Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
ca99f301
Commit
ca99f301
authored
Oct 16, 2024
by
Andriy Roshchenko
Browse files
Refactoring. Move FP8 definitions into a separate header file.
parent
16a38ff6
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
914 additions
and
923 deletions
+914
-923
include/ck/utility/amd_ck_fp8.hpp
include/ck/utility/amd_ck_fp8.hpp
+897
-0
include/ck/utility/data_type.hpp
include/ck/utility/data_type.hpp
+7
-915
include/ck/utility/random_gen.hpp
include/ck/utility/random_gen.hpp
+2
-0
test/data_type/test_bf8_ocp.cpp
test/data_type/test_bf8_ocp.cpp
+6
-6
test/data_type/test_fp8_ocp.cpp
test/data_type/test_fp8_ocp.cpp
+2
-2
No files found.
include/ck/utility/amd_ck_fp8.hpp
0 → 100644
View file @
ca99f301
#pragma once
#include "ck/utility/random_gen.hpp"
#include "ck/utility/type.hpp"
#ifdef CK_USE_FNUZ_FP8
#define CK_USE_FNUZ_FP8 1
#else
#define CK_USE_FNUZ_FP8 0
#endif
#ifdef CK_USE_OCP_FP8
#define CK_USE_OCP_FP8 1
#else
#define CK_USE_OCP_FP8 0
#endif
namespace
ck
{
using
f8_fnuz_t
=
_BitInt
(
8
);
using
bf8_fnuz_t
=
unsigned
_BitInt
(
8
);
#if(defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) || defined(__gfx1200__) || \
defined(__gfx1201__) || defined(__gfx950__)) && \
__HIP_DEVICE_COMPILE__
#define CK_FP8_CVT_FAST_PATH 1
#else
#define CK_FP8_CVT_FAST_PATH 0
#endif
typedef
unsigned
char
fp8_storage_t
;
/**
* \brief Describes FP8 interpretation
*/
enum
ck_fp8_interpretation_t
{
CK_E4M3_OCP
=
0
,
// OCP E4M3
CK_E5M2_OCP
=
1
,
// OCP E5M2
CK_E4M3_FNUZ
=
2
,
// FP8
CK_E5M2_FNUZ
=
3
,
// BF8
};
/**
* \brief Describes saturation behavior
*/
enum
ck_saturation_t
{
CK_NOSAT
=
0
,
// No saturation - replace with NaN or Inf
CK_SATFINITE
=
1
,
// Saturate to finite
};
namespace
fp8_impl
{
__host__
__device__
static
inline
constexpr
bool
fnuz_f8_is_nan
(
f8_fnuz_t
a
)
{
return
static_cast
<
unsigned
char
>
(
a
)
==
0x80
;
}
__host__
__device__
static
inline
constexpr
bool
fnuz_bf8_is_nan
(
bf8_fnuz_t
a
)
{
return
static_cast
<
unsigned
char
>
(
a
)
==
0x80
;
}
__host__
__device__
static
inline
constexpr
bool
ocp_f8_is_nan
(
fp8_storage_t
a
)
{
return
(
a
&
0x7f
)
==
0x7f
;
}
__host__
__device__
static
inline
constexpr
bool
ocp_bf8_is_nan
(
fp8_storage_t
a
)
{
return
(
a
&
0x7f
)
>
0x7c
;
}
// The conversion function is from rocblas
// https://github.com/ROCm/rocBLAS/blob/9b7f692abe3c54b88d1e77e045a7db7f1f188b69/library/include/internal/rocblas_hip_f8_impl.h#L220
// This has been modified to handle double types as well
template
<
typename
T
,
int
wm
,
int
we
,
bool
is_fnuz
,
bool
clip
=
false
>
__host__
__device__
static
inline
T
cast_from_f8
(
fp8_storage_t
x
)
{
constexpr
bool
is_half
=
__hip_internal
::
is_same
<
T
,
_Float16
>::
value
;
constexpr
bool
is_float
=
__hip_internal
::
is_same
<
T
,
float
>::
value
;
constexpr
bool
is_double
=
__hip_internal
::
is_same
<
T
,
double
>::
value
;
static_assert
(
is_half
||
is_float
||
is_double
,
"only half, float and double are supported"
);
constexpr
int
weo
=
is_half
?
5
:
(
is_float
?
8
:
11
);
constexpr
int
wmo
=
is_half
?
10
:
(
is_float
?
23
:
52
);
T
fInf
,
fNegInf
,
fNaN
,
fNeg0
,
fmax
,
fmin
;
if
constexpr
(
is_half
)
{
const
unsigned
short
int
ihInf
=
0x7C00
;
const
unsigned
short
int
ihNegInf
=
0xFC00
;
const
unsigned
short
int
ihNaN
=
0x7C01
;
const
unsigned
short
int
ihNeg0
=
0x8000
;
/* Max number in e5m2 57344*/
const
unsigned
short
int
ifmax
=
0x7B00
;
const
unsigned
short
int
ifmin
=
0xFB00
;
fInf
=
bit_cast
<
_Float16
>
(
ihInf
);
fNegInf
=
bit_cast
<
_Float16
>
(
ihNegInf
);
fNaN
=
bit_cast
<
_Float16
>
(
ihNaN
);
fNeg0
=
bit_cast
<
_Float16
>
(
ihNeg0
);
fmax
=
bit_cast
<
_Float16
>
(
ifmax
);
fmin
=
bit_cast
<
_Float16
>
(
ifmin
);
}
else
if
(
is_float
)
{
const
unsigned
int
ifInf
=
0x7F800000
;
const
unsigned
int
ifNegInf
=
0xFF800000
;
const
unsigned
int
ifNaN
=
0x7F800001
;
const
unsigned
int
ifNeg0
=
0x80000000
;
/* Max number in e5m2 57344*/
const
unsigned
int
ifmax
=
0x47600000
;
const
unsigned
int
ifmin
=
0xC7600000
;
fInf
=
bit_cast
<
float
>
(
ifInf
);
fNegInf
=
bit_cast
<
float
>
(
ifNegInf
);
fNaN
=
bit_cast
<
float
>
(
ifNaN
);
fNeg0
=
bit_cast
<
float
>
(
ifNeg0
);
fmax
=
bit_cast
<
float
>
(
ifmax
);
fmin
=
bit_cast
<
float
>
(
ifmin
);
}
else
if
(
is_double
)
{
const
unsigned
long
long
ifInf
=
0x7FF0000000000000ull
;
const
unsigned
long
long
ifNegInf
=
0xFFF0000000000000ull
;
const
unsigned
long
long
ifNaN
=
0x7FF0000000000001ull
;
const
unsigned
long
long
ifNeg0
=
0x8000000000000000ull
;
/* Max number in e5m2 57344*/
const
unsigned
long
long
ifmax
=
0x40EC000000000000ull
;
const
unsigned
long
long
ifmin
=
0xC0EC000000000000ull
;
fInf
=
bit_cast
<
double
>
(
ifInf
);
fNegInf
=
bit_cast
<
double
>
(
ifNegInf
);
fNaN
=
bit_cast
<
double
>
(
ifNaN
);
fNeg0
=
bit_cast
<
double
>
(
ifNeg0
);
fmax
=
bit_cast
<
double
>
(
ifmax
);
fmin
=
bit_cast
<
double
>
(
ifmin
);
}
if
(
x
==
0
)
{
return
0
;
}
unsigned
long
long
sign
=
x
>>
7
;
unsigned
long
long
mantissa
=
x
&
((
1
<<
wm
)
-
1
);
int
exponent
=
(
x
&
0x7F
)
>>
wm
;
if
constexpr
(
is_fnuz
)
{
if
(
x
==
0x80
)
{
return
fNaN
;
}
}
else
{
if
(
x
==
0x80
)
{
return
fNeg0
;
}
if
(
we
==
4
)
{
// e4m3
if
((
x
&
0x7F
)
==
0x7F
)
{
return
fNaN
;
}
}
else
if
((
x
&
0x7C
)
==
0x7C
)
{
// e5m2
if
((
x
&
0x3
)
==
0
)
{
if
(
clip
)
{
return
sign
?
fmin
:
fmax
;
}
return
sign
?
fNegInf
:
fInf
;
}
return
fNaN
;
}
}
typename
__hip_internal
::
conditional
<
sizeof
(
T
)
==
2
,
unsigned
short
int
,
typename
__hip_internal
::
conditional
<
sizeof
(
T
)
==
4
,
unsigned
int
,
unsigned
long
long
>::
type
>::
type
retval
;
if
(
we
==
5
&&
is_half
&&
!
is_fnuz
)
{
retval
=
x
<<
8
;
return
bit_cast
<
T
>
(
retval
);
}
const
int
exp_low_cutoff
=
(
1
<<
(
weo
-
1
))
-
(
1
<<
(
we
-
1
))
+
1
-
(
is_fnuz
?
1
:
0
);
// subnormal input
if
(
exponent
==
0
)
{
#if defined(__HIP_DEVICE_COMPILE__) && __HIP_DEVICE_COMPILE__
// guaranteed mantissa!=0 since cases 0x0 and 0x80 are handled above
int
sh
=
1
+
__clz
(
mantissa
)
-
(
32
-
wm
);
#else
int
sh
=
1
+
__builtin_clz
(
mantissa
)
-
(
32
-
wm
);
#endif
mantissa
<<=
sh
;
exponent
+=
1
-
sh
;
mantissa
&=
((
1ull
<<
wm
)
-
1
);
}
exponent
+=
exp_low_cutoff
-
1
;
mantissa
<<=
wmo
-
wm
;
// subnormal output (occurs when T=half, we=5, negative_zero_nan=true)
if
(
exponent
<=
0
)
{
mantissa
|=
1
<<
wmo
;
mantissa
>>=
1
-
exponent
;
exponent
=
0
;
}
if
constexpr
(
sizeof
(
T
)
==
2
)
retval
=
(
sign
<<
15
)
|
(
exponent
<<
10
)
|
mantissa
;
else
if
(
sizeof
(
T
)
==
4
)
retval
=
(
sign
<<
31
)
|
(
exponent
<<
23
)
|
mantissa
;
else
retval
=
(
sign
<<
63
)
|
(
static_cast
<
unsigned
long
long
>
(
exponent
)
<<
52
)
|
mantissa
;
return
bit_cast
<
T
>
(
retval
);
}
#if CK_FP8_CVT_FAST_PATH
template
<
ck_fp8_interpretation_t
interpret
>
static
__device__
float
cast_to_f32_from_f8
(
fp8_storage_t
v
)
{
union
{
unsigned
int
i32val
;
unsigned
char
i8val
[
4
];
}
val
;
val
.
i8val
[
0
]
=
v
;
static_assert
(
interpret
==
CK_E4M3_FNUZ
||
interpret
==
CK_E4M3_OCP
||
interpret
==
CK_E5M2_FNUZ
||
interpret
==
CK_E5M2_OCP
,
"Only FNUZ and OCP interpretations are supported"
);
if
constexpr
((
interpret
==
CK_E4M3_FNUZ
)
||
(
interpret
==
CK_E4M3_OCP
))
{
return
__builtin_amdgcn_cvt_f32_fp8
(
val
.
i32val
,
0
);
}
else
{
return
__builtin_amdgcn_cvt_f32_bf8
(
val
.
i32val
,
0
);
}
}
#endif
}
// namespace fp8_impl
struct
f8_ocp_t
{
using
data_type
=
fp8_storage_t
;
data_type
data
;
static
constexpr
ck_saturation_t
default_saturation
=
CK_SATFINITE
;
static
constexpr
ck_fp8_interpretation_t
default_interpret
=
CK_E4M3_OCP
;
static
constexpr
unsigned
int
we
=
4
;
// exponent width
static
constexpr
unsigned
int
wm
=
3
;
// mantissa width
__host__
__device__
constexpr
bool
operator
==
(
const
f8_ocp_t
&
other
)
const
{
return
(
data
==
other
.
data
)
&&
(
fp8_impl
::
ocp_f8_is_nan
(
data
)
==
false
);
// NaN != NaN
}
#if CK_USE_OCP_FP8
__host__
__device__
explicit
operator
float
()
const
#else
__host__
explicit
operator
float
()
const
#endif
{
#if CK_FP8_CVT_FAST_PATH
return
fp8_impl
::
cast_to_f32_from_f8
<
default_interpret
>
(
this
->
data
);
#else
return
fp8_impl
::
cast_from_f8
<
float
,
wm
,
we
,
false
>
(
this
->
data
);
// XXX: clip==false must be consistent with operator _Float16
#endif
}
#if CK_USE_OCP_FP8
__host__
__device__
explicit
operator
_Float16
()
const
#else
__host__
explicit
operator
_Float16
()
const
#endif
{
#if CK_FP8_CVT_FAST_PATH
return
static_cast
<
_Float16
>
(
fp8_impl
::
cast_to_f32_from_f8
<
default_interpret
>
(
this
->
data
));
#else
return
fp8_impl
::
cast_from_f8
<
_Float16
,
wm
,
we
,
false
>
(
this
->
data
);
// XXX: clip==false must be consistent with operator float
#endif
}
};
struct
bf8_ocp_t
{
using
data_type
=
fp8_storage_t
;
data_type
data
;
static
constexpr
ck_saturation_t
default_saturation
=
CK_SATFINITE
;
static
constexpr
ck_fp8_interpretation_t
default_interpret
=
CK_E5M2_OCP
;
static
constexpr
unsigned
int
we
=
5
;
// exponent width
static
constexpr
unsigned
int
wm
=
2
;
// mantissa width
__host__
__device__
constexpr
bool
operator
==
(
const
bf8_ocp_t
&
other
)
const
{
return
(
data
==
other
.
data
)
&&
(
fp8_impl
::
ocp_bf8_is_nan
(
data
)
==
false
);
// NaN != NaN
}
#if CK_USE_OCP_FP8
__host__
__device__
explicit
operator
float
()
const
#else
__host__
explicit
operator
float
()
const
#endif
{
#if CK_FP8_CVT_FAST_PATH
return
fp8_impl
::
cast_to_f32_from_f8
<
default_interpret
>
(
this
->
data
);
#else
return
fp8_impl
::
cast_from_f8
<
float
,
wm
,
we
,
false
>
(
this
->
data
);
// XXX: clip==false must be consistent with operator _Float16
#endif
}
#if CK_USE_OCP_FP8
__host__
__device__
explicit
operator
_Float16
()
const
#else
__host__
explicit
operator
_Float16
()
const
#endif
{
#if CK_FP8_CVT_FAST_PATH
return
static_cast
<
_Float16
>
(
fp8_impl
::
cast_to_f32_from_f8
<
default_interpret
>
(
this
->
data
));
#else
return
fp8_impl
::
cast_from_f8
<
_Float16
,
wm
,
we
,
false
>
(
this
->
data
);
// XXX: clip==false must be consistent with operator float
#endif
}
};
namespace
fp8_impl
{
template
<
typename
T
,
std
::
enable_if_t
<
std
::
is_same_v
<
T
,
bf8_ocp_t
>
||
std
::
is_same_v
<
T
,
f8_ocp_t
>
||
std
::
is_same_v
<
T
,
bf8_fnuz_t
>
||
std
::
is_same_v
<
T
,
f8_fnuz_t
>
,
bool
>
=
true
>
__host__
__device__
static
inline
constexpr
bool
fp8_is_inf
(
T
)
{
return
false
;
}
template
<
>
__host__
__device__
inline
constexpr
bool
fp8_is_inf
(
bf8_ocp_t
a
)
{
return
(
a
.
data
&
0x7f
)
==
0x7c
;
}
// Assertions to check for supported conversion types
#define __assert_ocp_support(interp) \
{ \
if(interp != CK_E4M3_OCP && interp != CK_E5M2_OCP) \
{ \
__hip_assert(false && "type is unsupported by current target device"); \
} \
}
#define __assert_fnuz_support(interp) \
{ \
if(interp != CK_E4M3_FNUZ && interp != CK_E5M2_FNUZ) \
{ \
__hip_assert(false && "type is unsupported by current target device"); \
} \
}
__host__
__device__
static
inline
void
__is_interpret_supported
([[
maybe_unused
]]
ck_fp8_interpretation_t
interp
)
{
#if defined(__HIP_DEVICE_COMPILE__) && __HIP_DEVICE_COMPILE__
#if CK_USE_OCP_FP8
__assert_ocp_support
(
interp
);
#endif
#if CK_USE_FNUZ_FP8
__assert_fnuz_support
(
interp
);
#endif
#endif
}
#if CK_FP8_CVT_FAST_PATH
// The conversion function is from rocblas
// https://github.com/ROCm/rocBLAS/blob/9b7f692abe3c54b88d1e77e045a7db7f1f188b69/library/include/internal/rocblas_float8.h#L79
template
<
ck_fp8_interpretation_t
interpret
,
bool
saturate
,
bool
stochastic_rounding
=
false
>
static
__device__
fp8_storage_t
cast_to_f8_from_f32
(
float
v
,
unsigned
int
rng
=
0
)
{
fp8_storage_t
i8data
;
union
{
float
fval
;
unsigned
int
i32val
;
unsigned
char
i8val
[
4
];
// NOTE: not endian independent
}
val
;
unsigned
int
ival
=
0
;
val
.
fval
=
v
;
if
constexpr
(
saturate
)
{
if
constexpr
(
interpret
==
CK_E4M3_FNUZ
)
{
if
((
val
.
i32val
&
0x7F800000
)
!=
0x7F800000
)
{
/// propagate NAN/INF, no clipping
val
.
fval
=
__builtin_amdgcn_fmed3f
(
val
.
fval
,
240.0
,
-
240.0
);
}
}
else
if
(
interpret
==
CK_E4M3_OCP
)
{
// OCP type
if
((
val
.
i32val
&
0x7F800000
)
!=
0x7F800000
)
{
/// propagate NAN/INF, no clipping
val
.
fval
=
__builtin_amdgcn_fmed3f
(
val
.
fval
,
448.0
,
-
448.0
);
}
}
else
{
if
((
val
.
i32val
&
0x7F800000
)
!=
0x7F800000
)
{
/// propagate NAN/INF, no clipping
val
.
fval
=
__builtin_amdgcn_fmed3f
(
val
.
fval
,
57344.0
,
-
57344.0
);
}
}
}
if
constexpr
(
stochastic_rounding
)
{
ival
=
(
interpret
==
CK_E4M3_FNUZ
)
||
(
interpret
==
CK_E4M3_OCP
)
?
__builtin_amdgcn_cvt_sr_fp8_f32
(
val
.
fval
,
rng
,
ival
,
0
)
:
__builtin_amdgcn_cvt_sr_bf8_f32
(
val
.
fval
,
rng
,
ival
,
0
);
// 0 pos
val
.
i32val
=
ival
;
i8data
=
val
.
i8val
[
0
];
// little endian
}
else
{
// RNE CVT
ival
=
(
interpret
==
CK_E4M3_FNUZ
)
||
(
interpret
==
CK_E4M3_OCP
)
?
__builtin_amdgcn_cvt_pk_fp8_f32
(
val
.
fval
,
val
.
fval
,
ival
,
false
)
:
__builtin_amdgcn_cvt_pk_bf8_f32
(
val
.
fval
,
val
.
fval
,
ival
,
false
);
// false -> WORD0
val
.
i32val
=
ival
;
i8data
=
val
.
i8val
[
0
];
}
return
i8data
;
}
#endif // CK_FP8_CVT_FAST_PATH
// The conversion function is from rocblas
// https://github.com/ROCm/rocBLAS/blob/9b7f692abe3c54b88d1e77e045a7db7f1f188b69/library/include/internal/rocblas_hip_f8_impl.h#L39
// This has been modified to add double types conversion as well
template
<
typename
T
,
int
wm
,
int
we
,
bool
is_fnuz
,
bool
clip
=
false
,
bool
stoch
=
false
>
__host__
__device__
static
inline
fp8_storage_t
cast_to_f8
(
T
_x
,
unsigned
int
rng
=
0
)
{
constexpr
bool
is_half
=
__hip_internal
::
is_same
<
T
,
_Float16
>::
value
;
constexpr
bool
is_float
=
__hip_internal
::
is_same
<
T
,
float
>::
value
;
constexpr
bool
is_double
=
__hip_internal
::
is_same
<
T
,
double
>::
value
;
static_assert
(
is_half
||
is_float
||
is_double
,
"Only half, float and double can be cast to f8"
);
constexpr
int
mfmt
=
(
sizeof
(
T
)
==
8
)
?
52
:
((
sizeof
(
T
)
==
4
)
?
23
:
10
);
using
T_bitwise
=
typename
__hip_internal
::
conditional
<
sizeof
(
T
)
==
2
,
unsigned
short
int
,
typename
__hip_internal
::
conditional
<
sizeof
(
T
)
==
4
,
unsigned
int
,
unsigned
long
long
>::
type
>::
type
;
T_bitwise
x_bitwise
=
bit_cast
<
T_bitwise
>
(
_x
);
unsigned
long
long
x
{
x_bitwise
};
unsigned
long
long
head
,
mantissa
;
int
exponent
,
bias
;
unsigned
int
sign
;
unsigned
long
long
fInf
,
mask
;
if
constexpr
(
sizeof
(
T
)
==
8
)
{
head
=
x
&
0xFFF0000000000000ull
;
mantissa
=
x
&
0xFFFFFFFFFFFFFull
;
exponent
=
(
head
>>
52
)
&
0x7FF
;
sign
=
head
>>
63
;
bias
=
1023
;
fInf
=
0x7FF0000000000000ull
;
mask
=
0x7FFFFFFFFFFFFFFFull
;
}
else
if
(
sizeof
(
T
)
==
4
)
{
head
=
x
&
0xFF800000
;
mantissa
=
x
&
0x7FFFFF
;
exponent
=
(
head
>>
23
)
&
0xFF
;
sign
=
head
>>
31
;
bias
=
127
;
fInf
=
0x7F800000
;
mask
=
0x7FFFFFFF
;
}
else
{
head
=
x
&
0xFC00
;
mantissa
=
x
&
0x3FF
;
exponent
=
(
head
>>
10
)
&
0x1F
;
sign
=
head
>>
15
;
bias
=
15
;
fInf
=
0x7C00
;
mask
=
0x7FFF
;
}
unsigned
int
signed_inf
=
0
;
unsigned
int
nan
=
0
;
if
constexpr
(
is_fnuz
)
{
signed_inf
=
clip
?
((
sign
<<
7
)
+
0x7f
)
:
0x80
;
nan
=
0x80
;
}
else
{
if
(
we
==
4
)
{
// e4m3
signed_inf
=
(
sign
<<
7
)
+
(
clip
?
0x7e
:
0x7f
);
}
else
{
// e5m2
signed_inf
=
(
sign
<<
7
)
+
(
clip
?
0x7b
:
0x7c
);
}
nan
=
(
sign
<<
7
)
+
0x7f
;
}
// Max values
unsigned
long
long
ifmax
=
0
;
if
constexpr
(
sizeof
(
T
)
==
8
)
{
if
(
we
==
5
)
{
// 57344
ifmax
=
0x40EC000000000000ull
;
}
else
{
if
(
is_fnuz
)
{
// 240
ifmax
=
0x406E000000000000ull
;
}
else
{
// 448
ifmax
=
0x407C000000000000ull
;
}
}
}
else
if
(
sizeof
(
T
)
==
4
)
{
if
(
we
==
5
)
{
ifmax
=
0x47600000
;
}
else
{
if
(
is_fnuz
)
{
ifmax
=
0x43700000
;
}
else
{
ifmax
=
0x43E00000
;
}
}
}
else
{
if
(
we
==
5
)
{
ifmax
=
0x7B00
;
}
else
{
if
(
is_fnuz
)
{
ifmax
=
0x5B80
;
}
else
{
ifmax
=
0x5F00
;
}
}
}
// Deal with inf and NaNs
if
((
x
&
fInf
)
==
fInf
)
{
if
(
is_fnuz
)
return
signed_inf
;
return
mantissa
!=
0
?
nan
:
signed_inf
;
}
if
((
x
&
mask
)
>
ifmax
)
{
return
signed_inf
;
}
if
(
x
==
0
)
{
return
0
;
}
// First need to check if it is normal or denorm as there is a difference of
// implicit 1 Then need to adjust the exponent to align with the F8 exponent,
// in the meanwhile, shift The mantissa. Then for stochastic rounding, add rng
// to mantissa and truncate. And for RNE, no need to add rng. Then probably
// need to check whether there is carry and adjust exponent and mantissa again
// For IEEE bias mode, the bias is 2^(k-1) -1 where k is the width of exponent
// bits
const
int
f8_bias
=
(
1
<<
(
we
-
1
))
-
1
+
(
is_fnuz
?
1
:
0
);
const
int
f8_denormal_act_exponent
=
1
-
f8_bias
;
// actual exponent of f8 denormal
// act_exponent is the actual exponent of fp32/fp16 (after subtracting bias)
// f8_exponent is the converted f8 exponent with bias encoding
// exponent_diff is the diff between fp32/fp16 exponent and f8 exponent,
// the difference needs to be adjusted and mantissa shifted
int
act_exponent
,
f8_exponent
,
exponent_diff
;
if
(
exponent
==
0
)
{
// fp32/fp16 is in denormal.
/* fp32 denormal is below 2^-127 so it is usually not a concern here, we
mostly concern fp16 here. In this case, f8 is usually in denormal. But there
could be exceptions. fp16 denormal has exponent bias 15 while bf8 with NANOO has
exponent bias 16. It means that there are some numbers in fp16 denormal but they
are bf8 (NANOO) normals - smallest bf8 (NANOO) normal is 2^-15. fp16 numbers
where exponent==0 (actual exponent -14) and highest bit of mantissa is 1 are bf8
(NANOO) normal. In this case, the fp16 mantissa should be shift left by 1 */
act_exponent
=
exponent
-
bias
+
1
;
exponent_diff
=
f8_denormal_act_exponent
-
act_exponent
;
// actual exponent is exponent-bias+1 as it is denormal
}
else
{
// fp32/fp16 is normal with implicit 1
act_exponent
=
exponent
-
bias
;
if
(
act_exponent
<=
f8_denormal_act_exponent
)
{
/* This is the case where fp32/fp16 is normal but it is in f8 denormal
range. For example fp8 nanoo mode, denormal exponent is -7, but if the fp32/fp16
actual exponent is -7, it is actually larger due to the implicit 1,
Therefore it needs to be adjust to -6 and mantissa shift right by 1.
So for fp32/fp16, exponent -8 is the cut point to convert to fp8 nanoo */
exponent_diff
=
f8_denormal_act_exponent
-
act_exponent
;
}
else
{
// both fp32/fp16 and f8 are in normal range
exponent_diff
=
0
;
// exponent_diff=0 does not mean there is no difference
// for this case, act_exponent could be larger. Just
// that it does not need shift mantissa
}
mantissa
+=
(
1ull
<<
mfmt
);
// Add the implicit 1 into mantissa
}
bool
midpoint
=
(
mantissa
&
((
1ull
<<
(
mfmt
-
wm
+
exponent_diff
))
-
1
))
==
(
1ull
<<
(
mfmt
-
wm
+
exponent_diff
-
1
));
/* This part is a bit tricky. The judgment of whether it is a tie needs to be
done before we shift right as shift right could rip off some residual part and
make something not midpoint look like midpoint. For example, the fp16 number
0x1002 (0 00100 0000000010), it is larger than midpoint, but after shift right
by 4 bits, it would look like midpoint.
*/
if
(
exponent_diff
>
0
)
mantissa
>>=
exponent_diff
;
else
if
(
exponent_diff
==
-
1
)
mantissa
<<=
-
exponent_diff
;
bool
implicit_one
=
mantissa
&
(
1ull
<<
mfmt
);
// if there is no implicit 1, it means the f8 is denormal and need to adjust
// to denorm exponent
f8_exponent
=
(
act_exponent
+
exponent_diff
)
/*actual f8 exponent*/
+
f8_bias
-
(
implicit_one
?
0
:
1
);
// Now we have the exponent and mantissa adjusted
unsigned
long
long
drop_mask
=
(
1ull
<<
(
mfmt
-
wm
))
-
1
;
bool
odd
=
mantissa
&
(
1ull
<<
(
mfmt
-
wm
));
// if the least significant bit that is not truncated is 1
mantissa
+=
(
stoch
?
rng
:
(
midpoint
?
(
odd
?
mantissa
:
mantissa
-
1ull
)
:
mantissa
))
&
drop_mask
;
// Now we deal with overflow
if
(
f8_exponent
==
0
)
{
if
((
1ull
<<
mfmt
)
&
mantissa
)
{
f8_exponent
=
1
;
// denormal overflow to become normal, promote exponent
}
}
else
{
if
((
1ull
<<
(
mfmt
+
1
))
&
mantissa
)
{
mantissa
>>=
1
;
f8_exponent
++
;
}
}
mantissa
>>=
(
mfmt
-
wm
);
// above range: quantize to maximum possible float of the same sign
const
int
max_exp
=
(
1
<<
we
)
-
1
;
if
(
f8_exponent
>
max_exp
)
{
if
(
clip
)
{
mantissa
=
(
1
<<
wm
)
-
1
;
f8_exponent
=
max_exp
;
}
else
{
return
signed_inf
;
}
}
if
(
f8_exponent
==
0
&&
mantissa
==
0
)
return
is_fnuz
?
0
:
(
sign
<<
7
);
mantissa
&=
(
1
<<
wm
)
-
1
;
return
(
sign
<<
7
)
|
(
f8_exponent
<<
wm
)
|
mantissa
;
}
/**
* \brief convert float to @p fp8_storage_t
*
* \tparam interp interpretation of fp8
* \tparam sat saturation of fp8
* \param f float number
* \return fp8_storage_t
*/
template
<
ck_fp8_interpretation_t
interp
,
ck_saturation_t
sat
=
CK_SATFINITE
,
bool
stochastic_rounding
=
false
>
#if CK_FP8_CVT_FAST_PATH
__host__
__device__
static
inline
fp8_storage_t
cvt_float_to_fp8
(
const
float
f
)
{
__is_interpret_supported
(
interp
);
uint32_t
rng
=
0
;
if
constexpr
(
stochastic_rounding
)
{
constexpr
int
seed
=
1254739
;
rng
=
prand_generator
<
float
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
f
),
f
);
}
return
cast_to_f8_from_f32
<
interp
,
sat
==
CK_SATFINITE
,
stochastic_rounding
>
(
f
,
rng
);
#else
#if CK_USE_OCP_FP8
__host__
__device__
static
inline
fp8_storage_t
cvt_float_to_fp8
(
const
float
f
)
{
#else
__host__
static
inline
fp8_storage_t
cvt_float_to_fp8
(
const
float
f
)
{
#endif
uint32_t
rng
=
0
;
if
constexpr
(
stochastic_rounding
)
{
constexpr
int
seed
=
1254739
;
rng
=
prand_generator
<
float
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
f
),
f
);
}
if
constexpr
(
interp
==
CK_E4M3_FNUZ
)
{
return
cast_to_f8
<
float
,
3
,
4
,
true
,
sat
==
CK_SATFINITE
,
stochastic_rounding
>
(
f
,
rng
);
}
else
if
(
interp
==
CK_E5M2_FNUZ
)
{
return
cast_to_f8
<
float
,
2
,
5
,
true
,
sat
==
CK_SATFINITE
,
stochastic_rounding
>
(
f
,
rng
);
}
else
if
(
interp
==
CK_E4M3_OCP
)
{
return
cast_to_f8
<
float
,
3
,
4
,
false
,
sat
==
CK_SATFINITE
,
stochastic_rounding
>
(
f
,
rng
);
}
else
if
(
interp
==
CK_E5M2_OCP
)
{
return
cast_to_f8
<
float
,
2
,
5
,
false
,
sat
==
CK_SATFINITE
,
stochastic_rounding
>
(
f
,
rng
);
}
else
{
__hip_assert
(
false
&&
"FP8 type is not supported by current target device"
);
return
0
;
}
#endif // CK_FP8_CVT_FAST_PATH
}
/**
* \brief convert _Float16 to @p fp8_storage_t
*
* \tparam sat saturation of fp8
* \tparam interp interpretation of fp8
* \tparam stochastic_rounding switch between RNE and SR
* \param x _Float16 value
* \return fp8_storage_t
*/
template
<
ck_fp8_interpretation_t
interp
,
ck_saturation_t
sat
=
CK_SATFINITE
,
bool
stochastic_rounding
=
false
>
#if CK_FP8_CVT_FAST_PATH || CK_USE_OCP_FP8
__host__
__device__
static
inline
fp8_storage_t
cvt_half_t_to_fp8
(
const
_Float16
x
)
#else
__host__
static
inline
fp8_storage_t
cvt_half_t_to_fp8
(
const
_Float16
x
)
#endif
{
return
cvt_float_to_fp8
<
interp
,
sat
,
stochastic_rounding
>
(
static_cast
<
float
>
(
x
));
}
}
// namespace fp8_impl
// Declare a template function for fp8 conversion using RNE
template
<
typename
Y
,
typename
X
>
__host__
__device__
constexpr
Y
f8_convert_rne
(
X
x
);
// convert fp32 to fp8 with rounding to nearest even
template
<
>
inline
__host__
__device__
f8_ocp_t
f8_convert_rne
<
f8_ocp_t
,
float
>
(
float
x
)
{
return
f8_ocp_t
{
fp8_impl
::
cvt_float_to_fp8
<
f8_ocp_t
::
default_interpret
,
f8_ocp_t
::
default_saturation
>
(
x
)};
}
// convert fp32 to bf8 with rounding to nearest even
template
<
>
inline
__host__
__device__
bf8_ocp_t
f8_convert_rne
<
bf8_ocp_t
,
float
>
(
float
x
)
{
return
bf8_ocp_t
{
fp8_impl
::
cvt_float_to_fp8
<
bf8_ocp_t
::
default_interpret
,
bf8_ocp_t
::
default_saturation
>
(
x
)};
}
// convert _Float16 to fp8 with rounding to nearest even
template
<
>
inline
__host__
__device__
f8_ocp_t
f8_convert_rne
<
f8_ocp_t
,
_Float16
>
(
_Float16
x
)
{
return
f8_ocp_t
{
fp8_impl
::
cvt_half_t_to_fp8
<
f8_ocp_t
::
default_interpret
,
f8_ocp_t
::
default_saturation
>
(
x
)};
}
template
<
>
inline
__host__
__device__
bf8_ocp_t
f8_convert_rne
<
bf8_ocp_t
,
_Float16
>
(
_Float16
x
)
{
return
bf8_ocp_t
{
fp8_impl
::
cvt_half_t_to_fp8
<
bf8_ocp_t
::
default_interpret
,
bf8_ocp_t
::
default_saturation
>
(
x
)};
}
// Declare a template function for fp8 conversion using RNE
template
<
typename
Y
,
typename
X
>
__host__
__device__
constexpr
Y
f8_convert_sr
(
X
x
);
// convert fp32 to fp8 with stochastic rounding
template
<
>
inline
__host__
__device__
f8_ocp_t
f8_convert_sr
<
f8_ocp_t
,
float
>
(
float
x
)
{
return
f8_ocp_t
{
fp8_impl
::
cvt_float_to_fp8
<
f8_ocp_t
::
default_interpret
,
f8_ocp_t
::
default_saturation
,
true
>
(
x
)};
}
// convert fp32 to bf8 with stochastic rounding
template
<
>
inline
__host__
__device__
bf8_ocp_t
f8_convert_sr
<
bf8_ocp_t
,
float
>
(
float
x
)
{
return
bf8_ocp_t
{
fp8_impl
::
cvt_float_to_fp8
<
bf8_ocp_t
::
default_interpret
,
bf8_ocp_t
::
default_saturation
,
true
>
(
x
)};
}
// convert _Float16 to fp8 with stochastic rounding
template
<
>
inline
__host__
__device__
f8_ocp_t
f8_convert_sr
<
f8_ocp_t
,
_Float16
>
(
_Float16
x
)
{
return
f8_ocp_t
{
fp8_impl
::
cvt_half_t_to_fp8
<
f8_ocp_t
::
default_interpret
,
f8_ocp_t
::
default_saturation
,
true
>
(
x
)};
}
// convert _Float16 to bf8 with stochastic rounding
template
<
>
inline
__host__
__device__
bf8_ocp_t
f8_convert_sr
<
bf8_ocp_t
,
_Float16
>
(
_Float16
x
)
{
return
bf8_ocp_t
{
fp8_impl
::
cvt_half_t_to_fp8
<
bf8_ocp_t
::
default_interpret
,
bf8_ocp_t
::
default_saturation
,
true
>
(
x
)};
}
#if CK_USE_OCP_FP8
using
f8_t
=
f8_ocp_t
;
using
bf8_t
=
bf8_ocp_t
;
#define CK_FP8_TYPE_FNUZ 0
#define CK_FP8_TYPE_OCP 1
#else
using
f8_t
=
f8_fnuz_t
;
using
bf8_t
=
bf8_fnuz_t
;
#define CK_FP8_TYPE_FNUZ 1
#define CK_FP8_TYPE_OCP 0
#endif
}
// namespace ck
include/ck/utility/data_type.hpp
View file @
ca99f301
...
@@ -3,20 +3,8 @@
...
@@ -3,20 +3,8 @@
#pragma once
#pragma once
#include "ck/utility/amd_ck_fp8.hpp"
#include "ck/utility/statically_indexed_array.hpp"
#include "ck/utility/statically_indexed_array.hpp"
#include "ck/utility/random_gen.hpp"
#ifdef CK_USE_FNUZ_FP8
#define CK_USE_FNUZ_FP8 1
#else
#define CK_USE_FNUZ_FP8 0
#endif
#ifdef CK_USE_OCP_FP8
#define CK_USE_OCP_FP8 1
#else
#define CK_USE_OCP_FP8 0
#endif
namespace
ck
{
namespace
ck
{
...
@@ -24,902 +12,6 @@ using bhalf_t = ushort;
...
@@ -24,902 +12,6 @@ using bhalf_t = ushort;
using
half_t
=
_Float16
;
using
half_t
=
_Float16
;
using
int4_t
=
_BitInt
(
4
);
using
int4_t
=
_BitInt
(
4
);
using
f8_fnuz_t
=
_BitInt
(
8
);
using
bf8_fnuz_t
=
unsigned
_BitInt
(
8
);
#if(defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) || defined(__gfx1200__) || \
defined(__gfx1201__) || defined(__gfx950__)) && \
__HIP_DEVICE_COMPILE__
#define CK_FP8_CVT_FAST_PATH 1
#else
#define CK_FP8_CVT_FAST_PATH 0
#endif
typedef
unsigned
char
fp8_storage_t
;
namespace
internal
{
/**
* \brief Describes FP8 interpretation
*/
enum
ck_fp8_interpretation_t
{
CK_E4M3_OCP
=
0
,
// OCP E4M3
CK_E5M2_OCP
=
1
,
// OCP E5M2
CK_E4M3_FNUZ
=
2
,
// FP8
CK_E5M2_FNUZ
=
3
,
// BF8
};
/**
* \brief Describes saturation behavior
*/
enum
ck_saturation_t
{
CK_NOSAT
=
0
,
// No saturation - replace with NaN or Inf
CK_SATFINITE
=
1
,
// Saturate to finite
};
// Assertions to check for supported conversion types
#define __assert_ocp_support(interp) \
{ \
if(interp != CK_E4M3_OCP && interp != CK_E5M2_OCP) \
{ \
__hip_assert(false && "type is unsupported by current target device"); \
} \
}
#define __assert_fnuz_support(interp) \
{ \
if(interp != CK_E4M3_FNUZ && interp != CK_E5M2_FNUZ) \
{ \
__hip_assert(false && "type is unsupported by current target device"); \
} \
}
__host__
__device__
static
inline
void
__is_interpret_supported
([[
maybe_unused
]]
ck_fp8_interpretation_t
interp
)
{
#if defined(__HIP_DEVICE_COMPILE__) && __HIP_DEVICE_COMPILE__
#if CK_USE_OCP_FP8
__assert_ocp_support
(
interp
);
#endif
#if CK_USE_FNUZ_FP8
__assert_fnuz_support
(
interp
);
#endif
#endif
}
// The conversion function is from rocblas
// https://github.com/ROCm/rocBLAS/blob/9b7f692abe3c54b88d1e77e045a7db7f1f188b69/library/include/internal/rocblas_hip_f8_impl.h#L39
// This has been modified to add double types conversion as well
template
<
typename
T
,
int
wm
,
int
we
,
bool
is_fnuz
,
bool
clip
=
false
,
bool
stoch
=
false
>
__host__
__device__
static
inline
fp8_storage_t
cast_to_f8
(
T
_x
,
unsigned
int
rng
=
0
)
{
constexpr
bool
is_half
=
__hip_internal
::
is_same
<
T
,
_Float16
>::
value
;
constexpr
bool
is_float
=
__hip_internal
::
is_same
<
T
,
float
>::
value
;
constexpr
bool
is_double
=
__hip_internal
::
is_same
<
T
,
double
>::
value
;
static_assert
(
is_half
||
is_float
||
is_double
,
"Only half, float and double can be cast to f8"
);
constexpr
int
mfmt
=
(
sizeof
(
T
)
==
8
)
?
52
:
((
sizeof
(
T
)
==
4
)
?
23
:
10
);
using
T_bitwise
=
typename
__hip_internal
::
conditional
<
sizeof
(
T
)
==
2
,
unsigned
short
int
,
typename
__hip_internal
::
conditional
<
sizeof
(
T
)
==
4
,
unsigned
int
,
unsigned
long
long
>::
type
>::
type
;
T_bitwise
x_bitwise
=
bit_cast
<
T_bitwise
>
(
_x
);
unsigned
long
long
x
{
x_bitwise
};
unsigned
long
long
head
,
mantissa
;
int
exponent
,
bias
;
unsigned
int
sign
;
unsigned
long
long
fInf
,
mask
;
if
constexpr
(
sizeof
(
T
)
==
8
)
{
head
=
x
&
0xFFF0000000000000ull
;
mantissa
=
x
&
0xFFFFFFFFFFFFFull
;
exponent
=
(
head
>>
52
)
&
0x7FF
;
sign
=
head
>>
63
;
bias
=
1023
;
fInf
=
0x7FF0000000000000ull
;
mask
=
0x7FFFFFFFFFFFFFFFull
;
}
else
if
(
sizeof
(
T
)
==
4
)
{
head
=
x
&
0xFF800000
;
mantissa
=
x
&
0x7FFFFF
;
exponent
=
(
head
>>
23
)
&
0xFF
;
sign
=
head
>>
31
;
bias
=
127
;
fInf
=
0x7F800000
;
mask
=
0x7FFFFFFF
;
}
else
{
head
=
x
&
0xFC00
;
mantissa
=
x
&
0x3FF
;
exponent
=
(
head
>>
10
)
&
0x1F
;
sign
=
head
>>
15
;
bias
=
15
;
fInf
=
0x7C00
;
mask
=
0x7FFF
;
}
unsigned
int
signed_inf
=
0
;
unsigned
int
nan
=
0
;
if
constexpr
(
is_fnuz
)
{
signed_inf
=
clip
?
((
sign
<<
7
)
+
0x7f
)
:
0x80
;
nan
=
0x80
;
}
else
{
if
(
we
==
4
)
{
// e4m3
signed_inf
=
(
sign
<<
7
)
+
(
clip
?
0x7e
:
0x7f
);
}
else
{
// e5m2
signed_inf
=
(
sign
<<
7
)
+
(
clip
?
0x7b
:
0x7c
);
}
nan
=
(
sign
<<
7
)
+
0x7f
;
}
// Max values
unsigned
long
long
ifmax
=
0
;
if
constexpr
(
sizeof
(
T
)
==
8
)
{
if
(
we
==
5
)
{
// 57344
ifmax
=
0x40EC000000000000ull
;
}
else
{
if
(
is_fnuz
)
{
// 240
ifmax
=
0x406E000000000000ull
;
}
else
{
// 448
ifmax
=
0x407C000000000000ull
;
}
}
}
else
if
(
sizeof
(
T
)
==
4
)
{
if
(
we
==
5
)
{
ifmax
=
0x47600000
;
}
else
{
if
(
is_fnuz
)
{
ifmax
=
0x43700000
;
}
else
{
ifmax
=
0x43E00000
;
}
}
}
else
{
if
(
we
==
5
)
{
ifmax
=
0x7B00
;
}
else
{
if
(
is_fnuz
)
{
ifmax
=
0x5B80
;
}
else
{
ifmax
=
0x5F00
;
}
}
}
// Deal with inf and NaNs
if
((
x
&
fInf
)
==
fInf
)
{
if
(
is_fnuz
)
return
signed_inf
;
return
mantissa
!=
0
?
nan
:
signed_inf
;
}
if
((
x
&
mask
)
>
ifmax
)
{
return
signed_inf
;
}
if
(
x
==
0
)
{
return
0
;
}
// First need to check if it is normal or denorm as there is a difference of
// implicit 1 Then need to adjust the exponent to align with the F8 exponent,
// in the meanwhile, shift The mantissa. Then for stochastic rounding, add rng
// to mantissa and truncate. And for RNE, no need to add rng. Then probably
// need to check whether there is carry and adjust exponent and mantissa again
// For IEEE bias mode, the bias is 2^(k-1) -1 where k is the width of exponent
// bits
const
int
f8_bias
=
(
1
<<
(
we
-
1
))
-
1
+
(
is_fnuz
?
1
:
0
);
const
int
f8_denormal_act_exponent
=
1
-
f8_bias
;
// actual exponent of f8 denormal
// act_exponent is the actual exponent of fp32/fp16 (after subtracting bias)
// f8_exponent is the converted f8 exponent with bias encoding
// exponent_diff is the diff between fp32/fp16 exponent and f8 exponent,
// the difference needs to be adjusted and mantissa shifted
int
act_exponent
,
f8_exponent
,
exponent_diff
;
if
(
exponent
==
0
)
{
// fp32/fp16 is in denormal.
/* fp32 denormal is below 2^-127 so it is usually not a concern here, we
mostly concern fp16 here. In this case, f8 is usually in denormal. But there
could be exceptions. fp16 denormal has exponent bias 15 while bf8 with NANOO has
exponent bias 16. It means that there are some numbers in fp16 denormal but they
are bf8 (NANOO) normals - smallest bf8 (NANOO) normal is 2^-15. fp16 numbers
where exponent==0 (actual exponent -14) and highest bit of mantissa is 1 are bf8
(NANOO) normal. In this case, the fp16 mantissa should be shift left by 1 */
act_exponent
=
exponent
-
bias
+
1
;
exponent_diff
=
f8_denormal_act_exponent
-
act_exponent
;
// actual exponent is exponent-bias+1 as it is denormal
}
else
{
// fp32/fp16 is normal with implicit 1
act_exponent
=
exponent
-
bias
;
if
(
act_exponent
<=
f8_denormal_act_exponent
)
{
/* This is the case where fp32/fp16 is normal but it is in f8 denormal
range. For example fp8 nanoo mode, denormal exponent is -7, but if the fp32/fp16
actual exponent is -7, it is actually larger due to the implicit 1,
Therefore it needs to be adjust to -6 and mantissa shift right by 1.
So for fp32/fp16, exponent -8 is the cut point to convert to fp8 nanoo */
exponent_diff
=
f8_denormal_act_exponent
-
act_exponent
;
}
else
{
// both fp32/fp16 and f8 are in normal range
exponent_diff
=
0
;
// exponent_diff=0 does not mean there is no difference
// for this case, act_exponent could be larger. Just
// that it does not need shift mantissa
}
mantissa
+=
(
1ull
<<
mfmt
);
// Add the implicit 1 into mantissa
}
bool
midpoint
=
(
mantissa
&
((
1ull
<<
(
mfmt
-
wm
+
exponent_diff
))
-
1
))
==
(
1ull
<<
(
mfmt
-
wm
+
exponent_diff
-
1
));
/* This part is a bit tricky. The judgment of whether it is a tie needs to be
done before we shift right as shift right could rip off some residual part and
make something not midpoint look like midpoint. For example, the fp16 number
0x1002 (0 00100 0000000010), it is larger than midpoint, but after shift right
by 4 bits, it would look like midpoint.
*/
if
(
exponent_diff
>
0
)
mantissa
>>=
exponent_diff
;
else
if
(
exponent_diff
==
-
1
)
mantissa
<<=
-
exponent_diff
;
bool
implicit_one
=
mantissa
&
(
1ull
<<
mfmt
);
// if there is no implicit 1, it means the f8 is denormal and need to adjust
// to denorm exponent
f8_exponent
=
(
act_exponent
+
exponent_diff
)
/*actual f8 exponent*/
+
f8_bias
-
(
implicit_one
?
0
:
1
);
// Now we have the exponent and mantissa adjusted
unsigned
long
long
drop_mask
=
(
1ull
<<
(
mfmt
-
wm
))
-
1
;
bool
odd
=
mantissa
&
(
1ull
<<
(
mfmt
-
wm
));
// if the least significant bit that is not truncated is 1
mantissa
+=
(
stoch
?
rng
:
(
midpoint
?
(
odd
?
mantissa
:
mantissa
-
1ull
)
:
mantissa
))
&
drop_mask
;
// Now we deal with overflow
if
(
f8_exponent
==
0
)
{
if
((
1ull
<<
mfmt
)
&
mantissa
)
{
f8_exponent
=
1
;
// denormal overflow to become normal, promote exponent
}
}
else
{
if
((
1ull
<<
(
mfmt
+
1
))
&
mantissa
)
{
mantissa
>>=
1
;
f8_exponent
++
;
}
}
mantissa
>>=
(
mfmt
-
wm
);
// above range: quantize to maximum possible float of the same sign
const
int
max_exp
=
(
1
<<
we
)
-
1
;
if
(
f8_exponent
>
max_exp
)
{
if
(
clip
)
{
mantissa
=
(
1
<<
wm
)
-
1
;
f8_exponent
=
max_exp
;
}
else
{
return
signed_inf
;
}
}
if
(
f8_exponent
==
0
&&
mantissa
==
0
)
return
is_fnuz
?
0
:
(
sign
<<
7
);
mantissa
&=
(
1
<<
wm
)
-
1
;
return
(
sign
<<
7
)
|
(
f8_exponent
<<
wm
)
|
mantissa
;
}
// The conversion function is from rocblas
// https://github.com/ROCm/rocBLAS/blob/9b7f692abe3c54b88d1e77e045a7db7f1f188b69/library/include/internal/rocblas_hip_f8_impl.h#L220
// This has been modified to handle double types as well
template
<
typename
T
,
int
wm
,
int
we
,
bool
is_fnuz
,
bool
clip
=
false
>
__host__
__device__
static
inline
T
cast_from_f8
(
fp8_storage_t
x
)
{
constexpr
bool
is_half
=
__hip_internal
::
is_same
<
T
,
_Float16
>::
value
;
constexpr
bool
is_float
=
__hip_internal
::
is_same
<
T
,
float
>::
value
;
constexpr
bool
is_double
=
__hip_internal
::
is_same
<
T
,
double
>::
value
;
static_assert
(
is_half
||
is_float
||
is_double
,
"only half, float and double are supported"
);
constexpr
int
weo
=
is_half
?
5
:
(
is_float
?
8
:
11
);
constexpr
int
wmo
=
is_half
?
10
:
(
is_float
?
23
:
52
);
T
fInf
,
fNegInf
,
fNaN
,
fNeg0
,
fmax
,
fmin
;
if
constexpr
(
is_half
)
{
const
unsigned
short
int
ihInf
=
0x7C00
;
const
unsigned
short
int
ihNegInf
=
0xFC00
;
const
unsigned
short
int
ihNaN
=
0x7C01
;
const
unsigned
short
int
ihNeg0
=
0x8000
;
/* Max number in e5m2 57344*/
const
unsigned
short
int
ifmax
=
0x7B00
;
const
unsigned
short
int
ifmin
=
0xFB00
;
fInf
=
bit_cast
<
_Float16
>
(
ihInf
);
fNegInf
=
bit_cast
<
_Float16
>
(
ihNegInf
);
fNaN
=
bit_cast
<
_Float16
>
(
ihNaN
);
fNeg0
=
bit_cast
<
_Float16
>
(
ihNeg0
);
fmax
=
bit_cast
<
_Float16
>
(
ifmax
);
fmin
=
bit_cast
<
_Float16
>
(
ifmin
);
}
else
if
(
is_float
)
{
const
unsigned
int
ifInf
=
0x7F800000
;
const
unsigned
int
ifNegInf
=
0xFF800000
;
const
unsigned
int
ifNaN
=
0x7F800001
;
const
unsigned
int
ifNeg0
=
0x80000000
;
/* Max number in e5m2 57344*/
const
unsigned
int
ifmax
=
0x47600000
;
const
unsigned
int
ifmin
=
0xC7600000
;
fInf
=
bit_cast
<
float
>
(
ifInf
);
fNegInf
=
bit_cast
<
float
>
(
ifNegInf
);
fNaN
=
bit_cast
<
float
>
(
ifNaN
);
fNeg0
=
bit_cast
<
float
>
(
ifNeg0
);
fmax
=
bit_cast
<
float
>
(
ifmax
);
fmin
=
bit_cast
<
float
>
(
ifmin
);
}
else
if
(
is_double
)
{
const
unsigned
long
long
ifInf
=
0x7FF0000000000000ull
;
const
unsigned
long
long
ifNegInf
=
0xFFF0000000000000ull
;
const
unsigned
long
long
ifNaN
=
0x7FF0000000000001ull
;
const
unsigned
long
long
ifNeg0
=
0x8000000000000000ull
;
/* Max number in e5m2 57344*/
const
unsigned
long
long
ifmax
=
0x40EC000000000000ull
;
const
unsigned
long
long
ifmin
=
0xC0EC000000000000ull
;
fInf
=
bit_cast
<
double
>
(
ifInf
);
fNegInf
=
bit_cast
<
double
>
(
ifNegInf
);
fNaN
=
bit_cast
<
double
>
(
ifNaN
);
fNeg0
=
bit_cast
<
double
>
(
ifNeg0
);
fmax
=
bit_cast
<
double
>
(
ifmax
);
fmin
=
bit_cast
<
double
>
(
ifmin
);
}
if
(
x
==
0
)
{
return
0
;
}
unsigned
long
long
sign
=
x
>>
7
;
unsigned
long
long
mantissa
=
x
&
((
1
<<
wm
)
-
1
);
int
exponent
=
(
x
&
0x7F
)
>>
wm
;
if
constexpr
(
is_fnuz
)
{
if
(
x
==
0x80
)
{
return
fNaN
;
}
}
else
{
if
(
x
==
0x80
)
{
return
fNeg0
;
}
if
(
we
==
4
)
{
// e4m3
if
((
x
&
0x7F
)
==
0x7F
)
{
return
fNaN
;
}
}
else
if
((
x
&
0x7C
)
==
0x7C
)
{
// e5m2
if
((
x
&
0x3
)
==
0
)
{
if
(
clip
)
{
return
sign
?
fmin
:
fmax
;
}
return
sign
?
fNegInf
:
fInf
;
}
return
fNaN
;
}
}
typename
__hip_internal
::
conditional
<
sizeof
(
T
)
==
2
,
unsigned
short
int
,
typename
__hip_internal
::
conditional
<
sizeof
(
T
)
==
4
,
unsigned
int
,
unsigned
long
long
>::
type
>::
type
retval
;
if
(
we
==
5
&&
is_half
&&
!
is_fnuz
)
{
retval
=
x
<<
8
;
return
bit_cast
<
T
>
(
retval
);
}
const
int
exp_low_cutoff
=
(
1
<<
(
weo
-
1
))
-
(
1
<<
(
we
-
1
))
+
1
-
(
is_fnuz
?
1
:
0
);
// subnormal input
if
(
exponent
==
0
)
{
#if defined(__HIP_DEVICE_COMPILE__) && __HIP_DEVICE_COMPILE__
// guaranteed mantissa!=0 since cases 0x0 and 0x80 are handled above
int
sh
=
1
+
__clz
(
mantissa
)
-
(
32
-
wm
);
#else
int
sh
=
1
+
__builtin_clz
(
mantissa
)
-
(
32
-
wm
);
#endif
mantissa
<<=
sh
;
exponent
+=
1
-
sh
;
mantissa
&=
((
1ull
<<
wm
)
-
1
);
}
exponent
+=
exp_low_cutoff
-
1
;
mantissa
<<=
wmo
-
wm
;
// subnormal output (occurs when T=half, we=5, negative_zero_nan=true)
if
(
exponent
<=
0
)
{
mantissa
|=
1
<<
wmo
;
mantissa
>>=
1
-
exponent
;
exponent
=
0
;
}
if
constexpr
(
sizeof
(
T
)
==
2
)
retval
=
(
sign
<<
15
)
|
(
exponent
<<
10
)
|
mantissa
;
else
if
(
sizeof
(
T
)
==
4
)
retval
=
(
sign
<<
31
)
|
(
exponent
<<
23
)
|
mantissa
;
else
retval
=
(
sign
<<
63
)
|
(
static_cast
<
unsigned
long
long
>
(
exponent
)
<<
52
)
|
mantissa
;
return
bit_cast
<
T
>
(
retval
);
}
#if CK_FP8_CVT_FAST_PATH
template
<
ck_fp8_interpretation_t
interpret
>
static
__device__
float
cast_to_f32_from_f8
(
fp8_storage_t
v
)
{
union
{
unsigned
int
i32val
;
unsigned
char
i8val
[
4
];
}
val
;
val
.
i8val
[
0
]
=
v
;
static_assert
(
interpret
==
CK_E4M3_FNUZ
||
interpret
==
CK_E4M3_OCP
||
interpret
==
CK_E5M2_FNUZ
||
interpret
==
CK_E5M2_OCP
,
"Only FNUZ and OCP interpretations are supported"
);
if
constexpr
((
interpret
==
internal
::
CK_E4M3_FNUZ
)
||
(
interpret
==
internal
::
CK_E4M3_OCP
))
{
return
__builtin_amdgcn_cvt_f32_fp8
(
val
.
i32val
,
0
);
}
else
{
return
__builtin_amdgcn_cvt_f32_bf8
(
val
.
i32val
,
0
);
}
}
// The conversion function is from rocblas
// https://github.com/ROCm/rocBLAS/blob/9b7f692abe3c54b88d1e77e045a7db7f1f188b69/library/include/internal/rocblas_float8.h#L79
template
<
ck_fp8_interpretation_t
interpret
,
bool
saturate
,
bool
stochastic_rounding
=
false
>
static
__device__
fp8_storage_t
cast_to_f8_from_f32
(
float
v
,
unsigned
int
rng
=
0
)
{
fp8_storage_t
i8data
;
union
{
float
fval
;
unsigned
int
i32val
;
unsigned
char
i8val
[
4
];
// NOTE: not endian independent
}
val
;
unsigned
int
ival
=
0
;
val
.
fval
=
v
;
if
constexpr
(
saturate
)
{
if
constexpr
(
interpret
==
CK_E4M3_FNUZ
)
{
if
((
val
.
i32val
&
0x7F800000
)
!=
0x7F800000
)
{
/// propagate NAN/INF, no clipping
val
.
fval
=
__builtin_amdgcn_fmed3f
(
val
.
fval
,
240.0
,
-
240.0
);
}
}
else
if
(
interpret
==
CK_E4M3_OCP
)
{
// OCP type
if
((
val
.
i32val
&
0x7F800000
)
!=
0x7F800000
)
{
/// propagate NAN/INF, no clipping
val
.
fval
=
__builtin_amdgcn_fmed3f
(
val
.
fval
,
448.0
,
-
448.0
);
}
}
else
{
if
((
val
.
i32val
&
0x7F800000
)
!=
0x7F800000
)
{
/// propagate NAN/INF, no clipping
val
.
fval
=
__builtin_amdgcn_fmed3f
(
val
.
fval
,
57344.0
,
-
57344.0
);
}
}
}
if
constexpr
(
stochastic_rounding
)
{
ival
=
(
interpret
==
CK_E4M3_FNUZ
)
||
(
interpret
==
CK_E4M3_OCP
)
?
__builtin_amdgcn_cvt_sr_fp8_f32
(
val
.
fval
,
rng
,
ival
,
0
)
:
__builtin_amdgcn_cvt_sr_bf8_f32
(
val
.
fval
,
rng
,
ival
,
0
);
// 0 pos
val
.
i32val
=
ival
;
i8data
=
val
.
i8val
[
0
];
// little endian
}
else
{
// RNE CVT
ival
=
(
interpret
==
CK_E4M3_FNUZ
)
||
(
interpret
==
CK_E4M3_OCP
)
?
__builtin_amdgcn_cvt_pk_fp8_f32
(
val
.
fval
,
val
.
fval
,
ival
,
false
)
:
__builtin_amdgcn_cvt_pk_bf8_f32
(
val
.
fval
,
val
.
fval
,
ival
,
false
);
// false -> WORD0
val
.
i32val
=
ival
;
i8data
=
val
.
i8val
[
0
];
}
return
i8data
;
}
#endif // CK_FP8_CVT_FAST_PATH
/**
* \brief convert float to @p fp8_storage_t
*
* \tparam interp interpretation of fp8
* \tparam sat saturation of fp8
* \param f float number
* \return fp8_storage_t
*/
template
<
ck_fp8_interpretation_t
interp
,
ck_saturation_t
sat
=
CK_SATFINITE
,
bool
stochastic_rounding
=
false
>
#if CK_FP8_CVT_FAST_PATH
__host__
__device__
static
inline
fp8_storage_t
cvt_float_to_fp8
(
const
float
f
)
{
internal
::
__is_interpret_supported
(
interp
);
uint32_t
rng
=
0
;
if
constexpr
(
stochastic_rounding
)
{
constexpr
int
seed
=
1254739
;
rng
=
prand_generator
<
float
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
f
),
f
);
}
return
internal
::
cast_to_f8_from_f32
<
interp
,
sat
==
CK_SATFINITE
,
stochastic_rounding
>
(
f
,
rng
);
#else
#if CK_USE_OCP_FP8
__host__
__device__
static
inline
fp8_storage_t
cvt_float_to_fp8
(
const
float
f
)
{
#else
__host__
static
inline
fp8_storage_t
cvt_float_to_fp8
(
const
float
f
)
{
#endif
uint32_t
rng
=
0
;
if
constexpr
(
stochastic_rounding
)
{
constexpr
int
seed
=
1254739
;
rng
=
prand_generator
<
float
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
f
),
f
);
}
if
constexpr
(
interp
==
CK_E4M3_FNUZ
)
{
return
internal
::
cast_to_f8
<
float
,
3
,
4
,
true
,
sat
==
CK_SATFINITE
,
stochastic_rounding
>
(
f
,
rng
);
}
else
if
(
interp
==
CK_E5M2_FNUZ
)
{
return
internal
::
cast_to_f8
<
float
,
2
,
5
,
true
,
sat
==
CK_SATFINITE
,
stochastic_rounding
>
(
f
,
rng
);
}
else
if
(
interp
==
CK_E4M3_OCP
)
{
return
internal
::
cast_to_f8
<
float
,
3
,
4
,
false
,
sat
==
CK_SATFINITE
,
stochastic_rounding
>
(
f
,
rng
);
}
else
if
(
interp
==
CK_E5M2_OCP
)
{
return
internal
::
cast_to_f8
<
float
,
2
,
5
,
false
,
sat
==
CK_SATFINITE
,
stochastic_rounding
>
(
f
,
rng
);
}
else
{
__hip_assert
(
false
&&
"FP8 type is not supported by current target device"
);
return
0
;
}
#endif // CK_FP8_CVT_FAST_PATH
}
/**
* \brief convert half_t to @p fp8_storage_t
*
* \tparam sat saturation of fp8
* \tparam interp interpretation of fp8
* \tparam stochastic_rounding switch between RNE and SR
* \param x half_t value
* \return fp8_storage_t
*/
template
<
ck_fp8_interpretation_t
interp
,
ck_saturation_t
sat
=
CK_SATFINITE
,
bool
stochastic_rounding
=
false
>
#if CK_FP8_CVT_FAST_PATH
__host__
__device__
static
inline
fp8_storage_t
cvt_half_t_to_fp8
(
const
half_t
x
)
{
internal
::
__is_interpret_supported
(
interp
);
#elif CK_USE_OCP_FP8
__host__
__device__
static
inline
fp8_storage_t
cvt_half_t_to_fp8
(
const
half_t
x
)
{
#else
__host__
static
inline
fp8_storage_t
cvt_half_t_to_fp8
(
const
half_t
x
)
{
#endif
return
cvt_float_to_fp8
<
interp
,
sat
,
stochastic_rounding
>
(
static_cast
<
float
>
(
x
));
}
/* For fp8 fnuz types, finite and NaN values are supported. Zero is unsigned.
Inf are not supported. This gives us one additional number to represent.
NaN are represented by 1-0000-000 or 1-00000-00 */
template
<
typename
T
,
std
::
enable_if_t
<
std
::
is_same_v
<
T
,
bf8_fnuz_t
>
||
std
::
is_same_v
<
T
,
f8_fnuz_t
>
,
bool
>
=
true
>
__host__
__device__
inline
constexpr
bool
fnuz_fp8_is_nan
(
T
a
)
{
return
static_cast
<
unsigned
char
>
(
a
)
==
0x80
;
}
__host__
__device__
static
inline
constexpr
bool
fnuz_f8_is_nan
(
f8_fnuz_t
a
)
{
return
static_cast
<
unsigned
char
>
(
a
)
==
0x80
;
}
__host__
__device__
static
inline
constexpr
bool
fnuz_bf8_is_nan
(
bf8_fnuz_t
a
)
{
return
static_cast
<
unsigned
char
>
(
a
)
==
0x80
;
}
__host__
__device__
static
inline
constexpr
bool
ocp_f8_is_nan
(
fp8_storage_t
a
)
{
return
(
a
&
0x7f
)
==
0x7f
;
}
__host__
__device__
static
inline
constexpr
bool
ocp_bf8_is_nan
(
fp8_storage_t
a
)
{
return
(
a
&
0x7f
)
>
0x7c
;
}
}
// namespace internal
struct
f8_ocp_t
{
using
data_type
=
fp8_storage_t
;
data_type
data
;
static
constexpr
internal
::
ck_saturation_t
default_saturation
=
internal
::
CK_SATFINITE
;
static
constexpr
internal
::
ck_fp8_interpretation_t
default_interpret
=
internal
::
CK_E4M3_OCP
;
static
constexpr
unsigned
int
we
=
4
;
// exponent width
static
constexpr
unsigned
int
wm
=
3
;
// mantissa width
__host__
__device__
constexpr
bool
operator
==
(
const
f8_ocp_t
&
other
)
const
{
return
(
data
==
other
.
data
)
&&
(
internal
::
ocp_f8_is_nan
(
data
)
==
false
);
// NaN != NaN
}
#if CK_USE_OCP_FP8
__host__
__device__
explicit
operator
float
()
const
{
#else
__host__
explicit
operator
float
()
const
{
#endif
#if CK_FP8_CVT_FAST_PATH
return
internal
::
cast_to_f32_from_f8
<
default_interpret
>
(
this
->
data
);
#else
return
internal
::
cast_from_f8
<
float
,
wm
,
we
,
false
>
(
this
->
data
);
// XXX: clip==false must be consistent with operator half_t
#endif
}
#if CK_USE_OCP_FP8
__host__
__device__
explicit
operator
half_t
()
const
{
#else
__host__
explicit
operator
half_t
()
const
{
#endif
#if CK_FP8_CVT_FAST_PATH
return
static_cast
<
half_t
>
(
internal
::
cast_to_f32_from_f8
<
default_interpret
>
(
this
->
data
));
#else
return
internal
::
cast_from_f8
<
half_t
,
wm
,
we
,
false
>
(
this
->
data
);
// XXX: clip==false must be consistent with operator float
#endif
}
};
// namespace ck
struct
bf8_ocp_t
{
using
data_type
=
fp8_storage_t
;
data_type
data
;
static
constexpr
internal
::
ck_saturation_t
default_saturation
=
internal
::
CK_SATFINITE
;
static
constexpr
internal
::
ck_fp8_interpretation_t
default_interpret
=
internal
::
CK_E5M2_OCP
;
static
constexpr
unsigned
int
we
=
5
;
// exponent width
static
constexpr
unsigned
int
wm
=
2
;
// mantissa width
__host__
__device__
constexpr
bool
operator
==
(
const
bf8_ocp_t
&
other
)
const
{
return
(
data
==
other
.
data
)
&&
(
internal
::
ocp_bf8_is_nan
(
data
)
==
false
);
// NaN != NaN
}
#if CK_USE_OCP_FP8
__host__
__device__
explicit
operator
float
()
const
{
#else
__host__
explicit
operator
float
()
const
{
#endif
#if CK_FP8_CVT_FAST_PATH
return
internal
::
cast_to_f32_from_f8
<
default_interpret
>
(
this
->
data
);
#else
return
internal
::
cast_from_f8
<
float
,
wm
,
we
,
false
>
(
this
->
data
);
// XXX: clip==false must be consistent with operator half_t
#endif
}
#if CK_USE_OCP_FP8
__host__
__device__
explicit
operator
half_t
()
const
{
#else
__host__
explicit
operator
half_t
()
const
{
#endif
#if CK_FP8_CVT_FAST_PATH
return
static_cast
<
half_t
>
(
internal
::
cast_to_f32_from_f8
<
default_interpret
>
(
this
->
data
));
#else
return
internal
::
cast_from_f8
<
half_t
,
wm
,
we
,
false
>
(
this
->
data
);
// XXX: clip==false must be consistent with operator float
#endif
}
}
;
namespace
internal
{
template
<
typename
T
,
std
::
enable_if_t
<
std
::
is_same_v
<
T
,
bf8_ocp_t
>
||
std
::
is_same_v
<
T
,
f8_ocp_t
>
||
std
::
is_same_v
<
T
,
bf8_fnuz_t
>
||
std
::
is_same_v
<
T
,
f8_fnuz_t
>
,
bool
>
=
true
>
__host__
__device__
static
inline
constexpr
bool
fp8_is_inf
(
T
)
{
return
false
;
}
template
<
>
__host__
__device__
inline
constexpr
bool
fp8_is_inf
(
bf8_ocp_t
a
)
{
return
(
a
.
data
&
0x7f
)
==
0x7c
;
}
}
// namespace internal
// Declare a template function for fp8 conversion using RNE
template
<
typename
Y
,
typename
X
>
__host__
__device__
constexpr
Y
f8_convert_rne
(
X
x
);
// convert fp32 to fp8 with rounding to nearest even
template
<
>
inline
__host__
__device__
f8_ocp_t
f8_convert_rne
<
f8_ocp_t
,
float
>
(
float
x
)
{
return
f8_ocp_t
{
internal
::
cvt_float_to_fp8
<
f8_ocp_t
::
default_interpret
,
f8_ocp_t
::
default_saturation
>
(
x
)};
}
// convert fp32 to bf8 with rounding to nearest even
template
<
>
inline
__host__
__device__
bf8_ocp_t
f8_convert_rne
<
bf8_ocp_t
,
float
>
(
float
x
)
{
return
bf8_ocp_t
{
internal
::
cvt_float_to_fp8
<
bf8_ocp_t
::
default_interpret
,
bf8_ocp_t
::
default_saturation
>
(
x
)};
}
// convert half_t to fp8 with rounding to nearest even
template
<
>
inline
__host__
__device__
f8_ocp_t
f8_convert_rne
<
f8_ocp_t
,
half_t
>
(
half_t
x
)
{
return
f8_ocp_t
{
internal
::
cvt_half_t_to_fp8
<
f8_ocp_t
::
default_interpret
,
f8_ocp_t
::
default_saturation
>
(
x
)};
}
template
<
>
inline
__host__
__device__
bf8_ocp_t
f8_convert_rne
<
bf8_ocp_t
,
half_t
>
(
half_t
x
)
{
return
bf8_ocp_t
{
internal
::
cvt_half_t_to_fp8
<
bf8_ocp_t
::
default_interpret
,
bf8_ocp_t
::
default_saturation
>
(
x
)};
}
// Declare a template function for fp8 conversion using RNE
template
<
typename
Y
,
typename
X
>
__host__
__device__
constexpr
Y
f8_convert_sr
(
X
x
);
// convert fp32 to fp8 with stochastic rounding
template
<
>
inline
__host__
__device__
f8_ocp_t
f8_convert_sr
<
f8_ocp_t
,
float
>
(
float
x
)
{
return
f8_ocp_t
{
internal
::
cvt_float_to_fp8
<
f8_ocp_t
::
default_interpret
,
f8_ocp_t
::
default_saturation
,
true
>
(
x
)};
}
// convert fp32 to bf8 with stochastic rounding
template
<
>
inline
__host__
__device__
bf8_ocp_t
f8_convert_sr
<
bf8_ocp_t
,
float
>
(
float
x
)
{
return
bf8_ocp_t
{
internal
::
cvt_float_to_fp8
<
bf8_ocp_t
::
default_interpret
,
bf8_ocp_t
::
default_saturation
,
true
>
(
x
)};
}
// convert half_t to fp8 with stochastic rounding
template
<
>
inline
__host__
__device__
f8_ocp_t
f8_convert_sr
<
f8_ocp_t
,
half_t
>
(
half_t
x
)
{
return
f8_ocp_t
{
internal
::
cvt_half_t_to_fp8
<
f8_ocp_t
::
default_interpret
,
f8_ocp_t
::
default_saturation
,
true
>
(
x
)};
}
// convert half_t to bf8 with stochastic rounding
template
<
>
inline
__host__
__device__
bf8_ocp_t
f8_convert_sr
<
bf8_ocp_t
,
half_t
>
(
half_t
x
)
{
return
bf8_ocp_t
{
internal
::
cvt_half_t_to_fp8
<
bf8_ocp_t
::
default_interpret
,
bf8_ocp_t
::
default_saturation
,
true
>
(
x
)};
}
#if CK_USE_OCP_FP8
using
f8_t
=
f8_ocp_t
;
using
bf8_t
=
bf8_ocp_t
;
#define CK_FP8_TYPE_FNUZ 0
#define CK_FP8_TYPE_OCP 1
#else
using
f8_t
=
f8_fnuz_t
;
using
bf8_t
=
bf8_fnuz_t
;
#define CK_FP8_TYPE_FNUZ 1
#define CK_FP8_TYPE_OCP 0
#endif
inline
constexpr
auto
next_pow2
(
uint32_t
x
)
inline
constexpr
auto
next_pow2
(
uint32_t
x
)
{
{
// Precondition: x > 1.
// Precondition: x > 1.
...
@@ -2601,17 +1693,17 @@ using bf8x32_t = bf8x32_ocp_t;
...
@@ -2601,17 +1693,17 @@ using bf8x32_t = bf8x32_ocp_t;
using
bf8x64_t
=
bf8x64_ocp_t
;
using
bf8x64_t
=
bf8x64_ocp_t
;
#elif CK_FP8_TYPE_FNUZ
#elif CK_FP8_TYPE_FNUZ
// f8
// f8
using
f8x2_t
=
f8x2_fnuz_t
;
using
f8x2_t
=
f8x2_fnuz_t
;
using
f8x4_t
=
f8x4_fnuz_t
;
using
f8x4_t
=
f8x4_fnuz_t
;
using
f8x8_t
=
f8x8_fnuz_t
;
using
f8x8_t
=
f8x8_fnuz_t
;
using
f8x16_t
=
f8x16_fnuz_t
;
using
f8x16_t
=
f8x16_fnuz_t
;
using
f8x32_t
=
f8x32_fnuz_t
;
using
f8x32_t
=
f8x32_fnuz_t
;
using
f8x64_t
=
f8x64_fnuz_t
;
using
f8x64_t
=
f8x64_fnuz_t
;
// bf8
// bf8
using
bf8x2_t
=
bf8x2_fnuz_t
;
using
bf8x2_t
=
bf8x2_fnuz_t
;
using
bf8x4_t
=
bf8x4_fnuz_t
;
using
bf8x4_t
=
bf8x4_fnuz_t
;
using
bf8x8_t
=
bf8x8_fnuz_t
;
using
bf8x8_t
=
bf8x8_fnuz_t
;
using
bf8x16_t
=
bf8x16_fnuz_t
;
using
bf8x16_t
=
bf8x16_fnuz_t
;
using
bf8x32_t
=
bf8x32_fnuz_t
;
using
bf8x32_t
=
bf8x32_fnuz_t
;
using
bf8x64_t
=
bf8x64_fnuz_t
;
using
bf8x64_t
=
bf8x64_fnuz_t
;
...
...
include/ck/utility/random_gen.hpp
View file @
ca99f301
...
@@ -3,6 +3,8 @@
...
@@ -3,6 +3,8 @@
#pragma once
#pragma once
#include "ck/ck.hpp"
namespace
ck
{
namespace
ck
{
// Pseudo random number generator
// Pseudo random number generator
...
...
test/data_type/test_bf8_ocp.cpp
View file @
ca99f301
...
@@ -23,8 +23,8 @@ TEST(BF8OCP, NumericLimits)
...
@@ -23,8 +23,8 @@ TEST(BF8OCP, NumericLimits)
type_convert
<
bf8_ocp_t
>
(
0x7D
).
data
);
// 0b01111101
type_convert
<
bf8_ocp_t
>
(
0x7D
).
data
);
// 0b01111101
EXPECT_FALSE
(
ck
::
NumericLimits
<
bf8_ocp_t
>::
QuietNaN
()
==
EXPECT_FALSE
(
ck
::
NumericLimits
<
bf8_ocp_t
>::
QuietNaN
()
==
ck
::
NumericLimits
<
bf8_ocp_t
>::
QuietNaN
());
ck
::
NumericLimits
<
bf8_ocp_t
>::
QuietNaN
());
EXPECT_TRUE
(
ck
::
interna
l
::
fp8_is_inf
(
type_convert
<
bf8_ocp_t
>
(
0xFC
))
&&
EXPECT_TRUE
(
ck
::
fp8_imp
l
::
fp8_is_inf
(
type_convert
<
bf8_ocp_t
>
(
0xFC
))
&&
ck
::
interna
l
::
fp8_is_inf
(
type_convert
<
bf8_ocp_t
>
(
0x7C
)));
ck
::
fp8_imp
l
::
fp8_is_inf
(
type_convert
<
bf8_ocp_t
>
(
0x7C
)));
}
}
TEST
(
BF8OCP
,
ConvertFP32Nearest
)
TEST
(
BF8OCP
,
ConvertFP32Nearest
)
...
@@ -79,7 +79,7 @@ TEST(BF8OCP, ConvertFP32Nearest)
...
@@ -79,7 +79,7 @@ TEST(BF8OCP, ConvertFP32Nearest)
// convert quiet NaN to bf8_ocp_t and check if it is quiet NaN
// convert quiet NaN to bf8_ocp_t and check if it is quiet NaN
const
auto
bf8_nan
=
f8_convert_rne
<
bf8_ocp_t
>
(
std
::
numeric_limits
<
float
>::
quiet_NaN
());
const
auto
bf8_nan
=
f8_convert_rne
<
bf8_ocp_t
>
(
std
::
numeric_limits
<
float
>::
quiet_NaN
());
ASSERT_TRUE
(
ck
::
interna
l
::
ocp_bf8_is_nan
(
bf8_nan
.
data
));
ASSERT_TRUE
(
ck
::
fp8_imp
l
::
ocp_bf8_is_nan
(
bf8_nan
.
data
));
}
}
TEST
(
BF8OCP
,
ConvertFP32Stochastic
)
TEST
(
BF8OCP
,
ConvertFP32Stochastic
)
...
@@ -136,7 +136,7 @@ TEST(BF8OCP, ConvertFP32Stochastic)
...
@@ -136,7 +136,7 @@ TEST(BF8OCP, ConvertFP32Stochastic)
// convert quiet NaN to bf8_ocp_t and check if it is quiet NaN
// convert quiet NaN to bf8_ocp_t and check if it is quiet NaN
const
auto
bf8_nan
=
f8_convert_sr
<
bf8_ocp_t
>
(
std
::
numeric_limits
<
float
>::
quiet_NaN
());
const
auto
bf8_nan
=
f8_convert_sr
<
bf8_ocp_t
>
(
std
::
numeric_limits
<
float
>::
quiet_NaN
());
ASSERT_TRUE
(
ck
::
interna
l
::
ocp_bf8_is_nan
(
bf8_nan
.
data
));
ASSERT_TRUE
(
ck
::
fp8_imp
l
::
ocp_bf8_is_nan
(
bf8_nan
.
data
));
}
}
TEST
(
BF8OCP
,
ConvertFP16Nearest
)
TEST
(
BF8OCP
,
ConvertFP16Nearest
)
...
@@ -199,7 +199,7 @@ TEST(BF8OCP, ConvertFP16Nearest)
...
@@ -199,7 +199,7 @@ TEST(BF8OCP, ConvertFP16Nearest)
// convert quiet NaN to bf8_ocp_t and check if it is quiet NaN
// convert quiet NaN to bf8_ocp_t and check if it is quiet NaN
const
auto
bf8_nan
=
f8_convert_rne
<
bf8_ocp_t
>
(
ck
::
NumericLimits
<
half_t
>::
QuietNaN
());
const
auto
bf8_nan
=
f8_convert_rne
<
bf8_ocp_t
>
(
ck
::
NumericLimits
<
half_t
>::
QuietNaN
());
ASSERT_TRUE
(
ck
::
interna
l
::
ocp_bf8_is_nan
(
bf8_nan
.
data
));
ASSERT_TRUE
(
ck
::
fp8_imp
l
::
ocp_bf8_is_nan
(
bf8_nan
.
data
));
}
}
TEST
(
BF8OCP
,
ConvertFP16Stochastic
)
TEST
(
BF8OCP
,
ConvertFP16Stochastic
)
...
@@ -264,5 +264,5 @@ TEST(BF8OCP, ConvertFP16Stochastic)
...
@@ -264,5 +264,5 @@ TEST(BF8OCP, ConvertFP16Stochastic)
// convert quiet NaN to bf8_ocp_t and check if it is quiet NaN
// convert quiet NaN to bf8_ocp_t and check if it is quiet NaN
const
auto
bf8_nan
=
f8_convert_sr
<
bf8_ocp_t
>
(
ck
::
NumericLimits
<
half_t
>::
QuietNaN
());
const
auto
bf8_nan
=
f8_convert_sr
<
bf8_ocp_t
>
(
ck
::
NumericLimits
<
half_t
>::
QuietNaN
());
ASSERT_TRUE
(
ck
::
interna
l
::
ocp_bf8_is_nan
(
bf8_nan
.
data
));
ASSERT_TRUE
(
ck
::
fp8_imp
l
::
ocp_bf8_is_nan
(
bf8_nan
.
data
));
}
}
test/data_type/test_fp8_ocp.cpp
View file @
ca99f301
...
@@ -184,7 +184,7 @@ TEST(FP8OCP, ConvertFP16Nearest)
...
@@ -184,7 +184,7 @@ TEST(FP8OCP, ConvertFP16Nearest)
// convert quiet NaN to f8_ocp_t and check if it is quiet NaN
// convert quiet NaN to f8_ocp_t and check if it is quiet NaN
auto
f8_nan
=
f8_convert_rne
<
f8_ocp_t
>
(
ck
::
NumericLimits
<
half_t
>::
QuietNaN
());
auto
f8_nan
=
f8_convert_rne
<
f8_ocp_t
>
(
ck
::
NumericLimits
<
half_t
>::
QuietNaN
());
ASSERT_TRUE
(
ck
::
interna
l
::
ocp_f8_is_nan
(
f8_nan
.
data
));
ASSERT_TRUE
(
ck
::
fp8_imp
l
::
ocp_f8_is_nan
(
f8_nan
.
data
));
}
}
TEST
(
FP8OCP
,
ConvertFP16Stochastic
)
TEST
(
FP8OCP
,
ConvertFP16Stochastic
)
...
@@ -246,5 +246,5 @@ TEST(FP8OCP, ConvertFP16Stochastic)
...
@@ -246,5 +246,5 @@ TEST(FP8OCP, ConvertFP16Stochastic)
// convert quiet NaN to f8_ocp_t and check if it is quiet NaN
// convert quiet NaN to f8_ocp_t and check if it is quiet NaN
auto
f8_nan
=
f8_convert_sr
<
f8_ocp_t
>
(
ck
::
NumericLimits
<
half_t
>::
QuietNaN
());
auto
f8_nan
=
f8_convert_sr
<
f8_ocp_t
>
(
ck
::
NumericLimits
<
half_t
>::
QuietNaN
());
ASSERT_TRUE
(
ck
::
interna
l
::
ocp_f8_is_nan
(
f8_nan
.
data
));
ASSERT_TRUE
(
ck
::
fp8_imp
l
::
ocp_f8_is_nan
(
f8_nan
.
data
));
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment