Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
cd69c852
Unverified
Commit
cd69c852
authored
Jan 28, 2025
by
Max Podkorytov
Browse files
fork pipeline
parent
ac9ddd93
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
1434 additions
and
2 deletions
+1434
-2
include/ck_tile/ops/flex_fmha.hpp
include/ck_tile/ops/flex_fmha.hpp
+2
-2
include/ck_tile/ops/fmha/pipeline/block_fmha_pipeline_flex_qr_ks_vs.hpp
...e/ops/fmha/pipeline/block_fmha_pipeline_flex_qr_ks_vs.hpp
+648
-0
include/ck_tile/ops/fmha/pipeline/block_fmha_pipeline_flex_qr_ks_vs_async.hpp
...fmha/pipeline/block_fmha_pipeline_flex_qr_ks_vs_async.hpp
+784
-0
No files found.
include/ck_tile/ops/flex_fmha.hpp
View file @
cd69c852
...
...
@@ -12,8 +12,8 @@
#include "ck_tile/ops/fmha/kernel/fmha_fwd_kernel.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_enum.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_problem.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qr_ks_vs.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qr_ks_vs_async.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_
flex_
qr_ks_vs.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_
flex_
qr_ks_vs_async.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qr_ks_vs_async_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qr_ks_vs_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/tile_fmha_shape.hpp"
...
...
include/ck_tile/ops/fmha/pipeline/block_fmha_pipeline_flex_qr_ks_vs.hpp
0 → 100644
View file @
cd69c852
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/fmha/block/block_attention_bias_enum.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qr_ks_vs_default_policy.hpp"
#include "ck_tile/ops/fmha/block/block_dropout.hpp"
#include "ck_tile/ops/reduce/block/block_reduce.hpp"
namespace
ck_tile
{
// This pipeline is qkv all located in LDS
template
<
typename
Problem_
,
typename
Policy_
=
BlockFmhaPipelineQRKSVSDefaultPolicy
>
struct
BlockFmhaPipelineQRKSVS
{
using
Problem
=
remove_cvref_t
<
Problem_
>
;
using
Policy
=
remove_cvref_t
<
Policy_
>
;
using
QDataType
=
remove_cvref_t
<
typename
Problem
::
QDataType
>
;
using
KDataType
=
remove_cvref_t
<
typename
Problem
::
KDataType
>
;
using
VDataType
=
remove_cvref_t
<
typename
Problem
::
VDataType
>
;
using
SaccDataType
=
remove_cvref_t
<
typename
Problem
::
SaccDataType
>
;
using
SMPLComputeDataType
=
remove_cvref_t
<
typename
Problem
::
SMPLComputeDataType
>
;
using
BiasDataType
=
remove_cvref_t
<
typename
Problem
::
BiasDataType
>
;
using
RandValOutputDataType
=
remove_cvref_t
<
typename
Problem
::
RandValOutputDataType
>
;
using
LSEDataType
=
remove_cvref_t
<
typename
Problem
::
LSEDataType
>
;
using
PDataType
=
remove_cvref_t
<
typename
Problem
::
PDataType
>
;
using
OaccDataType
=
remove_cvref_t
<
typename
Problem
::
OaccDataType
>
;
using
ODataType
=
remove_cvref_t
<
typename
Problem
::
ODataType
>
;
using
FmhaMask
=
remove_cvref_t
<
typename
Problem
::
FmhaMask
>
;
using
BlockFmhaShape
=
remove_cvref_t
<
typename
Problem
::
BlockFmhaShape
>
;
using
VLayout
=
remove_cvref_t
<
typename
BlockFmhaShape
::
VLayout
>
;
static
constexpr
bool
kQLoadOnce
=
true
;
// if q_tile load whole block length (hdim) at once
static_assert
(
kQLoadOnce
==
Policy
::
QLoadOnce
);
static
constexpr
index_t
kBlockSize
=
Problem
::
kBlockSize
;
static
constexpr
index_t
kM0
=
BlockFmhaShape
::
kM0
;
static
constexpr
index_t
kN0
=
BlockFmhaShape
::
kN0
;
static
constexpr
index_t
kK0
=
BlockFmhaShape
::
kK0
;
static
constexpr
index_t
kN1
=
BlockFmhaShape
::
kN1
;
static
constexpr
index_t
kK1
=
BlockFmhaShape
::
kK1
;
static
constexpr
index_t
kQKHeaddim
=
BlockFmhaShape
::
kQKHeaddim
;
static
constexpr
index_t
kSubQKHeaddim
=
BlockFmhaShape
::
kSubQKHeaddim
;
static
constexpr
bool
kIsGroupMode
=
Problem
::
kIsGroupMode
;
static
constexpr
bool
kPadSeqLenQ
=
Problem
::
kPadSeqLenQ
;
static
constexpr
bool
kPadSeqLenK
=
Problem
::
kPadSeqLenK
;
static
constexpr
bool
kPadHeadDimQ
=
Problem
::
kPadHeadDimQ
;
static
constexpr
bool
kPadHeadDimV
=
Problem
::
kPadHeadDimV
;
static
constexpr
auto
BiasEnum
=
Problem
::
BiasEnum
;
static
constexpr
bool
kStoreLSE
=
Problem
::
kStoreLSE
;
static
constexpr
bool
kHasDropout
=
Problem
::
kHasDropout
;
// last dimension vector length used to create tensor view(and decide buffer_load vector length)
// ... together with tensor distribution. tensor dist should able to overwrite this
static
constexpr
index_t
kAlignmentQ
=
kPadHeadDimQ
?
1
:
Policy
::
template
GetAlignmentQ
<
Problem
>();
static
constexpr
index_t
kAlignmentK
=
kPadHeadDimQ
?
1
:
Policy
::
template
GetAlignmentK
<
Problem
>();
static
constexpr
index_t
kAlignmentV
=
[]()
{
if
constexpr
(
std
::
is_same_v
<
VLayout
,
ck_tile
::
tensor_layout
::
gemm
::
RowMajor
>
)
return
kPadHeadDimV
?
1
:
Policy
::
template
GetAlignmentV
<
Problem
>();
else
return
kPadSeqLenK
?
1
:
Policy
::
template
GetAlignmentV
<
Problem
>();
}();
static
constexpr
index_t
kAlignmentO
=
kPadHeadDimV
?
1
:
Policy
::
template
GetAlignmentO
<
Problem
>();
static
constexpr
index_t
kAlignmentBias
=
kPadSeqLenK
?
1
:
Policy
::
template
GetAlignmentBias
<
Problem
>();
static
constexpr
index_t
kBlockPerCu
=
[]()
{
if
constexpr
(
Problem
::
kBlockPerCu
!=
-
1
)
return
Problem
::
kBlockPerCu
;
else
{
if
constexpr
(
kQKHeaddim
<=
32
)
{
return
2
;
}
else
if
constexpr
(
kQKHeaddim
<=
64
)
{
return
3
;
}
else
if
constexpr
(
kQKHeaddim
<=
128
)
{
if
constexpr
(
BiasEnum
==
BlockAttentionBiasEnum
::
ELEMENTWISE_BIAS
)
return
1
;
else
return
2
;
}
else
if
constexpr
(
kQKHeaddim
<=
256
)
{
return
1
;
}
}
}();
static
constexpr
const
char
*
name
=
"qr"
;
using
DropoutType
=
std
::
conditional_t
<
kHasDropout
,
BlockDropout
,
NullBlockDropout
>
;
CK_TILE_HOST_DEVICE
static
constexpr
ck_tile
::
index_t
GetSmemSize
()
{
return
Policy
::
template
GetSmemSize
<
Problem
>();
}
template
<
typename
QDramBlockWindowTmp
,
typename
KDramBlockWindowTmp
,
typename
VDramBlockWindowTmp
,
typename
BiasDramBlockWindowTmp
,
typename
RandValDramBlockWindowTmp
,
typename
LSEDramBlockWindowTmp
,
typename
QElementFunction
,
typename
KElementFunction
,
typename
VElementFunction
,
typename
BiasElementFunction
,
typename
LSEElementFunction
,
typename
SAccElementFunction
,
typename
PComputeElementFunction
,
typename
OAccElementFunction
,
typename
PositionEncoding
>
CK_TILE_HOST_DEVICE
auto
operator
()(
const
QDramBlockWindowTmp
&
q_dram_block_window_tmp
,
// M0*K0 tile
const
QElementFunction
&
q_element_func
,
const
KDramBlockWindowTmp
&
k_dram_block_window_tmp
,
// N0*K0 tile
const
KElementFunction
&
k_element_func
,
const
VDramBlockWindowTmp
&
v_dram_block_window_tmp
,
// N1*K1 tile
const
VElementFunction
&
v_element_func
,
const
BiasDramBlockWindowTmp
&
bias_dram_block_window_tmp
,
// M0*N0 tile
const
BiasElementFunction
&
bias_element_func
,
RandValDramBlockWindowTmp
&
randval_dram_block_window_tmp
,
LSEDramBlockWindowTmp
&
lse_dram_window_tmp
,
// M0*1 tile
const
LSEElementFunction
&
lse_element_func
,
const
SAccElementFunction
&
s_acc_element_func
,
const
PComputeElementFunction
&
p_compute_element_func
,
const
OAccElementFunction
&
o_acc_element_func
,
FmhaMask
mask
,
PositionEncoding
position_encoding
,
float
scale_s
,
void
*
smem_ptr
,
DropoutType
&
dropout
)
const
{
static_assert
(
std
::
is_same_v
<
QDataType
,
remove_cvref_t
<
typename
QDramBlockWindowTmp
::
DataType
>>
&&
std
::
is_same_v
<
KDataType
,
remove_cvref_t
<
typename
KDramBlockWindowTmp
::
DataType
>>
&&
std
::
is_same_v
<
VDataType
,
remove_cvref_t
<
typename
VDramBlockWindowTmp
::
DataType
>>
,
"wrong!"
);
static_assert
(
kM0
==
QDramBlockWindowTmp
{}.
get_window_lengths
()[
number
<
0
>
{}]
&&
kN0
==
KDramBlockWindowTmp
{}.
get_window_lengths
()[
number
<
0
>
{}]
&&
kK0
==
KDramBlockWindowTmp
{}.
get_window_lengths
()[
number
<
1
>
{}]
&&
kN1
==
VDramBlockWindowTmp
{}.
get_window_lengths
()[
number
<
0
>
{}]
&&
kK1
==
VDramBlockWindowTmp
{}.
get_window_lengths
()[
number
<
1
>
{}]
&&
kM0
==
BiasDramBlockWindowTmp
{}.
get_window_lengths
()[
number
<
0
>
{}]
&&
kN0
==
BiasDramBlockWindowTmp
{}.
get_window_lengths
()[
number
<
1
>
{}],
"wrong!"
);
// K tile in LDS
KDataType
*
k_lds_ptr
=
static_cast
<
KDataType
*>
(
static_cast
<
void
*>
(
static_cast
<
char
*>
(
smem_ptr
)
+
Policy
::
template
GetSmemSizeQ
<
Problem
>()));
auto
k_lds
=
make_tensor_view
<
address_space_enum
::
lds
>
(
k_lds_ptr
,
Policy
::
template
MakeKLdsBlockDescriptor
<
Problem
>());
auto
k_lds_window
=
make_tile_window
(
k_lds
,
make_tuple
(
number
<
kN0
>
{},
number
<
kK0
>
{}),
{
0
,
0
});
// V tile in LDS
auto
v_lds
=
make_tensor_view
<
address_space_enum
::
lds
>
(
reinterpret_cast
<
VDataType
*>
(
smem_ptr
),
Policy
::
template
MakeVLdsBlockDescriptor
<
Problem
>());
auto
v_lds_window
=
make_tile_window
(
v_lds
,
Policy
::
template
MakeVLdsBlockDescriptor
<
Problem
>().
get_lengths
(),
{
0
,
0
});
// Block GEMM
constexpr
auto
gemm_0
=
Policy
::
template
GetQKBlockGemm
<
Problem
>();
constexpr
auto
gemm_1
=
Policy
::
template
GetKVBlockGemm
<
Problem
>();
auto
q_dram_window
=
make_tile_window
(
q_dram_block_window_tmp
.
get_bottom_tensor_view
(),
q_dram_block_window_tmp
.
get_window_lengths
(),
q_dram_block_window_tmp
.
get_window_origin
(),
Policy
::
template
MakeQDramTileDistribution
<
Problem
,
decltype
(
gemm_0
)>());
auto
q
=
load_tile
(
q_dram_window
);
using
SaccBlockTileType
=
decltype
(
gemm_0
.
MakeCBlockTile
());
auto
s_acc
=
SaccBlockTileType
{};
// reduction function for softmax
const
auto
f_max
=
[](
auto
e0
,
auto
e1
)
{
return
max
(
e0
,
e1
);
};
const
auto
f_sum
=
[](
auto
e0
,
auto
e1
)
{
return
e0
+
e1
;
};
// infer Sacc, S, P, M, L, Oacc type
using
SBlockTileType
=
decltype
(
cast_tile
<
SMPLComputeDataType
>
(
s_acc
));
using
MLBlockTileType
=
decltype
(
block_tile_reduce
<
SMPLComputeDataType
>
(
SBlockTileType
{},
sequence
<
1
>
{},
f_max
,
SMPLComputeDataType
{
0
}));
using
OaccBlockTileType
=
decltype
(
gemm_1
.
MakeCBlockTile
());
// init Oacc, M, L
auto
o_acc
=
OaccBlockTileType
{};
auto
m
=
MLBlockTileType
{};
auto
l
=
MLBlockTileType
{};
clear_tile
(
o_acc
);
set_tile
(
m
,
-
numeric
<
SMPLComputeDataType
>::
infinity
());
clear_tile
(
l
);
const
auto
q_origin
=
q_dram_window
.
get_window_origin
();
const
auto
[
seqlen_k_start
,
seqlen_k_end
]
=
mask
.
GetTileRangeAlongX
(
q_origin
.
at
(
number
<
0
>
{}),
number
<
kM0
>
{},
number
<
kN0
>
{});
const
auto
num_total_loop
=
integer_divide_ceil
(
seqlen_k_end
-
seqlen_k_start
,
kN0
);
// check early exit if no work to do
if
constexpr
(
FmhaMask
::
IsMasking
||
kPadSeqLenK
)
{
if
(
num_total_loop
<=
0
)
{
if
constexpr
(
kStoreLSE
)
{
auto
lse
=
make_static_distributed_tensor
<
LSEDataType
>
(
m
.
get_tile_distribution
());
set_tile
(
lse
,
-
numeric
<
SMPLComputeDataType
>::
infinity
());
store_tile
(
lse_dram_window_tmp
,
tile_elementwise_in
(
lse_element_func
,
lse
));
}
// Note: here occ are all cleard, return it
// Note: q loaded but no fence, ignore it.
return
o_acc
;
}
}
auto
k_dram_block_window
=
make_tile_window
(
k_dram_block_window_tmp
.
get_bottom_tensor_view
(),
k_dram_block_window_tmp
.
get_window_lengths
(),
{
seqlen_k_start
,
0
});
const
auto
bias_origin
=
bias_dram_block_window_tmp
.
get_window_origin
();
auto
bias_dram_window
=
make_tile_window
(
bias_dram_block_window_tmp
.
get_bottom_tensor_view
(),
bias_dram_block_window_tmp
.
get_window_lengths
(),
{
bias_origin
.
at
(
number
<
0
>
{}),
seqlen_k_start
},
// M/N
Policy
::
template
MakeBiasDramTileDistribution
<
decltype
(
gemm_0
)>());
auto
randval_dram_window
=
dropout
.
template
MakeRandvalDramWindow
<
decltype
(
gemm_0
)>(
randval_dram_block_window_tmp
,
seqlen_k_start
);
auto
v_dram_window
=
make_tile_window
(
v_dram_block_window_tmp
.
get_bottom_tensor_view
(),
v_dram_block_window_tmp
.
get_window_lengths
(),
{
0
,
seqlen_k_start
},
// TODO: hdim split?
Policy
::
template
MakeVDramTileDistribution
<
Problem
>());
auto
q_tile
=
tile_elementwise_in
(
q_element_func
,
q
);
// prefetch K tile
index_t
i_total_loops
=
0
;
constexpr
index_t
k0_loops
=
kQKHeaddim
/
kK0
;
constexpr
index_t
k1_loops
=
kN0
/
kK1
;
static_assert
(
2
<=
k0_loops
);
static_assert
(
1
<=
k1_loops
);
do
{
// STAGE 1, QK gemm
auto
k_dram_window
=
make_tile_window
(
k_dram_block_window
.
get_bottom_tensor_view
(),
k_dram_block_window
.
get_window_lengths
(),
k_dram_block_window
.
get_window_origin
(),
Policy
::
template
MakeKDramTileDistribution
<
Problem
>());
// K DRAM tile window for
// load
auto
k_block_tile
=
load_tile
(
k_dram_window
);
{
move_tile_window
(
k_dram_window
,
{
0
,
kK0
});
clear_tile
(
s_acc
);
// initialize C
store_tile
(
k_lds_window
,
tile_elementwise_in
(
k_element_func
,
k_block_tile
));
k_block_tile
=
load_tile
(
k_dram_window
);
}
if
constexpr
(
BiasEnum
==
BlockAttentionBiasEnum
::
ELEMENTWISE_BIAS
)
{
__builtin_amdgcn_sched_barrier
(
0
);
// prevent from messing up the order of global loads
}
const
auto
bias_tile
=
load_tile
(
bias_dram_window
);
// load bias tile
if
constexpr
(
BiasEnum
==
BlockAttentionBiasEnum
::
ELEMENTWISE_BIAS
)
{
__builtin_amdgcn_sched_barrier
(
0
);
// prevent from messing up the order of global loads
}
if
constexpr
(
k0_loops
>
2
)
{
static_for
<
0
,
k0_loops
-
2
,
1
>
{}([
&
](
auto
i_k0
)
{
block_sync_lds
();
gemm_0
(
s_acc
,
get_slice_tile
(
q_tile
,
sequence
<
0
,
i_k0
*
kK0
>
{},
sequence
<
kM0
,
(
i_k0
+
1
)
*
kK0
>
{}),
k_lds_window
);
block_sync_lds
();
move_tile_window
(
k_dram_window
,
{
0
,
kK0
});
store_tile
(
k_lds_window
,
tile_elementwise_in
(
k_element_func
,
k_block_tile
));
// LDS write i + 1
k_block_tile
=
load_tile
(
k_dram_window
);
// global read i + 2
});
}
const
auto
v_prefetch
=
load_tile
(
v_dram_window
);
// prefetch load v tile
{
// tail
block_sync_lds
();
gemm_0
(
s_acc
,
get_slice_tile
(
q_tile
,
sequence
<
0
,
(
k0_loops
-
2
)
*
kK0
>
{},
sequence
<
kM0
,
(
k0_loops
-
1
)
*
kK0
>
{}),
k_lds_window
);
block_sync_lds
();
store_tile
(
k_lds_window
,
tile_elementwise_in
(
k_element_func
,
k_block_tile
));
block_sync_lds
();
gemm_0
(
s_acc
,
get_slice_tile
(
q_tile
,
sequence
<
0
,
(
k0_loops
-
1
)
*
kK0
>
{},
sequence
<
kM0
,
k0_loops
*
kK0
>
{}),
k_lds_window
);
}
// STAGE 2, scale_s, add bias, mask, softmax
if
constexpr
(
BiasEnum
==
BlockAttentionBiasEnum
::
ELEMENTWISE_BIAS
)
{
s_acc
=
tile_elementwise_in
(
s_acc_element_func
,
s_acc
);
tile_elementwise_inout
([
&
scale_s
](
auto
&
x
)
{
x
=
x
*
scale_s
;
},
s_acc
);
tile_elementwise_inout
(
[
&
](
auto
&
x
,
const
auto
&
y
)
{
#if !CK_TILE_FMHA_FWD_FAST_EXP2
x
+=
type_convert
<
SaccDataType
>
(
bias_element_func
(
y
));
#else
x
+=
log2e_v
<
SaccDataType
>
*
type_convert
<
SaccDataType
>
(
bias_element_func
(
y
));
#endif
},
s_acc
,
bias_tile
);
}
else
if
constexpr
(
BiasEnum
==
BlockAttentionBiasEnum
::
ALIBI
)
{
const
auto
k_origin
=
k_dram_block_window
.
get_window_origin
();
constexpr
auto
s_spans
=
decltype
(
s_acc
)
::
get_distributed_spans
();
s_acc
=
tile_elementwise_in
(
s_acc_element_func
,
s_acc
);
sweep_tile_span
(
s_spans
[
number
<
0
>
{}],
[
&
](
auto
idx0
)
{
sweep_tile_span
(
s_spans
[
number
<
1
>
{}],
[
&
](
auto
idx1
)
{
const
auto
tile_idx
=
get_x_indices_from_distributed_indices
(
s_acc
.
get_tile_distribution
(),
make_tuple
(
idx0
,
idx1
));
const
auto
row
=
q_origin
.
at
(
number
<
0
>
{})
+
tile_idx
.
at
(
number
<
0
>
{});
const
auto
col
=
k_origin
.
at
(
number
<
0
>
{})
+
tile_idx
.
at
(
number
<
1
>
{});
constexpr
auto
i_j_idx
=
make_tuple
(
idx0
,
idx1
);
s_acc
(
i_j_idx
)
*=
scale_s
;
position_encoding
.
update
(
s_acc
(
i_j_idx
),
row
,
col
);
});
});
}
else
{
s_acc
=
tile_elementwise_in
(
s_acc_element_func
,
s_acc
);
#if !CK_TILE_FMHA_FWD_FAST_EXP2
tile_elementwise_inout
([
&
scale_s
](
auto
&
x
)
{
x
=
x
*
scale_s
;
},
s_acc
);
#endif
}
move_tile_window
(
bias_dram_window
,
{
0
,
kN0
});
if
constexpr
(
kPadSeqLenK
||
FmhaMask
::
IsMasking
)
{
const
auto
k_origin
=
k_dram_block_window
.
get_window_origin
();
bool
need_perpixel_check
=
mask
.
IsEdgeTile
(
q_origin
.
at
(
number
<
0
>
{}),
k_origin
.
at
(
number
<
0
>
{}),
number
<
kM0
>
{},
number
<
kN0
>
{});
if
(
need_perpixel_check
)
{
set_tile_if
(
s_acc
,
-
numeric
<
SMPLComputeDataType
>::
infinity
(),
[
&
](
auto
tile_idx
)
{
const
auto
row
=
q_origin
.
at
(
number
<
0
>
{})
+
tile_idx
.
at
(
number
<
0
>
{});
const
auto
col
=
k_origin
.
at
(
number
<
0
>
{})
+
tile_idx
.
at
(
number
<
1
>
{});
return
mask
.
IsOutOfBound
(
row
,
col
);
});
}
}
const
auto
s
=
cast_tile
<
SMPLComputeDataType
>
(
s_acc
);
// S{j}
auto
m_local
=
block_tile_reduce
<
SMPLComputeDataType
>
(
s
,
sequence
<
1
>
{},
f_max
,
-
numeric
<
SMPLComputeDataType
>::
infinity
());
// m_local = rowmax(S{j})
block_tile_reduce_sync
(
m_local
,
f_max
,
bool_constant
<
false
>
{});
const
auto
m_old
=
m
;
// m{j-1}
tile_elementwise_inout
(
[](
auto
&
e0
,
auto
e1
,
auto
e2
)
{
e0
=
max
(
e1
,
e2
);
},
m
,
m_old
,
m_local
);
// m{j}
auto
p_compute
=
make_static_distributed_tensor
<
SMPLComputeDataType
>
(
s
.
get_tile_distribution
());
// Pcompute{j}
static
const
auto
get_validated_m
=
[](
SMPLComputeDataType
raw_m
)
{
/// NOTICE: bias might be materialized mask including -inf values, need
/// consideration
if
constexpr
(
BiasEnum
==
BlockAttentionBiasEnum
::
ELEMENTWISE_BIAS
||
FmhaMask
::
IsMasking
)
{
return
raw_m
==
-
numeric
<
SMPLComputeDataType
>::
infinity
()
?
type_convert
<
SMPLComputeDataType
>
(
0.
f
)
:
raw_m
;
}
else
{
return
raw_m
;
}
};
constexpr
auto
p_spans
=
decltype
(
p_compute
)
::
get_distributed_spans
();
sweep_tile_span
(
p_spans
[
number
<
0
>
{}],
[
&
](
auto
idx0
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx0
);
#if CK_TILE_FMHA_FWD_FAST_EXP2
auto
row_max
=
scale_s
*
get_validated_m
(
m
[
i_idx
]);
#endif
sweep_tile_span
(
p_spans
[
number
<
1
>
{}],
[
&
](
auto
idx1
)
{
constexpr
auto
i_j_idx
=
make_tuple
(
idx0
,
idx1
);
#if CK_TILE_FMHA_FWD_FAST_EXP2
if
constexpr
(
BiasEnum
==
BlockAttentionBiasEnum
::
ELEMENTWISE_BIAS
||
BiasEnum
==
BlockAttentionBiasEnum
::
ALIBI
)
{
p_compute
(
i_j_idx
)
=
exp2
(
s
[
i_j_idx
]
-
get_validated_m
(
m
[
i_idx
]));
}
else
{
p_compute
(
i_j_idx
)
=
exp2
(
scale_s
*
s
[
i_j_idx
]
-
row_max
);
}
#else
p_compute
(
i_j_idx
)
=
exp
(
s
[
i_j_idx
]
-
get_validated_m
(
m
[
i_idx
]));
#endif
});
});
auto
rowsum_p
=
block_tile_reduce
<
SMPLComputeDataType
>
(
p_compute
,
sequence
<
1
>
{},
f_sum
,
SMPLComputeDataType
{
0
});
// rowsum(Pcompute{j})
block_tile_reduce_sync
(
rowsum_p
,
f_sum
,
bool_constant
<
false
>
{});
// l{j}, Oacc{j}
constexpr
auto
o_spans
=
decltype
(
o_acc
)
::
get_distributed_spans
();
sweep_tile_span
(
o_spans
[
number
<
0
>
{}],
[
&
](
auto
idx0
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx0
);
#if CK_TILE_FMHA_FWD_FAST_EXP2
const
auto
tmp
=
[
&
]()
{
if
constexpr
(
BiasEnum
==
BlockAttentionBiasEnum
::
ELEMENTWISE_BIAS
||
BiasEnum
==
BlockAttentionBiasEnum
::
ALIBI
)
{
return
exp2
(
m_old
[
i_idx
]
-
get_validated_m
(
m
[
i_idx
]));
}
else
{
auto
row_max
=
scale_s
*
get_validated_m
(
m
[
i_idx
]);
return
exp2
(
scale_s
*
m_old
[
i_idx
]
-
row_max
);
}
}();
#else
const
auto
tmp
=
exp
(
m_old
[
i_idx
]
-
get_validated_m
(
m
[
i_idx
]));
#endif
l
(
i_idx
)
=
tmp
*
l
[
i_idx
]
+
rowsum_p
[
i_idx
];
sweep_tile_span
(
o_spans
[
number
<
1
>
{}],
[
&
](
auto
idx1
)
{
constexpr
auto
i_j_idx
=
make_tuple
(
idx0
,
idx1
);
// FIXME: this use different equation from FA v2 paper,
// but produce correc result.
// Is the equation wrong?
o_acc
(
i_j_idx
)
*=
tmp
;
});
});
if
constexpr
(
kHasDropout
)
{
dropout
.
template
Run
<
decltype
(
gemm_0
),
SMPLComputeDataType
,
RandValOutputDataType
>(
smem_ptr
,
seqlen_k_start
+
i_total_loops
*
kN0
,
p_compute
,
randval_dram_window
);
}
block_sync_lds
();
if
constexpr
(
std
::
is_same_v
<
VLayout
,
ck_tile
::
tensor_layout
::
gemm
::
RowMajor
>
)
{
auto
v_shuffle_tmp
=
make_static_distributed_tensor
<
VDataType
>
(
Policy
::
template
MakeShuffledVRegBlockDescriptor
<
Problem
>());
shuffle_tile
(
v_shuffle_tmp
,
v_prefetch
);
store_tile
(
v_lds_window
,
tile_elementwise_in
(
v_element_func
,
v_shuffle_tmp
));
// store the prefetch
}
else
{
store_tile
(
v_lds_window
,
tile_elementwise_in
(
v_element_func
,
v_prefetch
));
// store the prefetch
}
move_tile_window
(
v_dram_window
,
{
0
,
kK1
});
const
auto
p
=
cast_tile
<
PDataType
>
(
tile_elementwise_in
(
p_compute_element_func
,
p_compute
));
// STAGE 3, KV gemm
if
constexpr
(
k1_loops
>
1
)
{
static_for
<
0
,
k1_loops
-
1
,
1
>
{}([
&
](
auto
i_k1
)
{
const
auto
v
=
load_tile
(
v_dram_window
);
// load next v
block_sync_lds
();
gemm_1
(
o_acc
,
get_slice_tile
(
p
,
sequence
<
0
,
i_k1
*
kK1
>
{},
sequence
<
kM0
,
(
i_k1
+
1
)
*
kK1
>
{}),
v_lds_window
);
block_sync_lds
();
if
constexpr
(
std
::
is_same_v
<
VLayout
,
ck_tile
::
tensor_layout
::
gemm
::
RowMajor
>
)
{
auto
v_shuffle_tmp
=
make_static_distributed_tensor
<
VDataType
>
(
Policy
::
template
MakeShuffledVRegBlockDescriptor
<
Problem
>());
shuffle_tile
(
v_shuffle_tmp
,
v
);
store_tile
(
v_lds_window
,
tile_elementwise_in
(
v_element_func
,
v_shuffle_tmp
));
// store the prefetch
}
else
{
store_tile
(
v_lds_window
,
tile_elementwise_in
(
v_element_func
,
v
));
// store next v
}
move_tile_window
(
v_dram_window
,
{
0
,
kK1
});
});
}
// move K tile windows
move_tile_window
(
k_dram_block_window
,
{
kN0
,
0
});
// tail
{
block_sync_lds
();
gemm_1
(
o_acc
,
get_slice_tile
(
p
,
sequence
<
0
,
(
k1_loops
-
1
)
*
kK1
>
{},
sequence
<
kM0
,
kN0
>
{}),
v_lds_window
);
block_sync_lds
();
}
}
while
(
++
i_total_loops
<
num_total_loop
);
// store lse
if
constexpr
(
kStoreLSE
)
{
auto
lse
=
make_static_distributed_tensor
<
LSEDataType
>
(
m
.
get_tile_distribution
());
constexpr
auto
lse_spans
=
decltype
(
lse
)
::
get_distributed_spans
();
sweep_tile_span
(
lse_spans
[
number
<
0
>
{}],
[
&
,
m_
=
m
,
l_
=
l
](
auto
idx0
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx0
);
#if CK_TILE_FMHA_FWD_FAST_EXP2
if
constexpr
(
BiasEnum
==
BlockAttentionBiasEnum
::
ELEMENTWISE_BIAS
||
BiasEnum
==
BlockAttentionBiasEnum
::
ALIBI
)
{
lse
(
i_idx
)
=
m_
[
i_idx
]
/
C_LOG2E
+
log
(
l_
[
i_idx
]);
}
else
{
lse
(
i_idx
)
=
m_
[
i_idx
]
*
scale_s
/
C_LOG2E
+
log
(
l_
[
i_idx
]);
}
#else
lse
(
i_idx
)
=
m_
[
i_idx
]
+
log
(
l_
[
i_idx
]);
#endif
});
store_tile
(
lse_dram_window_tmp
,
tile_elementwise_in
(
lse_element_func
,
lse
));
}
// finally, O
constexpr
auto
o_spans
=
decltype
(
o_acc
)
::
get_distributed_spans
();
sweep_tile_span
(
o_spans
[
number
<
0
>
{}],
[
&
](
auto
idx0
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx0
);
const
auto
tmp
=
[
&
]()
{
if
constexpr
(
FmhaMask
::
IsMasking
)
{
return
l
[
i_idx
]
==
0.
f
?
0.
f
:
1
/
l
[
i_idx
];
}
else
return
1
/
l
[
i_idx
];
}();
sweep_tile_span
(
o_spans
[
number
<
1
>
{}],
[
&
](
auto
idx1
)
{
constexpr
auto
i_j_idx
=
make_tuple
(
idx0
,
idx1
);
o_acc
(
i_j_idx
)
*=
tmp
;
});
});
o_acc
=
tile_elementwise_in
(
o_acc_element_func
,
o_acc
);
return
o_acc
;
}
template
<
typename
QDramBlockWindowTmp
,
typename
KDramBlockWindowTmp
,
typename
VDramBlockWindowTmp
,
typename
BiasDramBlockWindowTmp
,
typename
RandValDramBlockWindowTmp
,
typename
LSEDramBlockWindowTmp
,
typename
PositionEncoding
>
CK_TILE_HOST_DEVICE
auto
operator
()(
const
QDramBlockWindowTmp
&
q_dram_block_window_tmp
,
// M0*K0 tile
const
KDramBlockWindowTmp
&
k_dram_block_window_tmp
,
// N0*K0 tile
const
VDramBlockWindowTmp
&
v_dram_block_window_tmp
,
// N1*K1 tile
const
BiasDramBlockWindowTmp
&
bias_dram_block_window_tmp
,
// M0*N0 tile
RandValDramBlockWindowTmp
&
randval_dram_block_window_tmp
,
// M0*N0 tile
LSEDramBlockWindowTmp
&
lse_dram_block_window_tmp
,
// M0*1 tile
FmhaMask
mask
,
PositionEncoding
position_encoding
,
float
scale_s
,
void
*
smem_ptr
,
DropoutType
&
dropout
)
const
{
return
operator
()(
q_dram_block_window_tmp
,
identity
{},
k_dram_block_window_tmp
,
identity
{},
v_dram_block_window_tmp
,
identity
{},
bias_dram_block_window_tmp
,
identity
{},
randval_dram_block_window_tmp
,
lse_dram_block_window_tmp
,
identity
{},
identity
{},
identity
{},
identity
{},
mask
,
position_encoding
,
scale_s
,
smem_ptr
,
dropout
);
}
};
}
// namespace ck_tile
include/ck_tile/ops/fmha/pipeline/block_fmha_pipeline_flex_qr_ks_vs_async.hpp
0 → 100644
View file @
cd69c852
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
#include "ck_tile/ops/fmha/block/block_attention_bias_enum.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qr_ks_vs_async_default_policy.hpp"
#include "ck_tile/ops/fmha/block/block_dropout.hpp"
#include "ck_tile/ops/reduce/block/block_reduce.hpp"
namespace
ck_tile
{
// a variation of qr/ks/vs, where we use async copy to load k (potentially v in the future)
template
<
typename
Problem_
,
typename
Policy_
=
BlockFmhaPipelineQRKSVSAsyncDefaultPolicy
>
struct
BlockFmhaPipelineQRKSVSAsync
{
using
Problem
=
remove_cvref_t
<
Problem_
>
;
using
Policy
=
remove_cvref_t
<
Policy_
>
;
using
QDataType
=
remove_cvref_t
<
typename
Problem
::
QDataType
>
;
using
KDataType
=
remove_cvref_t
<
typename
Problem
::
KDataType
>
;
using
VDataType
=
remove_cvref_t
<
typename
Problem
::
VDataType
>
;
using
SaccDataType
=
remove_cvref_t
<
typename
Problem
::
SaccDataType
>
;
using
SMPLComputeDataType
=
remove_cvref_t
<
typename
Problem
::
SMPLComputeDataType
>
;
using
BiasDataType
=
remove_cvref_t
<
typename
Problem
::
BiasDataType
>
;
using
RandValOutputDataType
=
remove_cvref_t
<
typename
Problem
::
RandValOutputDataType
>
;
using
LSEDataType
=
remove_cvref_t
<
typename
Problem
::
LSEDataType
>
;
using
PDataType
=
remove_cvref_t
<
typename
Problem
::
PDataType
>
;
using
OaccDataType
=
remove_cvref_t
<
typename
Problem
::
OaccDataType
>
;
using
ODataType
=
remove_cvref_t
<
typename
Problem
::
ODataType
>
;
using
FmhaMask
=
remove_cvref_t
<
typename
Problem
::
FmhaMask
>
;
using
BlockFmhaShape
=
remove_cvref_t
<
typename
Problem
::
BlockFmhaShape
>
;
using
VLayout
=
remove_cvref_t
<
typename
BlockFmhaShape
::
VLayout
>
;
static
constexpr
bool
kQLoadOnce
=
true
;
// if q_tile load whole block length (hdim) at once
static_assert
(
kQLoadOnce
==
Policy
::
QLoadOnce
);
static
constexpr
index_t
kBlockSize
=
Problem
::
kBlockSize
;
static
constexpr
index_t
kM0
=
BlockFmhaShape
::
kM0
;
static
constexpr
index_t
kN0
=
BlockFmhaShape
::
kN0
;
static
constexpr
index_t
kK0
=
BlockFmhaShape
::
kK0
;
static
constexpr
index_t
kN1
=
BlockFmhaShape
::
kN1
;
static
constexpr
index_t
kK1
=
BlockFmhaShape
::
kK1
;
static
constexpr
index_t
kQKHeaddim
=
BlockFmhaShape
::
kQKHeaddim
;
static
constexpr
index_t
kSubQKHeaddim
=
BlockFmhaShape
::
kSubQKHeaddim
;
static
constexpr
bool
kIsGroupMode
=
Problem
::
kIsGroupMode
;
// TODO: seq_q always support padding, hdim_q/v support multiple of vector(like 8x)
// only need special care about seq_k padding (oob need set -INF of p instead of zero)
static_assert
(
Problem
::
kPadSeqLenQ
==
true
&&
Problem
::
kPadHeadDimQ
==
true
&&
Problem
::
kPadHeadDimV
==
true
);
static
constexpr
bool
kPadSeqLenQ
=
true
;
static
constexpr
bool
kPadSeqLenK
=
Problem
::
kPadSeqLenK
;
static
constexpr
bool
kPadHeadDimQ
=
true
;
// support multiple of vector(like 8x)
static
constexpr
bool
kPadHeadDimV
=
true
;
// support multiple of vector(like 8x)
static
constexpr
auto
BiasEnum
=
Problem
::
BiasEnum
;
static
constexpr
bool
kStoreLSE
=
Problem
::
kStoreLSE
;
static
constexpr
bool
kHasDropout
=
Problem
::
kHasDropout
;
// last dimension vector length used to create tensor view(and decide buffer_load vector length)
// ... together with tensor distribution. tensor dist should able to overwrite this
static
constexpr
index_t
kAlignmentQ
=
Policy
::
template
GetAlignmentQ
<
Problem
>();
static
constexpr
index_t
kAlignmentK
=
Policy
::
template
GetAlignmentK
<
Problem
>();
static
constexpr
index_t
kAlignmentV
=
[]()
{
if
constexpr
(
std
::
is_same_v
<
VLayout
,
ck_tile
::
tensor_layout
::
gemm
::
RowMajor
>
)
return
Policy
::
template
GetAlignmentV
<
Problem
>();
else
return
kPadSeqLenK
?
1
:
Policy
::
template
GetAlignmentV
<
Problem
>();
}();
static
constexpr
index_t
kAlignmentO
=
Policy
::
template
GetAlignmentO
<
Problem
>();
static
constexpr
index_t
kAlignmentBias
=
kPadSeqLenK
?
1
:
Policy
::
template
GetAlignmentBias
<
Problem
>();
#if CK_TILE_FMHA_FWD_FAST_EXP2
static
constexpr
auto
R_LOG2E
=
1.0
/
log2e_v
<
SaccDataType
>
;
#endif
static
constexpr
index_t
kBlockPerCu
=
[]()
{
if
constexpr
(
Problem
::
kBlockPerCu
!=
-
1
)
return
Problem
::
kBlockPerCu
;
else
{
// minimize occupancy
if
constexpr
(
BiasEnum
!=
BlockAttentionBiasEnum
::
NO_BIAS
&&
kHasDropout
)
{
return
1
;
}
if
constexpr
(
kQKHeaddim
<=
32
)
{
if
constexpr
(
kPadSeqLenK
&&
BiasEnum
==
BlockAttentionBiasEnum
::
ELEMENTWISE_BIAS
&&
FmhaMask
::
IsMasking
)
return
1
;
else
return
2
;
}
else
if
constexpr
(
kQKHeaddim
<=
64
)
{
if
constexpr
(
kPadSeqLenK
&&
BiasEnum
==
BlockAttentionBiasEnum
::
ELEMENTWISE_BIAS
)
return
2
;
else
return
3
;
}
else
if
constexpr
(
kQKHeaddim
<=
128
)
{
if
constexpr
(
kPadSeqLenK
&&
BiasEnum
==
BlockAttentionBiasEnum
::
ELEMENTWISE_BIAS
)
return
1
;
else
return
2
;
}
else
if
constexpr
(
kQKHeaddim
<=
256
)
{
return
1
;
}
}
}();
static
constexpr
const
char
*
name
=
"qr_async"
;
using
DropoutType
=
std
::
conditional_t
<
kHasDropout
,
BlockDropout
,
NullBlockDropout
>
;
CK_TILE_HOST_DEVICE
static
constexpr
ck_tile
::
index_t
GetSmemSize
()
{
return
Policy
::
template
GetSmemSize
<
Problem
>();
}
template
<
typename
QDramBlockWindowTmp
,
typename
KDramBlockWindowTmp
,
typename
VDramBlockWindowTmp
,
typename
BiasDramBlockWindowTmp
,
typename
RandValDramBlockWindowTmp
,
typename
LSEDramBlockWindowTmp
,
typename
QElementFunction
,
typename
KElementFunction
,
typename
VElementFunction
,
typename
BiasElementFunction
,
typename
LSEElementFunction
,
typename
SAccElementFunction
,
typename
PComputeElementFunction
,
typename
OAccElementFunction
,
typename
PositionEncoding
>
CK_TILE_HOST_DEVICE
auto
operator
()(
const
QDramBlockWindowTmp
&
q_dram_block_window_tmp
,
// M0*K0 tile
const
QElementFunction
&
q_element_func
,
const
KDramBlockWindowTmp
&
k_dram_block_window_tmp
,
// N0*K0 tile
const
KElementFunction
&
/*k_element_func*/
,
const
VDramBlockWindowTmp
&
v_dram_block_window_tmp
,
// N1*K1 tile
const
VElementFunction
&
v_element_func
,
const
BiasDramBlockWindowTmp
&
bias_dram_block_window_tmp
,
// M0*N0 tile
const
BiasElementFunction
&
bias_element_func
,
RandValDramBlockWindowTmp
&
randval_dram_block_window_tmp
,
LSEDramBlockWindowTmp
&
lse_dram_window_tmp
,
// M0*1 tile
const
LSEElementFunction
&
lse_element_func
,
const
SAccElementFunction
&
s_acc_element_func
,
const
PComputeElementFunction
&
p_compute_element_func
,
const
OAccElementFunction
&
o_acc_element_func
,
FmhaMask
mask
,
PositionEncoding
position_encoding
,
float
scale_s
,
void
*
smem_ptr
,
DropoutType
&
dropout
)
const
{
static_assert
(
std
::
is_same_v
<
QDataType
,
remove_cvref_t
<
typename
QDramBlockWindowTmp
::
DataType
>>
&&
std
::
is_same_v
<
KDataType
,
remove_cvref_t
<
typename
KDramBlockWindowTmp
::
DataType
>>
&&
std
::
is_same_v
<
VDataType
,
remove_cvref_t
<
typename
VDramBlockWindowTmp
::
DataType
>>
,
"wrong!"
);
static_assert
(
kM0
==
QDramBlockWindowTmp
{}.
get_window_lengths
()[
number
<
0
>
{}]
&&
kN0
==
KDramBlockWindowTmp
{}.
get_window_lengths
()[
number
<
0
>
{}]
&&
kK0
==
KDramBlockWindowTmp
{}.
get_window_lengths
()[
number
<
1
>
{}]
&&
kN1
==
VDramBlockWindowTmp
{}.
get_window_lengths
()[
number
<
0
>
{}]
&&
kK1
==
VDramBlockWindowTmp
{}.
get_window_lengths
()[
number
<
1
>
{}]
&&
kM0
==
BiasDramBlockWindowTmp
{}.
get_window_lengths
()[
number
<
0
>
{}]
&&
kN0
==
BiasDramBlockWindowTmp
{}.
get_window_lengths
()[
number
<
1
>
{}],
"wrong!"
);
constexpr
auto
LdsSeq
=
Policy
::
template
GetLdsBufferSequence
<
Problem
>();
// K tile in LDS
auto
k_lds_ptr
=
reinterpret_cast
<
KDataType
*>
(
smem_ptr
);
auto
k_lds_store
=
generate_tuple
(
[
&
](
auto
i_buf
)
{
return
make_tile_window
(
make_tensor_view
<
address_space_enum
::
lds
>
(
k_lds_ptr
,
Policy
::
template
MakeKLdsStoreBlockDescriptor
<
Problem
>(
i_buf
)),
Policy
::
template
MakeKLdsStoreBlockDescriptor
<
Problem
>(
i_buf
).
get_lengths
(),
{
0
,
0
,
0
});
},
number
<
Policy
::
NumPrefetchK
>
{});
#if K_LDS_LOAD_USE_OFFSET_TRANSFORM
auto
k_lds_load
=
generate_tuple
(
[
&
](
auto
i_buf
)
{
return
make_tile_window
(
make_tensor_view
<
address_space_enum
::
lds
>
(
k_lds_ptr
,
Policy
::
template
MakeKLdsLoadBlockDescriptor
<
Problem
>(
i_buf
)),
Policy
::
template
MakeKLdsLoadBlockDescriptor
<
Problem
>(
i_buf
).
get_lengths
(),
{
0
,
0
});
},
number
<
Policy
::
NumPrefetchK
>
{});
#else
auto
k_lds_Load_view
=
make_tensor_view
<
address_space_enum
::
lds
>
(
k_lds_ptr
,
Policy
::
template
MakeKLdsLoadBlockDescriptor
<
Problem
>());
auto
k_lds_load
=
make_tile_window
(
k_lds_Load_view
,
Policy
::
template
MakeKLdsLoadBlockDescriptor
<
Problem
>().
get_lengths
(),
{
0
,
0
});
#endif
// V tile in LDS
auto
v_lds
=
make_tensor_view
<
address_space_enum
::
lds
>
(
reinterpret_cast
<
VDataType
*>
(
smem_ptr
),
Policy
::
template
MakeVLdsBlockDescriptor
<
Problem
>());
auto
v_lds_window
=
make_tile_window
(
v_lds
,
Policy
::
template
MakeVLdsBlockDescriptor
<
Problem
>().
get_lengths
(),
{
0
,
0
});
// Block GEMM
constexpr
auto
gemm_0
=
Policy
::
template
GetQKBlockGemm
<
Problem
>();
constexpr
auto
gemm_1
=
Policy
::
template
GetKVBlockGemm
<
Problem
>();
auto
q_dram_window
=
make_tile_window
(
q_dram_block_window_tmp
.
get_bottom_tensor_view
(),
q_dram_block_window_tmp
.
get_window_lengths
(),
q_dram_block_window_tmp
.
get_window_origin
(),
Policy
::
template
MakeQDramTileDistribution
<
Problem
,
decltype
(
gemm_0
)>());
q_dram_window
.
init_raw
();
// TODO: we use async Copy for K, which is inline asm
// a side effect is we have to use inline asm for q as well
auto
q
=
decltype
(
load_tile
(
q_dram_window
)){};
// TODO: start from rocm-6.2, compiler will have problem if manually set clear of q.
// however, q would be cleared in the constructor of static distributed tensor
// set_tile(q, number<0>{}); // use per-dword clear to avoid scratch
load_tile_raw
(
q
,
q_dram_window
);
__builtin_amdgcn_sched_barrier
(
0
);
using
SaccBlockTileType
=
decltype
(
gemm_0
.
MakeCBlockTile
());
auto
s_acc
=
SaccBlockTileType
{};
// reduction function for softmax
const
auto
f_max
=
[](
auto
e0
,
auto
e1
)
{
return
max
(
e0
,
e1
);
};
const
auto
f_sum
=
[](
auto
e0
,
auto
e1
)
{
return
e0
+
e1
;
};
// infer Sacc, S, P, M, L, Oacc type
using
SBlockTileType
=
decltype
(
cast_tile
<
SMPLComputeDataType
>
(
s_acc
));
using
MLBlockTileType
=
decltype
(
block_tile_reduce
<
SMPLComputeDataType
>
(
SBlockTileType
{},
sequence
<
1
>
{},
f_max
,
SMPLComputeDataType
{
0
}));
using
OaccBlockTileType
=
decltype
(
gemm_1
.
MakeCBlockTile
());
// init Oacc, M, L
auto
o_acc
=
OaccBlockTileType
{};
auto
m
=
MLBlockTileType
{};
auto
l
=
MLBlockTileType
{};
clear_tile
(
o_acc
);
set_tile
(
m
,
-
numeric
<
SMPLComputeDataType
>::
infinity
());
clear_tile
(
l
);
__builtin_amdgcn_sched_barrier
(
0
);
const
auto
q_origin
=
q_dram_window
.
get_window_origin
();
const
auto
[
seqlen_k_start
,
seqlen_k_end
]
=
mask
.
GetTileRangeAlongX
(
q_origin
.
at
(
number
<
0
>
{}),
number
<
kM0
>
{},
number
<
kN0
>
{});
const
auto
num_total_loop
=
integer_divide_ceil
(
seqlen_k_end
-
seqlen_k_start
,
kN0
);
// check early exit if no work to do
if
constexpr
(
FmhaMask
::
IsMasking
||
kPadSeqLenK
)
{
if
(
num_total_loop
<=
0
)
{
if
constexpr
(
kStoreLSE
)
{
auto
lse
=
make_static_distributed_tensor
<
LSEDataType
>
(
m
.
get_tile_distribution
());
set_tile
(
lse
,
-
numeric
<
SMPLComputeDataType
>::
infinity
());
store_tile
(
lse_dram_window_tmp
,
tile_elementwise_in
(
lse_element_func
,
lse
));
}
buffer_load_fence
(
0
);
// rocm-6.1, if whole tile is masked out, need to fence(0)
// otherwise will have compute error(maybe compiler bug?)
// Note: here occ are all cleard, return it
return
o_acc
;
}
__builtin_amdgcn_sched_barrier
(
0
);
// make sure sched_barrier(0) for this check
}
auto
k_dram_block_window
=
make_tile_window
(
k_dram_block_window_tmp
.
get_bottom_tensor_view
(),
k_dram_block_window_tmp
.
get_window_lengths
(),
{
seqlen_k_start
,
0
});
auto
k_dram_window
=
make_tile_window
(
k_dram_block_window
.
get_bottom_tensor_view
(),
k_dram_block_window
.
get_window_lengths
(),
k_dram_block_window
.
get_window_origin
(),
Policy
::
template
MakeKDramTileDistribution
<
Problem
>());
// K DRAM tile window for
// load
k_dram_window
.
init_raw
();
constexpr
auto
k_oob_ck
=
bool_constant
<
true
>
{};
constexpr
auto
k_pre_np
=
[
&
]()
{
if
constexpr
(
kPadSeqLenK
&&
(
BiasEnum
==
BlockAttentionBiasEnum
::
ELEMENTWISE_BIAS
||
(
BiasEnum
!=
BlockAttentionBiasEnum
::
NO_BIAS
&&
kHasDropout
)))
return
bool_constant
<
true
>
{};
else
return
bool_constant
<
false
>
{};
}();
const
auto
bias_origin
=
bias_dram_block_window_tmp
.
get_window_origin
();
auto
bias_dram_window
=
make_tile_window
(
bias_dram_block_window_tmp
.
get_bottom_tensor_view
(),
bias_dram_block_window_tmp
.
get_window_lengths
(),
{
bias_origin
.
at
(
number
<
0
>
{}),
seqlen_k_start
},
// M/N
Policy
::
template
MakeBiasDramTileDistribution
<
decltype
(
gemm_0
)>());
auto
randval_dram_window
=
dropout
.
template
MakeRandvalDramWindow
<
decltype
(
gemm_0
)>(
randval_dram_block_window_tmp
,
seqlen_k_start
);
auto
v_dram_window
=
make_tile_window
(
v_dram_block_window_tmp
.
get_bottom_tensor_view
(),
v_dram_block_window_tmp
.
get_window_lengths
(),
{
0
,
seqlen_k_start
},
// TODO: hdim split?
Policy
::
template
MakeVDramTileDistribution
<
Problem
>());
// prefetch K tile
async_load_tile_raw
(
k_lds_store
(
LdsSeq
.
at
(
number
<
0
>
{})),
k_dram_window
,
number
<-
1
>
{},
k_oob_ck
,
k_pre_np
);
move_tile_window
(
k_dram_window
,
{
0
,
kK0
});
__builtin_amdgcn_sched_barrier
(
0
);
buffer_load_fence
(
k_dram_window
.
get_num_of_access
(),
q
.
get_thread_buffer
());
(
void
)
q_element_func
;
// ??? rocm-6.x if use q element func will have scratch on hdim=64/32
// auto q_tile = q; // tile_elementwise_in(q_element_func, q);
index_t
i_total_loops
=
0
;
constexpr
index_t
k0_loops
=
kQKHeaddim
/
kK0
;
constexpr
index_t
k1_loops
=
kN0
/
kK1
;
static_assert
(
1
<=
k0_loops
);
static_assert
(
1
<=
k1_loops
);
// main loop
do
{
// STAGE 1, QK gemm
clear_tile
(
s_acc
);
// initialize C
if
constexpr
(
k0_loops
>
1
)
{
static_for
<
0
,
k0_loops
-
1
,
1
>
{}([
&
](
auto
i_k0
)
{
async_load_tile_raw
(
k_lds_store
(
number
<
LdsSeq
.
at
(
number
<
i_k0
+
1
>
{})
>
{}),
k_dram_window
,
number
<-
1
>
{},
k_oob_ck
,
k_pre_np
);
if
constexpr
(
i_k0
<
k0_loops
-
1
)
move_tile_window
(
k_dram_window
,
{
0
,
kK0
});
async_load_fence
(
k_dram_window
.
get_num_of_access
());
__builtin_amdgcn_s_barrier
();
__builtin_amdgcn_sched_barrier
(
0
);
gemm_0
(
s_acc
,
get_slice_tile
(
q
,
sequence
<
0
,
i_k0
*
kK0
>
{},
sequence
<
kM0
,
(
i_k0
+
1
)
*
kK0
>
{}),
#if K_LDS_LOAD_USE_OFFSET_TRANSFORM
k_lds_load
[
number
<
LdsSeq
.
at
(
number
<
i_k0
>
{})
>
{}]);
#else
get_slice_tile
(
k_lds_load
,
sequence
<
(
LdsSeq
.
at
(
number
<
i_k0
>
{}))
*
kN0
,
0
>
{},
sequence
<
(
LdsSeq
.
at
(
number
<
i_k0
>
{})
+
1
)
*
kN0
,
kK0
>
{}));
#endif
});
}
// TODO: this to fix a bug when loop smaller than 2,
// the following fence/barrier will be scheduled inside 1st loop
if
constexpr
(
k0_loops
<=
2
)
__builtin_amdgcn_sched_barrier
(
0
);
async_load_fence
();
__builtin_amdgcn_s_barrier
();
const
auto
bias_tile
=
load_tile
(
bias_dram_window
);
// load bias tile
auto
v_buf
=
load_tile
(
v_dram_window
,
number
<-
1
>
{},
bool_constant
<
false
>
{});
__builtin_amdgcn_sched_barrier
(
0
);
{
// tail
gemm_0
(
s_acc
,
get_slice_tile
(
q
,
sequence
<
0
,
(
k0_loops
-
1
)
*
kK0
>
{},
sequence
<
kM0
,
k0_loops
*
kK0
>
{}),
#if K_LDS_LOAD_USE_OFFSET_TRANSFORM
k_lds_load
[
number
<
LdsSeq
.
at
(
number
<
k0_loops
-
1
>
{})
>
{}]);
#else
get_slice_tile
(
k_lds_load
,
sequence
<
(
LdsSeq
.
at
(
number
<
k0_loops
-
1
>
{}))
*
kN0
,
0
>
{},
sequence
<
(
LdsSeq
.
at
(
number
<
k0_loops
-
1
>
{})
+
1
)
*
kN0
,
kK0
>
{}));
#endif
}
__builtin_amdgcn_sched_barrier
(
1
);
// STAGE 2, scale_s, add bias, mask, softmax
if
constexpr
(
BiasEnum
==
BlockAttentionBiasEnum
::
ELEMENTWISE_BIAS
)
{
s_acc
=
tile_elementwise_in
(
s_acc_element_func
,
s_acc
);
tile_elementwise_inout
([
&
scale_s
](
auto
&
x
)
{
x
=
x
*
scale_s
;
},
s_acc
);
tile_elementwise_inout
(
[
&
](
auto
&
x
,
const
auto
&
y
)
{
#if !CK_TILE_FMHA_FWD_FAST_EXP2
x
+=
type_convert
<
SaccDataType
>
(
bias_element_func
(
y
));
#else
x
+=
log2e_v
<
SaccDataType
>
*
type_convert
<
SaccDataType
>
(
bias_element_func
(
y
));
#endif
},
s_acc
,
bias_tile
);
}
else
if
constexpr
(
BiasEnum
==
BlockAttentionBiasEnum
::
ALIBI
)
{
const
auto
k_origin
=
k_dram_block_window
.
get_window_origin
();
constexpr
auto
s_spans
=
decltype
(
s_acc
)
::
get_distributed_spans
();
s_acc
=
tile_elementwise_in
(
s_acc_element_func
,
s_acc
);
sweep_tile_span
(
s_spans
[
number
<
0
>
{}],
[
&
](
auto
idx0
)
{
sweep_tile_span
(
s_spans
[
number
<
1
>
{}],
[
&
](
auto
idx1
)
{
const
auto
tile_idx
=
get_x_indices_from_distributed_indices
(
s_acc
.
get_tile_distribution
(),
make_tuple
(
idx0
,
idx1
));
const
auto
row
=
q_origin
.
at
(
number
<
0
>
{})
+
tile_idx
.
at
(
number
<
0
>
{});
const
auto
col
=
k_origin
.
at
(
number
<
0
>
{})
+
tile_idx
.
at
(
number
<
1
>
{});
constexpr
auto
i_j_idx
=
make_tuple
(
idx0
,
idx1
);
s_acc
(
i_j_idx
)
*=
scale_s
;
position_encoding
.
update
(
s_acc
(
i_j_idx
),
row
,
col
);
});
});
}
else
{
s_acc
=
tile_elementwise_in
(
s_acc_element_func
,
s_acc
);
#if !CK_TILE_FMHA_FWD_FAST_EXP2
tile_elementwise_inout
([
&
scale_s
](
auto
&
x
)
{
x
=
x
*
scale_s
;
},
s_acc
);
#endif
}
move_tile_window
(
bias_dram_window
,
{
0
,
kN0
});
if
constexpr
(
kPadSeqLenK
||
FmhaMask
::
IsMasking
)
{
const
auto
k_origin
=
k_dram_block_window
.
get_window_origin
();
bool
need_perpixel_check
=
mask
.
IsEdgeTile
(
q_origin
.
at
(
number
<
0
>
{}),
k_origin
.
at
(
number
<
0
>
{}),
number
<
kM0
>
{},
number
<
kN0
>
{});
if
(
need_perpixel_check
)
{
set_tile_if
(
s_acc
,
-
numeric
<
SMPLComputeDataType
>::
infinity
(),
[
&
](
auto
tile_idx
)
{
const
auto
row
=
q_origin
.
at
(
number
<
0
>
{})
+
tile_idx
.
at
(
number
<
0
>
{});
const
auto
col
=
k_origin
.
at
(
number
<
0
>
{})
+
tile_idx
.
at
(
number
<
1
>
{});
return
mask
.
IsOutOfBound
(
row
,
col
);
});
}
}
const
auto
s
=
cast_tile
<
SMPLComputeDataType
>
(
s_acc
);
// S{j}
auto
m_local
=
block_tile_reduce
<
SMPLComputeDataType
>
(
s
,
sequence
<
1
>
{},
f_max
,
-
numeric
<
SMPLComputeDataType
>::
infinity
());
// m_local = rowmax(S{j})
block_tile_reduce_sync
(
m_local
,
f_max
,
bool_constant
<
false
>
{});
const
auto
m_old
=
m
;
// m{j-1}
tile_elementwise_inout
(
[](
auto
&
e0
,
auto
e1
,
auto
e2
)
{
e0
=
max
(
e1
,
e2
);
},
m
,
m_old
,
m_local
);
// m{j}
auto
p_compute
=
make_static_distributed_tensor
<
SMPLComputeDataType
>
(
s
.
get_tile_distribution
());
// Pcompute{j}
__builtin_amdgcn_sched_barrier
(
0x7F
);
// store & prefetch next v, after the max reduction
if
constexpr
(
std
::
is_same_v
<
VLayout
,
ck_tile
::
tensor_layout
::
gemm
::
RowMajor
>
)
{
auto
v_shuffle_tmp
=
make_static_distributed_tensor
<
VDataType
>
(
Policy
::
template
MakeShuffledVRegBlockDescriptor
<
Problem
>());
shuffle_tile
(
v_shuffle_tmp
,
v_buf
);
auto
v_lds_window_tmp
=
get_slice_tile
(
v_lds_window
,
sequence
<
(
LdsSeq
.
at
(
number
<
k0_loops
>
{}))
*
kN1
,
0
>
{},
sequence
<
(
LdsSeq
.
at
(
number
<
k0_loops
>
{})
+
1
)
*
kN1
,
kK1
>
{});
store_tile
(
v_lds_window_tmp
,
tile_elementwise_in
(
v_element_func
,
v_shuffle_tmp
));
// store the prefetch
}
else
{
auto
v_lds_window_tmp
=
get_slice_tile
(
v_lds_window
,
sequence
<
(
LdsSeq
.
at
(
number
<
k0_loops
>
{}))
*
kN1
,
0
>
{},
sequence
<
(
LdsSeq
.
at
(
number
<
k0_loops
>
{})
+
1
)
*
kN1
,
kK1
>
{});
store_tile
(
v_lds_window_tmp
,
tile_elementwise_in
(
v_element_func
,
v_buf
));
// store the prefetch
}
if
constexpr
(
k1_loops
>
1
)
{
move_tile_window
(
v_dram_window
,
{
0
,
kK1
});
// will have scratch if move this right after load_tile(v_dram)...
v_buf
=
load_tile
(
v_dram_window
,
number
<-
1
>
{},
bool_constant
<
false
>
{});
// load next v_buf
}
__builtin_amdgcn_sched_barrier
(
0
);
static
const
auto
get_validated_m
=
[](
SMPLComputeDataType
raw_m
)
{
/// NOTICE: bias might be materialized mask including -inf values, need
/// consideration. alibi does not have this problem
if
constexpr
(
BiasEnum
==
BlockAttentionBiasEnum
::
ELEMENTWISE_BIAS
||
FmhaMask
::
IsMasking
)
{
return
raw_m
==
-
numeric
<
SMPLComputeDataType
>::
infinity
()
?
type_convert
<
SMPLComputeDataType
>
(
0.
f
)
:
raw_m
;
}
else
{
return
raw_m
;
}
};
constexpr
auto
p_spans
=
decltype
(
p_compute
)
::
get_distributed_spans
();
sweep_tile_span
(
p_spans
[
number
<
0
>
{}],
[
&
](
auto
idx0
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx0
);
#if CK_TILE_FMHA_FWD_FAST_EXP2
auto
row_max
=
scale_s
*
get_validated_m
(
m
[
i_idx
]);
#endif
sweep_tile_span
(
p_spans
[
number
<
1
>
{}],
[
&
](
auto
idx1
)
{
constexpr
auto
i_j_idx
=
make_tuple
(
idx0
,
idx1
);
#if CK_TILE_FMHA_FWD_FAST_EXP2
if
constexpr
(
BiasEnum
==
BlockAttentionBiasEnum
::
ELEMENTWISE_BIAS
||
BiasEnum
==
BlockAttentionBiasEnum
::
ALIBI
)
{
p_compute
(
i_j_idx
)
=
exp2
(
s
[
i_j_idx
]
-
get_validated_m
(
m
[
i_idx
]));
}
else
{
p_compute
(
i_j_idx
)
=
exp2
(
scale_s
*
s
[
i_j_idx
]
-
row_max
);
}
#else
p_compute
(
i_j_idx
)
=
exp
(
s
[
i_j_idx
]
-
get_validated_m
(
m
[
i_idx
]));
#endif
});
});
auto
rowsum_p
=
block_tile_reduce
<
SMPLComputeDataType
>
(
p_compute
,
sequence
<
1
>
{},
f_sum
,
SMPLComputeDataType
{
0
});
// rowsum(Pcompute{j})
block_tile_reduce_sync
(
rowsum_p
,
f_sum
,
bool_constant
<
false
>
{});
// l{j}, Oacc{j}
constexpr
auto
o_spans
=
decltype
(
o_acc
)
::
get_distributed_spans
();
sweep_tile_span
(
o_spans
[
number
<
0
>
{}],
[
&
](
auto
idx0
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx0
);
#if CK_TILE_FMHA_FWD_FAST_EXP2
const
auto
tmp
=
[
&
]()
{
if
constexpr
(
BiasEnum
==
BlockAttentionBiasEnum
::
ELEMENTWISE_BIAS
||
BiasEnum
==
BlockAttentionBiasEnum
::
ALIBI
)
{
return
exp2
(
m_old
[
i_idx
]
-
get_validated_m
(
m
[
i_idx
]));
}
else
{
auto
row_max
=
scale_s
*
get_validated_m
(
m
[
i_idx
]);
return
exp2
(
scale_s
*
m_old
[
i_idx
]
-
row_max
);
}
}();
#else
const
auto
tmp
=
exp
(
m_old
[
i_idx
]
-
get_validated_m
(
m
[
i_idx
]));
#endif
l
(
i_idx
)
=
tmp
*
l
[
i_idx
]
+
rowsum_p
[
i_idx
];
sweep_tile_span
(
o_spans
[
number
<
1
>
{}],
[
&
](
auto
idx1
)
{
constexpr
auto
i_j_idx
=
make_tuple
(
idx0
,
idx1
);
// FIXME: this use different equation from FA v2 paper,
// but produce correc result.
// Is the equation wrong?
o_acc
(
i_j_idx
)
*=
tmp
;
});
});
if
constexpr
(
kHasDropout
)
{
auto
randval_ptr
=
reinterpret_cast
<
char
*>
(
smem_ptr
)
+
Policy
::
template
GetSmemSizeKV
<
Problem
>();
dropout
.
template
Run
<
decltype
(
gemm_0
),
SMPLComputeDataType
,
RandValOutputDataType
>(
randval_ptr
,
seqlen_k_start
+
i_total_loops
*
kN0
,
p_compute
,
randval_dram_window
);
}
const
auto
p
=
[
&
]()
{
if
constexpr
(
std
::
is_same_v
<
PDataType
,
fp16_t
>
)
return
impl
::
cast_tile_pk_fp16_fp32
<
PDataType
>
(
tile_elementwise_in
(
p_compute_element_func
,
p_compute
));
else
return
cast_tile
<
PDataType
>
(
tile_elementwise_in
(
p_compute_element_func
,
p_compute
));
}();
// STAGE 3, KV gemm
if
constexpr
(
k1_loops
>
1
)
{
static_for
<
0
,
k1_loops
-
1
,
1
>
{}([
&
](
auto
i_k1
)
{
if
constexpr
(
i_k1
!=
0
&&
i_k1
<
k1_loops
-
1
)
{
v_buf
=
load_tile
(
v_dram_window
,
number
<-
1
>
{},
bool_constant
<
false
>
{});
// load next v_buf
}
block_sync_lds
();
gemm_1
(
o_acc
,
get_slice_tile
(
p
,
sequence
<
0
,
i_k1
*
kK1
>
{},
sequence
<
kM0
,
(
i_k1
+
1
)
*
kK1
>
{}),
get_slice_tile
(
v_lds_window
,
sequence
<
(
LdsSeq
.
at
(
number
<
k0_loops
+
i_k1
>
{}))
*
kN1
,
0
>
{},
sequence
<
(
LdsSeq
.
at
(
number
<
k0_loops
+
i_k1
>
{})
+
1
)
*
kN1
,
kK1
>
{}));
if
constexpr
(
std
::
is_same_v
<
VLayout
,
ck_tile
::
tensor_layout
::
gemm
::
RowMajor
>
)
{
auto
v_shuffle_tmp
=
make_static_distributed_tensor
<
VDataType
>
(
Policy
::
template
MakeShuffledVRegBlockDescriptor
<
Problem
>());
shuffle_tile
(
v_shuffle_tmp
,
v_buf
);
auto
v_lds_window_tmp
=
get_slice_tile
(
v_lds_window
,
sequence
<
(
LdsSeq
.
at
(
number
<
k0_loops
+
i_k1
+
1
>
{}))
*
kN1
,
0
>
{},
sequence
<
(
LdsSeq
.
at
(
number
<
k0_loops
+
i_k1
+
1
>
{})
+
1
)
*
kN1
,
kK1
>
{});
store_tile
(
v_lds_window_tmp
,
tile_elementwise_in
(
v_element_func
,
v_shuffle_tmp
));
// store the prefetch
}
else
{
auto
v_lds_window_tmp
=
get_slice_tile
(
v_lds_window
,
sequence
<
(
LdsSeq
.
at
(
number
<
k0_loops
+
i_k1
+
1
>
{}))
*
kN1
,
0
>
{},
sequence
<
(
LdsSeq
.
at
(
number
<
k0_loops
+
i_k1
+
1
>
{})
+
1
)
*
kN1
,
kK1
>
{});
store_tile
(
v_lds_window_tmp
,
tile_elementwise_in
(
v_element_func
,
v_buf
));
// store next v_buf
}
if
constexpr
(
i_k1
<
k1_loops
-
1
)
move_tile_window
(
v_dram_window
,
{
0
,
kK1
});
});
}
i_total_loops
++
;
if
(
i_total_loops
<
num_total_loop
)
{
// move K tile windows
move_tile_window
(
k_dram_block_window
,
{
kN0
,
0
});
k_dram_window
.
set_window_origin
(
k_dram_block_window
.
get_window_origin
());
if
constexpr
(
k1_loops
>=
2
&&
LdsSeq
.
at
(
number
<
0
>
{})
==
LdsSeq
.
at
(
number
<
k0_loops
+
k1_loops
-
2
>
{}))
__builtin_amdgcn_s_barrier
();
async_load_tile_raw
(
k_lds_store
(
LdsSeq
.
at
(
number
<
0
>
{})),
k_dram_window
,
number
<-
1
>
{},
k_oob_ck
,
k_pre_np
);
move_tile_window
(
k_dram_window
,
{
0
,
kK0
});
}
// tail
{
block_sync_lds
();
gemm_1
(
o_acc
,
get_slice_tile
(
p
,
sequence
<
0
,
(
k1_loops
-
1
)
*
kK1
>
{},
sequence
<
kM0
,
kN0
>
{}),
get_slice_tile
(
v_lds_window
,
sequence
<
(
LdsSeq
.
at
(
number
<
k0_loops
+
k1_loops
-
1
>
{}))
*
kN1
,
0
>
{},
sequence
<
(
LdsSeq
.
at
(
number
<
k0_loops
+
k1_loops
-
1
>
{})
+
1
)
*
kN1
,
kK1
>
{}));
}
}
while
(
i_total_loops
<
num_total_loop
);
// store lse
if
constexpr
(
kStoreLSE
)
{
auto
lse
=
make_static_distributed_tensor
<
LSEDataType
>
(
m
.
get_tile_distribution
());
constexpr
auto
lse_spans
=
decltype
(
lse
)
::
get_distributed_spans
();
sweep_tile_span
(
lse_spans
[
number
<
0
>
{}],
[
&
,
m_
=
m
,
l_
=
l
](
auto
idx0
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx0
);
#if CK_TILE_FMHA_FWD_FAST_EXP2
if
constexpr
(
BiasEnum
==
BlockAttentionBiasEnum
::
ELEMENTWISE_BIAS
||
BiasEnum
==
BlockAttentionBiasEnum
::
ALIBI
)
{
lse
(
i_idx
)
=
m_
[
i_idx
]
*
R_LOG2E
+
log
(
l_
[
i_idx
]);
}
else
{
lse
(
i_idx
)
=
m_
[
i_idx
]
*
scale_s
*
R_LOG2E
+
log
(
l_
[
i_idx
]);
}
#else
lse
(
i_idx
)
=
m_
[
i_idx
]
+
log
(
l_
[
i_idx
]);
#endif
});
store_tile
(
lse_dram_window_tmp
,
tile_elementwise_in
(
lse_element_func
,
lse
));
}
// finally, O
constexpr
auto
o_spans
=
decltype
(
o_acc
)
::
get_distributed_spans
();
sweep_tile_span
(
o_spans
[
number
<
0
>
{}],
[
&
](
auto
idx0
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx0
);
const
auto
tmp
=
[
&
]()
{
if
constexpr
(
FmhaMask
::
IsMasking
)
{
return
l
[
i_idx
]
==
0.
f
?
0.
f
:
1
/
l
[
i_idx
];
}
else
return
1
/
l
[
i_idx
];
}();
sweep_tile_span
(
o_spans
[
number
<
1
>
{}],
[
&
](
auto
idx1
)
{
constexpr
auto
i_j_idx
=
make_tuple
(
idx0
,
idx1
);
o_acc
(
i_j_idx
)
*=
tmp
;
});
});
o_acc
=
tile_elementwise_in
(
o_acc_element_func
,
o_acc
);
return
o_acc
;
}
template
<
typename
QDramBlockWindowTmp
,
typename
KDramBlockWindowTmp
,
typename
VDramBlockWindowTmp
,
typename
BiasDramBlockWindowTmp
,
typename
RandValDramBlockWindowTmp
,
typename
LSEDramBlockWindowTmp
,
typename
PositionEncoding
>
CK_TILE_HOST_DEVICE
auto
operator
()(
const
QDramBlockWindowTmp
&
q_dram_block_window_tmp
,
// M0*K0 tile
const
KDramBlockWindowTmp
&
k_dram_block_window_tmp
,
// N0*K0 tile
const
VDramBlockWindowTmp
&
v_dram_block_window_tmp
,
// N1*K1 tile
const
BiasDramBlockWindowTmp
&
bias_dram_block_window_tmp
,
// M0*N0 tile
RandValDramBlockWindowTmp
&
randval_dram_block_window_tmp
,
// M0*N0 tile
LSEDramBlockWindowTmp
&
lse_dram_block_window_tmp
,
// M0*1 tile
FmhaMask
mask
,
PositionEncoding
position_encoding
,
float
scale_s
,
void
*
smem_ptr
,
DropoutType
&
dropout
)
const
{
return
operator
()(
q_dram_block_window_tmp
,
identity
{},
k_dram_block_window_tmp
,
identity
{},
v_dram_block_window_tmp
,
identity
{},
bias_dram_block_window_tmp
,
identity
{},
randval_dram_block_window_tmp
,
lse_dram_block_window_tmp
,
identity
{},
identity
{},
identity
{},
identity
{},
mask
,
position_encoding
,
scale_s
,
smem_ptr
,
dropout
);
}
};
}
// namespace ck_tile
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment