Commit cd4d4629 authored by danyao12's avatar danyao12
Browse files

Merge branch 'develop' into ck_tile/fa_bwd_v3

parents 21d12bb7 888317e6
......@@ -4,6 +4,7 @@
#include <hip/hip_runtime_api.h>
#include <memory>
#include <string>
#include <stdexcept>
namespace rtc {
......
rocm-docs-core==1.8.2
rocm-docs-core==1.12.1
sphinxcontrib-bibtex==2.6.3
......@@ -103,7 +103,7 @@ requests==2.32.3
# via
# pygithub
# sphinx
rocm-docs-core==1.8.2
rocm-docs-core==1.12.1
# via -r requirements.in
six==1.16.0
# via pybtex
......
......@@ -29,10 +29,16 @@ add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp16_v3)
add_example_executable(example_gemm_xdl_fp8_v3 gemm_xdl_fp8_v3.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp8_v3)
add_example_executable(example_gemm_xdl_fp16_fp8_v3 gemm_xdl_fp16_fp8_v3.cpp)
add_example_executable(example_gemm_xdl_fp16_pk_i4_v3 gemm_xdl_fp16_pk_i4_v3.cpp)
add_example_executable(example_gemm_xdl_fp16_pk_i4_v3_b_scale gemm_xdl_fp16_pk_i4_v3_b_scale.cpp)
add_example_executable(example_gemm_xdl_bf16_pk_i4_v3 gemm_xdl_bf16_pk_i4_v3.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp16_fp8_v3)
add_example_executable(example_gemm_xdl_bf16_v3 gemm_xdl_bf16_v3.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_bf16_v3)
add_example_executable(example_gemm_xdl_bf16_streamk_v3 gemm_xdl_bf16_streamk_v3.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_bf16_streamk_v3)
add_example_executable(example_gemm_xdl_wavelet_fp16 gemm_xdl_wavelet_fp16.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_wavelet_fp16)
......@@ -77,9 +83,16 @@ add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp8)
add_example_executable(example_gemm_xdl_fp8_bf8 gemm_xdl_fp8_bf8.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp8_bf8)
add_example_executable(example_gemm_xdl_fp8_streamk_v3 gemm_xdl_fp8_streamk_v3.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp8_streamk_v3)
add_example_executable(example_gemm_xdl_fp16_fp8 gemm_xdl_fp16_fp8.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp16_fp8)
add_custom_target(example_gemm_wmma)
add_example_executable(example_gemm_wmma_fp16 gemm_wmma_fp16.cpp)
add_example_dependencies(example_gemm_wmma example_gemm_wmma_fp16)
add_example_executable(example_gemm_wmma_bf16 gemm_wmma_bf16.cpp)
add_example_dependencies(example_gemm_wmma example_gemm_wmma_bf16)
add_example_executable(example_gemm_wmma_int8 gemm_wmma_int8.cpp)
add_example_dependencies(example_gemm_wmma example_gemm_wmma_int8)
......@@ -29,9 +29,9 @@ struct ProblemSize final
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 0;
ck::index_t StrideB = 0;
ck::index_t StrideC = 0;
ck::index_t StrideA = -1;
ck::index_t StrideB = -1;
ck::index_t StrideC = -1;
};
struct ProblemSizeStreamK final
......@@ -40,11 +40,11 @@ struct ProblemSizeStreamK final
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 0;
ck::index_t StrideB = 0;
ck::index_t StrideC = 0;
ck::index_t StrideA = -1;
ck::index_t StrideB = -1;
ck::index_t StrideC = -1;
ck::index_t NumSKBlocks = -1;
ck::index_t NumSKBlocks = -1; // number of stream-k blocks
};
struct ProblemSizeStreamK_universal final
{
......@@ -52,9 +52,9 @@ struct ProblemSizeStreamK_universal final
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 0;
ck::index_t StrideB = 0;
ck::index_t StrideC = 0;
ck::index_t StrideA = -1;
ck::index_t StrideB = -1;
ck::index_t StrideC = -1;
ck::index_t Grid_size = -1; // defaults to max occupancy
ck::index_t Streamk_sel = 1; // defaults to 1-tile SK
......@@ -66,18 +66,19 @@ struct ProblemSizeSplitK final
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 0;
ck::index_t StrideB = 0;
ck::index_t StrideC = 0;
ck::index_t StrideA = -1;
ck::index_t StrideB = -1;
ck::index_t StrideC = -1;
ck::index_t KBatch = 1;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 2;
bool time_kernel = false;
// 0 - no verification, 1 - CPU, 2 - GPU, 3 - CPU + GPU
int do_verification = 1;
int init_method = 2;
bool time_kernel = false;
};
template <ck::index_t... Is>
......@@ -126,7 +127,7 @@ bool parse_cmd_args<ProblemSize>(int argc,
}
else
{
std::cerr << "arg1: verification (0=no, 1=CPU and GPU)" << std::endl
std::cerr << "arg1: verification (0=no, 1=CPU, 2=GPU, 3=CPU and GPU)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<< std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl
......@@ -176,7 +177,7 @@ bool parse_cmd_args<ProblemSizeStreamK_universal>(int argc,
else
{
std::cerr
<< "arg1: verification (0=no, 1=CPU and GPU)" << std::endl
<< "arg1: verification (0=no, 1=CPU, 2=GPU, 3=CPU and GPU)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)" << std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl
<< "arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC" << std::endl
......@@ -225,7 +226,7 @@ bool parse_cmd_args<ProblemSizeStreamK>(int argc,
}
else
{
std::cerr << "arg1: verification (0=no, 1=CPU and GPU)" << std::endl
std::cerr << "arg1: verification (0=no, 1=CPU, 2=GPU, 3=CPU and GPU)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<< std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl
......@@ -275,7 +276,7 @@ bool parse_cmd_args<ProblemSizeSplitK>(int argc,
}
else
{
std::cerr << "arg1: verification (0=no, 1=CPU and GPU)" << std::endl
std::cerr << "arg1: verification (0=no, 1=CPU, 2=GPU, 3=CPU and GPU)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<< std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl
......@@ -286,3 +287,85 @@ bool parse_cmd_args<ProblemSizeSplitK>(int argc,
return true;
}
template <typename DataType>
inline __host__ __device__ constexpr double get_rtol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 1e-1; // 240 and 224 are acceptable
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 1.5e-1; // 57344 and 49152 are acceptable
}
else
{
return 1e-3;
}
}
template <typename DataType>
inline __host__ __device__ constexpr double get_atol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 16.1; // 240 and 224 are acceptable
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 8192.1; // 57344 and 49152 are acceptable
}
else
{
return 1e-3;
}
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp"
using ADataType = ck::bhalf_t;
using BDataType = ck::bhalf_t;
using AccDataType = float;
using CShuffleDataType = float;
using CDataType = ck::bhalf_t;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmWmma_CShuffle
< ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
CShuffleDataType,
AElementOp,
BElementOp,
CElementOp,
GemmDefault,
1, // Prefetch stage
128, // BlockSize
64, // MPerBlock
128, // NPerBlock
64, // KPerBlock
2, // K1
16, // MPerWmma
16, // NPerWmma
2, // M-Repeat // M-PerWmma / M-Repeat = M-Wave
4, // N-Repeat // N-PerWmma / N-Repeat = N-Wave
S<4, 32, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
2,
2,
true,
S<4, 32, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
2,
2,
true,
1, // C shuffle (M Repeat) Per store
1, // C shuffle (N Repeat) Per store
S<1, 32, 1, 4>,
8>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
using ReferenceGemmInstanceGPU = ck::tensor_operation::device::ReferenceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
#include "run_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp"
using ADataType = int8_t;
using BDataType = int8_t;
using AccDataType = int32_t;
using CShuffleDataType = int32_t;
using CDataType = int8_t;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmWmma_CShuffle
< ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
CShuffleDataType,
AElementOp,
BElementOp,
CElementOp,
GemmDefault,
1, // Prefetch stage
128, // BlockSize
64, // MPerBlock
128, // NPerBlock
64, // KPerBlock
2, // K1
16, // MPerWmma
16, // NPerWmma
2, // M-Repeat // M-PerWmma / M-Repeat = M-Wave
4, // N-Repeat // N-PerWmma / N-Repeat = N-Wave
S<4, 32, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
2,
2,
true,
S<4, 32, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
2,
2,
true,
1, // C shuffle (M Repeat) Per store
1, // C shuffle (N Repeat) Per store
S<1, 32, 1, 4>,
8>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
using ReferenceGemmInstanceGPU = ck::tensor_operation::device::ReferenceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
#include "run_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
File mode changed from 100644 to 100755
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3.hpp"
using ADataType = ck::bhalf_t;
using BDataType = ck::pk_i4_t;
using AccDataType = float;
using CShuffleDataType = ck::bhalf_t;
using CDataType = ck::bhalf_t;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr bool PermuteA = false;
static constexpr bool PermuteB = true;
static constexpr ck::index_t KPerBlock = 128;
// clang-format off
using DeviceGemmV2Instance =
ck::tensor_operation::device::DeviceGemm_Xdl_CShuffleV3<
ALayout, BLayout, CLayout,
ADataType, BDataType, CDataType, AccDataType, CShuffleDataType,
AElementOp, BElementOp, CElementOp, GemmDefault,
128,
16, 64,
KPerBlock, 8, 32,
16, 16,
1, 2,
S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 8, 8, 0,
S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 32, 32, 0,
1, 1, S<1, 16, 1, 8>, 4,
ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v2, ADataType, ADataType, PermuteA, PermuteB>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
PassThrough,
PassThrough,
PassThrough>;
template <typename ProblemType>
bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
{
using namespace ck::literals;
auto M = problem_size.M;
auto N = problem_size.N;
auto K = problem_size.K;
auto StrideA = problem_size.StrideA;
auto StrideB = problem_size.StrideB;
auto StrideC = problem_size.StrideC;
auto KBatch = problem_size.KBatch;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
auto f_get_default_stride =
[](std::size_t row, std::size_t col, ck::index_t stride, auto layout) {
if(stride == -1)
{
// give a chance if stride is -1, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return static_cast<std::size_t>(col);
}
else
{
return static_cast<std::size_t>(row);
}
}
else
return static_cast<std::size_t>(stride);
};
StrideA = f_get_default_stride(M, K, StrideA, ALayout{});
StrideB = f_get_default_stride(K, N, StrideB, BLayout{});
StrideC = f_get_default_stride(M, N, StrideC, CLayout{});
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<BDataType> b_k_n_permute(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
switch(config.init_method)
{
case 0:
a_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b_k_n.GenerateTensorValue(GeneratorTensor_1<BDataType>{1});
break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
break;
case 2:
a_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
break;
case 3:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b_k_n.GenerateTensorValue(GeneratorTensor_1<BDataType>{1});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
}
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n_permute.mDesc.GetElementSpaceSize());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
// weight permute
if constexpr(PermuteB)
{
int K1 = KPerBlock;
int K0 = K / KPerBlock;
// int K0, N, K1
for(int j = 0; j < K0; j++)
{
for(int i = 0; i < N; i++)
{
for(int jj = 0; jj < K1; jj++)
{
b_k_n_permute(j * N * K1 + i * K1 + jj) = b_k_n(i * K + (j * K1 + jj));
}
}
}
}
else
{
for(int i = 0; i < N; i++)
{
for(int j = 0; j < K; j++)
{
b_k_n_permute(i * K + j) = b_k_n(i * K + j);
}
}
}
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n_permute.mData.data());
DeviceMem workspace;
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmV2Instance{};
auto invoker = gemm.MakeInvoker();
float ave_time = 0;
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
KBatch,
a_element_op,
b_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
std::cerr << gemm.GetTypeString() << " does not support this problem" << std::endl;
return true;
}
bool pass = true;
if(config.do_verification)
{
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, PassThrough{}, PassThrough{}, PassThrough{});
ref_invoker.Run(ref_argument);
ave_time = invoker.Run(argument, StreamConfig{nullptr, false, 0});
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass &= ck::utils::check_err(c_m_n_device_result,
c_m_n_host_result,
"Error: Incorrect results!",
get_rtol<CDataType>(),
get_atol<CDataType>());
}
if(config.time_kernel)
{
ave_time =
invoker.Run(argument, StreamConfig{nullptr, config.time_kernel, 0, 20, 50, true, 50});
std::size_t flop = 2_uz * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K +
sizeof(BDataType) * K * N /
(ck::is_same_v<ck::remove_cvref_t<BDataType>, ck::pk_i4_t> ? 2 : 1) +
sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
}
return pass;
}
bool run_gemm_splitk_example(int argc, char* argv[])
{
ProblemSizeSplitK problem_size;
ExecutionConfig config;
return parse_cmd_args(argc, argv, problem_size, config) && run_gemm(problem_size, config);
}
int main(int argc, char* argv[]) { return !run_gemm_splitk_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp"
using ADataType = ck::bhalf_t;
using BDataType = ck::bhalf_t;
using CDataType = ck::bhalf_t;
using AccDataType = float;
using CShuffleDataType = ck::bhalf_t;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmV2_Streamk_Instance =
ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle_Streamk_V3<
ALayout, BLayout, CLayout,
ADataType, BDataType, CDataType, AccDataType, CShuffleDataType,
PassThrough, PassThrough, PassThrough, GemmDefault,
256,
128, 128,
64, 8, 8,
16, 16,
4, 4,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 8, 8, 0,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 8, 8, 0,
1, 2, S<1, 32, 1, 8>, 8,
ck::BlockGemmPipelineScheduler::Intrawave,ck::BlockGemmPipelineVersion::v3>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
using ReferenceGemmInstanceGPU = ck::tensor_operation::device::ReferenceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
#include "run_gemm_example_streamk_v2.inc"
int main(int argc, char* argv[]) { return !run_gemm_universal_streamk_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3.hpp"
using ADataType = ck::f8_t;
using BDataType = ck::half_t;
using ADataType = ck::half_t;
using BDataType = ck::f8_t;
using AccDataType = float;
using CShuffleDataType = ck::half_t;
using CDataType = ck::half_t;
......@@ -29,15 +29,15 @@ using DeviceGemmV2Instance =
AElementOp, BElementOp, CElementOp, GemmDefault,
64,
16, 16,
64, 16, 8,
256, 8, 16,
16, 16,
1, 1,
S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 16, 16, 0,
S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>,
S<32, 2, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 8, 8, 0,
S<16, 4, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 16, 16, 0,
1, 1, S<1, 16, 1, 4>, 4,
ck::BlockGemmPipelineScheduler::Intrawave,ck::BlockGemmPipelineVersion::v1>;
ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v1>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3.hpp"
using ADataType = ck::half_t;
using BDataType = ck::pk_i4_t;
using AccDataType = float;
using CShuffleDataType = ck::half_t;
using CDataType = ck::half_t;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr bool PermuteA = false;
static constexpr bool PermuteB = true;
static constexpr ck::index_t KPerBlock = 128;
// clang-format off
using DeviceGemmV2Instance =
ck::tensor_operation::device::DeviceGemm_Xdl_CShuffleV3<
ALayout, BLayout, CLayout,
ADataType, BDataType, CDataType, AccDataType, CShuffleDataType,
AElementOp, BElementOp, CElementOp, GemmDefault,
128,
16, 128,
KPerBlock, 8, 32,
16, 16,
1, 4,
S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 8, 8, 0,
S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 32, 32, 0,
1, 1, S<1, 16, 1, 8>, 4,
ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v2, ADataType, ADataType, PermuteA, PermuteB>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
PassThrough,
PassThrough,
PassThrough>;
template <typename ProblemType>
bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
{
using namespace ck::literals;
auto M = problem_size.M;
auto N = problem_size.N;
auto K = problem_size.K;
auto StrideA = problem_size.StrideA;
auto StrideB = problem_size.StrideB;
auto StrideC = problem_size.StrideC;
auto KBatch = problem_size.KBatch;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
auto f_get_default_stride =
[](std::size_t row, std::size_t col, ck::index_t stride, auto layout) {
if(stride == -1)
{
// give a chance if stride is -1, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return static_cast<std::size_t>(col);
}
else
{
return static_cast<std::size_t>(row);
}
}
else
return static_cast<std::size_t>(stride);
};
StrideA = f_get_default_stride(M, K, StrideA, ALayout{});
StrideB = f_get_default_stride(K, N, StrideB, BLayout{});
StrideC = f_get_default_stride(M, N, StrideC, CLayout{});
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<BDataType> b_k_n_permute(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
switch(config.init_method)
{
case 0:
a_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b_k_n.GenerateTensorValue(GeneratorTensor_1<BDataType>{1});
break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
break;
case 2:
a_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
break;
case 3:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b_k_n.GenerateTensorValue(GeneratorTensor_1<BDataType>{1});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
}
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n_permute.mDesc.GetElementSpaceSize());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
// weight permute
if constexpr(PermuteB)
{
int K1 = KPerBlock;
int K0 = K / KPerBlock;
// int K0, N, K1
for(int j = 0; j < K0; j++)
{
for(int i = 0; i < N; i++)
{
for(int jj = 0; jj < K1; jj++)
{
b_k_n_permute(j * N * K1 + i * K1 + jj) = b_k_n(i * K + (j * K1 + jj));
}
}
}
}
else
{
for(int i = 0; i < N; i++)
{
for(int j = 0; j < K; j++)
{
b_k_n_permute(i * K + j) = b_k_n(i * K + j);
}
}
}
// vector pk_i4x4 permute
for(int i = 0; i < N; i++)
{
for(int j = 0; j < K; j += 8)
{
int input[8];
for(int k = 0; k < 4; k++)
{
int i4x2 = b_k_n_permute(j + k * 2, i).data;
input[k * 2 + 0] = (i4x2 >> 4) & 0xf;
input[k * 2 + 1] = (i4x2 >> 0) & 0xf;
}
// permute 01234567->20643175
{
int hi = input[2];
int lo = input[0];
int i4x2 = (hi << 4) | lo;
b_k_n_permute(j + 0, i) = i4x2;
}
{
int hi = input[6];
int lo = input[4];
int i4x2 = (hi << 4) | lo;
b_k_n_permute(j + 2, i) = i4x2;
}
{
int hi = input[3];
int lo = input[1];
int i4x2 = (hi << 4) | lo;
b_k_n_permute(j + 4, i) = i4x2;
}
{
int hi = input[7];
int lo = input[5];
int i4x2 = (hi << 4) | lo;
b_k_n_permute(j + 6, i) = i4x2;
}
}
}
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n_permute.mData.data());
DeviceMem workspace;
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmV2Instance{};
auto invoker = gemm.MakeInvoker();
float ave_time = 0;
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
KBatch,
a_element_op,
b_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
std::cerr << gemm.GetTypeString() << " does not support this problem" << std::endl;
return true;
}
bool pass = true;
if(config.do_verification)
{
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, PassThrough{}, PassThrough{}, PassThrough{});
ref_invoker.Run(ref_argument);
ave_time = invoker.Run(argument, StreamConfig{nullptr, false, 0});
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass &= ck::utils::check_err(c_m_n_device_result,
c_m_n_host_result,
"Error: Incorrect results!",
get_rtol<CDataType>(),
get_atol<CDataType>());
}
if(config.time_kernel)
{
ave_time =
invoker.Run(argument, StreamConfig{nullptr, config.time_kernel, 0, 20, 50, true, 50});
std::size_t flop = 2_uz * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K +
sizeof(BDataType) * K * N /
(ck::is_same_v<ck::remove_cvref_t<BDataType>, ck::pk_i4_t> ? 2 : 1) +
sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
}
return pass;
}
bool run_gemm_splitk_example(int argc, char* argv[])
{
ProblemSizeSplitK problem_size;
ExecutionConfig config;
return parse_cmd_args(argc, argv, problem_size, config) && run_gemm(problem_size, config);
}
int main(int argc, char* argv[]) { return !run_gemm_splitk_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3_b_scale.hpp"
using ADataType = ck::half_t;
using BDataType = ck::pk_i4_t;
using BScaleDataType = ck::half_t;
using AccDataType = float;
using CShuffleDataType = ck::half_t;
using CDataType = ck::half_t;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr bool PermuteA = false;
static constexpr bool PermuteB = true;
static constexpr ck::index_t Scale_Block_N = 1;
static constexpr ck::index_t Scale_Block_K = 128;
static constexpr ck::index_t KPerBlock = 64;
// clang-format off
using DeviceGemmV2Instance =
ck::tensor_operation::device::DeviceGemm_Xdl_CShuffleV3<
ALayout, BLayout, CLayout,
ADataType, BDataType, BScaleDataType, CDataType, AccDataType, CShuffleDataType,
AElementOp, BElementOp, CElementOp, GemmDefault,
256, Scale_Block_N, Scale_Block_K,
128, 128,
KPerBlock, 8, 32,
32, 32,
4, 1,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 8, 8, 0,
S<2, 128, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 32, 32, 0,
1, 1, S<1, 32, 1, 8>, 8,
ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v3, CDataType, CDataType, PermuteA, PermuteB>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
AccDataType,
CDataType,
AccDataType,
PassThrough,
PassThrough,
PassThrough>;
template <typename ProblemType>
bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
{
using namespace ck::literals;
auto M = problem_size.M;
auto N = problem_size.N;
auto K = problem_size.K;
auto StrideA = problem_size.StrideA;
auto StrideB = problem_size.StrideB;
auto StrideC = problem_size.StrideC;
auto KBatch = problem_size.KBatch;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
auto f_get_default_stride =
[](std::size_t row, std::size_t col, ck::index_t stride, auto layout) {
if(stride == -1)
{
// give a chance if stride is -1, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return static_cast<std::size_t>(col);
}
else
{
return static_cast<std::size_t>(row);
}
}
else
return static_cast<std::size_t>(stride);
};
ck::index_t Scale_Stride_BN = (K + Scale_Block_K - 1) / Scale_Block_K;
StrideA = f_get_default_stride(M, K, StrideA, ALayout{});
StrideB = f_get_default_stride(K, N, StrideB, BLayout{});
StrideC = f_get_default_stride(M, N, StrideC, CLayout{});
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<BDataType> b_k_n_permute(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<BScaleDataType> b1_k_n(f_host_tensor_descriptor((K + Scale_Block_K - 1) / Scale_Block_K,
(N + Scale_Block_N - 1) / Scale_Block_N,
Scale_Stride_BN,
BLayout{}));
switch(config.init_method)
{
case 0:
a_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b_k_n.GenerateTensorValue(GeneratorTensor_1<BDataType>{1});
b1_k_n.GenerateTensorValue(GeneratorTensor_1<BScaleDataType>{1});
break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
b1_k_n.GenerateTensorValue(GeneratorTensor_3<BScaleDataType>{0, 1.0});
break;
case 2:
a_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
b1_k_n.GenerateTensorValue(GeneratorTensor_1<BScaleDataType>{1});
break;
case 3:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b_k_n.GenerateTensorValue(GeneratorTensor_1<BDataType>{1});
b1_k_n.GenerateTensorValue(GeneratorTensor_1<BScaleDataType>{1});
break;
case 4:
a_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b_k_n.GenerateTensorValue(GeneratorTensor_1<BDataType>{1});
b1_k_n.GenerateTensorValue(GeneratorTensor_3<BScaleDataType>{0, 1.0});
break;
case 5:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
b1_k_n.GenerateTensorValue(GeneratorTensor_1<BScaleDataType>{1});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.5, 0.5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
b1_k_n.GenerateTensorValue(GeneratorTensor_3<BScaleDataType>{0, 1.0});
}
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "b1_k_n: " << b1_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n_permute.mDesc.GetElementSpaceSize());
DeviceMem b1_scale_device_buf(sizeof(BScaleDataType) * b1_k_n.mDesc.GetElementSpaceSize());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
// weight permute
if constexpr(PermuteB)
{
int K1 = KPerBlock;
int K0 = K / KPerBlock;
// int K0, N, K1
for(int j = 0; j < K0; j++)
{
for(int i = 0; i < N; i++)
{
for(int jj = 0; jj < K1; jj++)
{
b_k_n_permute(j * N * K1 + i * K1 + jj) = b_k_n(i * K + (j * K1 + jj));
}
}
}
}
else
{
for(int i = 0; i < N; i++)
{
for(int j = 0; j < K; j++)
{
b_k_n_permute(i * K + j) = b_k_n(i * K + j);
}
}
}
// vector pk_i4x4 permute
for(int i = 0; i < N; i++)
{
for(int j = 0; j < K; j += 8)
{
int input[8];
for(int k = 0; k < 4; k++)
{
int i4x2 = b_k_n_permute(j + k * 2, i).data;
input[k * 2 + 0] = (i4x2 >> 4) & 0xf;
input[k * 2 + 1] = (i4x2 >> 0) & 0xf;
}
// permute 01234567->20643175
{
int hi = input[2];
int lo = input[0];
int i4x2 = (hi << 4) | lo;
b_k_n_permute(j + 0, i) = i4x2;
}
{
int hi = input[6];
int lo = input[4];
int i4x2 = (hi << 4) | lo;
b_k_n_permute(j + 2, i) = i4x2;
}
{
int hi = input[3];
int lo = input[1];
int i4x2 = (hi << 4) | lo;
b_k_n_permute(j + 4, i) = i4x2;
}
{
int hi = input[7];
int lo = input[5];
int i4x2 = (hi << 4) | lo;
b_k_n_permute(j + 6, i) = i4x2;
}
}
}
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n_permute.mData.data());
b1_scale_device_buf.ToDevice(b1_k_n.mData.data());
DeviceMem workspace;
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmV2Instance{};
auto invoker = gemm.MakeInvoker();
float ave_time = 0;
auto argument =
gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
Scale_Stride_BN,
static_cast<BScaleDataType*>(b1_scale_device_buf.GetDeviceBuffer()),
KBatch,
a_element_op,
b_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
std::cerr << gemm.GetTypeString() << " does not support this problem" << std::endl;
return true;
}
bool pass = true;
if(config.do_verification)
{
Tensor<float> b_k_n_dequant({K, N});
float v_b = 0;
for(int n = 0; n < N; n++)
{
for(int k = 0; k < K; k++)
{
ck::pk_i4_t i4x2 = b_k_n(k, n).data;
int8_t i4 = 0;
if(k % 2 == 1)
i4 = (i4x2.data >> 0) & 0xf;
else
i4 = (i4x2.data >> 4) & 0xf;
i4 = i4 - 8;
v_b = ck::type_convert<float>(i4);
b_k_n_dequant(k, n) =
ck::type_convert<float>(v_b) *
ck::type_convert<float>(b1_k_n(k / Scale_Block_K, n / Scale_Block_N));
}
}
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n_dequant, c_m_n_host_result, PassThrough{}, PassThrough{}, PassThrough{});
ref_invoker.Run(ref_argument);
ave_time = invoker.Run(argument, StreamConfig{nullptr, false, 0});
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass &= ck::utils::check_err(c_m_n_device_result,
c_m_n_host_result,
"Error: Incorrect results!",
get_rtol<CDataType>(),
get_atol<CDataType>());
}
if(config.time_kernel)
{
ave_time =
invoker.Run(argument, StreamConfig{nullptr, config.time_kernel, 0, 20, 50, true, 50});
std::size_t flop = 2_uz * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K +
sizeof(BDataType) * K * N /
(ck::is_same_v<ck::remove_cvref_t<BDataType>, ck::pk_i4_t> ? 2 : 1) +
sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
}
return pass;
}
bool run_gemm_splitk_example(int argc, char* argv[])
{
ProblemSizeSplitK problem_size;
ExecutionConfig config;
return !parse_cmd_args(argc, argv, problem_size, config) || run_gemm(problem_size, config);
}
int main(int argc, char* argv[]) { return !run_gemm_splitk_example(argc, argv); }
......@@ -8,7 +8,7 @@
using ADataType = ck::half_t;
using BDataType = ck::half_t;
using AccDataType = float;
using CShuffleDataType = ck::half_t;
using CShuffleDataType = float;
using CDataType = ck::half_t;
using ALayout = Row;
......@@ -43,6 +43,17 @@ using DeviceGemmV2_Streamk_Instance =
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
using ReferenceGemmInstanceGPU = ck::tensor_operation::device::ReferenceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
#include "run_gemm_example_streamk_v2.inc"
int main(int argc, char* argv[]) { return !run_gemm_universal_streamk_example(argc, argv); }
......@@ -12,7 +12,7 @@ using CShuffleDataType = ck::half_t;
using CDataType = ck::half_t;
using ALayout = Row;
using BLayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
......@@ -27,17 +27,17 @@ using DeviceGemmV2Instance =
ALayout, BLayout, CLayout,
ADataType, BDataType, CDataType, AccDataType, CShuffleDataType,
PassThrough, PassThrough, PassThrough, GemmDefault,
256,
224, 256,
64, 8, 2,
64,
16, 16,
256, 8, 8,
16, 16,
7, 8,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>,
1, 1,
S<32, 2, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 8, 8, 0,
S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>,
1, 8, 2, 0,
1, 2, S<1, 32, 1, 8>, 8,
ck::BlockGemmPipelineScheduler::Intrawave,ck::BlockGemmPipelineVersion::v3>;
S<32, 2, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 8, 8, 0,
1, 1, S<1, 16, 1, 4>, 4,
ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v2>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp"
using ADataType = ck::f8_t;
using BDataType = ck::f8_t;
using AccDataType = float;
using CShuffleDataType = ck::half_t;
using CDataType = ck::half_t;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmV2_Streamk_Instance =
ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle_Streamk_V3<
ALayout, BLayout, CLayout,
ADataType, BDataType, CDataType, AccDataType, CShuffleDataType,
PassThrough, PassThrough, PassThrough, GemmDefault,
256,
128, 256,
128, 16, 16,
16, 16,
4, 8,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 16, 16, 1,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 16, 16, 1,
1, 2, S<1, 32, 1, 8>, 8,
ck::BlockGemmPipelineScheduler::Intrawave,ck::BlockGemmPipelineVersion::v3, ck::f8_t>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
using ReferenceGemmInstanceGPU = ck::tensor_operation::device::ReferenceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
#include "run_gemm_example_streamk_v2.inc"
int main(int argc, char* argv[]) { return !run_gemm_universal_streamk_example(argc, argv); }
......@@ -15,7 +15,6 @@ using F16 = ck::half_t;
using ALayout = Row;
using BLayout = Row;
// using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
......
......@@ -5,88 +5,6 @@
#include "ck/tensor_operation/gpu/device/device_gemm_streamk.hpp"
template <typename DataType>
inline __host__ __device__ constexpr double get_rtol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 2e-1;
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 2e-1;
}
else
{
return 1e-3;
}
}
template <typename DataType>
inline __host__ __device__ constexpr double get_atol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 2e-1;
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 2e-1;
}
else
{
return 1e-3;
}
}
template <typename ProblemType>
bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
{
......@@ -116,21 +34,21 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
};
auto f_get_default_stride =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(stride == 0)
[](std::size_t row, std::size_t col, ck::index_t stride, auto layout) {
if(stride == -1)
{
// give a chance if stride is zero, return a default packed stride
// give a chance if stride is -1, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return col;
return static_cast<std::size_t>(col);
}
else
{
return row;
return static_cast<std::size_t>(row);
}
}
else
return stride;
return static_cast<std::size_t>(stride);
};
StrideA = f_get_default_stride(M, K, StrideA, ALayout{});
......@@ -143,8 +61,8 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
switch(config.init_method)
{
case 0:
ck::utils::FillConstant<ADataType>{static_cast<ADataType>(1.f)}(a_m_k);
ck::utils::FillConstant<BDataType>{static_cast<BDataType>(1.f)}(b_k_n);
ck::utils::FillConstant<ADataType>{ck::type_convert<ADataType>(1.f)}(a_m_k);
ck::utils::FillConstant<BDataType>{ck::type_convert<BDataType>(1.f)}(b_k_n);
break;
case 1:
ck::utils::FillUniformDistributionIntegerValue<ADataType>{-5.f, 5.f}(a_m_k);
......@@ -330,7 +248,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
bool pass = true;
if(config.do_verification)
if((config.do_verification == 1) || (config.do_verification == 3))
{
// CPU verification
auto ref_gemm = ReferenceGemmInstance{};
......@@ -353,13 +271,16 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
#else
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass &= !ck::utils::check_err(c_m_n_device_result,
c_m_n_host_result,
"Error: Incorrect results!",
get_rtol<CDataType>(),
get_atol<CDataType>());
pass &= ck::utils::check_err(c_m_n_device_result,
c_m_n_host_result,
"Error: Incorrect results!",
get_rtol<CDataType>(),
get_atol<CDataType>());
#endif
}
if((config.do_verification == 2) || (config.do_verification == 3))
{
// GPU verification
auto ref_gemm_gpu = ReferenceGemmInstanceGPU{};
auto ref_invoker_gpu = ref_gemm_gpu.MakeInvoker();
......@@ -381,14 +302,14 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
c_m_n_device_ref_buf.FromDevice(c_m_n_device_ref_result.mData.data());
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass &= !ck::utils::check_err(c_m_n_device_result,
c_m_n_device_ref_result,
"Error: Incorrect results!",
get_rtol<CDataType>(),
get_atol<CDataType>());
pass &= ck::utils::check_err(c_m_n_device_result,
c_m_n_device_ref_result,
"Error: Incorrect results!",
get_rtol<CDataType>(),
get_atol<CDataType>());
}
return !pass;
return pass == true;
}
bool run_gemm_example(int argc, char* argv[])
......
......@@ -3,88 +3,6 @@
#pragma once
template <typename DataType>
inline __host__ __device__ constexpr double get_rtol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 1e-1; // 240 and 224 are acceptable
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 1.5e-1; // 57344 and 49152 are acceptable
}
else
{
return 1e-3;
}
}
template <typename DataType>
inline __host__ __device__ constexpr double get_atol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 16.1; // 240 and 224 are acceptable
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 8192.1; // 57344 and 49152 are acceptable
}
else
{
return 1e-3;
}
}
template <typename ProblemType>
bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
{
......@@ -117,9 +35,9 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
auto f_get_default_stride =
[](std::size_t row, std::size_t col, ck::index_t stride, auto layout) {
if(stride == 0)
if(stride == -1)
{
// give a chance if stride is 0, return a default packed stride
// give a chance if stride is -1, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return static_cast<std::size_t>(col);
......@@ -176,6 +94,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_ref_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
......@@ -196,6 +115,8 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
DeviceMem c_m_n_device_ref_buf(sizeof(CDataType) *
c_m_n_device_ref_result.mDesc.GetElementSpaceSize());
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
......@@ -240,8 +161,15 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
return true;
}
std::size_t workspace_size = gemm.GetWorkSpaceSize(&argument);
if(workspace_size != 0)
{
workspace.Realloc(workspace_size);
gemm.SetWorkSpacePointer(&argument, workspace.GetDeviceBuffer());
}
bool pass = true;
if(config.do_verification)
if((config.do_verification == 1) || (config.do_verification == 3))
{
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
......@@ -271,6 +199,36 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
#endif
}
if((config.do_verification == 2) || (config.do_verification == 3))
{
// GPU verification
auto ref_gemm_gpu = ReferenceGemmInstanceGPU{};
auto ref_invoker_gpu = ref_gemm_gpu.MakeInvoker();
auto ref_argument_gpu = ref_gemm_gpu.MakeArgument(
static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_device_ref_buf.GetDeviceBuffer()),
M,
N,
K,
a_element_op,
b_element_op,
c_element_op);
std::cout << "Running verification on GPU." << std::endl;
ref_invoker_gpu.Run(ref_argument_gpu, StreamConfig{});
c_m_n_device_ref_buf.FromDevice(c_m_n_device_ref_result.mData.data());
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass &= ck::utils::check_err(c_m_n_device_result,
c_m_n_device_ref_result,
"Error: Incorrect results!",
get_rtol<CDataType>(),
get_atol<CDataType>());
}
if(config.time_kernel)
{
ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
......
......@@ -3,88 +3,6 @@
#pragma once
template <typename DataType>
inline __host__ __device__ constexpr double get_rtol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 1e-1; // 240 and 224 are acceptable
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 1.5e-1; // 57344 and 49152 are acceptable
}
else
{
return 1e-3;
}
}
template <typename DataType>
inline __host__ __device__ constexpr double get_atol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 16.1; // 240 and 224 are acceptable
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 8192.1; // 57344 and 49152 are acceptable
}
else
{
return 1e-3;
}
}
template <typename ProblemType>
bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
{
......@@ -115,21 +33,21 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
};
auto f_get_default_stride =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(stride == 0)
[](std::size_t row, std::size_t col, ck::index_t stride, auto layout) {
if(stride == -1)
{
// give a chance if stride is zero, return a default packed stride
// give a chance if stride is -1, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return col;
return static_cast<std::size_t>(col);
}
else
{
return row;
return static_cast<std::size_t>(row);
}
}
else
return stride;
return static_cast<std::size_t>(stride);
};
StrideA = f_get_default_stride(M, K, StrideA, ALayout{});
......@@ -228,7 +146,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
}
bool pass = true;
if(config.do_verification)
if((config.do_verification == 1) || (config.do_verification == 3))
{
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
......@@ -261,7 +179,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
if(config.time_kernel)
{
ave_time =
invoker.Run(argument, StreamConfig{nullptr, config.time_kernel, 0, 5, 10, true, 4});
invoker.Run(argument, StreamConfig{nullptr, config.time_kernel, 0, 50, 100, true, 4});
std::size_t flop = 2_uz * M * N * K;
std::size_t num_btype =
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment