test/smfmac_op/smfmac_op_util.hpp
test/smfmac_op/smfmac_op_util.hpp
+361
-0
test/smfmac_op/smfmac_op_xdl.cpp
test/smfmac_op/smfmac_op_xdl.cpp
+89
-0
test/wmma_op/wmma_op_util.hpp
test/wmma_op/wmma_op_util.hpp
+16
-0
No files found.
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_bias_fastgelu_bf16_i8_bf16_mk_kn_mn_instance.cpp
0 → 100644
View file @
cfc2be07
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_gemm_xdl_tile_loop_multiply_bias_fastgelu_bf16_i8_bf16_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmTileLoop
<
Row
,
Row
,
ck
::
Tuple
<
Row
,
Row
>
,
Row
,
BF16
,
I8
,
ck
::
Tuple
<
BF16
,
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
MultiplyAddFastGelu
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances
<
ck
::
Tuple
<
Row
,
Row
>
,
ck
::
Tuple
<
BF16
,
BF16
>
,
MultiplyAddFastGelu
>
{});
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
<
ck
::
Tuple
<
Row
,
Row
>
,
ck
::
Tuple
<
BF16
,
BF16
>
,
MultiplyAddFastGelu
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_gemm_tile_loop/device_grouped_gemm_xdl_tile_loop_multiply_fastgelu_bf16_i8_bf16_mk_kn_mn_instance.cpp
0 → 100644
View file @
cfc2be07
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_gemm_xdl_tile_loop_multiply_fastgelu_bf16_i8_bf16_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmTileLoop
<
Row
,
Row
,
ck
::
Tuple
<
Row
>
,
Row
,
BF16
,
I8
,
ck
::
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
MultiplyFastGelu
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
MultiplyFastGelu
>
{});
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances
<
ck
::
Tuple
<
Row
>
,
ck
::
Tuple
<
BF16
>
,
MultiplyFastGelu
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
profiler/include/profiler/profile_grouped_gemm_multiply_tile_loop_impl.hpp
0 → 100644
View file @
cfc2be07
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/host_utility/hip_check_error.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_tile_loop.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_tile_loop_multiply.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
DDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
ALayout
,
typename
BLayout
,
typename
DLayout
,
typename
ELayout
>
bool
profile_grouped_gemm_multiply_tile_loop_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
const
std
::
vector
<
int
>&
Ms
,
const
std
::
vector
<
int
>&
Ns
,
const
std
::
vector
<
int
>&
Ks
,
const
std
::
vector
<
int
>&
StrideAs
,
const
std
::
vector
<
int
>&
StrideBs
,
const
std
::
vector
<
int
>&
StrideDs
,
const
std
::
vector
<
int
>&
StrideEs
,
int
n_warmup
=
10
,
int
n_iter
=
50
)
{
using
CDataType
=
EDataType
;
bool
pass
=
true
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
std
::
size_t
group_count
=
Ms
.
size
();
if
(
!
(
group_count
==
Ns
.
size
()
&&
group_count
==
Ks
.
size
()
&&
group_count
==
StrideAs
.
size
()
&&
group_count
==
StrideBs
.
size
()
&&
group_count
==
StrideEs
.
size
()))
{
throw
std
::
runtime_error
(
"wrong! inconsistent M/N/Ks, StrideA/B/Cs size
\n
"
);
}
std
::
vector
<
Tensor
<
ADataType
>>
a_m_k
;
std
::
vector
<
Tensor
<
BDataType
>>
b_k_n
;
std
::
vector
<
Tensor
<
DDataType
>>
d_m_n
;
std
::
vector
<
Tensor
<
CDataType
>>
e_m_n_host_results
;
std
::
vector
<
Tensor
<
CDataType
>>
e_m_n_device_results
;
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
{
a_m_k
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
Ms
[
i
],
Ks
[
i
],
StrideAs
[
i
],
ALayout
{})));
b_k_n
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
Ks
[
i
],
Ns
[
i
],
StrideBs
[
i
],
BLayout
{})));
d_m_n
.
push_back
(
Tensor
<
DDataType
>
(
f_host_tensor_descriptor
(
Ms
[
i
],
Ns
[
i
],
StrideDs
[
i
],
DLayout
{})));
e_m_n_device_results
.
push_back
(
Tensor
<
CDataType
>
(
f_host_tensor_descriptor
(
Ms
[
i
],
Ns
[
i
],
StrideEs
[
i
],
ELayout
{})));
e_m_n_host_results
.
push_back
(
Tensor
<
CDataType
>
(
f_host_tensor_descriptor
(
Ms
[
i
],
Ns
[
i
],
StrideEs
[
i
],
ELayout
{})));
if
(
ck
::
EnvIsEnabled
(
CK_ENV
(
CK_LOGGING
)))
{
std
::
cout
<<
"group: "
<<
i
<<
" a_m_k["
<<
i
<<
"]:"
<<
a_m_k
[
i
].
mDesc
<<
", b_k_n["
<<
i
<<
"]:"
<<
b_k_n
[
i
].
mDesc
<<
", e_m_n_device_results["
<<
i
<<
"]:"
<<
e_m_n_device_results
[
i
].
mDesc
<<
std
::
endl
;
}
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
5
,
5
}(
a_m_k
[
i
]);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
5
,
5
}(
b_k_n
[
i
]);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
DDataType
>
{
-
5
,
5
}(
d_m_n
[
i
]);
break
;
case
2
:
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
.0
,
1.
}(
a_m_k
[
i
]);
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
0.5
,
0.5
}(
b_k_n
[
i
]);
ck
::
utils
::
FillUniformDistribution
<
DDataType
>
{
-
0.5
,
0.5
}(
d_m_n
[
i
]);
break
;
default:
ck
::
utils
::
FillConstant
<
ADataType
>
{
1
}(
a_m_k
[
i
]);
ck
::
utils
::
FillConstant
<
BDataType
>
{
1
}(
b_k_n
[
i
]);
ck
::
utils
::
FillConstant
<
DDataType
>
{
1
}(
d_m_n
[
i
]);
}
}
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Multiply
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{};
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_device_buf
,
b_device_buf
,
d_device_buf
,
e_device_buf
;
a_device_buf
.
reserve
(
group_count
);
b_device_buf
.
reserve
(
group_count
);
d_device_buf
.
reserve
(
group_count
);
e_device_buf
.
reserve
(
group_count
);
std
::
vector
<
const
void
*>
p_a
,
p_b
,
p_d
;
constexpr
ck
::
index_t
NumDTensor
=
1
;
auto
p_ds
=
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>
{};
std
::
vector
<
void
*>
p_e
;
p_a
.
reserve
(
group_count
);
p_b
.
reserve
(
group_count
);
p_ds
.
reserve
(
group_count
);
p_e
.
reserve
(
group_count
);
using
KernelArguments
=
ck
::
tensor_operation
::
device
::
GroupedGemmTileLoopKernelArguments
<
NumDTensor
>
;
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
std
::
vector
<
KernelArguments
>
gemm_kargs
;
gemm_descs
.
reserve
(
group_count
);
gemm_kargs
.
reserve
(
group_count
);
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
{
a_device_buf
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
a_m_k
[
i
].
mDesc
.
