Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
cd4d4629
Commit
cd4d4629
authored
Jan 07, 2025
by
danyao12
Browse files
Merge branch 'develop' into ck_tile/fa_bwd_v3
parents
21d12bb7
888317e6
Changes
883
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
618 additions
and
69 deletions
+618
-69
example/10_convnd_fwd_multiple_d_multiple_reduce/common.hpp
example/10_convnd_fwd_multiple_d_multiple_reduce/common.hpp
+1
-1
example/10_convnd_fwd_multiple_d_multiple_reduce/run_convnd_fwd_max_example.inc
...multiple_d_multiple_reduce/run_convnd_fwd_max_example.inc
+41
-16
example/15_grouped_gemm/grouped_gemm_multiple_d_splitk_xdl_fp16.cpp
..._grouped_gemm/grouped_gemm_multiple_d_splitk_xdl_fp16.cpp
+6
-6
example/15_grouped_gemm/grouped_gemm_multiple_d_xdl_fp16.cpp
example/15_grouped_gemm/grouped_gemm_multiple_d_xdl_fp16.cpp
+5
-5
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_bias_fp16.cpp
...e/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_bias_fp16.cpp
+5
-5
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16.cpp
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16.cpp
+4
-4
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16_fp8.cpp
...le/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16_fp8.cpp
+4
-4
example/15_grouped_gemm/run_grouped_gemm_example.inc
example/15_grouped_gemm/run_grouped_gemm_example.inc
+21
-4
example/16_gemm_multi_d_multi_reduces/gemm_add_add_mean_meansquare_xdl_fp16.cpp
...d_multi_reduces/gemm_add_add_mean_meansquare_xdl_fp16.cpp
+1
-1
example/21_gemm_layernorm/gemm_xdl_layernorm_naive_single_kernel_fp16.cpp
...layernorm/gemm_xdl_layernorm_naive_single_kernel_fp16.cpp
+3
-3
example/24_batched_gemm/CMakeLists.txt
example/24_batched_gemm/CMakeLists.txt
+6
-0
example/24_batched_gemm/batched_gemm_xdl_bf16_v3.cpp
example/24_batched_gemm/batched_gemm_xdl_bf16_v3.cpp
+99
-0
example/24_batched_gemm/batched_gemm_xdl_fp8_rowwise_v3.cpp
example/24_batched_gemm/batched_gemm_xdl_fp8_rowwise_v3.cpp
+106
-0
example/24_batched_gemm/run_batched_gemm_example.inc
example/24_batched_gemm/run_batched_gemm_example.inc
+26
-10
example/24_batched_gemm/run_batched_gemm_example_rowwise.inc
example/24_batched_gemm/run_batched_gemm_example_rowwise.inc
+280
-0
example/31_batched_gemm_gemm/run_batched_gemm_gemm_example.inc
...le/31_batched_gemm_gemm/run_batched_gemm_gemm_example.inc
+2
-2
example/32_batched_gemm_scale_softmax_gemm/run_batched_gemm_scale_softmax_gemm.inc
...cale_softmax_gemm/run_batched_gemm_scale_softmax_gemm.inc
+2
-2
example/32_batched_gemm_scale_softmax_gemm/run_batched_gemm_scale_softmax_gemm_permute.inc
...tmax_gemm/run_batched_gemm_scale_softmax_gemm_permute.inc
+2
-2
example/32_batched_gemm_scale_softmax_gemm/run_batched_gemm_scale_softmax_gemm_permute_wmma.inc
...gemm/run_batched_gemm_scale_softmax_gemm_permute_wmma.inc
+2
-2
example/32_batched_gemm_scale_softmax_gemm/run_cross_attention_wmma.inc
...ched_gemm_scale_softmax_gemm/run_cross_attention_wmma.inc
+2
-2
No files found.
example/10_convnd_fwd_multiple_d_multiple_reduce/common.hpp
View file @
cd4d4629
...
...
@@ -80,7 +80,7 @@ using RLayout = typename LayoutSettingSelector<NDimSpatial>::RLayout;
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
int
init_method
=
2
;
bool
time_kernel
=
false
;
};
...
...
example/10_convnd_fwd_multiple_d_multiple_reduce/run_convnd_fwd_max_example.inc
View file @
cd4d4629
...
...
@@ -73,16 +73,25 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
Tensor
<
EDataType
>
conv_output_device
(
conv_output_g_n_k_wos_desc
);
Tensor
<
R0DataType
>
r0_device
(
r0_desc
);
std
::
cout
<<
"input: "
<<
conv_input
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"weight: "
<<
conv_weight
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
conv_output_device
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"reduction: "
<<
r0_device
.
mDesc
<<
std
::
endl
<<
std
::
endl
;
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
8
,
7
}(
conv_input
);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
8
,
7
}(
conv_weight
);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
1
,
1
}(
conv_weight
);
break
;
case
2
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
8
,
7
}(
conv_input
);
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
1
,
1
}(
conv_weight
);
break
;
default
:
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
5
,
5
}(
conv_input
);
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
5
,
5
}(
conv_weight
);
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
8
,
7
}(
conv_input
);
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
1
,
1
}(
conv_weight
);
}
DeviceMem
conv_input_device_buf
(
sizeof
(
ADataType
)
*
conv_input
.
mDesc
.
GetElementSpaceSize
());
...
...
@@ -161,15 +170,25 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
return
false
;
}
// XXX: DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle will not initialize r0.
r0_device_buf
.
SetValue
(
ck
::
NumericLimits
<
R0DataType
>::
Lowest
());
const
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
const
std
::
size_t
flop
=
problem_size
.
GetFlops
();
const
std
::
size_t
num_btype
=
problem_size
.
GetByte
<
ADataType
,
BDataType
,
EDataType
>
();
if
(
config
.
time_kernel
)
{
const
std
::
size_t
flop
=
problem_size
.
GetFlops
();
const
std
::
size_t
num_btype
=
problem_size
.
GetByte
<
ADataType
,
BDataType
,
EDataType
>
();
const
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
const
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
const
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
const
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
}
else
{
std
::
cout
<<
"FINISHED: "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
}
if
(
config
.
do_verification
)
{
...
...
@@ -189,6 +208,7 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
BElementOp
{},
PassThrough
{});
std
::
cout
<<
"
\n
Running verification on CPU."
<<
std
::
endl
;
ref_invoker
.
Run
(
ref_argument
);
Tensor
<
R0DataType
>
r0_host
(
r0_device
.
mDesc
);
...
...
@@ -273,13 +293,18 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
conv_output_device_buf
.
FromDevice
(
conv_output_device
.
mData
.
data
());
r0_device_buf
.
FromDevice
(
r0_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
conv_output_device
,
conv_output_host
,
"Error: incorrect results! (Matrix E)"
,
1
e
-
5
f
,
1
e
-
4
f
)
&&
ck
::
utils
::
check_err
(
r0_device
,
r0_host
,
"Error: incorrect results! (Matrix R0)"
,
1
e
-
5
f
,
1
e
-
4
f
);
auto
pass
=
ck
::
utils
::
check_err
(
conv_output_device
,
conv_output_host
,
"Error: incorrect results! (Matrix E)"
,
1
e
-
3
f
,
1
e
-
3
f
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
r0_device
,
r0_host
,
"Error: incorrect results! (Matrix R0)"
,
1
e
-
3
f
,
1
e
-
3
f
);
if
(
pass
)
std
::
cout
<<
"Verification on CPU: PASS"
<<
std
::
endl
;
return
pass
;
}
return
true
;
...
...
example/15_grouped_gemm/grouped_gemm_multiple_d_splitk_xdl_fp16.cpp
View file @
cd4d4629
...
...
@@ -186,15 +186,15 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
for
(
int
j
=
0
;
j
<
NumDMatrices
;
++
j
)
{
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_3
<
A
DataType
>
{
0.0
,
1.0
});
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_3
<
D
DataType
>
{
0.0
,
1.0
});
}
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
BDataType
,
1
>
{});
for
(
int
j
=
0
;
j
<
NumDMatrices
;
++
j
)
{
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
DDataType
,
0
>
{});
}
}
}
...
...
@@ -246,7 +246,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
a_element_op
,
b_element_op
,
cde_element_op
);
gemm
.
SetKBatchSize
(
argument
,
config
.
k_batch
);
gemm
.
SetKBatchSize
(
&
argument
,
config
.
k_batch
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
...
...
@@ -257,7 +257,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_workspace_dev
.
GetDeviceBuffer
());
DeviceMem
gemm_arg_dev_mem
(
gemm
.
GetDeviceKernelArgSize
(
&
argument
));
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
gemm
.
SetDeviceKernelArgs
(
&
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
,
1
});
...
...
example/15_grouped_gemm/grouped_gemm_multiple_d_xdl_fp16.cpp
View file @
cd4d4629
...
...
@@ -91,7 +91,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
{
auto
group_count
=
problem_size
.
group_count
;
using
KernelArguments
=
ck
::
tensor_operation
::
device
::
GroupedGemm
TileLoop
KernelArgument
s
<
NumDs
>
;
using
KernelArguments
=
ck
::
tensor_operation
::
device
::
GroupedGemmKernelArgument
<
NumDs
>
;
using
GemmDesc
=
ck
::
tensor_operation
::
device
::
GemmDesc
;
// GEMM shape
...
...
@@ -190,15 +190,15 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
for
(
int
j
=
0
;
j
<
NumDs
;
++
j
)
{
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_3
<
A
DataType
>
{
0.0
,
1.0
});
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_3
<
D
DataType
>
{
0.0
,
1.0
});
}
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
BDataType
,
1
>
{});
for
(
int
j
=
0
;
j
<
NumDs
;
++
j
)
{
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
DDataType
,
0
>
{});
}
}
}
...
...
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_bias_fp16.cpp
View file @
cd4d4629
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
@@ -167,11 +167,11 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
BDataType
,
1
>
{});
}
d0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
d0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
D0DataType
,
1
>
{});
}
using
GroupedGemmKernelArgument
=
ck
::
tensor_operation
::
device
::
GroupedGemmKernelArgument
<
1
>
;
...
...
@@ -254,7 +254,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
gemm
.
GetDeviceKernelArgSize
(
&
argument
),
hipMemcpyHostToDevice
));
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_kernel_args_dev
.
GetDeviceBuffer
());
gemm
.
SetDeviceKernelArgs
(
&
argument
,
gemm_kernel_args_dev
.
GetDeviceBuffer
());
gemm
.
SetKBatch
(
argument
,
config
.
k_batch
);
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
...
...
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16.cpp
View file @
cd4d4629
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
@@ -157,8 +157,8 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
BDataType
,
1
>
{});
}
}
...
...
@@ -239,7 +239,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
"not support this GEMM problem"
);
}
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
gemm
.
SetDeviceKernelArgs
(
&
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
gemm
.
SetKBatch
(
argument
,
config
.
k_batch
);
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
...
...
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16_fp8.cpp
View file @
cd4d4629
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
@@ -158,8 +158,8 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
BDataType
,
1
>
{});
}
}
...
...
@@ -240,7 +240,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
"not support this GEMM problem"
);
}
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
gemm
.
SetDeviceKernelArgs
(
&
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
gemm
.
SetKBatch
(
argument
,
config
.
k_batch
);
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
...
...
example/15_grouped_gemm/run_grouped_gemm_example.inc
View file @
cd4d4629
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
struct
ProblemSize
final
...
...
@@ -124,8 +127,8 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors
[
i
]
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default
:
a_tensors
[
i
]
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
]
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
a_tensors
[
i
]
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
0
>
{});
b_tensors
[
i
]
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
BDataType
,
1
>
{});
}
}
...
...
@@ -168,9 +171,23 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
auto
argument
=
gemm
.
MakeArgument
(
p_a
,
p_b
,
p_Ds
,
p_c
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
);
DeviceMem
gemm_desc_workspace
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
std
::
size_t
workspace_size
=
gemm
.
GetWorkSpaceSize
(
&
argument
);
std
::
size_t
kargs_size
=
gemm
.
GetDeviceKernelArgSize
(
&
argument
);
DeviceMem
gemm_workspace
,
gemm_kargs
;
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_desc_workspace
.
GetDeviceBuffer
());
// The following is necessary since TwoStage kernel is using additional memory both
// for Workspace and kernel arguments.
if
(
kargs_size
>
0
)
{
gemm_kargs
.
Realloc
(
kargs_size
);
gemm
.
SetDeviceKernelArgs
(
&
argument
,
gemm_kargs
.
GetDeviceBuffer
());
}
if
(
workspace_size
>
0
&&
workspace_size
!=
kargs_size
)
{
gemm_workspace
.
Realloc
(
workspace_size
);
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_workspace
.
GetDeviceBuffer
());
}
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
...
...
example/16_gemm_multi_d_multi_reduces/gemm_add_add_mean_meansquare_xdl_fp16.cpp
View file @
cd4d4629
...
...
@@ -198,7 +198,7 @@ int main()
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
// init reduc
e
tion buffer to 0
// init reduction buffer to 0
r0_device_buf
.
SetZero
();
r1_device_buf
.
SetZero
();
...
...
example/21_gemm_layernorm/gemm_xdl_layernorm_naive_single_kernel_fp16.cpp
View file @
cd4d4629
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
@@ -175,8 +175,8 @@ int main(int argc, char* argv[])
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
0
>
{});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
BDataType
,
1
>
{});
}
c0_n_bias
.
GenerateTensorValue
(
GeneratorTensor_2
<
C0DataType
>
{
-
5
,
5
});
...
...
example/24_batched_gemm/CMakeLists.txt
View file @
cd4d4629
...
...
@@ -9,6 +9,12 @@ add_example_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_fp16)
add_example_executable
(
example_batched_gemm_xdl_bf16 batched_gemm_xdl_bf16.cpp
)
add_example_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_bf16
)
add_example_executable
(
example_batched_gemm_xdl_bf16_v3 batched_gemm_xdl_bf16_v3.cpp
)
add_example_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_bf16_v3
)
add_example_executable
(
example_batched_gemm_xdl_fp8_rowwise_v3 batched_gemm_xdl_fp8_rowwise_v3.cpp
)
add_example_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_fp8_rowwise_v3
)
add_example_executable
(
example_batched_gemm_xdl_int8 batched_gemm_xdl_int8.cpp
)
add_example_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_int8
)
...
...
example/24_batched_gemm/batched_gemm_xdl_bf16_v3.cpp
0 → 100644
View file @
cd4d4629
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_multiple_d_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
BF16
;
using
BDataType
=
BF16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
BF16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXDL
32
,
// NPerXDL
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
0
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
0
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
S
<
8
>
,
// CDEShuffleBlockTransferScalarPerVectors
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
// BlockGemmPipelineScheduler
ck
::
BlockGemmPipelineVersion
::
v3
// BlockGemmPipelineVersion
>
;
#include "run_batched_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_batched_gemm_example
(
argc
,
argv
);
}
example/24_batched_gemm/batched_gemm_xdl_fp8_rowwise_v3.cpp
0 → 100644
View file @
cd4d4629
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_multiple_d_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F8
=
ck
::
f8_t
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
MultiplyMultiply
=
ck
::
tensor_operation
::
element_wise
::
MultiplyMultiply
;
using
ADataType
=
F8
;
using
BDataType
=
F8
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
F32
;
using
D1DataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
,
D1DataType
>
;
using
EDataType
=
BF16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
D0Layout
=
Row
;
using
D1Layout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
,
D1Layout
>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
MultiplyMultiply
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmMultiD_Xdl_CShuffle_V3
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXDL
32
,
// NPerXDL
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
S
<
8
,
8
,
1
>
,
// CDEShuffleBlockTransferScalarPerVectors
ck
::
BlockGemmPipelineScheduler
::
Interwave
,
// BlockGemmPipelineScheduler
ck
::
BlockGemmPipelineVersion
::
v1
,
// BlockGemmPipelineVersion
F8
// ComputeTypeA
>
;
#include "run_batched_gemm_example_rowwise.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_batched_gemm_rowwise_example
(
argc
,
argv
);
}
example/24_batched_gemm/run_batched_gemm_example.inc
View file @
cd4d4629
...
...
@@ -210,17 +210,9 @@ bool run_batched_gemm_example(int argc, char* argv[])
problem_size
.
M
=
256
*
(
dis
(
gen
)
+
1
);
problem_size
.
N
=
128
*
(
dis
(
gen
)
+
1
);
problem_size
.
K
=
64
*
(
dis
(
gen
)
+
2
);
problem_size
.
K
=
128
*
(
dis
(
gen
)
+
2
);
problem_size
.
stride_A
=
problem_size
.
K
;
problem_size
.
stride_B
=
problem_size
.
K
;
problem_size
.
stride_C
=
problem_size
.
N
;
problem_size
.
batch_stride_A
=
problem_size
.
M
*
problem_size
.
K
;
problem_size
.
batch_stride_B
=
problem_size
.
K
*
problem_size
.
N
;
problem_size
.
batch_stride_C
=
problem_size
.
M
*
problem_size
.
N
;
problem_size
.
batch_count
=
16
;
problem_size
.
batch_count
=
2
;
if
(
argc
==
4
)
{
...
...
@@ -228,13 +220,37 @@ bool run_batched_gemm_example(int argc, char* argv[])
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
8
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
problem_size
.
M
=
std
::
stoi
(
argv
[
4
]);
problem_size
.
N
=
std
::
stoi
(
argv
[
5
]);
problem_size
.
K
=
std
::
stoi
(
argv
[
6
]);
problem_size
.
batch_count
=
std
::
stoi
(
argv
[
7
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"optinal
\n
"
);
printf
(
"arg4-7: M = %d N = %d K = %d Batch = %d
\n
"
,
problem_size
.
M
,
problem_size
.
N
,
problem_size
.
K
,
problem_size
.
batch_count
);
exit
(
0
);
}
problem_size
.
stride_A
=
problem_size
.
K
;
problem_size
.
stride_B
=
problem_size
.
K
;
problem_size
.
stride_C
=
problem_size
.
N
;
problem_size
.
batch_stride_A
=
problem_size
.
M
*
problem_size
.
K
;
problem_size
.
batch_stride_B
=
problem_size
.
K
*
problem_size
.
N
;
problem_size
.
batch_stride_C
=
problem_size
.
M
*
problem_size
.
N
;
return
run_batched_gemm
(
problem_size
,
config
);
}
example/24_batched_gemm/run_batched_gemm_example_rowwise.inc
0 → 100644
View file @
cd4d4629
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <random>
#pragma once
struct
ProblemSize
final
{
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
stride_A
=
K
;
ck
::
index_t
stride_B
=
K
;
ck
::
index_t
stride_C
=
N
;
ck
::
index_t
stride_D0
=
0
;
ck
::
index_t
stride_D1
=
0
;
ck
::
index_t
batch_stride_A
=
M
*
K
;
ck
::
index_t
batch_stride_B
=
K
*
N
;
ck
::
index_t
batch_stride_C
=
M
*
N
;
ck
::
index_t
batch_stride_D0
=
N
;
ck
::
index_t
batch_stride_D1
=
M
;
ck
::
index_t
batch_count
=
16
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
};
bool
run_batched_gemm_rowwise
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
using
namespace
ck
::
literals
;
auto
&
[
M
,
N
,
K
,
stride_A
,
stride_B
,
stride_C
,
stride_D0
,
stride_D1
,
batch_stride_A
,
batch_stride_B
,
batch_stride_C
,
batch_stride_D0
,
batch_stride_D1
,
batch_count
]
=
problem_size
;
// GEMM shape
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count_
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
batch_count_
,
row
,
col
},
{
batch_stride
,
stride
,
1_
uz
});
}
else
{
return
HostTensorDescriptor
({
batch_count_
,
row
,
col
},
{
batch_stride
,
1_
uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
batch_count
,
M
,
K
,
stride_A
,
batch_stride_A
,
ALayout
{}));
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
batch_count
,
K
,
N
,
stride_B
,
batch_stride_B
,
BLayout
{}));
Tensor
<
D0DataType
>
d0_g_m_n
(
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_D0
,
batch_stride_D0
,
D0Layout
{}));
Tensor
<
D1DataType
>
d1_g_m_n
(
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_D1
,
batch_stride_D1
,
D1Layout
{}));
Tensor
<
EDataType
>
e_g_m_n_device_result
(
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_C
,
batch_stride_C
,
ELayout
{}));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_g_m_n: "
<<
d0_g_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_g_m_n: "
<<
d1_g_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_g_m_n: "
<<
e_g_m_n_device_result
.
mDesc
<<
std
::
endl
;
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
d0_g_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
d1_g_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
0.0
,
1.0
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_g_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
d0_g_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_g_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
EDataType
)
*
e_g_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_g_k_n
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_g_m_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_g_m_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
c_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
batch_count
,
stride_A
,
stride_B
,
{
stride_D0
,
stride_D1
},
stride_C
,
batch_stride_A
,
batch_stride_B
,
{
batch_stride_D0
,
batch_stride_D1
},
batch_stride_C
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
c_device_buf
.
FromDevice
(
e_g_m_n_device_result
.
mData
.
data
());
Tensor
<
CShuffleDataType
>
c_g_m_n
({
batch_count
,
M
,
N
});
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_batched_gemm
=
ReferenceBatchedGemmInstance
{};
auto
ref_invoker
=
ref_batched_gemm
.
MakeInvoker
();
Tensor
<
EDataType
>
e_g_m_n_host_result
(
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_C
,
batch_stride_C
,
ELayout
{}));
auto
ref_argument
=
ref_batched_gemm
.
MakeArgument
(
a_g_m_k
,
b_g_k_n
,
c_g_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
b
=
0
;
b
<
batch_count
;
++
b
)
{
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_g_m_n_host_result
(
b
,
m
,
n
),
c_g_m_n
(
b
,
m
,
n
),
d0_g_m_n
(
b
,
m
,
n
),
d1_g_m_n
(
b
,
m
,
n
));
}
}
}
pass
=
ck
::
utils
::
check_err
(
e_g_m_n_device_result
,
e_g_m_n_host_result
,
"Error: Incorrect results c"
);
}
if
(
config
.
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
batch_count
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
batch_count
*
M
*
K
+
sizeof
(
BDataType
)
*
batch_count
*
K
*
N
+
sizeof
(
EDataType
)
*
batch_count
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
return
pass
?
0
:
1
;
}
bool
run_batched_gemm_rowwise_example
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
std
::
mt19937
gen
(
11939
);
std
::
uniform_int_distribution
<
int
>
dis
(
0
,
15
);
problem_size
.
M
=
256
*
(
dis
(
gen
)
+
1
);
problem_size
.
N
=
128
*
(
dis
(
gen
)
+
1
);
problem_size
.
K
=
128
*
(
dis
(
gen
)
+
2
);
problem_size
.
batch_count
=
2
;
if
(
argc
==
4
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
8
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
problem_size
.
M
=
std
::
stoi
(
argv
[
4
]);
problem_size
.
N
=
std
::
stoi
(
argv
[
5
]);
problem_size
.
K
=
std
::
stoi
(
argv
[
6
]);
problem_size
.
batch_count
=
std
::
stoi
(
argv
[
7
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"optinal
\n
"
);
printf
(
"arg4-7: M = %d N = %d K = %d Batch = %d
\n
"
,
problem_size
.
M
,
problem_size
.
N
,
problem_size
.
K
,
problem_size
.
batch_count
);
exit
(
0
);
}
problem_size
.
stride_A
=
problem_size
.
K
;
problem_size
.
stride_B
=
problem_size
.
K
;
problem_size
.
stride_C
=
problem_size
.
N
;
problem_size
.
stride_D0
=
0
;
problem_size
.
stride_D1
=
0
;
problem_size
.
batch_stride_A
=
problem_size
.
M
*
problem_size
.
K
;
problem_size
.
batch_stride_B
=
problem_size
.
K
*
problem_size
.
N
;
problem_size
.
batch_stride_C
=
problem_size
.
M
*
problem_size
.
N
;
problem_size
.
batch_stride_D0
=
problem_size
.
N
;
problem_size
.
batch_stride_D1
=
problem_size
.
M
;
return
run_batched_gemm_rowwise
(
problem_size
,
config
);
}
example/31_batched_gemm_gemm/run_batched_gemm_gemm_example.inc
View file @
cd4d4629
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -150,7 +150,7 @@ bool run_batched_gemm_gemm_example(int argc, char* argv[])
break
;
default
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
B0DataType
,
1
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
...
...
example/32_batched_gemm_scale_softmax_gemm/run_batched_gemm_scale_softmax_gemm.inc
View file @
cd4d4629
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
int
run
(
int
argc
,
char
*
argv
[])
{
...
...
@@ -157,7 +157,7 @@ int run(int argc, char* argv[])
break
;
default
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
B0DataType
,
1
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
...
...
example/32_batched_gemm_scale_softmax_gemm/run_batched_gemm_scale_softmax_gemm_permute.inc
View file @
cd4d4629
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
int
run
(
int
argc
,
char
*
argv
[])
{
...
...
@@ -118,7 +118,7 @@ int run(int argc, char* argv[])
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
break
;
default
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
2
>
{});
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
2
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
...
...
example/32_batched_gemm_scale_softmax_gemm/run_batched_gemm_scale_softmax_gemm_permute_wmma.inc
View file @
cd4d4629
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
int
run
(
int
argc
,
char
*
argv
[])
{
...
...
@@ -153,7 +153,7 @@ int run(int argc, char* argv[])
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
default
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
2
>
{});
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
2
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
...
...
example/32_batched_gemm_scale_softmax_gemm/run_cross_attention_wmma.inc
View file @
cd4d4629
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
int
run
(
int
argc
,
char
*
argv
[])
{
...
...
@@ -178,7 +178,7 @@ int run(int argc, char* argv[])
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
break
;
default
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
2
>
{});
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
2
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
...
...
Prev
1
2
3
4
5
6
7
…
45
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment