This folder contains example for moe-sorting kernel using ck_tile tile-programming implementation. This kernel is often used in Moe model, before launching the fused-moe-gemm block. The input&weight is a `token*topk` 2d matrix. The op rearange the input weight ids into different experts and feed into fuse moe gemm kernel.
## build
```
# in the root of ck_tile
mkdir build && cd build
sh ../script/cmake-ck-dev.sh ../ <arch> # you can replace this <arch> to gfx90a, gfx942...
make tile_example_moe_sorting -j
```
This will result in an executable `build/bin/tile_example_moe_sorting`
## example
```
args:
-v weather do CPU validation or not (default:1)
-pr_i index data type. (currently only fp32 supported now) (default:int32)
-pr_w output weight data type(currently only fp32 supported now) (default:fp32)
-t number of input tokens (default:32)
-e number of experts (default:8)
-k topk (default:2)
-st_i row stride of input, -1 means same as experts (default:-1)
-seed seed to be used, -1 means random every time (default:-1)
-kname when set to 1 it will print kernel name (default:0)
This folder contains example for moe-smoothquant using ck_tile tile-programming implementation.

Unlike standard smoothquant op, the input scale is from different expert `[expert, hidden]`, we need reuse the `topk-id` from previous `topk-softmax` and select the corresponding `expert` from current topk, and expand the output/per-token-scale by `topk`
## build
```
# in the root of ck_tile
mkdir build && cd build
sh ../script/cmake-ck-dev.sh ../ <arch> # you can replace this <arch> to gfx90a, gfx942...
make tile_example_moe_smoothquant -j
```
This will result in an executable `build/bin/tile_example_moe_smoothquant`