GetElementSpaceSize
()));
b_device_buf
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
b_k_n
[
i
].
mDesc
.
GetElementSpaceSize
()));
d_device_buf
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
DDataType
)
*
d_m_n
[
i
].
mDesc
.
GetElementSpaceSize
()));
e_device_buf
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
CDataType
)
*
e_m_n_device_results
[
i
].
mDesc
.
GetElementSpaceSize
()));
a_device_buf
[
i
]
->
ToDevice
(
a_m_k
[
i
].
mData
.
data
());
b_device_buf
[
i
]
->
ToDevice
(
b_k_n
[
i
].
mData
.
data
());
d_device_buf
[
i
]
->
ToDevice
(
d_m_n
[
i
].
mData
.
data
());
e_device_buf
[
i
]
->
SetZero
();
p_a
.
push_back
(
a_device_buf
[
i
]
->
GetDeviceBuffer
());
p_b
.
push_back
(
b_device_buf
[
i
]
->
GetDeviceBuffer
());
p_ds
.
push_back
({
d_device_buf
[
i
]
->
GetDeviceBuffer
()});
p_e
.
push_back
(
e_device_buf
[
i
]
->
GetDeviceBuffer
());
gemm_descs
.
push_back
(
{
0
,
Ns
[
i
],
Ks
[
i
],
StrideAs
[
i
],
StrideBs
[
i
],
StrideEs
[
i
],
{
StrideDs
[
i
]}});
gemm_kargs
.
push_back
({
a_device_buf
[
i
]
->
GetDeviceBuffer
(),
b_device_buf
[
i
]
->
GetDeviceBuffer
(),
{
d_device_buf
[
i
]
->
GetDeviceBuffer
()},
e_device_buf
[
i
]
->
GetDeviceBuffer
(),
Ms
[
i
],
Ns
[
i
],
Ks
[
i
],
StrideAs
[
i
],
StrideBs
[
i
],
{
StrideDs
[
i
]},
StrideEs
[
i
]});
}
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmTileLoop
<
ALayout
,
BLayout
,
ck
::
Tuple
<
DLayout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
DDataType
>
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
if
(
op_ptrs
.
size
()
<=
0
)
{
throw
std
::
runtime_error
(
"wrong! no device GEMM instance found"
);
}
std
::
string
best_gemm_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
if
(
do_verification
)
{
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
Tensor
<
CDataType
>
c_m_n
({
Ms
[
i
],
Ns
[
i
]});
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
[
i
],
b_k_n
[
i
],
c_m_n
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
Ms
[
i
];
++
m
)
{
for
(
int
n
=
0
;
n
<
Ns
[
i
];
++
n
)
{
cde_element_op
(
e_m_n_host_results
[
i
](
m
,
n
),
c_m_n
(
m
,
n
),
d_m_n
[
i
](
m
,
n
));
}
}
}
}
// profile device GEMM instances
for
(
auto
&
gemm_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
gemm_ptr
->
MakeArgumentPointer
(
p_a
,
p_b
,
p_ds
,
p_e
,
gemm_descs
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
cde_element_op
);
auto
invoker_ptr
=
gemm_ptr
->
MakeInvokerPointer
();
std
::
string
gemm_name
=
gemm_ptr
->
GetTypeString
();
DeviceMem
gemm_arg_dev_mem
(
gemm_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()));
hip_check_error
(
hipMemcpy
(
gemm_arg_dev_mem
.
GetDeviceBuffer
(),
gemm_kargs
.
data
(),
gemm_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()),
hipMemcpyHostToDevice
));
gemm_ptr
->
SetDeviceKernelArgs
(
argument_ptr
.
get
(),
gemm_arg_dev_mem
.
GetDeviceBuffer
());
if
(
gemm_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
,
0
,
n_warmup
,
n_iter
});
if
(
do_verification
)
{
bool
instance_pass
=
true
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
e_device_buf
[
i
]
->
FromDevice
(
e_m_n_device_results
[
i
].
mData
.
data
());
instance_pass
=
instance_pass
&&
ck
::
utils
::
check_err
(
e_m_n_device_results
[
i
],
e_m_n_host_results
[
i
]);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
[
i
].
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
[
i
].
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"e_device: "
,
e_m_n_device_results
[
i
].
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"e_host : "
,
e_m_n_host_results
[
i
].
mData
,
","
)
<<
std
::
endl
;
}
}
std
::
cout
<<
"Instance: "
<<
gemm_name
<<
" verification "
<<
(
instance_pass
?
"SUCCEED"
:
"FAILED"
)
<<
std
::
endl
;
pass
=
pass
&&
instance_pass
;
}
if
(
time_kernel
)
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
0
,
n_warmup
,
n_iter
});
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
flop
+=
std
::
size_t
(
2
)
*
Ms
[
i
]
*
Ns
[
i
]
*
Ks
[
i
];
num_btype
+=
sizeof
(
ADataType
)
*
Ms
[
i
]
*
Ks
[
i
]
+
sizeof
(
BDataType
)
*
Ks
[
i
]
*
Ns
[
i
]
+
sizeof
(
EDataType
)
*
Ms
[
i
]
*
Ns
[
i
]
+
// D matrix
sizeof
(
EDataType
)
*
Ms
[
i
]
*
Ns
[
i
];
}
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_gemm_name
=
gemm_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
}
else
{
std
::
cout
<<
"Instance: "
<<
gemm_name
<<
", does not support this GEMM problem"
<<
std
::
endl
;
}
}
if
(
time_kernel
)
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_gemm_name
<<
std
::
endl
;
}
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/src/CMakeLists.txt
View file @
cfc2be07
...
@@ -44,6 +44,7 @@ if(GPU_TARGETS MATCHES "gfx9")
...
@@ -44,6 +44,7 @@ if(GPU_TARGETS MATCHES "gfx9")
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp
)
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp
)
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_multiple_d_splitk.cpp
)
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_multiple_d_splitk.cpp
)
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_tile_loop.cpp
)
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_tile_loop.cpp
)
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_multiply_tile_loop.cpp
)
endif
()
endif
()
list
(
APPEND PROFILER_SOURCES profile_gemm_multiply_add.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_multiply_add.cpp
)
list
(
APPEND PROFILER_SOURCES profile_batched_gemm.cpp
)
list
(
APPEND PROFILER_SOURCES profile_batched_gemm.cpp
)
...
@@ -59,7 +60,7 @@ if(GPU_TARGETS MATCHES "gfx9")
...
@@ -59,7 +60,7 @@ if(GPU_TARGETS MATCHES "gfx9")
endif
()
endif
()
if
(
GPU_TARGETS MATCHES
"gfx11"
OR GPU_TARGETS MATCHES
"gfx9"
)
if
(
GPU_TARGETS MATCHES
"gfx11"
OR GPU_TARGETS MATCHES
"gfx12"
OR GPU_TARGETS MATCHES
"gfx9"
)
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
list
(
APPEND PROFILER_SOURCES profile_gemm_bilinear.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_bilinear.cpp
)
endif
()
endif
()
...
@@ -135,7 +136,7 @@ if(GPU_TARGETS MATCHES "gfx9")
...
@@ -135,7 +136,7 @@ if(GPU_TARGETS MATCHES "gfx9")
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv2d_bwd_weight_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv2d_bwd_weight_instance
)
endif
()
endif
()
if
(
GPU_TARGETS MATCHES
"gfx9"
OR GPU_TARGETS MATCHES
"gfx11"
)
if
(
GPU_TARGETS MATCHES
"gfx9"
OR GPU_TARGETS MATCHES
"gfx11"
OR GPU_TARGETS MATCHES
"gfx12"
)
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_bilinear_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_bilinear_instance
)
endif
()
endif
()
...
...
profiler/src/profile_grouped_gemm.cpp
View file @
cfc2be07
...
@@ -98,8 +98,8 @@ int profile_grouped_gemm(int argc, char* argv[])
...
@@ -98,8 +98,8 @@ int profile_grouped_gemm(int argc, char* argv[])
int
n_iter
=
10
;
int
n_iter
=
10
;
if
(
argc
==
17
)
if
(
argc
==
17
)
{
{
n_warmup
=
std
::
stoi
(
argv
[
1
6
]);
n_warmup
=
std
::
stoi
(
argv
[
1
5
]);
n_iter
=
std
::
stoi
(
argv
[
1
7
]);
n_iter
=
std
::
stoi
(
argv
[
1
6
]);
}
}
#ifdef CK_ENABLE_FP16
#ifdef CK_ENABLE_FP16
...
...
profiler/src/profile_grouped_gemm_multiply_tile_loop.cpp
0 → 100644
View file @
cfc2be07
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#include "profiler/profile_grouped_gemm_multiply_tile_loop_impl.hpp"
#include "profiler_operation_registry.hpp"
enum
struct
GemmMatrixLayout
{
MK_KN_MN
,
// 0
};
enum
struct
GemmDataType
{
BF16_INT8_BF16_BF16
,
// 0
};
#define OP_NAME "grouped_gemm_multiply_tile_loop"
#define OP_DESC "Grouped GEMM Multiply Multiple D Tile Loop"
namespace
{
std
::
vector
<
int
>
argToIntArray
(
char
*
input
)
{
std
::
vector
<
int
>
out
;
std
::
istringstream
in
(
input
);
std
::
string
item
;
while
(
std
::
getline
(
in
,
item
,
','
))
{
out
.
push_back
(
std
::
stoi
(
item
));
}
return
out
;
}
int
profile_grouped_gemm_tile_loop
(
int
argc
,
char
*
argv
[])
{
if
(
argc
<
14
)
{
std
::
cout
<<
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
<<
"arg2: data type (0: bf16@int8)
\n
"
<<
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n]);
\n
"
<<
"arg4: verification (0: no; 1: yes)
\n
"
<<
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
<<
"arg6: print tensor value (0: no; 1: yes)
\n
"
<<
"arg7: time kernel (0=n0, 1=yes)
\n
"
<<
"arg8 to 13: Ms, Ns, Ks, StrideAs, StrideBs, StrideCs (e.g., 256,256 128,128 64,64 "
"64,64 64,64 128,128)
\n
"
<<
"optional:
\n
"
<<
"arg14: number of warm-up cycles (default 1)
\n
"
<<
"arg15: number of iterations (default 10)
\n
"
<<
std
::
endl
;
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
GemmDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
GemmMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
auto
Ms
=
argToIntArray
(
argv
[
8
]);
const
auto
Ns
=
argToIntArray
(
argv
[
9
]);
const
auto
Ks
=
argToIntArray
(
argv
[
10
]);
auto
StrideAs
=
argToIntArray
(
argv
[
11
]);
auto
StrideBs
=
argToIntArray
(
argv
[
12
]);
auto
StrideCs
=
argToIntArray
(
argv
[
13
]);
const
int
DefaultStrideA
=
Ks
[
0
];
const
int
DefaultStrideB
=
Ns
[
0
];
const
int
DefaultStrideC
=
Ns
[
0
];
for
(
size_t
i
=
0
;
i
<
Ms
.
size
();
++
i
)
{
StrideAs
[
i
]
=
StrideAs
[
i
]
==
-
1
?
DefaultStrideA
:
StrideAs
[
i
];
StrideBs
[
i
]
=
StrideBs
[
i
]
==
-
1
?
DefaultStrideB
:
StrideBs
[
i
];
StrideCs
[
i
]
=
StrideCs
[
i
]
==
-
1
?
DefaultStrideC
:
StrideCs
[
i
];
}
std
::
vector
<
int
>
StrideDs
(
StrideCs
);
int
n_warmup
=
10
;
int
n_iter
=
50
;
if
(
argc
==
16
)
{
n_warmup
=
std
::
stoi
(
argv
[
14
]);
n_iter
=
std
::
stoi
(
argv
[
15
]);
}
if
(
data_type
==
GemmDataType
::
BF16_INT8_BF16_BF16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
ck
::
profiler
::
profile_grouped_gemm_multiply_tile_loop_impl
<
ck
::
bhalf_t
,
int8_t
,
ck
::
bhalf_t
,
ck
::
bhalf_t
,
float
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideDs
,
StrideCs
,
n_warmup
,
n_iter
);
}
else
{
throw
std
::
runtime_error
(
"wrong! this GEMM data_type & layout is not implemented"
);
}
return
0
;
}
}
// anonymous namespace
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_grouped_gemm_tile_loop
);
test/CMakeLists.txt
View file @
cfc2be07
...
@@ -60,7 +60,7 @@ function(add_test_executable TEST_NAME)
...
@@ -60,7 +60,7 @@ function(add_test_executable TEST_NAME)
endif
()
endif
()
endforeach
()
endforeach
()
foreach
(
source IN LISTS ARGN
)
foreach
(
source IN LISTS ARGN
)
if
(
NOT TEST
_TARGETS MATCHES
"gfx1
1
"
AND source MATCHES
"wmma"
)
if
(
NOT GPU_TARGETS MATCHES
"gfx11"
AND NOT GPU
_TARGETS MATCHES
"gfx1
2
"
AND source MATCHES
"wmma"
)
message
(
"removing wmma test
${
source
}
"
)
message
(
"removing wmma test
${
source
}
"
)
list
(
REMOVE_ITEM ARGN
"
${
source
}
"
)
list
(
REMOVE_ITEM ARGN
"
${
source
}
"
)
endif
()
endif
()
...
@@ -139,7 +139,7 @@ function(add_gtest_executable TEST_NAME)
...
@@ -139,7 +139,7 @@ function(add_gtest_executable TEST_NAME)
endif
()
endif
()
endforeach
()
endforeach
()
foreach
(
source IN LISTS ARGN
)
foreach
(
source IN LISTS ARGN
)
if
(
NOT TEST
_TARGETS MATCHES
"gfx1
1
"
AND source MATCHES
"wmma"
)
if
(
NOT GPU_TARGETS MATCHES
"gfx11"
AND NOT GPU
_TARGETS MATCHES
"gfx1
2
"
AND source MATCHES
"wmma"
)
message
(
"removing wmma test
${
source
}
"
)
message
(
"removing wmma test
${
source
}
"
)
list
(
REMOVE_ITEM ARGN
"
${
source
}
"
)
list
(
REMOVE_ITEM ARGN
"
${
source
}
"
)
endif
()
endif
()
...
@@ -210,4 +210,7 @@ add_subdirectory(wrapper)
...
@@ -210,4 +210,7 @@ add_subdirectory(wrapper)
if
(
GPU_TARGETS MATCHES
"gfx11"
)
if
(
GPU_TARGETS MATCHES
"gfx11"
)
add_subdirectory
(
wmma_op
)
add_subdirectory
(
wmma_op
)
endif
()
endif
()
if
(
GPU_TARGETS MATCHES
"gfx942"
)
add_subdirectory
(
smfmac_op
)
endif
()
add_subdirectory
(
position_embedding
)
add_subdirectory
(
position_embedding
)
test/contraction/test_contraction_xdl.cpp
View file @
cfc2be07
...
@@ -212,4 +212,10 @@ TYPED_TEST(TestContractionScaleMixedPrecision, scale)
...
@@ -212,4 +212,10 @@ TYPED_TEST(TestContractionScaleMixedPrecision, scale)
this
->
template
Run
<
6
>({{
1
,
1
,
1
,
3
,
2
,
3
},
{
1
,
1
,
1
,
3
,
2
,
3
},
{
1
,
1
,
1
,
2
,
2
,
4
}});
this
->
template
Run
<
6
>({{
1
,
1
,
1
,
3
,
2
,
3
},
{
1
,
1
,
1
,
3
,
2
,
3
},
{
1
,
1
,
1
,
2
,
2
,
4
}});
this
->
template
Run
<
2
>({{
16
,
8
},
{
16
,
8
},
{
16
,
8
}});
this
->
template
Run
<
2
>({{
16
,
8
},
{
16
,
8
},
{
16
,
8
}});
this
->
template
Run
<
2
>({{
8
,
16
},
{
16
,
8
},
{
8
,
16
}});
this
->
template
Run
<
2
>({{
8
,
16
},
{
16
,
8
},
{
8
,
16
}});
// special cases
this
->
template
Run
<
2
>({{
1
,
1
},
{
16
,
8
},
{
8
,
16
}});
this
->
template
Run
<
2
>({{
8
,
16
},
{
16
,
8
},
{
1
,
1
}});
this
->
template
Run
<
2
>({{
8
,
16
},
{
1
,
1
},
{
8
,
16
}});
this
->
template
Run
<
2
>({{
1
,
1
},
{
1
,
1
},
{
1
,
1
}});
}
}
test/grouped_convnd_bwd_weight/test_grouped_convnd_bwd_weight.cpp
View file @
cfc2be07
...
@@ -44,7 +44,7 @@ class TestGroupedConvndBwdWeight : public ::testing::Test
...
@@ -44,7 +44,7 @@ class TestGroupedConvndBwdWeight : public ::testing::Test
}
}
}
}
if
(
ck
::
is_gfx11_supported
())
if
(
ck
::
is_gfx11_supported
()
||
ck
::
is_gfx12_supported
()
)
{
{
// on gfx11 only support for 3d is implemented
// on gfx11 only support for 3d is implemented
if
constexpr
(
NDimSpatial
{}
!=
3
)
if
constexpr
(
NDimSpatial
{}
!=
3
)
...
...
test/grouped_convnd_fwd/CMakeLists.txt
View file @
cfc2be07
add_gtest_executable
(
test_grouped_convnd_fwd test_grouped_convnd_fwd_xdl_wmma.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx9"
OR GPU_TARGETS MATCHES
"gfx11"
)
if
(
result EQUAL 0
)
add_gtest_executable
(
test_grouped_convnd_fwd test_grouped_convnd_fwd.cpp
)
target_link_libraries
(
test_grouped_convnd_fwd PRIVATE utility device_grouped_conv1d_fwd_instance device_grouped_conv2d_fwd_instance device_grouped_conv3d_fwd_instance
)
if
(
GPU_TARGETS MATCHES
"gfx11"
)
target_link_libraries
(
test_grouped_convnd_fwd PRIVATE utility device_grouped_conv2d_fwd_instance device_grouped_conv3d_fwd_instance
)
else
()
target_link_libraries
(
test_grouped_convnd_fwd PRIVATE utility device_grouped_conv1d_fwd_instance device_grouped_conv2d_fwd_instance device_grouped_conv3d_fwd_instance
)
endif
()
endif
()
endif
()
add_gtest_executable
(
test_grouped_convnd_fwd_multi_ab_interface test_grouped_convnd_fwd_multi_ab_interface.cpp
)
add_gtest_executable
(
test_grouped_convnd_fwd_multi_ab_interface test_grouped_convnd_fwd_multi_ab_interface.cpp
)
...
...
test/grouped_convnd_fwd/test_grouped_convnd_fwd
_xdl_wmma
.cpp
→
test/grouped_convnd_fwd/test_grouped_convnd_fwd.cpp
View file @
cfc2be07
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <cstdlib>
#include <iostream>
#include <iostream>
...
@@ -69,6 +69,8 @@ using KernelTypes3d = ::testing::Types<std::tuple<float, GNDHWC, GKZYXC, GNDHWK>
...
@@ -69,6 +69,8 @@ using KernelTypes3d = ::testing::Types<std::tuple<float, GNDHWC, GKZYXC, GNDHWK>
std
::
tuple
<
ck
::
bhalf_t
,
NDHWGC
,
GKZYXC
,
NDHWGK
>
,
std
::
tuple
<
ck
::
bhalf_t
,
NDHWGC
,
GKZYXC
,
NDHWGK
>
,
std
::
tuple
<
int8_t
,
NDHWGC
,
GKZYXC
,
NDHWGK
>>
;
std
::
tuple
<
int8_t
,
NDHWGC
,
GKZYXC
,
NDHWGK
>>
;
using
KernelTypes2dLargeCases
=
::
testing
::
Types
<
std
::
tuple
<
float
,
NHWGC
,
GKYXC
,
NHWGK
>>
;
template
<
typename
Tuple
>
template
<
typename
Tuple
>
class
TestGroupedConvndFwd1d
:
public
TestGroupedConvndFwd
<
Tuple
>
class
TestGroupedConvndFwd1d
:
public
TestGroupedConvndFwd
<
Tuple
>
{
{
...
@@ -84,9 +86,15 @@ class TestGroupedConvndFwd3d : public TestGroupedConvndFwd<Tuple>
...
@@ -84,9 +86,15 @@ class TestGroupedConvndFwd3d : public TestGroupedConvndFwd<Tuple>
{
{
};
};
template
<
typename
Tuple
>
class
TestGroupedConvndFwd2dLargeCases
:
public
TestGroupedConvndFwd
<
Tuple
>
{
};
TYPED_TEST_SUITE
(
TestGroupedConvndFwd1d
,
KernelTypes1d
);
TYPED_TEST_SUITE
(
TestGroupedConvndFwd1d
,
KernelTypes1d
);
TYPED_TEST_SUITE
(
TestGroupedConvndFwd2d
,
KernelTypes2d
);
TYPED_TEST_SUITE
(
TestGroupedConvndFwd2d
,
KernelTypes2d
);
TYPED_TEST_SUITE
(
TestGroupedConvndFwd3d
,
KernelTypes3d
);
TYPED_TEST_SUITE
(
TestGroupedConvndFwd3d
,
KernelTypes3d
);
TYPED_TEST_SUITE
(
TestGroupedConvndFwd2dLargeCases
,
KernelTypes2dLargeCases
);
TYPED_TEST
(
TestGroupedConvndFwd1d
,
Test1D
)
TYPED_TEST
(
TestGroupedConvndFwd1d
,
Test1D
)
{
{
...
@@ -131,3 +139,11 @@ TYPED_TEST(TestGroupedConvndFwd3d, Test3D)
...
@@ -131,3 +139,11 @@ TYPED_TEST(TestGroupedConvndFwd3d, Test3D)
{
3
,
1
,
1
,
1
,
1
,
{
3
,
3
,
3
},
{
32
,
32
,
32
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}});
{
3
,
1
,
1
,
1
,
1
,
{
3
,
3
,
3
},
{
32
,
32
,
32
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}});
this
->
template
Run
<
3
>();
this
->
template
Run
<
3
>();
}
}
TYPED_TEST
(
TestGroupedConvndFwd2dLargeCases
,
Test2DLargeCases
)
{
// Case larger than 2GB
this
->
conv_params
.
push_back
(
{
2
,
1
,
64
,
4
,
192
,
{
2
,
2
},
{
224
,
224
},
{
224
,
224
},
{
0
,
0
},
{
0
,
0
},
{
0
,
0
}});
this
->
template
Run
<
2
>();
}
test/grouped_convnd_fwd/test_grouped_convnd_fwd_multi_ab_interface.cpp
View file @
cfc2be07
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023
-2024
, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <cstdlib>
#include <iostream>
#include <iostream>
...
@@ -207,7 +207,7 @@ TEST_F(TestGroupedConvndFwdMultiAInterface, MultiA)
...
@@ -207,7 +207,7 @@ TEST_F(TestGroupedConvndFwdMultiAInterface, MultiA)
std
::
array
<
const
void
*
,
NumAs
>
as
{
nullptr
,
nullptr
};
std
::
array
<
const
void
*
,
NumAs
>
as
{
nullptr
,
nullptr
};
const
void
*
b
=
nullptr
;
const
void
*
b
=
nullptr
;
EXPECT_TRUE
(
this
->
template
Run
(
as
,
b
));
EXPECT_TRUE
(
this
->
Run
(
as
,
b
));
}
}
TEST_F
(
TestGroupedConvndFwdMultiBInterface
,
MultiB
)
TEST_F
(
TestGroupedConvndFwdMultiBInterface
,
MultiB
)
...
@@ -215,7 +215,7 @@ TEST_F(TestGroupedConvndFwdMultiBInterface, MultiB)
...
@@ -215,7 +215,7 @@ TEST_F(TestGroupedConvndFwdMultiBInterface, MultiB)
const
void
*
a
=
nullptr
;
const
void
*
a
=
nullptr
;
std
::
array
<
const
void
*
,
NumBs
>
bs
{
nullptr
,
nullptr
};
std
::
array
<
const
void
*
,
NumBs
>
bs
{
nullptr
,
nullptr
};
EXPECT_TRUE
(
this
->
template
Run
(
a
,
bs
));
EXPECT_TRUE
(
this
->
Run
(
a
,
bs
));
}
}
TEST_F
(
TestGroupedConvndFwdMultiABInterface
,
MultiAB
)
TEST_F
(
TestGroupedConvndFwdMultiABInterface
,
MultiAB
)
...
@@ -223,7 +223,7 @@ TEST_F(TestGroupedConvndFwdMultiABInterface, MultiAB)
...
@@ -223,7 +223,7 @@ TEST_F(TestGroupedConvndFwdMultiABInterface, MultiAB)
std
::
array
<
const
void
*
,
NumAs
>
as
{
nullptr
,
nullptr
};
std
::
array
<
const
void
*
,
NumAs
>
as
{
nullptr
,
nullptr
};
std
::
array
<
const
void
*
,
NumBs
>
bs
{
nullptr
,
nullptr
};
std
::
array
<
const
void
*
,
NumBs
>
bs
{
nullptr
,
nullptr
};
EXPECT_TRUE
(
this
->
template
Run
(
as
,
bs
));
EXPECT_TRUE
(
this
->
Run
(
as
,
bs
));
}
}
TEST_F
(
TestGroupedConvndFwdInterface
,
SingleAB
)
TEST_F
(
TestGroupedConvndFwdInterface
,
SingleAB
)
...
@@ -231,5 +231,5 @@ TEST_F(TestGroupedConvndFwdInterface, SingleAB)
...
@@ -231,5 +231,5 @@ TEST_F(TestGroupedConvndFwdInterface, SingleAB)
const
void
*
a
=
nullptr
;
const
void
*
a
=
nullptr
;
const
void
*
b
=
nullptr
;
const
void
*
b
=
nullptr
;
EXPECT_TRUE
(
this
->
template
Run
(
a
,
b
));
EXPECT_TRUE
(
this
->
Run
(
a
,
b
));
}
}
test/smfmac_op/CMakeLists.txt
0 → 100644
View file @
cfc2be07
add_gtest_executable
(
test_smfmac_op smfmac_op_xdl.cpp
)
target_link_libraries
(
test_smfmac_op PRIVATE utility
)
test/smfmac_op/smfmac_op.cpp
0 → 100644
View file @
cfc2be07
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <tuple>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "test/smfmac_op/smfmac_op_util.hpp"
template
<
typename
Src1Type
,
ck
::
index_t
Src1VecSize
,
typename
Src2Type
,
ck
::
index_t
Src2VecSize
,
typename
DstType
,
ck
::
index_t
AccVecSize
,
typename
GPUAccType
,
typename
CPUAccType
,
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
>
bool
run_test
()
{
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
bool
pass
=
true
;
const
auto
matmul_default
=
ck
::
smfmac_op_util
::
matmul
<
Src1Type
,
Src1VecSize
,
Src2Type
,
Src2VecSize
,
GPUAccType
,
AccVecSize
,
DstType
,
M
,
N
,
K
>
;
const
auto
smfmac_kernel_container
=
std
::
make_tuple
(
matmul_default
);
ck
::
static_for
<
0
,
1
,
1
>
{}([
&
](
auto
i
)
{
pass
&=
ck
::
smfmac_op_util
::
TestSmfmac
<
decltype
(
std
::
get
<
ck
::
Number
<
i
>
{}
>
(
smfmac_kernel_container
)),
Src1Type
,
Src2Type
,
DstType
,
GPUAccType
,
CPUAccType
,
decltype
(
Row
{}),
decltype
(
Row
{}),
decltype
(
Row
{}),
PassThrough
,
PassThrough
,
PassThrough
,
AccVecSize
,
M
,
N
,
K
>
{}(
std
::
get
<
ck
::
Number
<
i
>
{}
>
(
smfmac_kernel_container
));
});
return
pass
;
}
int
main
(
int
,
char
*
[])
{
bool
pass
=
true
;
// clang-format off
// | Src1Type| Src1VecSize| Src2Type| Src2VecSize| DstType| DstVecSize| GPUAccType| CPUAccType| M| N| K|
pass
&=
run_test
<
ck
::
half_t
,
4
,
ck
::
half_t
,
8
,
float
,
4
,
float
,
float
,
16
,
16
,
32
>
();
pass
&=
run_test
<
ck
::
bhalf_t
,
4
,
ck
::
bhalf_t
,
8
,
float
,
4
,
float
,
float
,
16
,
16
,
32
>
();
pass
&=
run_test
<
ck
::
half_t
,
4
,
ck
::
half_t
,
8
,
float
,
16
,
float
,
float
,
32
,
32
,
16
>
();
pass
&=
run_test
<
ck
::
bhalf_t
,
4
,
ck
::
bhalf_t
,
8
,
float
,
16
,
float
,
float
,
32
,
32
,
16
>
();
// clang-format on
std
::
cout
<<
"TestGemm ..... "
<<
(
pass
?
"SUCCESS"
:
"FAILURE"
)
<<
std
::
endl
;
return
pass
;
}
test/smfmac_op/smfmac_op_util.hpp
0 → 100644
View file @
cfc2be07
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/utility/amd_smfmac.hpp"
#include "ck/library/utility/fill.hpp"
namespace
ck
{
namespace
smfmac_op_util
{
template
<
typename
src_vec1
,
typename
src_vec2
,
typename
acc_vec
>
__device__
void
builtin_smfmac_naive_selector
(
const
src_vec1
&
,
const
src_vec2
&
,
const
int32_t
&
,
acc_vec
&
)
{
}
template
<
>
__device__
void
builtin_smfmac_naive_selector
<
half4_t
,
half8_t
,
StaticBufferTupleOfVector
<
AddressSpaceEnum
::
Vgpr
,
float
,
1
,
4
,
true
>>
(
const
half4_t
&
reg_a
,
const
half8_t
&
reg_b
,
const
int32_t
&
reg_idx
,
StaticBufferTupleOfVector
<
AddressSpaceEnum
::
Vgpr
,
float
,
1
,
4
,
true
>&
reg_c
)
{
intrin_smfmac_f32_16x16x32f16
<
16
,
16
>::
Run
(
reg_a
,
reg_b
,
reg_idx
,
reg_c
.
GetVectorTypeReference
(
Number
<
0
>
{}));
}
template
<
>
__device__
void
builtin_smfmac_naive_selector
<
bhalf4_t
,
bhalf8_t
,
StaticBufferTupleOfVector
<
AddressSpaceEnum
::
Vgpr
,
float
,
1
,
4
,
true
>>
(
const
bhalf4_t
&
reg_a
,
const
bhalf8_t
&
reg_b
,
const
int32_t
&
reg_idx
,
StaticBufferTupleOfVector
<
AddressSpaceEnum
::
Vgpr
,
float
,
1
,
4
,
true
>&
reg_c
)
{
intrin_smfmac_f32_16x16x32bf16
<
16
,
16
>::
Run
(
reg_a
,
reg_b
,
reg_idx
,
reg_c
.
GetVectorTypeReference
(
Number
<
0
>
{}));
}
template
<
>
__device__
void
builtin_smfmac_naive_selector
<
half4_t
,
half8_t
,
StaticBufferTupleOfVector
<
AddressSpaceEnum
::
Vgpr
,
float
,
1
,
16
,
true
>>
(
const
half4_t
&
reg_a
,
const
half8_t
&
reg_b
,
const
int32_t
&
reg_idx
,
StaticBufferTupleOfVector
<
AddressSpaceEnum
::
Vgpr
,
float
,
1
,
16
,
true
>&
reg_c
)
{
intrin_smfmac_f32_32x32x16f16
<
32
,
32
>::
Run
(
reg_a
,
reg_b
,
reg_idx
,
reg_c
.
GetVectorTypeReference
(
Number
<
0
>
{}));
}
template
<
>
__device__
void
builtin_smfmac_naive_selector
<
bhalf4_t
,
bhalf8_t
,
StaticBufferTupleOfVector
<
AddressSpaceEnum
::
Vgpr
,
float
,
1
,
16
,
true
>>
(
const
bhalf4_t
&
reg_a
,
const
bhalf8_t
&
reg_b
,
const
int32_t
&
reg_idx
,
StaticBufferTupleOfVector
<
AddressSpaceEnum
::
Vgpr
,
float
,
1
,
16
,
true
>&
reg_c
)
{
intrin_smfmac_f32_32x32x16bf16
<
32
,
32
>::
Run
(
reg_a
,
reg_b
,
reg_idx
,
reg_c
.
GetVectorTypeReference
(
Number
<
0
>
{}));
}
// Smfmac instructions are using 4:2 structural sparsity, that means that in every contignuous
// subgroup of 4 elements, atleast 2 must be equal to zero and the position of non-zero elements is
// stored in idx register to allow selection of corresponding B matrix elements for multiplication.
// Currently smfmac instructions support only A matrix as sparse
template
<
typename
src1_t
,
index_t
src1_vec_size
,
typename
src2_t
,
index_t
src2_vec_size
,
typename
acc_t
,
index_t
acc_vec_size
,
typename
dst_t
,
int32_t
M
,
int32_t
N
,
int32_t
K
>
__global__
void
matmul
(
const
src1_t
*
a
,
const
src2_t
*
b
,
dst_t
*
c
)
{
__shared__
src1_t
a_shared
[
M
*
K
];
__shared__
src2_t
b_shared
[
K
*
N
];
const
int
lane
=
threadIdx
.
x
;
// smfmac's A part is storing only non-zero elements in 2VGPRs
// smfmac's B part is storing all elements in 4VGPRs
using
src1_vec
=
typename
vector_type
<
src1_t
,
src1_vec_size
>::
type
;
using
src1_full_vec
=
typename
vector_type
<
src1_t
,
src1_vec_size
*
2
>::
type
;
using
src2_vec
=
typename
vector_type
<
src2_t
,
src2_vec_size
>::
type
;
src1_vec
a_frag
=
{};
src2_vec
b_frag
=
{};
src1_full_vec
a_temp
=
{};
src2_vec
b_temp
=
{};
// initialize c fragment to 0
using
acc_vec
=
StaticBufferTupleOfVector
<
AddressSpaceEnum
::
Vgpr
,
acc_t
,
1
,
acc_vec_size
,
true
>
;
acc_vec
c_thread_buf_
;
for
(
int
i
=
0
;
i
<
8
;
++
i
)
{
a_temp
[
i
]
=
a
[(
lane
%
M
)
*
K
+
(
lane
/
M
)
*
8
+
i
];
// M K
}
for
(
int
i
=
0
;
i
<
8
;
++
i
)
{
b_temp
[
i
]
=
b
[(
8
*
(
lane
/
N
)
+
i
)
*
N
+
(
lane
%
N
)];
// K N
}
__syncthreads
();
for
(
int
i
=
0
;
i
<
8
;
++
i
)
{
a_shared
[(
lane
%
M
)
*
K
+
(
lane
/
M
)
*
8
+
i
]
=
a_temp
[
i
];
}
for
(
int
i
=
0
;
i
<
8
;
++
i
)
{
b_shared
[(
8
*
(
lane
/
N
)
+
i
)
*
N
+
(
lane
%
N
)]
=
b_temp
[
i
];
}
__syncthreads
();
// Idx must be a 32-bit register and it is storing 4 2-bit indexes of A's non zero elements.
// It starts with last two elements of every 4 elements subgroup set as non-zero
int32_t
idx
=
0b11101110
;
// Bit masks are for zeroing 0-3rd position of idx
static
constexpr
int32_t
bit_clear_masks
[
4
]
=
{
0b11
,
0b1100
,
0b110000
,
0b11000000
};
src1_t
curr_val
;
int32_t
a_pos
=
0
;
for
(
int
j
=
0
;
j
<
2
;
++
j
)
{
a_pos
=
j
*
2
;
for
(
int
i
=
0
;
i
<
4
;
++
i
)
{
curr_val
=
a_shared
[(
lane
%
M
)
*
K
+
(
lane
/
M
)
*
8
+
4
*
j
+
i
];
if
(
curr_val
!=
0.0
f
)
{
idx
&=
~
bit_clear_masks
[
a_pos
];
idx
|=
(
i
%
4
)
<<
2
*
a_pos
;
a_frag
[
a_pos
]
=
curr_val
;
a_pos
++
;
}
}
}
for
(
int
i
=
0
;
i
<
8
;
++
i
)
{
b_frag
[
i
]
=
b_shared
[(
8
*
(
lane
/
N
)
+
i
)
*
N
+
(
lane
%
N
)];
}
builtin_smfmac_naive_selector
<
src1_vec
,
src2_vec
,
acc_vec
>
(
a_frag
,
b_frag
,
idx
,
c_thread_buf_
);
__syncthreads
();
// store results from unpacked c_thread_buf_ output
if
constexpr
(
K
==
32
)
{
static_for
<
0
,
acc_vec_size
,
1
>
{}([
&
](
auto
i
)
{
c
[(
4
*
(
lane
/
16
)
+
i
)
*
N
+
lane
%
16
]
=
ck
::
type_convert
<
dst_t
>
(
c_thread_buf_
[
Number
<
i
>
{}]);
});
}
else
{
static_for
<
0
,
acc_vec_size
,
1
>
{}([
&
](
auto
i
)
{
c
[((
8
*
(
i
/
4
))
%
32
+
4
*
(
lane
/
32
)
+
i
%
4
)
*
N
+
lane
%
32
]
=
ck
::
type_convert
<
dst_t
>
(
c_thread_buf_
[
Number
<
i
>
{}]);
});
}
}
struct
GemmParams
{
GemmParams
()
:
M
(
16
),
N
(
16
),
K
(
32
),
StrideA
(
32
),
StrideB
(
16
),
StrideC
(
16
),
alpha
(
1
),
beta
(
0
)
{}
ck
::
index_t
M
;
ck
::
index_t
N
;
ck
::
index_t
K
;
ck
::
index_t
StrideA
;
ck
::
index_t
StrideB
;
ck
::
index_t
StrideC
;
float
alpha
;
float
beta
;
};
template
<
typename
GemmInstance
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
void
RunHostGEMM
(
const
Tensor
<
ADataType
>&
A
,
const
Tensor
<
BDataType
>&
B
,
Tensor
<
CDataType
>&
C
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
auto
ref_gemm
=
GemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
A
,
B
,
C
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
}
template
<
typename
KernelType
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
>
bool
RunDeviceGEMM
(
KernelType
kernel
,
const
Tensor
<
ADataType
>&
A
,
const
Tensor
<
BDataType
>&
B
,
Tensor
<
CDataType
>&
C
)
{
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
A
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_n_k_device_buf
(
sizeof
(
BDataType
)
*
B
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
C
.
mDesc
.
GetElementSpaceSize
());
a_m_k_device_buf
.
ToDevice
(
A
.
mData
.
data
());
b_n_k_device_buf
.
ToDevice
(
B
.
mData
.
data
());
kernel
<<<
1
,
64
>>>
(
static_cast
<
const
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
BDataType
*>
(
b_n_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()));
c_m_n_device_buf
.
FromDevice
(
C
.
mData
.
data
());
return
true
;
}
template
<
typename
DeviceSmfmac
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
GPUAccDataType
,
typename
CPUAccDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
index_t
CAccNum
,
index_t
M
,
index_t
N
,
index_t
K
>
struct
TestSmfmac
{
auto
PrepareGemmTensor
(
const
ck
::
smfmac_op_util
::
GemmParams
&
params
)
{
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
params
.
M
,
params
.
K
,
params
.
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_n_k
(
f_host_tensor_descriptor
(
params
.
K
,
params
.
N
,
params
.
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
params
.
M
,
params
.
N
,
params
.
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
params
.
M
,
params
.
N
,
params
.
StrideC
,
CLayout
{}));
auto
f_generate_tensor_value
=
[](
auto
&
tensor
,
auto
type
)
{
using
dataType
=
decltype
(
type
);
tensor
.
GenerateTensorValue
(
GeneratorTensor_2
<
dataType
>
{
-
5
,
5
});
};
f_generate_tensor_value
(
a_m_k
,
ADataType
{});
f_generate_tensor_value
(
b_n_k
,
BDataType
{});
ck
::
utils
::
TransformIntoStructuralSparsity
<
ADataType
>
{}(
a_m_k
);
return
std
::
make_tuple
(
a_m_k
,
b_n_k
,
c_m_n_host_result
,
c_m_n_device_result
);
}
auto
operator
()(
const
DeviceSmfmac
&
smfmac_kernel
)
{
std
::
cout
<<
"ALayout = "
<<
ALayout
{}.
name
<<
", BLayout = "
<<
BLayout
{}.
name
<<
", CLayout = "
<<
CLayout
{}.
name
<<
std
::
endl
;
// Arrange
ck
::
smfmac_op_util
::
GemmParams
params
;
params
.
M
=
M
;
params
.
N
=
N
;
params
.
K
=
K
;
params
.
StrideA
=
K
;
// M K
params
.
StrideB
=
N
;
// K N
params
.
StrideC
=
N
;
// M N
auto
host_tensors
=
PrepareGemmTensor
(
params
);
const
Tensor
<
ADataType
>&
a
=
std
::
get
<
0
>
(
host_tensors
);
const
Tensor
<
BDataType
>&
b
=
std
::
get
<
1
>
(
host_tensors
);
Tensor
<
CDataType
>&
c_host
=
std
::
get
<
2
>
(
host_tensors
);
Tensor
<
CDataType
>&
c_device
=
std
::
get
<
3
>
(
host_tensors
);
auto
a_element_op
=
AElementwiseOperation
{};
auto
b_element_op
=
BElementwiseOperation
{};
auto
c_element_op
=
CElementwiseOperation
{};
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
CPUAccDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
;
ck
::
smfmac_op_util
::
RunHostGEMM
<
ReferenceGemmInstance
>
(
a
,
b
,
c_host
,
a_element_op
,
b_element_op
,
c_element_op
);
// Act
bool
is_supported
=
ck
::
smfmac_op_util
::
RunDeviceGEMM
(
smfmac_kernel
,
a
,
b
,
c_device
);
if
(
is_supported
)
{
// Assert
bool
res
=
false
;
if
(
std
::
is_same
<
CDataType
,
float
>::
value
)
{
res
=
ck
::
utils
::
check_err
(
c_device
.
mData
,
c_host
.
mData
);
std
::
cout
<<
(
res
?
"SUCCESS"
:
"FAILURE"
)
<<
std
::
endl
;
}
else
{
std
::
cout
<<
"UNSUPPORTED CDataType"
<<
std
::
endl
;
}
return
res
;
}
else
{
return
true
;
}
}
};
}
// namespace smfmac_op_util
}
// namespace ck
test/smfmac_op/smfmac_op_xdl.cpp
0 → 100644
View file @
cfc2be07
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <tuple>
#include <vector>
#include "ck/ck.hpp"
#include "gtest/gtest.h"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "test/smfmac_op/smfmac_op_util.hpp"
using
BF16
=
ck
::
bhalf_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
template
<
typename
Tuple
>
class
TestSmfmac
:
public
::
testing
::
Test
{
protected:
using
Src1Type
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
static
constexpr
ck
::
index_t
Src1VecSize
=
std
::
tuple_element_t
<
1
,
Tuple
>
{}.
value
;
using
Src2Type
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
static
constexpr
ck
::
index_t
Src2VecSize
=
std
::
tuple_element_t
<
3
,
Tuple
>
{}.
value
;
using
DstType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
static
constexpr
ck
::
index_t
AccVecSize
=
std
::
tuple_element_t
<
5
,
Tuple
>
{}.
value
;
using
GPUAccType
=
std
::
tuple_element_t
<
6
,
Tuple
>
;
using
CPUAccType
=
std
::
tuple_element_t
<
7
,
Tuple
>
;
static
constexpr
ck
::
index_t
M
=
std
::
tuple_element_t
<
8
,
Tuple
>
{}.
value
;
static
constexpr
ck
::
index_t
N
=
std
::
tuple_element_t
<
9
,
Tuple
>
{}.
value
;
static
constexpr
ck
::
index_t
K
=
std
::
tuple_element_t
<
10
,
Tuple
>
{}.
value
;
void
Run
()
{
bool
pass
=
true
;
constexpr
auto
matmul_default
=
ck
::
smfmac_op_util
::
matmul
<
Src1Type
,
Src1VecSize
,
Src2Type
,
Src2VecSize
,
GPUAccType
,
AccVecSize
,
DstType
,
M
,
N
,
K
>
;
constexpr
auto
smfmac_kernel_container
=
std
::
make_tuple
(
matmul_default
);
ck
::
static_for
<
0
,
std
::
tuple_size_v
<
decltype
(
smfmac_kernel_container
)
>
,
1
>
{}([
&
](
auto
i
)
{
pass
&=
ck
::
smfmac_op_util
::
TestSmfmac
<
std
::
tuple_element_t
<
i
.
value
,
decltype
(
smfmac_kernel_container
)
>
,
Src1Type
,
Src2Type
,
DstType
,
GPUAccType
,
CPUAccType
,
decltype
(
Row
{}),
decltype
(
Row
{}),
decltype
(
Row
{}),
PassThrough
,
PassThrough
,
PassThrough
,
AccVecSize
,
M
,
N
,
K
>
{}(
std
::
get
<
ck
::
Number
<
i
>
{}
>
(
smfmac_kernel_container
));
});
EXPECT_TRUE
(
pass
);
}
};
template
<
ck
::
index_t
N
>
using
I
=
ck
::
Number
<
N
>
;
using
KernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
F16
,
I
<
4
>
,
F16
,
I
<
8
>
,
F32
,
I
<
4
>
,
F32
,
F32
,
I
<
16
>
,
I
<
16
>
,
I
<
32
>>
,
std
::
tuple
<
BF16
,
I
<
4
>
,
BF16
,
I
<
8
>
,
F32
,
I
<
4
>
,
F32
,
F32
,
I
<
16
>
,
I
<
16
>
,
I
<
32
>>
,
std
::
tuple
<
F16
,
I
<
4
>
,
F16
,
I
<
8
>
,
F32
,
I
<
16
>
,
F32
,
F32
,
I
<
32
>
,
I
<
32
>
,
I
<
16
>>
,
std
::
tuple
<
BF16
,
I
<
4
>
,
BF16
,
I
<
8
>
,
F32
,
I
<
16
>
,
F32
,
F32
,
I
<
32
>
,
I
<
32
>
,
I
<
16
>>>
;
TYPED_TEST_SUITE
(
TestSmfmac
,
KernelTypes
);
TYPED_TEST
(
TestSmfmac
,
TestSmfmacFP16BF16
)
{
this
->
Run
();
}
test/wmma_op/wmma_op_util.hpp
View file @
cfc2be07
...
@@ -140,10 +140,18 @@ __global__ void matmul(const src_t* a, const src_t* b, dst_t* c)
...
@@ -140,10 +140,18 @@ __global__ void matmul(const src_t* a, const src_t* b, dst_t* c)
p_shared
[
8
*
16
*
lane_hi
+
8
*
lane_lo
+
ele
+
16
*
16
]
=
b_temp
[
ele
];
p_shared
[
8
*
16
*
lane_hi
+
8
*
lane_lo
+
ele
+
16
*
16
]
=
b_temp
[
ele
];
}
}
#ifdef __gfx12__
asm
volatile
(
"\
s_wait_dscnt 0x0
\n
\
s_barrier_signal -1
\n
\
s_barrier_wait -1 \
"
::
);
#else
asm
volatile
(
"\
asm
volatile
(
"\
s_waitcnt lgkmcnt(0)
\n
\
s_waitcnt lgkmcnt(0)
\n
\
s_barrier \
s_barrier \
"
::
);
"
::
);
#endif
for
(
int
ele
=
0
;
ele
<
16
;
++
ele
)
for
(
int
ele
=
0
;
ele
<
16
;
++
ele
)
{
{
...
@@ -155,10 +163,18 @@ __global__ void matmul(const src_t* a, const src_t* b, dst_t* c)
...
@@ -155,10 +163,18 @@ __global__ void matmul(const src_t* a, const src_t* b, dst_t* c)
a_frag
[
ele
]
=
p_shared
[(
ele
/
8
)
*
16
*
8
+
8
*
lane
+
ele
%
8
];
a_frag
[
ele
]
=
p_shared
[(
ele
/
8
)
*
16
*
8
+
8
*
lane
+
ele
%
8
];
}
}
#ifdef __gfx12__
asm
volatile
(
"\
s_wait_dscnt 0x0
\n
\
s_barrier_signal -1
\n
\
s_barrier_wait -1 \
"
::
);
#else
asm
volatile
(
"\
asm
volatile
(
"\
s_waitcnt lgkmcnt(0)
\n
\
s_waitcnt lgkmcnt(0)
\n
\
s_barrier \
s_barrier \
"
::
);
"
::
);
#endif
// sync threads, similar to mma_sync
// sync threads, similar to mma_sync
// __syncthreads();
// __syncthreads();
...
...
Prev
1
…
9
10
11
12
13
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment