Commit c8c016dd authored by aska-0096's avatar aska-0096
Browse files

Merge branch 'develop' of https://github.com/ROCm/composable_kernel into update_cka8w8

parents e8ca3daf 4e731776
......@@ -44,7 +44,7 @@ struct ProblemSizeStreamK final
ck::index_t StrideB = -1;
ck::index_t StrideC = -1;
ck::index_t NumSKBlocks = -1;
ck::index_t NumSKBlocks = -1; // number of stream-k blocks
};
struct ProblemSizeStreamK_universal final
{
......@@ -76,7 +76,7 @@ struct ProblemSizeSplitK final
struct ExecutionConfig final
{
// 0 - no verification, 1 - CPU, 2 - GPU, 3 - CPU + GPU
int do_verification = 3;
int do_verification = 1;
int init_method = 2;
bool time_kernel = false;
};
......
......@@ -8,7 +8,7 @@
using ADataType = ck::half_t;
using BDataType = ck::half_t;
using AccDataType = float;
using CShuffleDataType = ck::half_t;
using CShuffleDataType = float;
using CDataType = ck::half_t;
using ALayout = Row;
......@@ -43,6 +43,17 @@ using DeviceGemmV2_Streamk_Instance =
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
using ReferenceGemmInstanceGPU = ck::tensor_operation::device::ReferenceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
#include "run_gemm_example_streamk_v2.inc"
int main(int argc, char* argv[]) { return !run_gemm_universal_streamk_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp"
using ADataType = ck::f8_t;
using BDataType = ck::f8_t;
using AccDataType = float;
using CShuffleDataType = ck::half_t;
using CDataType = ck::half_t;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmV2_Streamk_Instance =
ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle_Streamk_V3<
ALayout, BLayout, CLayout,
ADataType, BDataType, CDataType, AccDataType, CShuffleDataType,
PassThrough, PassThrough, PassThrough, GemmDefault,
256,
128, 256,
128, 16, 16,
16, 16,
4, 8,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 16, 16, 1,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 16, 16, 1,
1, 2, S<1, 32, 1, 8>, 8,
ck::BlockGemmPipelineScheduler::Intrawave,ck::BlockGemmPipelineVersion::v3, ck::f8_t>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
using ReferenceGemmInstanceGPU = ck::tensor_operation::device::ReferenceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
#include "run_gemm_example_streamk_v2.inc"
int main(int argc, char* argv[]) { return !run_gemm_universal_streamk_example(argc, argv); }
......@@ -143,8 +143,8 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
switch(config.init_method)
{
case 0:
ck::utils::FillConstant<ADataType>{static_cast<ADataType>(1.f)}(a_m_k);
ck::utils::FillConstant<BDataType>{static_cast<BDataType>(1.f)}(b_k_n);
ck::utils::FillConstant<ADataType>{ck::type_convert<ADataType>(1.f)}(a_m_k);
ck::utils::FillConstant<BDataType>{ck::type_convert<BDataType>(1.f)}(b_k_n);
break;
case 1:
ck::utils::FillUniformDistributionIntegerValue<ADataType>{-5.f, 5.f}(a_m_k);
......
......@@ -176,6 +176,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_ref_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
......@@ -196,6 +197,8 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
DeviceMem c_m_n_device_ref_buf(sizeof(CDataType) *
c_m_n_device_ref_result.mDesc.GetElementSpaceSize());
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
......@@ -240,6 +243,13 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
return true;
}
std::size_t workspace_size = gemm.GetWorkSpaceSize(&argument);
if(workspace_size != 0)
{
workspace.Realloc(workspace_size);
gemm.SetWorkSpacePointer(&argument, workspace.GetDeviceBuffer());
}
bool pass = true;
if((config.do_verification == 1) || (config.do_verification == 3))
{
......@@ -271,6 +281,36 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
#endif
}
if((config.do_verification == 2) || (config.do_verification == 3))
{
// GPU verification
auto ref_gemm_gpu = ReferenceGemmInstanceGPU{};
auto ref_invoker_gpu = ref_gemm_gpu.MakeInvoker();
auto ref_argument_gpu = ref_gemm_gpu.MakeArgument(
static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_device_ref_buf.GetDeviceBuffer()),
M,
N,
K,
a_element_op,
b_element_op,
c_element_op);
std::cout << "Running verification on GPU." << std::endl;
ref_invoker_gpu.Run(ref_argument_gpu, StreamConfig{});
c_m_n_device_ref_buf.FromDevice(c_m_n_device_ref_result.mData.data());
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass &= ck::utils::check_err(c_m_n_device_result,
c_m_n_device_ref_result,
"Error: Incorrect results!",
get_rtol<CDataType>(),
get_atol<CDataType>());
}
if(config.time_kernel)
{
ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
......
......@@ -261,7 +261,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
if(config.time_kernel)
{
ave_time =
invoker.Run(argument, StreamConfig{nullptr, config.time_kernel, 0, 5, 10, true, 4});
invoker.Run(argument, StreamConfig{nullptr, config.time_kernel, 0, 50, 100, true, 4});
std::size_t flop = 2_uz * M * N * K;
std::size_t num_btype =
......
......@@ -186,15 +186,15 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
for(int j = 0; j < NumDMatrices; ++j)
{
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_3<DDataType>{0.0, 1.0});
}
break;
default:
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<ADataType, 0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<BDataType, 1>{});
for(int j = 0; j < NumDMatrices; ++j)
{
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_Sequential<DDataType, 0>{});
}
}
}
......@@ -246,7 +246,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
// do GEMM
auto argument = gemm.MakeArgument(
p_As, p_Bs, p_Ds, p_Cs, gemm_descs, a_element_op, b_element_op, cde_element_op);
gemm.SetKBatchSize(argument, config.k_batch);
gemm.SetKBatchSize(&argument, config.k_batch);
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
......@@ -257,7 +257,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
gemm.SetWorkSpacePointer(&argument, gemm_workspace_dev.GetDeviceBuffer());
DeviceMem gemm_arg_dev_mem(gemm.GetDeviceKernelArgSize(&argument));
gemm.SetDeviceKernelArgs(argument, gemm_arg_dev_mem.GetDeviceBuffer());
gemm.SetDeviceKernelArgs(&argument, gemm_arg_dev_mem.GetDeviceBuffer());
invoker.Run(argument, StreamConfig{nullptr, false, 1});
......
......@@ -91,7 +91,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
{
auto group_count = problem_size.group_count;
using KernelArguments = ck::tensor_operation::device::GroupedGemmTileLoopKernelArguments<NumDs>;
using KernelArguments = ck::tensor_operation::device::GroupedGemmKernelArgument<NumDs>;
using GemmDesc = ck::tensor_operation::device::GemmDesc;
// GEMM shape
......@@ -190,15 +190,15 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
for(int j = 0; j < NumDs; ++j)
{
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_3<DDataType>{0.0, 1.0});
}
break;
default:
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<ADataType, 0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<BDataType, 1>{});
for(int j = 0; j < NumDs; ++j)
{
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_Sequential<DDataType, 0>{});
}
}
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
......@@ -167,11 +167,11 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<ADataType, 0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<BDataType, 1>{});
}
d0_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
d0_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<D0DataType, 1>{});
}
using GroupedGemmKernelArgument = ck::tensor_operation::device::GroupedGemmKernelArgument<1>;
......@@ -254,7 +254,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
gemm.GetDeviceKernelArgSize(&argument),
hipMemcpyHostToDevice));
gemm.SetDeviceKernelArgs(argument, gemm_kernel_args_dev.GetDeviceBuffer());
gemm.SetDeviceKernelArgs(&argument, gemm_kernel_args_dev.GetDeviceBuffer());
gemm.SetKBatch(argument, config.k_batch);
invoker.Run(argument, StreamConfig{nullptr, false});
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
......@@ -157,8 +157,8 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<ADataType, 0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<BDataType, 1>{});
}
}
......@@ -239,7 +239,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
"not support this GEMM problem");
}
gemm.SetDeviceKernelArgs(argument, gemm_arg_dev_mem.GetDeviceBuffer());
gemm.SetDeviceKernelArgs(&argument, gemm_arg_dev_mem.GetDeviceBuffer());
gemm.SetKBatch(argument, config.k_batch);
invoker.Run(argument, StreamConfig{nullptr, false});
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
......@@ -158,8 +158,8 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<ADataType, 0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<BDataType, 1>{});
}
}
......@@ -240,7 +240,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
"not support this GEMM problem");
}
gemm.SetDeviceKernelArgs(argument, gemm_arg_dev_mem.GetDeviceBuffer());
gemm.SetDeviceKernelArgs(&argument, gemm_arg_dev_mem.GetDeviceBuffer());
gemm.SetKBatch(argument, config.k_batch);
invoker.Run(argument, StreamConfig{nullptr, false});
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
struct ProblemSize final
......@@ -124,8 +127,8 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<ADataType, 0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<BDataType, 1>{});
}
}
......@@ -168,9 +171,23 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
auto argument = gemm.MakeArgument(
p_a, p_b, p_Ds, p_c, gemm_descs, a_element_op, b_element_op, c_element_op);
DeviceMem gemm_desc_workspace(gemm.GetWorkSpaceSize(&argument));
std::size_t workspace_size = gemm.GetWorkSpaceSize(&argument);
std::size_t kargs_size = gemm.GetDeviceKernelArgSize(&argument);
DeviceMem gemm_workspace, gemm_kargs;
gemm.SetWorkSpacePointer(&argument, gemm_desc_workspace.GetDeviceBuffer());
// The following is necessary since TwoStage kernel is using additional memory both
// for Workspace and kernel arguments.
if(kargs_size > 0)
{
gemm_kargs.Realloc(kargs_size);
gemm.SetDeviceKernelArgs(&argument, gemm_kargs.GetDeviceBuffer());
}
if(workspace_size > 0 && workspace_size != kargs_size)
{
gemm_workspace.Realloc(workspace_size);
gemm.SetWorkSpacePointer(&argument, gemm_workspace.GetDeviceBuffer());
}
if(!gemm.IsSupportedArgument(argument))
{
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
......@@ -175,8 +175,8 @@ int main(int argc, char* argv[])
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
a_m_k.GenerateTensorValue(GeneratorTensor_Sequential<ADataType, 0>{});
b_k_n.GenerateTensorValue(GeneratorTensor_Sequential<BDataType, 1>{});
}
c0_n_bias.GenerateTensorValue(GeneratorTensor_2<C0DataType>{-5, 5});
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -150,7 +150,7 @@ bool run_batched_gemm_gemm_example(int argc, char* argv[])
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<B0DataType, 1>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
......@@ -157,7 +157,7 @@ int run(int argc, char* argv[])
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<B0DataType, 1>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
......@@ -118,7 +118,7 @@ int run(int argc, char* argv[])
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<2>{});
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<ADataType, 2>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
......@@ -153,7 +153,7 @@ int run(int argc, char* argv[])
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<2>{});
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<ADataType, 2>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
......@@ -178,7 +178,7 @@ int run(int argc, char* argv[])
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<2>{});
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<ADataType, 2>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
......@@ -152,7 +152,7 @@ int run(int argc, char* argv[])
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Sequential<B0DataType, 1>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
......@@ -156,7 +156,7 @@ int run(int argc, char* argv[])
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<2>{});
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<ADataType, 2>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment