Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
c997bbf6
Commit
c997bbf6
authored
Nov 28, 2023
by
illsilin
Browse files
sync from public repo
parents
91c1d147
ae5e5181
Changes
422
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
570 additions
and
99 deletions
+570
-99
profiler/src/profile_groupnorm_fwd.cpp
profiler/src/profile_groupnorm_fwd.cpp
+1
-1
profiler/src/profile_layernorm_fwd.cpp
profiler/src/profile_layernorm_fwd.cpp
+37
-10
script/cmake-ck-dev.sh
script/cmake-ck-dev.sh
+1
-2
script/hip_fatbin_insert
script/hip_fatbin_insert
+7
-0
test/CMakeLists.txt
test/CMakeLists.txt
+2
-1
test/contraction/test_contraction.cpp
test/contraction/test_contraction.cpp
+96
-55
test/contraction/test_contraction_interface.cpp
test/contraction/test_contraction_interface.cpp
+5
-5
test/grouped_convnd_fwd/CMakeLists.txt
test/grouped_convnd_fwd/CMakeLists.txt
+5
-0
test/grouped_convnd_fwd/test_grouped_convnd_fwd_multi_ab_interface.cpp
...convnd_fwd/test_grouped_convnd_fwd_multi_ab_interface.cpp
+235
-0
test/grouped_convnd_fwd/test_grouped_convnd_fwd_multi_d_interface_compatibility.cpp
...st_grouped_convnd_fwd_multi_d_interface_compatibility.cpp
+59
-0
test/grouped_gemm/test_grouped_gemm_interface.cpp
test/grouped_gemm/test_grouped_gemm_interface.cpp
+4
-0
test/normalization/CMakeLists.txt
test/normalization/CMakeLists.txt
+0
-21
test/normalization_fwd/CMakeLists.txt
test/normalization_fwd/CMakeLists.txt
+30
-0
test/normalization_fwd/test_groupnorm_fwd_fp16.cpp
test/normalization_fwd/test_groupnorm_fwd_fp16.cpp
+1
-1
test/normalization_fwd/test_groupnorm_fwd_fp32.cpp
test/normalization_fwd/test_groupnorm_fwd_fp32.cpp
+1
-1
test/normalization_fwd/test_layernorm2d_fwd_fp16.cpp
test/normalization_fwd/test_layernorm2d_fwd_fp16.cpp
+1
-1
test/normalization_fwd/test_layernorm2d_fwd_fp32.cpp
test/normalization_fwd/test_layernorm2d_fwd_fp32.cpp
+1
-1
test/normalization_fwd/test_layernorm4d_fwd_fp16.cpp
test/normalization_fwd/test_layernorm4d_fwd_fp16.cpp
+48
-0
test/transpose/CMakeLists.txt
test/transpose/CMakeLists.txt
+9
-0
test/transpose/test_transpose.cpp
test/transpose/test_transpose.cpp
+27
-0
No files found.
profiler/src/profile_groupnorm.cpp
→
profiler/src/profile_groupnorm
_fwd
.cpp
View file @
c997bbf6
...
@@ -6,7 +6,7 @@
...
@@ -6,7 +6,7 @@
#include <unordered_map>
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_groupnorm_impl.hpp"
#include "profiler/profile_groupnorm_
fwd_
impl.hpp"
#include "profiler_operation_registry.hpp"
#include "profiler_operation_registry.hpp"
using
ck
::
index_t
;
using
ck
::
index_t
;
...
...
profiler/src/profile_layernorm.cpp
→
profiler/src/profile_layernorm
_fwd
.cpp
View file @
c997bbf6
...
@@ -6,7 +6,7 @@
...
@@ -6,7 +6,7 @@
#include <unordered_map>
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_layernorm_impl.hpp"
#include "profiler/profile_layernorm_
fwd_
impl.hpp"
#include "profiler_operation_registry.hpp"
#include "profiler_operation_registry.hpp"
using
ck
::
index_t
;
using
ck
::
index_t
;
...
@@ -76,19 +76,46 @@ int profile_layernorm(int argc, char* argv[])
...
@@ -76,19 +76,46 @@ int profile_layernorm(int argc, char* argv[])
arg_parser
(
argc
,
argv
);
arg_parser
(
argc
,
argv
);
const
std
::
vector
<
index_t
>
length
=
arg_parser
.
long_opts
[
"length"
];
const
std
::
vector
<
index_t
>
length
=
arg_parser
.
long_opts
[
"length"
];
using
F16
=
ck
::
half_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F32
=
float
;
constexpr
int
rank
=
2
;
if
(
data_type
==
ck
::
DataTypeEnum
::
Half
)
if
(
length
.
size
()
==
2
)
{
{
ck
::
profiler
::
profile_layernorm_impl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
false
,
rank
>
(
constexpr
int
rank
=
2
;
do_verification
,
init_method
,
do_log
,
time_kernel
,
length
);
if
(
data_type
==
ck
::
DataTypeEnum
::
Half
)
{
ck
::
profiler
::
profile_layernorm_impl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
false
,
rank
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
length
);
}
else
if
(
data_type
==
ck
::
DataTypeEnum
::
Float
)
{
ck
::
profiler
::
profile_layernorm_impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
false
,
rank
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
length
);
}
else
{
throw
std
::
runtime_error
(
"not implemented yet"
);
}
}
}
else
if
(
data_type
==
ck
::
DataTypeEnum
::
Float
)
else
if
(
length
.
size
()
==
4
)
{
{
ck
::
profiler
::
profile_layernorm_impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
false
,
rank
>
(
constexpr
int
rank
=
4
;
do_verification
,
init_method
,
do_log
,
time_kernel
,
length
);
if
(
data_type
==
ck
::
DataTypeEnum
::
Half
)
{
ck
::
profiler
::
profile_layernorm_impl
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
false
,
rank
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
length
);
}
else
if
(
data_type
==
ck
::
DataTypeEnum
::
Float
)
{
ck
::
profiler
::
profile_layernorm_impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
false
,
rank
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
length
);
}
else
{
throw
std
::
runtime_error
(
"not implemented yet"
);
}
}
}
else
else
{
{
...
...
script/cmake-ck-dev.sh
View file @
c997bbf6
...
@@ -8,8 +8,7 @@ MY_PROJECT_SOURCE=$1
...
@@ -8,8 +8,7 @@ MY_PROJECT_SOURCE=$1
cmake
\
cmake
\
-D
CMAKE_PREFIX_PATH
=
/opt/rocm
\
-D
CMAKE_PREFIX_PATH
=
/opt/rocm
\
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_CXX_FLAGS
=
"-std=c++17 -O3 -ftemplate-backtrace-limit=0 -fPIE -Wno-gnu-line-marker
\
-D
CMAKE_CXX_FLAGS
=
"-std=c++17 -O3 -ftemplate-backtrace-limit=0 -fPIE -Wno-gnu-line-marker"
\
-save-temps=
$PWD
"
\
-D
CMAKE_BUILD_TYPE
=
Release
\
-D
CMAKE_BUILD_TYPE
=
Release
\
-D
BUILD_DEV
=
ON
\
-D
BUILD_DEV
=
ON
\
-D
GPU_TARGETS
=
"gfx908;gfx90a;gfx940"
\
-D
GPU_TARGETS
=
"gfx908;gfx90a;gfx940"
\
...
...
script/hip_fatbin_insert
0 → 100644
View file @
c997bbf6
SECTIONS {
.hipFatBinSegment : { *(.hipFatBinSegment) }
} INSERT AFTER .bss
SECTIONS {
.hip_fatbin : { *(.hip_fatbin) }
} INSERT AFTER .hipFatBinSegment
test/CMakeLists.txt
View file @
c997bbf6
...
@@ -139,7 +139,7 @@ add_subdirectory(grouped_convnd_fwd)
...
@@ -139,7 +139,7 @@ add_subdirectory(grouped_convnd_fwd)
add_subdirectory
(
grouped_convnd_bwd_weight
)
add_subdirectory
(
grouped_convnd_bwd_weight
)
add_subdirectory
(
block_to_ctile_map
)
add_subdirectory
(
block_to_ctile_map
)
add_subdirectory
(
softmax
)
add_subdirectory
(
softmax
)
add_subdirectory
(
normalization
)
add_subdirectory
(
normalization
_fwd
)
add_subdirectory
(
data_type
)
add_subdirectory
(
data_type
)
add_subdirectory
(
elementwise_normalization
)
add_subdirectory
(
elementwise_normalization
)
add_subdirectory
(
batchnorm
)
add_subdirectory
(
batchnorm
)
...
@@ -148,6 +148,7 @@ add_subdirectory(pool)
...
@@ -148,6 +148,7 @@ add_subdirectory(pool)
add_subdirectory
(
batched_gemm_multi_d
)
add_subdirectory
(
batched_gemm_multi_d
)
add_subdirectory
(
grouped_convnd_bwd_data
)
add_subdirectory
(
grouped_convnd_bwd_data
)
add_subdirectory
(
conv_tensor_rearrange
)
add_subdirectory
(
conv_tensor_rearrange
)
add_subdirectory
(
transpose
)
if
(
GPU_TARGETS MATCHES
"gfx11"
)
if
(
GPU_TARGETS MATCHES
"gfx11"
)
add_subdirectory
(
wmma_op
)
add_subdirectory
(
wmma_op
)
endif
()
endif
()
test/contraction/test_contraction.cpp
View file @
c997bbf6
...
@@ -10,9 +10,12 @@
...
@@ -10,9 +10,12 @@
#include <gtest/gtest.h>
#include <gtest/gtest.h>
#include "profiler/profile_contraction_impl.hpp"
#include "profiler/profile_contraction_impl.hpp"
#include "profiler/profile_contraction_utils.hpp"
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
F64
=
double
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
F64
=
double
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
...
@@ -20,49 +23,49 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
...
@@ -20,49 +23,49 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
struct
MemoryParam
s
struct
Dimension
s
{
{
std
::
vector
<
ck
::
index_t
>
M
;
std
::
vector
<
ck
::
index_t
>
M
;
std
::
vector
<
ck
::
index_t
>
N
;
std
::
vector
<
ck
::
index_t
>
N
;
std
::
vector
<
ck
::
index_t
>
K
;
std
::
vector
<
ck
::
index_t
>
K
;
std
::
vector
<
ck
::
index_t
>
StridesA
;
std
::
vector
<
ck
::
index_t
>
StridesB
;
std
::
vector
<
ck
::
index_t
>
StridesC
;
std
::
vector
<
ck
::
index_t
>
StridesD
;
};
};
template
<
typename
Tuple
>
template
<
typename
Tuple
>
class
TestContraction
:
public
::
testing
::
Test
class
TestContraction
:
public
::
testing
::
Test
{
{
protected:
protected:
using
ALayout
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
ALayout
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
BLayout
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
BLayout
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
CDLayout
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
CDLayout
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
DataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
DataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
DTupleDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
DTupleDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
CDElementOp
=
std
::
tuple_element_t
<
5
,
Tuple
>
;
using
ComputeDataType
=
std
::
tuple_element_t
<
5
,
Tuple
>
;
using
CDElementOp
=
std
::
tuple_element_t
<
6
,
Tuple
>
;
std
::
vector
<
MemoryParams
>
list_of_memory_params
=
{{{
32
,
32
},
{
32
,
32
},
std
::
vector
<
Dimensions
>
dimension_list
=
{{{
32
,
32
},
{
32
,
32
},
{
32
,
32
}},
{
32
,
32
},
{{
16
,
16
},
{
32
,
32
},
{
16
,
16
}}};
{
32768
,
1024
,
32
,
1
},
{
32768
,
1024
,
32
,
1
},
std
::
vector
<
ck
::
index_t
>
init_methods
=
{
1
,
2
};
{
32768
,
1024
,
32
,
1
},
{
32768
,
1024
,
32
,
1
}},
{{
16
,
16
},
{
32
,
32
},
{
16
,
16
},
{
4096
,
256
,
16
,
1
},
{
16
,
1
,
8192
,
256
},
{
16384
,
1024
,
32
,
1
},
{
16384
,
1024
,
32
,
1
}}};
std
::
vector
<
ck
::
index_t
>
init_methods
=
{
0
,
1
,
2
};
std
::
unique_ptr
<
CDElementOp
>
p_cd_element_op
;
std
::
unique_ptr
<
CDElementOp
>
p_cd_element_op
;
void
Run
()
void
Run
()
{
{
for
(
auto
&
memory
_params
:
list_of_memory_params
)
for
(
auto
&
dimension
_params
:
dimension_list
)
{
{
std
::
vector
<
ck
::
index_t
>
StridesA
;
std
::
vector
<
ck
::
index_t
>
StridesB
;
std
::
vector
<
ck
::
index_t
>
StridesC
;
std
::
vector
<
ck
::
index_t
>
StridesD
;
const
auto
&
M
=
dimension_params
.
M
;
const
auto
&
N
=
dimension_params
.
N
;
const
auto
&
K
=
dimension_params
.
K
;
assign_default_strides
(
ALayout
{},
StridesA
,
{
M
[
0
],
M
[
1
],
K
[
0
],
K
[
1
]});
assign_default_strides
(
BLayout
{},
StridesB
,
{
N
[
0
],
N
[
1
],
K
[
0
],
K
[
1
]});
assign_default_strides
(
CDLayout
{},
StridesC
,
{
M
[
0
],
M
[
1
],
N
[
0
],
N
[
1
]});
assign_default_strides
(
CDLayout
{},
StridesD
,
{
M
[
0
],
M
[
1
],
N
[
0
],
N
[
1
]});
for
(
const
ck
::
index_t
init_method
:
init_methods
)
for
(
const
ck
::
index_t
init_method
:
init_methods
)
{
{
bool
pass
=
bool
pass
=
...
@@ -70,19 +73,20 @@ class TestContraction : public ::testing::Test
...
@@ -70,19 +73,20 @@ class TestContraction : public ::testing::Test
BLayout
,
BLayout
,
CDLayout
,
CDLayout
,
DataType
,
DataType
,
ComputeDataType
,
DTupleDataType
,
DTupleDataType
,
CDElementOp
>
(
true
/*do_verification*/
,
CDElementOp
>
(
true
/*do_verification*/
,
init_method
,
init_method
,
false
/*do_logs*/
,
false
/*do_logs*/
,
false
/*time_kernel*/
,
false
/*time_kernel*/
,
*
p_cd_element_op
,
*
p_cd_element_op
,
memory
_params
.
M
,
dimension
_params
.
M
,
memory
_params
.
N
,
dimension
_params
.
N
,
memory
_params
.
K
,
dimension
_params
.
K
,
memory_params
.
StridesA
,
StridesA
,
memory_params
.
StridesB
,
StridesB
,
memory_params
.
StridesC
,
StridesC
,
memory_params
.
StridesD
);
StridesD
);
EXPECT_TRUE
(
pass
);
EXPECT_TRUE
(
pass
);
}
}
}
}
...
@@ -99,24 +103,18 @@ class TestContractionBilinear : public TestContraction<Tuple>
...
@@ -99,24 +103,18 @@ class TestContractionBilinear : public TestContraction<Tuple>
{
{
};
};
#define ALL_LAYOUT_COMBINATIONS(dt, tuple_dt, compute_dt, op) \
std::tuple<Row, Row, Row, dt, tuple_dt, compute_dt, op>, \
std::tuple<Row, Col, Row, dt, tuple_dt, compute_dt, op>, \
std::tuple<Col, Row, Row, dt, tuple_dt, compute_dt, op>, \
std::tuple<Col, Col, Row, dt, tuple_dt, compute_dt, op>
using
BilinearKernelTypes
=
using
BilinearKernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
Row
,
Row
,
Row
,
F32
,
ck
::
Tuple
<
F32
>
,
Bilinear
>
,
::
testing
::
Types
<
ALL_LAYOUT_COMBINATIONS
(
F32
,
ck
::
Tuple
<
F32
>
,
F32
,
Bilinear
),
std
::
tuple
<
Row
,
Col
,
Row
,
F32
,
ck
::
Tuple
<
F32
>
,
Bilinear
>
,
ALL_LAYOUT_COMBINATIONS
(
F64
,
ck
::
Tuple
<
F64
>
,
F64
,
Bilinear
)
>
;
std
::
tuple
<
Col
,
Row
,
Row
,
F32
,
ck
::
Tuple
<
F32
>
,
Bilinear
>
,
std
::
tuple
<
Col
,
Col
,
Row
,
F32
,
ck
::
Tuple
<
F32
>
,
Bilinear
>
,
using
ScaleKernelTypes
=
::
testing
::
Types
<
ALL_LAYOUT_COMBINATIONS
(
F32
,
ck
::
Tuple
<>
,
F32
,
Scale
),
std
::
tuple
<
Row
,
Row
,
Row
,
F64
,
ck
::
Tuple
<
F32
>
,
Bilinear
>
,
ALL_LAYOUT_COMBINATIONS
(
F64
,
ck
::
Tuple
<>
,
F64
,
Scale
)
>
;
std
::
tuple
<
Row
,
Col
,
Row
,
F64
,
ck
::
Tuple
<
F32
>
,
Bilinear
>
,
std
::
tuple
<
Col
,
Row
,
Row
,
F64
,
ck
::
Tuple
<
F32
>
,
Bilinear
>
,
std
::
tuple
<
Col
,
Col
,
Row
,
F64
,
ck
::
Tuple
<
F32
>
,
Bilinear
>>
;
using
ScaleKernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
Row
,
Row
,
Row
,
F32
,
ck
::
Tuple
<>
,
Scale
>
,
std
::
tuple
<
Row
,
Col
,
Row
,
F32
,
ck
::
Tuple
<>
,
Scale
>
,
std
::
tuple
<
Col
,
Row
,
Row
,
F32
,
ck
::
Tuple
<>
,
Scale
>
,
std
::
tuple
<
Col
,
Col
,
Row
,
F32
,
ck
::
Tuple
<>
,
Scale
>
,
std
::
tuple
<
Row
,
Row
,
Row
,
F64
,
ck
::
Tuple
<>
,
Scale
>
,
std
::
tuple
<
Row
,
Col
,
Row
,
F64
,
ck
::
Tuple
<>
,
Scale
>
,
std
::
tuple
<
Col
,
Row
,
Row
,
F64
,
ck
::
Tuple
<>
,
Scale
>
,
std
::
tuple
<
Col
,
Col
,
Row
,
F64
,
ck
::
Tuple
<>
,
Scale
>>
;
TYPED_TEST_SUITE
(
TestContractionBilinear
,
BilinearKernelTypes
);
TYPED_TEST_SUITE
(
TestContractionBilinear
,
BilinearKernelTypes
);
TYPED_TEST_SUITE
(
TestContractionScale
,
ScaleKernelTypes
);
TYPED_TEST_SUITE
(
TestContractionScale
,
ScaleKernelTypes
);
...
@@ -136,3 +134,46 @@ TYPED_TEST(TestContractionScale, scale)
...
@@ -136,3 +134,46 @@ TYPED_TEST(TestContractionScale, scale)
this
->
p_cd_element_op
=
std
::
make_unique
<
Scale
>
(
0.5
f
);
this
->
p_cd_element_op
=
std
::
make_unique
<
Scale
>
(
0.5
f
);
this
->
Run
();
this
->
Run
();
}
}
template
<
typename
Tuple
>
class
TestContractionScaleMixedPrecision
:
public
TestContraction
<
Tuple
>
{
};
template
<
typename
Tuple
>
class
TestContractionBilinearMixedPrecision
:
public
TestContraction
<
Tuple
>
{
};
using
BilinearKernelTypesMixedPrecision
=
::
testing
::
Types
<
ALL_LAYOUT_COMBINATIONS
(
F32
,
ck
::
Tuple
<
F32
>
,
F16
,
Bilinear
),
ALL_LAYOUT_COMBINATIONS
(
F32
,
ck
::
Tuple
<
F32
>
,
BF16
,
Bilinear
),
ALL_LAYOUT_COMBINATIONS
(
F64
,
ck
::
Tuple
<
F64
>
,
F32
,
Bilinear
),
ALL_LAYOUT_COMBINATIONS
(
F16
,
ck
::
Tuple
<
F16
>
,
F32
,
Bilinear
),
ALL_LAYOUT_COMBINATIONS
(
BF16
,
ck
::
Tuple
<
BF16
>
,
F32
,
Bilinear
)
>
;
using
ScaleKernelTypesMixedPrecision
=
::
testing
::
Types
<
ALL_LAYOUT_COMBINATIONS
(
F32
,
ck
::
Tuple
<>
,
F16
,
Scale
),
ALL_LAYOUT_COMBINATIONS
(
F32
,
ck
::
Tuple
<>
,
BF16
,
Scale
),
ALL_LAYOUT_COMBINATIONS
(
F64
,
ck
::
Tuple
<>
,
F32
,
Scale
),
ALL_LAYOUT_COMBINATIONS
(
F16
,
ck
::
Tuple
<>
,
F32
,
Scale
),
ALL_LAYOUT_COMBINATIONS
(
BF16
,
ck
::
Tuple
<>
,
F32
,
Scale
)
>
;
TYPED_TEST_SUITE
(
TestContractionBilinearMixedPrecision
,
BilinearKernelTypesMixedPrecision
);
TYPED_TEST_SUITE
(
TestContractionScaleMixedPrecision
,
ScaleKernelTypesMixedPrecision
);
TYPED_TEST
(
TestContractionBilinearMixedPrecision
,
bilinear
)
{
this
->
p_cd_element_op
=
std
::
make_unique
<
Bilinear
>
(
1.
f
,
1.
f
);
this
->
Run
();
this
->
p_cd_element_op
=
std
::
make_unique
<
Bilinear
>
(
-
0.5
f
,
0.5
f
);
this
->
Run
();
}
TYPED_TEST
(
TestContractionScaleMixedPrecision
,
scale
)
{
this
->
p_cd_element_op
=
std
::
make_unique
<
Scale
>
(
1.
f
);
this
->
Run
();
this
->
p_cd_element_op
=
std
::
make_unique
<
Scale
>
(
0.5
f
);
this
->
Run
();
}
test/contraction/test_contraction_interface.cpp
View file @
c997bbf6
...
@@ -34,11 +34,11 @@ class ContractionInstanceWrapper
...
@@ -34,11 +34,11 @@ class ContractionInstanceWrapper
static
constexpr
ck
::
index_t
NumDim
=
2
;
static
constexpr
ck
::
index_t
NumDim
=
2
;
// clang-format off
// clang-format off
using
ContractionDeviceInstance
=
ck
::
tensor_operation
::
device
::
using
ContractionDeviceInstance
=
ck
::
tensor_operation
::
device
::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData|
A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
Compute|
//#####################################| | | | Type| Type| Type| DataType| Type| Type|
Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
Data|
//#####################################| | | | | | | | | |
Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
Type|
//#####################################| | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|
DeviceContractionMultipleD_Xdl_CShuffle
<
NumDim
,
NumDim
,
NumDim
,
F32
,
F32
,
F32
,
F32
,
ck
::
Tuple
<
F32
>
,
F32
,
Pass
,
Pass
,
Bilinear
,
GemmSpec
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
ABlockTransferSrcVectorDim
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
BBlockTransferSrcVectorDim
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
CDEBlockTransferScalarPerVector
>
;
DeviceContractionMultipleD_Xdl_CShuffle
<
NumDim
,
NumDim
,
NumDim
,
F32
,
F32
,
F32
,
F32
,
ck
::
Tuple
<
F32
>
,
F32
,
Pass
,
Pass
,
Bilinear
,
GemmSpec
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
ABlockTransferSrcVectorDim
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
BBlockTransferSrcVectorDim
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
CDEBlockTransferScalarPerVector
,
F32
>
;
// clang-format on
// clang-format on
bool
isSupported
(
std
::
vector
<
ck
::
index_t
>&
ADims
,
bool
isSupported
(
std
::
vector
<
ck
::
index_t
>&
ADims
,
...
...
test/grouped_convnd_fwd/CMakeLists.txt
View file @
c997bbf6
add_gtest_executable
(
test_grouped_convnd_fwd test_grouped_convnd_fwd.cpp
)
add_gtest_executable
(
test_grouped_convnd_fwd test_grouped_convnd_fwd.cpp
)
target_link_libraries
(
test_grouped_convnd_fwd PRIVATE utility device_grouped_conv1d_fwd_instance device_grouped_conv2d_fwd_instance device_grouped_conv3d_fwd_instance
)
target_link_libraries
(
test_grouped_convnd_fwd PRIVATE utility device_grouped_conv1d_fwd_instance device_grouped_conv2d_fwd_instance device_grouped_conv3d_fwd_instance
)
add_gtest_executable
(
test_grouped_convnd_fwd_multi_ab_interface test_grouped_convnd_fwd_multi_ab_interface.cpp
)
target_link_libraries
(
test_grouped_convnd_fwd_multi_ab_interface PRIVATE utility
)
add_gtest_executable
(
test_grouped_convnd_fwd_multi_d_interface_compatibility test_grouped_convnd_fwd_multi_d_interface_compatibility.cpp
)
target_link_libraries
(
test_grouped_convnd_fwd_multi_d_interface_compatibility PRIVATE utility device_grouped_conv3d_fwd_instance
)
test/grouped_convnd_fwd/test_grouped_convnd_fwd_multi_ab_interface.cpp
0 → 100644
View file @
c997bbf6
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <tuple>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include <gtest/gtest.h>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
ScaleAdd
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
template
<
typename
DataType
,
typename
InDataTypes
,
typename
WeiDataTypes
,
typename
InElementOp
,
typename
WeiElementOp
>
class
TestGroupedConvndFwdMultiABInterfaceBase
:
public
::
testing
::
Test
{
protected:
static
constexpr
ck
::
index_t
NDimSpatial
=
3
;
static
constexpr
ck
::
index_t
NumAs
=
2
;
static
constexpr
ck
::
index_t
NumBs
=
2
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNDHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNDHWK
;
using
OutElementOp
=
PassThrough
;
using
DeviceGroupedConvNDMultiABFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataTypes
,
WeiDataTypes
,
DataType
,
DataType
,
ck
::
Tuple
<>
,
DataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
const
ck
::
utils
::
conv
::
ConvParam
conv_param
{
3
,
1
,
16
,
16
,
8
,
{
3
,
3
,
3
},
{
17
,
17
,
17
},
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}};
void
SetUp
()
override
{
if
(
!
ck
::
is_xdl_supported
())
{
GTEST_SKIP
();
}
}
template
<
typename
ADataType
,
typename
BDataType
>
bool
Run
(
ADataType
as
,
BDataType
bs
)
{
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
std
::
array
<
const
void
*
,
0
>
ds
{};
// do Conv
auto
conv
=
DeviceGroupedConvNDMultiABFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
as
,
bs
,
ds
,
nullptr
,
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
{},
{},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
return
conv
.
IsSupportedArgument
(
argument
);
}
};
class
TestGroupedConvndFwdMultiAInterface
:
public
TestGroupedConvndFwdMultiABInterfaceBase
<
float
,
ck
::
Tuple
<
float
,
float
>
,
float
,
ScaleAdd
,
PassThrough
>
{
};
class
TestGroupedConvndFwdMultiBInterface
:
public
TestGroupedConvndFwdMultiABInterfaceBase
<
float
,
float
,
ck
::
Tuple
<
float
,
float
>
,
PassThrough
,
ScaleAdd
>
{
};
class
TestGroupedConvndFwdMultiABInterface
:
public
TestGroupedConvndFwdMultiABInterfaceBase
<
float
,
ck
::
Tuple
<
float
,
float
>
,
ck
::
Tuple
<
float
,
float
>
,
ScaleAdd
,
ScaleAdd
>
{
};
class
TestGroupedConvndFwdInterface
:
public
TestGroupedConvndFwdMultiABInterfaceBase
<
float
,
float
,
float
,
PassThrough
,
PassThrough
>
{
};
TEST_F
(
TestGroupedConvndFwdMultiAInterface
,
MultiA
)
{
std
::
array
<
const
void
*
,
NumAs
>
as
{
nullptr
,
nullptr
};
const
void
*
b
=
nullptr
;
EXPECT_TRUE
(
this
->
template
Run
(
as
,
b
));
}
TEST_F
(
TestGroupedConvndFwdMultiBInterface
,
MultiB
)
{
const
void
*
a
=
nullptr
;
std
::
array
<
const
void
*
,
NumBs
>
bs
{
nullptr
,
nullptr
};
EXPECT_TRUE
(
this
->
template
Run
(
a
,
bs
));
}
TEST_F
(
TestGroupedConvndFwdMultiABInterface
,
MultiAB
)
{
std
::
array
<
const
void
*
,
NumAs
>
as
{
nullptr
,
nullptr
};
std
::
array
<
const
void
*
,
NumBs
>
bs
{
nullptr
,
nullptr
};
EXPECT_TRUE
(
this
->
template
Run
(
as
,
bs
));
}
TEST_F
(
TestGroupedConvndFwdInterface
,
SingleAB
)
{
const
void
*
a
=
nullptr
;
const
void
*
b
=
nullptr
;
EXPECT_TRUE
(
this
->
template
Run
(
a
,
b
));
}
test/grouped_convnd_fwd/test_grouped_convnd_fwd_multi_d_interface_compatibility.cpp
0 → 100644
View file @
c997bbf6
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <tuple>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include <gtest/gtest.h>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
class
TestGroupedConvndFwdMultiDInterfaceCompatibility
:
public
::
testing
::
Test
{
protected:
static
constexpr
ck
::
index_t
NDimSpatial
=
3
;
using
InDataType
=
float
;
using
WeiDataType
=
float
;
using
OutDataType
=
float
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNDHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNDHWK
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
bool
Run
()
{
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
return
op_ptrs
.
size
()
!=
0
;
}
};
TEST_F
(
TestGroupedConvndFwdMultiDInterfaceCompatibility
,
CompatibilityTest
)
{
EXPECT_TRUE
(
this
->
Run
());
}
test/grouped_gemm/test_grouped_gemm_interface.cpp
View file @
c997bbf6
...
@@ -108,6 +108,10 @@ TEST_F(TestGGemmSplitKInterface_MKNKMN, KLoops)
...
@@ -108,6 +108,10 @@ TEST_F(TestGGemmSplitKInterface_MKNKMN, KLoops)
// kloops % 2
// kloops % 2
Ks
=
std
::
vector
<
int
>
{
256
,
512
,
320
,
768
};
Ks
=
std
::
vector
<
int
>
{
256
,
512
,
320
,
768
};
EXPECT_FALSE
(
DefaultGGemmInstance
{}.
IsSupported
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
));
Ks
=
std
::
vector
<
int
>
{
256
,
512
,
384
,
768
};
EXPECT_TRUE
(
EXPECT_TRUE
(
DefaultGGemmInstance
{}.
IsSupported
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
));
DefaultGGemmInstance
{}.
IsSupported
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
));
...
...
test/normalization/CMakeLists.txt
deleted
100644 → 0
View file @
91c1d147
add_custom_target
(
test_normalization
)
add_gtest_executable
(
test_layernorm2d_fp32 test_layernorm2d_fp32.cpp
)
if
(
result EQUAL 0
)
target_link_libraries
(
test_layernorm2d_fp32 PRIVATE utility device_normalization_instance
)
add_dependencies
(
test_normalization test_layernorm2d_fp32
)
endif
()
add_gtest_executable
(
test_groupnorm_fp32 test_groupnorm_fp32.cpp
)
if
(
result EQUAL 0
)
target_link_libraries
(
test_groupnorm_fp32 PRIVATE utility device_normalization_instance
)
add_dependencies
(
test_normalization test_groupnorm_fp32
)
endif
()
add_gtest_executable
(
test_layernorm2d_fp16 test_layernorm2d_fp16.cpp
)
if
(
result EQUAL 0
)
target_link_libraries
(
test_layernorm2d_fp16 PRIVATE utility device_normalization_instance
)
add_dependencies
(
test_normalization test_layernorm2d_fp16
)
endif
()
add_gtest_executable
(
test_groupnorm_fp16 test_groupnorm_fp16.cpp
)
if
(
result EQUAL 0
)
target_link_libraries
(
test_groupnorm_fp16 PRIVATE utility device_normalization_instance
)
add_dependencies
(
test_normalization test_groupnorm_fp16
)
endif
()
test/normalization_fwd/CMakeLists.txt
0 → 100644
View file @
c997bbf6
add_custom_target
(
test_normalization_fwd
)
add_gtest_executable
(
test_layernorm2d_fwd_fp32 test_layernorm2d_fwd_fp32.cpp
)
if
(
result EQUAL 0
)
target_link_libraries
(
test_layernorm2d_fwd_fp32 PRIVATE utility device_normalization_fwd_instance
)
add_dependencies
(
test_normalization_fwd test_layernorm2d_fwd_fp32
)
endif
()
add_gtest_executable
(
test_groupnorm_fwd_fp32 test_groupnorm_fwd_fp32.cpp
)
if
(
result EQUAL 0
)
target_link_libraries
(
test_groupnorm_fwd_fp32 PRIVATE utility device_normalization_fwd_instance
)
add_dependencies
(
test_normalization_fwd test_groupnorm_fwd_fp32
)
endif
()
add_gtest_executable
(
test_layernorm2d_fwd_fp16 test_layernorm2d_fwd_fp16.cpp
)
if
(
result EQUAL 0
)
target_link_libraries
(
test_layernorm2d_fwd_fp16 PRIVATE utility device_normalization_fwd_instance
)
add_dependencies
(
test_normalization_fwd test_layernorm2d_fwd_fp16
)
endif
()
add_gtest_executable
(
test_layernorm4d_fwd_fp16 test_layernorm4d_fwd_fp16.cpp
)
if
(
result EQUAL 0
)
target_link_libraries
(
test_layernorm4d_fwd_fp16 PRIVATE utility device_normalization_fwd_instance
)
add_dependencies
(
test_normalization_fwd test_layernorm4d_fwd_fp16
)
endif
()
add_gtest_executable
(
test_groupnorm_fwd_fp16 test_groupnorm_fwd_fp16.cpp
)
if
(
result EQUAL 0
)
target_link_libraries
(
test_groupnorm_fwd_fp16 PRIVATE utility device_normalization_fwd_instance
)
add_dependencies
(
test_normalization_fwd test_groupnorm_fwd_fp16
)
endif
()
test/normalization/test_groupnorm_fp16.cpp
→
test/normalization
_fwd
/test_groupnorm_
fwd_
fp16.cpp
View file @
c997bbf6
...
@@ -2,7 +2,7 @@
...
@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "gtest/gtest.h"
#include "profiler/profile_groupnorm_impl.hpp"
#include "profiler/profile_groupnorm_
fwd_
impl.hpp"
using
F16
=
ck
::
half_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F32
=
float
;
...
...
test/normalization/test_groupnorm_fp32.cpp
→
test/normalization
_fwd
/test_groupnorm_
fwd_
fp32.cpp
View file @
c997bbf6
...
@@ -2,7 +2,7 @@
...
@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "gtest/gtest.h"
#include "profiler/profile_groupnorm_impl.hpp"
#include "profiler/profile_groupnorm_
fwd_
impl.hpp"
using
F16
=
ck
::
half_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F32
=
float
;
...
...
test/normalization/test_layernorm2d_fp16.cpp
→
test/normalization
_fwd
/test_layernorm2d_
fwd_
fp16.cpp
View file @
c997bbf6
...
@@ -2,7 +2,7 @@
...
@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "gtest/gtest.h"
#include "profiler/profile_layernorm_impl.hpp"
#include "profiler/profile_layernorm_
fwd_
impl.hpp"
using
F16
=
ck
::
half_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F32
=
float
;
...
...
test/normalization/test_layernorm2d_fp32.cpp
→
test/normalization
_fwd
/test_layernorm2d_
fwd_
fp32.cpp
View file @
c997bbf6
...
@@ -2,7 +2,7 @@
...
@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "gtest/gtest.h"
#include "profiler/profile_layernorm_impl.hpp"
#include "profiler/profile_layernorm_
fwd_
impl.hpp"
using
F16
=
ck
::
half_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F32
=
float
;
...
...
test/normalization_fwd/test_layernorm4d_fwd_fp16.cpp
0 → 100644
View file @
c997bbf6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_layernorm_fwd_impl.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ck
::
index_t
;
template
<
typename
Tuple
>
class
TestLayernorm4d
:
public
::
testing
::
Test
{
protected:
using
XDataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
GammaDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
BetaDataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
ComputeDataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
YDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
SaveMeanInvStdDataType
=
std
::
tuple_element_t
<
5
,
Tuple
>
;
void
Run
()
{
// [N, D], reduce D
std
::
vector
<
std
::
vector
<
ck
::
index_t
>>
lengths
=
{
{
1
,
1
,
1
,
1
},
{
7
,
7
,
7
,
7
},
{
256
,
16
,
16
,
8
}};
for
(
auto
length
:
lengths
)
{
bool
success
=
ck
::
profiler
::
profile_layernorm_impl
<
XDataType
,
GammaDataType
,
BetaDataType
,
ComputeDataType
,
YDataType
,
SaveMeanInvStdDataType
,
true
,
4
>
(
true
,
2
,
false
,
false
,
length
);
EXPECT_TRUE
(
success
);
}
}
};
using
KernelTypes
=
::
testing
::
Types
<
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType>
std
::
tuple
<
F16
,
F16
,
F16
,
F32
,
F16
,
F32
>>
;
TYPED_TEST_SUITE
(
TestLayernorm4d
,
KernelTypes
);
TYPED_TEST
(
TestLayernorm4d
,
Test_FP16
)
{
this
->
Run
();
}
test/transpose/CMakeLists.txt
0 → 100644
View file @
c997bbf6
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_gtest_executable
(
test_transpose test_transpose.cpp
)
target_link_libraries
(
test_transpose PRIVATE utility device_transpose_instance
)
set
(
target 1
)
endif
()
endforeach
()
test/transpose/test_transpose.cpp
0 → 100644
View file @
c997bbf6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include "gtest/gtest.h"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "test_transpose_util.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
template
<
typename
Tuple
>
class
TestTranspose
:
public
::
testing
::
Test
{
};
// clang-format off
using
KernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
F16
,
F16
>
,
std
::
tuple
<
F32
,
F32
>
>
;
// clang-format on
TYPED_TEST_SUITE
(
TestTranspose
,
KernelTypes
);
//#include "test_transpose_ut_cases.inc"
Prev
1
…
17
18
19
20
21
22
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment