Commit c997bbf6 authored by illsilin's avatar illsilin
Browse files

sync from public repo

parents 91c1d147 ae5e5181
......@@ -35,12 +35,6 @@ using device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_tile_instanc
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// Currently AK1 must equal BK1 !
// DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 2, 32, 32, 2, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 16,16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
// DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 2, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
// DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 2, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 32, 1, 4>, 8>,
// DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 2, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 192, 64, 32, 8, 8, 32, 32, 3, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1>,
......@@ -62,6 +56,27 @@ using device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_tile_instanc
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 192, 64, 32, 8, 8, 32, 32, 3, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 192, 32, 8, 8, 32, 32, 1, 3, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 48, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 192, 32, 8, 8, 32, 32, 1, 3, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 24, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 192, 32, 32, 8, 8, 32, 32, 3, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 64, 32, 8, 8, 32, 32, 1, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 32, 32, 8, 8, 32, 32, 1, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 64, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 192, 64, 32, 8, 8, 32, 32, 3, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v2>,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F8 = ck::f8_t;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using Empty_Tuple = ck::Tuple<>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_grouped_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_irregular_tile_instances = std::tuple<
// clang-format off
//################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 192, 64, 32, 8, 8, 32, 32, 3, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 192, 32, 8, 8, 32, 32, 1, 3, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 48, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 192, 32, 8, 8, 32, 32, 1, 3, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 24, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 192, 32, 32, 8, 8, 32, 32, 3, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 64, 32, 8, 8, 32, 32, 1, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 32, 32, 8, 8, 32, 32, 1, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 64, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 192, 64, 32, 8, 8, 32, 32, 3, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 192, 32, 8, 8, 32, 32, 1, 3, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 48, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 192, 32, 8, 8, 32, 32, 1, 3, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 24, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 192, 32, 32, 8, 8, 32, 32, 3, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 64, 32, 8, 8, 32, 32, 1, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 32, 32, 8, 8, 32, 32, 1, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 64, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 192, 64, 32, 8, 8, 32, 32, 3, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 192, 32, 8, 8, 32, 32, 1, 3, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 48, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 192, 32, 8, 8, 32, 32, 1, 3, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 24, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 192, 32, 32, 8, 8, 32, 32, 3, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 64, 32, 8, 8, 32, 32, 1, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 32, 32, 8, 8, 32, 32, 1, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 64, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F8, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v2>
// clang-format on
>;
void add_device_grouped_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_irregular_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Row,
Empty_Tuple,
Row,
F16,
F8,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances, device_grouped_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_irregular_tile_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F8 = ck::f8_t;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using Empty_Tuple = ck::Tuple<>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_grouped_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_irregular_tile_instances = std::tuple<
// clang-format off
//################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 192, 64, 32, 8, 8, 32, 32, 3, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 192, 32, 8, 8, 32, 32, 1, 3, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 48, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 192, 32, 8, 8, 32, 32, 1, 3, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 24, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 192, 32, 32, 8, 8, 32, 32, 3, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 64, 32, 8, 8, 32, 32, 1, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 32, 32, 8, 8, 32, 32, 1, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 64, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v1>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 192, 64, 32, 8, 8, 32, 32, 3, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 192, 32, 8, 8, 32, 32, 1, 3, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 48, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 192, 32, 8, 8, 32, 32, 1, 3, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 24, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 192, 32, 32, 8, 8, 32, 32, 3, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 64, 32, 8, 8, 32, 32, 1, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 32, 32, 8, 8, 32, 32, 1, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 64, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v1, LoopScheduler::Interwave>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 192, 64, 32, 8, 8, 32, 32, 3, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 192, 32, 8, 8, 32, 32, 1, 3, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 48, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 192, 32, 8, 8, 32, 32, 1, 3, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 24, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 192, 32, 32, 8, 8, 32, 32, 3, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 64, 32, 8, 8, 32, 32, 1, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 32, 32, 8, 8, 32, 32, 1, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 64, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F8, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v2>
// clang-format on
>;
void add_device_grouped_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_irregular_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Row,
Empty_Tuple,
Row,
F8,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances, device_grouped_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_irregular_tile_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
set(DEVICE_NORMALIZATION_INSTANCES)
list(APPEND DEVICE_NORMALIZATION_INSTANCES
device_layernorm2d_f16_instance.cpp
device_layernorm4d_f16_instance.cpp
device_groupnorm_f16_instance.cpp
device_groupnorm_swish_f16_instance.cpp
device_groupnorm_swish_f16_f32_f32_f16_instance.cpp
device_layernorm2d_f32_instance.cpp
device_layernorm4d_f32_instance.cpp
device_groupnorm_f32_instance.cpp
device_groupnorm_swish_f32_instance.cpp)
add_instance_library(device_normalization_instance ${DEVICE_NORMALIZATION_INSTANCES})
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_splitk_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f16_instances =
// clang-format off
std::tuple <
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>, // irregular size
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 8, 1, 8, 1, 8, 8, 2>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_splitk_f16_instances =
// clang-format off
std::tuple <
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 8, 1, 8, 1, 8, 8, 2>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f16_generic_instance = std::tuple<
// clang-format off
DeviceNormalizationImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f32_instances = std::tuple<
// clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 2, 8, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_splitk_f32_instances = std::tuple<
// clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 2, 8, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f32_generic_instance = std::tuple<
// clang-format off
DeviceNormalizationImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f16_f32_f32_f16_instances = std::tuple<
// clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 2, 8, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_splitk_f16_f32_f32_f16_instances = std::tuple<
// clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 2, 8, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f16_f32_f32_f16_generic_instance = std::tuple<
// clang-format off
DeviceNormalizationImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
set(DEVICE_NORMALIZATION_FWD_INSTANCES)
list(APPEND DEVICE_NORMALIZATION_FWD_INSTANCES
device_layernorm2d_fwd_f16_instance.cpp
device_layernorm4d_fwd_f16_instance.cpp
device_groupnorm_fwd_f16_instance.cpp
device_groupnorm_fwd_swish_f16_instance.cpp
device_groupnorm_fwd_swish_f16_f32_f32_f16_instance.cpp
device_layernorm2d_fwd_f32_instance.cpp
device_layernorm4d_fwd_f32_instance.cpp
device_groupnorm_fwd_f32_instance.cpp
device_groupnorm_fwd_swish_f32_instance.cpp)
add_instance_library(device_normalization_fwd_instance ${DEVICE_NORMALIZATION_FWD_INSTANCES})
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
#include "normalization_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
......@@ -10,8 +10,8 @@ namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_5_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, Pass, 5, 3>>>&
void add_device_normalization_fwd_rank_5_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalizationFwd<F16, F16, F16, F16, F32, Pass, 5, 3>>>&
instances)
{
add_device_operation_instances(instances,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
#include "normalization_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
......@@ -10,8 +10,8 @@ namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_5_3_f32_instances(
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Pass, 5, 3>>>&
void add_device_normalization_fwd_rank_5_3_f32_instances(
std::vector<std::unique_ptr<DeviceNormalizationFwd<F32, F32, F32, F32, F32, Pass, 5, 3>>>&
instances)
{
add_device_operation_instances(instances,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
#include "normalization_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
......@@ -10,8 +10,8 @@ namespace instance {
using Swish = ck::tensor_operation::element_wise::Swish;
void add_device_normalization_rank_5_3_swish_f16_f32_f32_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F32, F32, F16, F32, Swish, 5, 3>>>&
void add_device_normalization_fwd_rank_5_3_swish_f16_f32_f32_f16_instances(
std::vector<std::unique_ptr<DeviceNormalizationFwd<F16, F32, F32, F16, F32, Swish, 5, 3>>>&
instances)
{
add_device_operation_instances(
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
#include "normalization_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
......@@ -10,8 +10,8 @@ namespace instance {
using Swish = ck::tensor_operation::element_wise::Swish;
void add_device_normalization_rank_5_3_swish_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, Swish, 5, 3>>>&
void add_device_normalization_fwd_rank_5_3_swish_f16_instances(
std::vector<std::unique_ptr<DeviceNormalizationFwd<F16, F16, F16, F16, F32, Swish, 5, 3>>>&
instances)
{
add_device_operation_instances(instances,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
#include "normalization_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
......@@ -10,8 +10,8 @@ namespace instance {
using Swish = ck::tensor_operation::element_wise::Swish;
void add_device_normalization_rank_5_3_swish_f32_instances(
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Swish, 5, 3>>>&
void add_device_normalization_fwd_rank_5_3_swish_f32_instances(
std::vector<std::unique_ptr<DeviceNormalizationFwd<F32, F32, F32, F32, F32, Swish, 5, 3>>>&
instances)
{
add_device_operation_instances(instances,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
#include "normalization_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
......@@ -10,8 +10,8 @@ namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_2_1_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, Pass, 2, 1>>>&
void add_device_normalization_fwd_rank_2_1_f16_instances(
std::vector<std::unique_ptr<DeviceNormalizationFwd<F16, F16, F16, F16, F32, Pass, 2, 1>>>&
instances)
{
add_device_operation_instances(instances,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
#include "normalization_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
......@@ -10,8 +10,8 @@ namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_2_1_f32_instances(
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Pass, 2, 1>>>&
void add_device_normalization_fwd_rank_2_1_f32_instances(
std::vector<std::unique_ptr<DeviceNormalizationFwd<F32, F32, F32, F32, F32, Pass, 2, 1>>>&
instances)
{
add_device_operation_instances(instances,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
#include "normalization_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
......@@ -10,8 +10,8 @@ namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_4_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, Pass, 4, 3>>>&
void add_device_normalization_fwd_rank_4_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalizationFwd<F16, F16, F16, F16, F32, Pass, 4, 3>>>&
instances)
{
add_device_operation_instances(instances,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
#include "normalization_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
......@@ -10,8 +10,8 @@ namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_4_3_f32_instances(
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Pass, 4, 3>>>&
void add_device_normalization_fwd_rank_4_3_f32_instances(
std::vector<std::unique_ptr<DeviceNormalizationFwd<F32, F32, F32, F32, F32, Pass, 4, 3>>>&
instances)
{
add_device_operation_instances(instances,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_fwd_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_fwd_splitk_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f16_instances =
// clang-format off
std::tuple <
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 8, 1, 8, 1, 8, 8, 2>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_splitk_f16_instances =
// clang-format off
std::tuple <
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 8, 1, 8, 1, 8, 8, 2>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 16, 1, 8, 1, 8, 1, 8, 8, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f16_generic_instance = std::tuple<
// clang-format off
DeviceNormalizationFwdImpl<F16, F16, F16, F32, F16, F32, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f32_instances = std::tuple<
// clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 2, 8, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_splitk_f32_instances = std::tuple<
// clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 2, 8, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f32_generic_instance = std::tuple<
// clang-format off
DeviceNormalizationFwdImpl<F32, F32, F32, F32, F32, F32, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f16_f32_f32_f16_instances = std::tuple<
// clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 2, 8, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_splitk_f16_f32_f32_f16_instances = std::tuple<
// clang-format off
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, SaveMeanInvStdDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize, SaveMeanInvStdScalarPerVector>
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1>, // irregular size
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 128, 1, 128, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 2, 16, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 512, 1, 512, 2, 8, 1, 4, 1, 4, 1, 4, 4, 2>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 4, 1, 4, 1, 4, 1, 4, 4, 1>,
DeviceNormalizationFwdSplitKImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 1024, 1, 1024, 1, 8, 1, 4, 1, 4, 1, 4, 4, 1>
// clang-format on
>;
template <typename OutElementwise, index_t Rank, index_t Reduce>
using device_normalization_f16_f32_f32_f16_generic_instance = std::tuple<
// clang-format off
DeviceNormalizationFwdImpl<F16, F32, F32, F32, F16, F32, OutElementwise, Rank, Reduce, 64, 1, 64, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -8,18 +8,18 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_dl_bias_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul2_Clamp>>>& instances)
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul2_Clamp>>>& instances)
{
// dl
add_device_operation_instances(instances,
......@@ -52,18 +52,18 @@ void add_device_conv2d_dl_bias_perchannel_quantization_int8_instances(
}
void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Relu_Mul2_Clamp>>>& instances)
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Relu_Mul2_Clamp>>>& instances)
{
// dl
add_device_operation_instances(instances,
......@@ -96,18 +96,19 @@ void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
}
void add_device_conv2d_dl_bias_tanh_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul2_TanH_Mul_Clamp>>>& instances)
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul2_TanH_Mul_Clamp>>>&
instances)
{
// dl
add_device_operation_instances(instances,
......
......@@ -8,18 +8,18 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_dl_bias_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul_Clamp>>>& instances)
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
......@@ -51,18 +51,18 @@ void add_device_conv2d_dl_bias_perlayer_quantization_int8_instances(
}
void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Relu_Mul_Clamp>>>& instances)
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Relu_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
......@@ -96,18 +96,19 @@ void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
}
void add_device_conv2d_dl_bias_tanh_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul_TanH_Mul_Clamp>>>& instances)
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul_TanH_Mul_Clamp>>>&
instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
......
......@@ -8,18 +8,18 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_dl_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Mul2_Clamp>>>& instances)
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Mul2_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
......@@ -51,18 +51,18 @@ void add_device_conv2d_dl_perchannel_quantization_int8_instances(
}
void add_device_conv2d_dl_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Relu_Mul2_Clamp>>>& instances)
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
GK_Tuple,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Relu_Mul2_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
......
......@@ -8,18 +8,18 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_dl_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Mul_Clamp>>>& instances)
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
......@@ -51,18 +51,18 @@ void add_device_conv2d_dl_perlayer_quantization_int8_instances(
}
void add_device_conv2d_dl_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Relu_Mul_Clamp>>>& instances)
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<NDimSpatial,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Relu_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<NHWGC,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment