Commit c8c016dd authored by aska-0096's avatar aska-0096
Browse files

Merge branch 'develop' of https://github.com/ROCm/composable_kernel into update_cka8w8

parents e8ca3daf 4e731776
......@@ -326,7 +326,7 @@ struct Tensor
std::size_t GetElementSpaceSizeInBytes() const { return sizeof(T) * GetElementSpaceSize(); }
void SetZero() { ck::ranges::fill<T>(mData, 0); }
void SetZero() { ck::ranges::fill<T>(mData, T{0}); }
template <typename F>
void ForEach_impl(F&& f, std::vector<size_t>& idx, size_t rank)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -37,7 +37,7 @@ struct GeneratorTensor_1<ck::half_t>
float value = 1.0;
template <typename... Is>
ck::bhalf_t operator()(Is...)
ck::half_t operator()(Is...)
{
return ck::type_convert<ck::half_t>(value);
}
......@@ -62,7 +62,7 @@ struct GeneratorTensor_1<ck::f8_t>
float value = 1.0;
template <typename... Is>
ck::bhalf_t operator()(Is...)
ck::f8_t operator()(Is...)
{
return ck::type_convert<ck::f8_t>(value);
}
......@@ -256,14 +256,33 @@ struct GeneratorTensor_Checkboard
}
};
template <ck::index_t Dim>
/**
* @brief Is used to generate sequential values based on the specified dimension.
*
* @tparam T The type of the tensor values.
* @tparam Dim The specific dimension used for generation.
*
* GeneratorTensor_Sequential<1>{} will generate the following values for a 3x3 tensor:
*
* 0 1 2
* 0 1 2
* 0 1 2
*
* Essentially, the values generated are logical coordinates of the generated element that
* correspond to dimension Dim. E.g. for 2-dimensional tensor and Dim=1, the values are the column
* indices.
*
*/
template <typename T, ck::index_t Dim>
struct GeneratorTensor_Sequential
{
template <typename... Ts>
float operator()(Ts... Xs) const
T operator()(Ts... Xs) const
{
std::array<ck::index_t, sizeof...(Ts)> dims = {{static_cast<ck::index_t>(Xs)...}};
return dims[Dim];
float tmp = dims[Dim];
return ck::type_convert<T>(tmp);
}
};
......
......@@ -278,9 +278,9 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Intrawave,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(
b_block_desc_n0_n1_n2_k,
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
......@@ -288,7 +288,6 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Intrawave,
b_thread_buf);
});
});
});
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
......@@ -350,6 +349,7 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Intrawave,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
......@@ -359,7 +359,6 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Intrawave,
b_thread_buf);
});
});
});
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
......@@ -405,6 +404,7 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Intrawave,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
......@@ -414,7 +414,6 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Intrawave,
b_thread_buf);
});
});
});
a_thread_buf_tail = a_thread_buf;
b_thread_buf_tail = b_thread_buf;
......@@ -431,6 +430,7 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Intrawave,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
......@@ -440,7 +440,6 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Intrawave,
b_thread_buf);
});
});
});
a_thread_buf_tail = a_thread_buf;
b_thread_buf_tail = b_thread_buf;
......@@ -1370,16 +1369,15 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Interwave,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(
b_block_desc_n0_n1_n2_k,
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * KPerInnerLoop>{}),
b_block_buf,
b_thread_desc_,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
});
__builtin_amdgcn_sched_barrier(0);
// NOTE: Synchronize threads in a workgroup at the start of each MAC
// cluster, but except the first, as we can shorten non-MAC cluster a bit
......@@ -1476,6 +1474,7 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Interwave,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * KPerInnerLoop>{}),
......@@ -1484,7 +1483,6 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Interwave,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
});
__builtin_amdgcn_sched_barrier(0);
if constexpr(k0.value != 0 || KRepeat == 1)
......@@ -1552,6 +1550,7 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Interwave,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * KPerInnerLoop>{}),
......@@ -1560,7 +1559,6 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Interwave,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
});
__builtin_amdgcn_sched_barrier(0);
if constexpr(k0.value != 0 || KRepeat == 1)
......@@ -1628,6 +1626,7 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Interwave,
a_thread_desc_,
make_tuple(m0, I0, k0, I0),
a_thread_buf);
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k0 * KPerInnerLoop>{}),
......@@ -1636,7 +1635,6 @@ struct BlockwiseGemmXdlops_pipeline_v2<BlockGemmPipelineScheduler::Interwave,
make_tuple(n0, I0, k0, I0),
b_thread_buf);
});
});
__builtin_amdgcn_sched_barrier(0);
if constexpr(k0.value != 0 || KRepeat == 1)
......
......@@ -603,6 +603,7 @@ struct BlockwiseGemmXdlops_pipeline_v4<BlockGemmPipelineScheduler::Intrawave,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(I0));
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
......@@ -612,7 +613,6 @@ struct BlockwiseGemmXdlops_pipeline_v4<BlockGemmPipelineScheduler::Intrawave,
b_thread_bufs(I0));
});
});
});
// Global prefetch 2
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
......@@ -656,9 +656,9 @@ struct BlockwiseGemmXdlops_pipeline_v4<BlockGemmPipelineScheduler::Intrawave,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(lds_read_reg_buf));
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(
b_block_desc_n0_n1_n2_k,
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf.At(lds_read_buf),
b_thread_desc_,
......@@ -666,7 +666,6 @@ struct BlockwiseGemmXdlops_pipeline_v4<BlockGemmPipelineScheduler::Intrawave,
b_thread_bufs(lds_read_reg_buf));
});
});
});
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(lds_write_buf));
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf.At(lds_write_buf));
......@@ -733,6 +732,7 @@ struct BlockwiseGemmXdlops_pipeline_v4<BlockGemmPipelineScheduler::Intrawave,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(lds_read_reg_buf));
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
......@@ -742,7 +742,6 @@ struct BlockwiseGemmXdlops_pipeline_v4<BlockGemmPipelineScheduler::Intrawave,
b_thread_bufs(lds_read_reg_buf));
});
});
});
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf.At(lds_write_buf));
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf.At(lds_write_buf));
......@@ -789,6 +788,7 @@ struct BlockwiseGemmXdlops_pipeline_v4<BlockGemmPipelineScheduler::Intrawave,
a_thread_desc_,
make_tuple(m0, I0, k, I0),
a_thread_bufs(lds_read_reg_buf));
});
static_for<0, NRepeat, 1>{}([&](auto n0) {
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
......@@ -798,7 +798,6 @@ struct BlockwiseGemmXdlops_pipeline_v4<BlockGemmPipelineScheduler::Intrawave,
b_thread_bufs(lds_read_reg_buf));
});
});
});
static_for<0, KRepeat, 1>{}([&](auto k0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include <iostream>
#include <sstream>
#include <stdexcept>
#include <vector>
#include "device_base.hpp"
#include "ck/utility/ignore.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
///
/// @brief Structure representing single GEMM problem arguments.
///
/// The pointer to the vector of those structures is passed to the GroupedGEMM entry
/// point kernel.
///
/// @tparam NumDTensor The number of D input tensors.
///
template <index_t NumDTensor = 0>
struct GroupedGemmKernelArgument
{
__host__ __device__ GroupedGemmKernelArgument(const void* p_a_grid_,
const void* p_b_grid_,
std::array<const void*, NumDTensor> p_ds_grid_,
void* p_e_grid_,
index_t M_,
index_t N_,
index_t K_,
index_t StrideA_,
index_t StrideB_,
std::array<index_t, NumDTensor> StrideDs_,
index_t StrideE_)
: p_a_grid{p_a_grid_},
p_b_grid{p_b_grid_},
p_ds_grid{p_ds_grid_},
p_e_grid{p_e_grid_},
M{M_},
N{N_},
K{K_},
StrideA{StrideA_},
StrideB{StrideB_},
StrideDs{StrideDs_},
StrideE{StrideE_}
{
}
const void* p_a_grid;
const void* p_b_grid;
std::array<const void*, NumDTensor> p_ds_grid;
void* p_e_grid;
index_t M;
index_t N;
index_t K;
index_t StrideA;
index_t StrideB;
std::array<index_t, NumDTensor> StrideDs;
index_t StrideE;
void Print() const
{
std::stringstream str;
for(auto sd : StrideDs)
str << sd << ",";
std::cout << "arg {"
<< "M:" << M << ", "
<< "N:" << N << ", "
<< "K:" << K << ", "
<< "SA:" << StrideA << ", "
<< "SB:" << StrideB << ", "
<< "SE:" << StrideE << ", "
<< "SDs: {" << str.str() << "}"
<< "}" << std::endl;
}
};
struct GemmDesc
{
ck::index_t M_, N_, K_;
......@@ -48,6 +118,66 @@ struct DeviceGroupedGemm : public BaseOperator
CElementwiseOperation c_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
//---------------------------------------------------------------------------------------------
/// @brief Sets the device kernel arguments pointer and may copy data to device.
///
/// TODO: Add which kernels are using this (TileLoop * FixedNK ??)
///
/// @param p_arg The pointer to the Argument we're going to update.
/// @param[in] p_dev_kernel_args The pointer to the device memory which will contain kernel
/// arguments.
/// @param[in] p_host_kernel_args The pointer to the host memory which contains kernel
/// arguments that should be copied to device memory.
///
virtual void SetDeviceKernelArgs(BaseArgument* p_arg,
void* p_dev_kernel_args,
const void* p_host_kernel_args) const
{
ignore = p_arg;
ignore = p_dev_kernel_args;
ignore = p_host_kernel_args;
std::ostringstream err;
err << "This function is not implemented by the kernel: " << this->GetTypeString()
<< __FILE__ << ":" << __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
//----------------------------------------------------------------------------------------------
/// @brief Sets the device kernel arguments pointer and may copy data to device.
///
/// @param p_arg The pointer to the Argument we're going to update.
/// @param[in] p_dev_kernel_args The pointer to the device memory which contains kernel
/// arguments.
///
virtual void SetDeviceKernelArgs(BaseArgument* p_arg, void* p_dev_kernel_args) const
{
ignore = p_arg;
ignore = p_dev_kernel_args;
std::ostringstream err;
err << "This function is not implemented by the kernel: " << this->GetTypeString()
<< __FILE__ << ":" << __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
//----------------------------------------------------------------------------------------------
/// @brief Gets the device kernel argument size.
///
/// @param[in] p_arg The pointer to the Device op Argument.
///
/// @return The device kernel argument size.
///
virtual size_t GetDeviceKernelArgSize(const BaseArgument* p_arg) const
{
ignore = p_arg;
std::ostringstream err;
err << "This function is not implemented by the kernel: " << this->GetTypeString()
<< __FILE__ << ":" << __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
};
} // namespace device
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <array>
#include "device_grouped_gemm.hpp"
#include "device_grouped_gemm_splitk.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <index_t NumDTensor = 0>
struct GroupedGemmKernelArgument
{
const void* p_a_grid;
const void* p_b_grid;
std::array<const void*, NumDTensor> p_ds_grid;
void* p_e_grid;
index_t M;
index_t N;
index_t K;
index_t StrideA;
index_t StrideB;
std::array<index_t, NumDTensor> StrideDs;
index_t StrideE;
};
template <typename ALayout,
typename BLayout,
typename DsLayout,
......@@ -41,7 +20,7 @@ template <typename ALayout,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
struct DeviceGroupedGemmFixedNK : DeviceGroupedGemm<ALayout,
struct DeviceGroupedGemmFixedNK : DeviceGroupedGemmSplitK<ALayout,
BLayout,
DsLayout,
ELayout,
......@@ -53,9 +32,6 @@ struct DeviceGroupedGemmFixedNK : DeviceGroupedGemm<ALayout,
BElementwiseOperation,
CElementwiseOperation>
{
virtual void SetDeviceKernelArgs(BaseArgument* p_arg, const void* kernel_args) const = 0;
virtual size_t GetDeviceKernelArgSize(const BaseArgument* p_arg) const = 0;
virtual void SetKBatch(BaseArgument* p_arg, index_t k_batch) const = 0;
};
} // namespace device
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include <iostream>
#include <vector>
#include <sstream>
#include "device_grouped_gemm.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
///
/// @brief Structure representing single GEMM problem arguments.
///
/// The pointer to the vector of those structures is passed to the GroupedGEMM entry
/// point kernel.
///
/// @tparam NumDTensor The number of D input tensors.
///
template <index_t NumDTensor = 0>
struct GroupedGemmMultipleDKernelArguments
{
__host__ __device__
GroupedGemmMultipleDKernelArguments(const void* p_a_grid_,
const void* p_b_grid_,
std::array<const void*, NumDTensor> p_ds_grid_,
void* p_e_grid_,
index_t M_,
index_t N_,
index_t K_,
index_t StrideA_,
index_t StrideB_,
std::array<index_t, NumDTensor> StrideDs_,
index_t StrideE_)
: p_a_grid{p_a_grid_},
p_b_grid{p_b_grid_},
p_ds_grid{p_ds_grid_},
p_e_grid{p_e_grid_},
M{M_},
N{N_},
K{K_},
StrideA{StrideA_},
StrideB{StrideB_},
StrideDs{StrideDs_},
StrideE{StrideE_}
{
}
const void* p_a_grid;
const void* p_b_grid;
std::array<const void*, NumDTensor> p_ds_grid;
void* p_e_grid;
index_t M;
index_t N;
index_t K;
index_t StrideA;
index_t StrideB;
std::array<index_t, NumDTensor> StrideDs;
index_t StrideE;
void Print() const
{
std::stringstream str;
for(auto sd : StrideDs)
str << sd << ",";
std::cout << "arg {"
<< "M:" << M << ", "
<< "N:" << N << ", "
<< "K:" << K << ", "
<< "SA:" << StrideA << ", "
<< "SB:" << StrideB << ", "
<< "SE:" << StrideE << ", "
<< "SDs: {" << str.str() << "}"
<< "}" << std::endl;
}
};
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation>
struct DeviceGroupedGemmMultipleDSplitK : public DeviceGroupedGemm<ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>
{
//----------------------------------------------------------------------------------------------
/// @brief Sets the k batch size.
///
/// @param p_arg Pointer to the Argument we're going to change.
/// @param[in] kbatch The kbatch value.
///
virtual void SetKBatchSize(BaseArgument* p_arg, index_t kbatch) const = 0;
//----------------------------------------------------------------------------------------------
/// @brief Sets the device kernel arguments pointer.
///
/// @param p_arg The pointer to the Argument we're going to update.
/// @param[in] p_dev_kernel_args The pointer to the device memory which contains kernel
/// arguments.
///
virtual void SetDeviceKernelArgs(BaseArgument* p_arg, void* p_dev_kernel_args) const = 0;
//----------------------------------------------------------------------------------------------
/// @brief Gets the device kernel argument size.
///
/// @param[in] p_arg The pointer to the Device op Argument.
///
/// @return The device kernel argument size.
///
virtual size_t GetDeviceKernelArgSize(const BaseArgument* p_arg) const = 0;
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "device_grouped_gemm.hpp"
......@@ -31,7 +31,23 @@ struct DeviceGroupedGemmSplitK : public DeviceGroupedGemm<ALayout,
BElementwiseOperation,
CElementwiseOperation>
{
//----------------------------------------------------------------------------------------------
/// @brief Sets the k batch size.
///
/// @param p_arg Pointer to the Argument we're going to change.
/// @param[in] kbatch The kbatch value.
///
virtual void SetKBatchSize(BaseArgument* p_arg, index_t kbatch) const = 0;
//----------------------------------------------------------------------------------------------
/// @brief Sets the k batch size.
///
/// @param p_arg Pointer to the Argument we're going to change.
/// @param[in] kbatch The kbatch value.
///
virtual void SetKBatch(BaseArgument* p_arg, index_t kbatch) const
{
this->SetKBatchSize(p_arg, kbatch);
};
};
} // namespace device
......
......@@ -3,83 +3,20 @@
#pragma once
#include <array>
#include <iostream>
#include <vector>
#include <sstream>
#include "device_grouped_gemm.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
/// @brief Grouped GEMM kernel using output Tile Looping algorithm
///
/// @brief Structure representing single GEMM problem arguments.
///
/// The pointer to the vector of those structures is passed to the GroupedGEMM entry
/// point kernel.
///
/// @tparam NumDTensor The number of D input tensors.
/// @par This kernel does not require any knowledge about input data sizes (GEMM M/N/K)
/// It requires only the number of groups to launch. Other information like
/// data pointers and GEMM sizes, packed into gemm kernel args may be all dynamic
/// (known only at kernel run-time).
///
template <index_t NumDTensor = 0>
struct GroupedGemmTileLoopKernelArguments
{
__host__ __device__
GroupedGemmTileLoopKernelArguments(const void* p_a_grid_,
const void* p_b_grid_,
std::array<const void*, NumDTensor> p_ds_grid_,
void* p_e_grid_,
index_t M_,
index_t N_,
index_t K_,
index_t StrideA_,
index_t StrideB_,
std::array<index_t, NumDTensor> StrideDs_,
index_t StrideE_)
: p_a_grid{p_a_grid_},
p_b_grid{p_b_grid_},
p_ds_grid{p_ds_grid_},
p_e_grid{p_e_grid_},
M{M_},
N{N_},
K{K_},
StrideA{StrideA_},
StrideB{StrideB_},
StrideDs{StrideDs_},
StrideE{StrideE_}
{
}
const void* p_a_grid;
const void* p_b_grid;
std::array<const void*, NumDTensor> p_ds_grid;
void* p_e_grid;
index_t M;
index_t N;
index_t K;
index_t StrideA;
index_t StrideB;
std::array<index_t, NumDTensor> StrideDs;
index_t StrideE;
void Print() const
{
std::stringstream str;
for(auto sd : StrideDs)
str << sd << ",";
std::cout << "arg {"
<< "M:" << M << ", "
<< "N:" << N << ", "
<< "K:" << K << ", "
<< "SA:" << StrideA << ", "
<< "SB:" << StrideB << ", "
<< "SE:" << StrideE << ", "
<< "SDs: {" << str.str() << "}"
<< "}" << std::endl;
}
};
/// @note This kernel does not support SplitK.
template <typename ALayout,
typename BLayout,
......@@ -104,23 +41,6 @@ struct DeviceGroupedGemmTileLoop : public DeviceGroupedGemm<ALayout,
BElementwiseOperation,
CDEElementwiseOperation>
{
//----------------------------------------------------------------------------------------------
/// @brief Sets the device kernel arguments pointer.
///
/// @param p_arg The pointer to the Argument we're going to update.
/// @param[in] p_dev_kernel_args The pointer to the device memory which contains kernel
/// arguments.
///
virtual void SetDeviceKernelArgs(BaseArgument* p_arg, void* p_dev_kernel_args) const = 0;
//----------------------------------------------------------------------------------------------
/// @brief Gets the device kernel argument size.
///
/// @param[in] p_arg The pointer to the Device op Argument.
///
/// @return The device kernel argument size.
///
virtual size_t GetDeviceKernelArgSize(const BaseArgument* p_arg) const = 0;
};
} // namespace device
......
......@@ -131,6 +131,7 @@ struct DeviceGemm_Xdl_CShuffle_Streamk_V3 : public DeviceGemm_Streamk_V2<ALayout
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(stream_config.log_level_ > 0)
{
arg.Print();
......@@ -147,26 +148,27 @@ struct DeviceGemm_Xdl_CShuffle_Streamk_V3 : public DeviceGemm_Streamk_V2<ALayout
index_t K_split = (arg.K + k_grain - 1) / k_grain * KPerBlock;
const bool has_main_k_block_loop = GridwiseGemm::CalculateHasMainKBlockLoop(K_split);
hipGetErrorString(hipMemsetAsync(
if constexpr(GridwiseGemm::Block2CTileMap_streamk::ReductionStrategy ==
StreamKReductionStrategy::Atomic)
{
hip_check_error(hipMemsetAsync(
arg.p_c_grid, 0, arg.M * arg.N * sizeof(CDataType), stream_config.stream_id_));
}
const auto Run = [&](const auto& kernel) {
dim3 grid_dim;
if(arg.Grid_size < 0)
{
int occupancy, num_cu;
hipError_t rtn;
rtn = hipOccupancyMaxActiveBlocksPerMultiprocessor(
&occupancy, kernel, BlockSize, 0);
hip_check_error(rtn);
hip_check_error(hipOccupancyMaxActiveBlocksPerMultiprocessor(
&occupancy, kernel, BlockSize, 0));
hipDeviceProp_t dev_prop;
hipDevice_t dev;
rtn = hipGetDevice(&dev);
hip_check_error(rtn);
rtn = hipGetDeviceProperties(&dev_prop, dev);
hip_check_error(rtn);
hip_check_error(hipGetDevice(&dev));
hip_check_error(hipGetDeviceProperties(&dev_prop, dev));
num_cu = dev_prop.multiProcessorCount;
arg.Grid_size = num_cu * occupancy;
grid_dim = arg.Grid_size;
}
......@@ -196,9 +198,32 @@ struct DeviceGemm_Xdl_CShuffle_Streamk_V3 : public DeviceGemm_Streamk_V2<ALayout
else
{
if constexpr(GridwiseGemm::Block2CTileMap_streamk::ReductionStrategy ==
StreamKReductionStrategy::Atomic)
{
ave_time = launch_and_time_kernel(
stream_config, kernel, grid_dim, dim3(BlockSize), 0, arg);
}
else if constexpr(GridwiseGemm::Block2CTileMap_streamk::ReductionStrategy ==
StreamKReductionStrategy::Reduction)
{
char* workspace_semaphore =
reinterpret_cast<char*>(arg.p_workspace_) +
arg.block_2_ctile_map_streamk.get_workspace_size_for_acc(
sizeof(GemmAccDataType));
auto preprocess = [&]() {
hipMemsetAsync(
workspace_semaphore,
0,
// sizeof(uint32_t),
arg.block_2_ctile_map_streamk.get_workspace_size_for_semaphore(),
stream_config.stream_id_);
};
ave_time = launch_and_time_kernel_with_preprocess(
stream_config, preprocess, kernel, grid_dim, dim3(BlockSize), 0, arg);
}
}
};
constexpr index_t minimum_occupancy =
......@@ -211,15 +236,13 @@ struct DeviceGemm_Xdl_CShuffle_Streamk_V3 : public DeviceGemm_Streamk_V2<ALayout
BlkGemmPipelineVer == BlockGemmPipelineVersion::v3)
{
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
const auto kernel = kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
}
// Tail number could be One to Seven
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2)
{
......@@ -340,7 +363,6 @@ struct DeviceGemm_Xdl_CShuffle_Streamk_V3 : public DeviceGemm_Streamk_V2<ALayout
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v4)
{
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
......@@ -362,11 +384,9 @@ struct DeviceGemm_Xdl_CShuffle_Streamk_V3 : public DeviceGemm_Streamk_V2<ALayout
Run(kernel);
}
}
}
else
{
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
......@@ -389,23 +409,19 @@ struct DeviceGemm_Xdl_CShuffle_Streamk_V3 : public DeviceGemm_Streamk_V2<ALayout
}
}
}
}
else
{
// Tail number always 1
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1)
{
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
const auto kernel = kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
false,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
}
}
return ave_time;
}
......@@ -418,6 +434,29 @@ struct DeviceGemm_Xdl_CShuffle_Streamk_V3 : public DeviceGemm_Streamk_V2<ALayout
}
};
size_t GetWorkSpaceSize(const BaseArgument* pArg) const override
{
const Argument* p_arg = dynamic_cast<const Argument*>(pArg);
if constexpr(GridwiseGemm::Block2CTileMap_streamk::ReductionStrategy ==
StreamKReductionStrategy::Reduction)
{
return p_arg->block_2_ctile_map_streamk.get_workspace_size(sizeof(GemmAccDataType));
}
else
{
return 0;
}
}
void SetWorkSpacePointer(BaseArgument* pArg,
void* p_workspace,
const StreamConfig& = StreamConfig{}) const override
{
Argument* pArg_ = dynamic_cast<Argument*>(pArg);
pArg_->p_workspace_ = p_workspace;
}
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
......@@ -464,8 +503,205 @@ struct DeviceGemm_Xdl_CShuffle_Streamk_V3 : public DeviceGemm_Streamk_V2<ALayout
CElementwiseOperation)
{
return Argument{
p_a, p_b, p_c, M, N, K, StrideA, StrideB, StrideC, streamk_sel, Grid_size}; // HS
constexpr index_t minimum_occupancy =
BlkGemmPipeSched == BlockGemmPipelineScheduler::Intrawave ? 1 : 2;
index_t K_split = (K + KPerBlock - 1) / KPerBlock * KPerBlock;
const bool has_main_k_block_loop = GridwiseGemm::CalculateHasMainKBlockLoop(K_split);
int occupancy, num_cu;
const auto calculate_grid_size = [&](const auto& kernel) {
hip_check_error(
hipOccupancyMaxActiveBlocksPerMultiprocessor(&occupancy, kernel, BlockSize, 0));
hipDeviceProp_t dev_prop;
hipDevice_t dev;
hip_check_error(hipGetDevice(&dev));
hip_check_error(hipGetDeviceProperties(&dev_prop, dev));
num_cu = dev_prop.multiProcessorCount;
Grid_size = num_cu * occupancy;
};
if(has_main_k_block_loop)
{
// Tail number always full
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1 ||
BlkGemmPipelineVer == BlockGemmPipelineVersion::v3)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
calculate_grid_size(kernel);
}
// Tail number could be One to Seven
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::One)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::One>;
calculate_grid_size(kernel);
}
else if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Full)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Full>;
calculate_grid_size(kernel);
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Two)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Two>;
calculate_grid_size(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 3)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Three)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Three>;
calculate_grid_size(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Four)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Four>;
calculate_grid_size(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 5)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Five)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Five>;
calculate_grid_size(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 6)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Six)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Six>;
calculate_grid_size(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 7)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Seven)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Seven>;
calculate_grid_size(kernel);
}
}
}
// Tail number could be Odd or Even
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_2lds<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
calculate_grid_size(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_2lds<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
calculate_grid_size(kernel);
}
}
else
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
calculate_grid_size(kernel);
}
else
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
calculate_grid_size(kernel);
}
}
}
else
{
// Tail number always 1
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
false,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
calculate_grid_size(kernel);
}
}
return Argument{p_a, p_b, p_c, M, N, K, StrideA, StrideB, StrideC, streamk_sel, Grid_size};
}
static auto MakeInvoker() { return Invoker{}; }
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -106,8 +106,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
static constexpr auto I3 = Number<3>{};
static constexpr index_t KPerBlock = K0PerBlock * K1;
static constexpr auto transform_conv_to_gemm =
TransformConvBwdDataToGemm_v1<NDimSpatial,
using ConvToGemmBwdDataTransform = TransformConvBwdDataToGemm_v1<NDimSpatial,
ConvBackwardDataSpecialization,
K1,
K1,
......@@ -115,80 +114,27 @@ struct DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
NPerBlock,
KPerBlock,
true /* DoPadGemmM */,
true /* DoPadGemmN */>{};
true /* DoPadGemmN */,
ALayout,
BLayout,
ELayout>;
static auto GetDummyABDsEGridDescriptor()
static auto
GetDummyABDsEGridDescriptor(const ConvToGemmBwdDataTransform& conv_to_gemm_transform)
{
const std::array<index_t, NDimSpatial + 3> dummy_tensor_lengths = {1};
const std::array<index_t, NDimSpatial + 3> dummy_tensor_strides = {1};
const std::array<index_t, NDimSpatial> dummy_spatial_lengths = {1};
const auto a_grid_desc_ak0_m_ak1 =
transform_conv_to_gemm.template MakeADescriptor_AK0_M_AK1<ALayout>(
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths);
const auto b_grid_desc_bk0_n_bk1 =
transform_conv_to_gemm.template MakeBDescriptor_BK0_N_BK1<BLayout>(
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths);
const auto ds_grid_desc_m_n = generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return transform_conv_to_gemm.template MakeCDescriptor_M_N<DLayout>(
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths);
},
const auto a_grid_desc_ak0_m_ak1 = conv_to_gemm_transform.MakeADescriptor_AK0_M_AK1();
const auto b_grid_desc_bk0_n_bk1 = conv_to_gemm_transform.MakeBDescriptor_BK0_N_BK1();
const auto ds_grid_desc_m_n =
generate_tuple([&](auto) { return conv_to_gemm_transform.MakeCDescriptor_M_N(); },
Number<NumDTensor>{});
const auto e_grid_desc_m_n =
transform_conv_to_gemm.template MakeCDescriptor_M_N<ELayout>(dummy_tensor_lengths,
dummy_tensor_strides,
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths);
const auto e_grid_desc_m_n = conv_to_gemm_transform.MakeCDescriptor_M_N();
return make_tuple(
a_grid_desc_ak0_m_ak1, b_grid_desc_bk0_n_bk1, ds_grid_desc_m_n, e_grid_desc_m_n);
}
// desc
using ABDsEGridDesc = decltype(GetDummyABDsEGridDescriptor());
constexpr static ConvToGemmBwdDataTransform dummy_conv_to_gemm_transform;
using ABDsEGridDesc = decltype(GetDummyABDsEGridDescriptor(dummy_conv_to_gemm_transform));
using AGridDesc_AK0_M_AK1 = remove_cvref_t<tuple_element_t<0, ABDsEGridDesc>>;
using BGridDesc_BK0_N_BK1 = remove_cvref_t<tuple_element_t<1, ABDsEGridDesc>>;
......@@ -270,7 +216,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>&
ds_g_n_c_wis_lengths,
/*ds_g_n_c_wis_lengths*/,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>&
ds_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_c_wis_lengths,
......@@ -291,15 +237,8 @@ struct DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
b_element_op_{b_element_op},
cde_element_op_{cde_element_op},
a_g_n_k_wos_lengths_{a_g_n_k_wos_lengths},
a_g_n_k_wos_strides_{a_g_n_k_wos_strides},
b_g_k_c_xs_lengths_{b_g_k_c_xs_lengths},
b_g_k_c_xs_strides_{b_g_k_c_xs_strides},
ds_g_n_c_wis_lengths_{ds_g_n_c_wis_lengths},
ds_g_n_c_wis_strides_{ds_g_n_c_wis_strides},
e_g_n_c_wis_lengths_{e_g_n_c_wis_lengths},
e_g_n_c_wis_strides_{e_g_n_c_wis_strides},
conv_filter_strides_{conv_filter_strides},
conv_filter_dilations_{conv_filter_dilations},
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads}
{
......@@ -382,9 +321,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
tildes = {i_ztilde, i_ytilde, i_xtilde};
}
const auto a_grid_desc_ak0_m_ak1 =
transform_conv_to_gemm.template MakeADescriptor_AK0_M_AK1<ALayout>(
a_g_n_k_wos_lengths,
ConvToGemmBwdDataTransform conv_to_gemm_transform_{a_g_n_k_wos_lengths,
a_g_n_k_wos_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
......@@ -394,56 +331,37 @@ struct DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
conv_filter_dilations,
input_left_pads,
input_right_pads,
tildes);
tildes};
const auto a_grid_desc_ak0_m_ak1 =
conv_to_gemm_transform_.MakeADescriptor_AK0_M_AK1();
const auto b_grid_desc_bk0_n_bk1 =
transform_conv_to_gemm.template MakeBDescriptor_BK0_N_BK1<BLayout>(
a_g_n_k_wos_lengths,
a_g_n_k_wos_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
e_g_n_c_wis_lengths,
e_g_n_c_wis_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
tildes);
conv_to_gemm_transform_.MakeBDescriptor_BK0_N_BK1();
DsGridDesc_M_N ds_grid_desc_m_n;
// populate Ds desc
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
ds_grid_desc_m_n(i) =
transform_conv_to_gemm.template MakeCDescriptor_M_N<DLayout>(
static_assert(is_same_v<DLayout, ELayout>);
ConvToGemmBwdDataTransform conv_to_gemm_transform_d{
a_g_n_k_wos_lengths,
a_g_n_k_wos_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
ds_g_n_c_wis_lengths[i],
e_g_n_c_wis_lengths,
ds_g_n_c_wis_strides[i],
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
tildes);
tildes};
ds_grid_desc_m_n(i) = conv_to_gemm_transform_d.MakeCDescriptor_M_N();
});
const auto e_grid_desc_m_n =
transform_conv_to_gemm.template MakeCDescriptor_M_N<ELayout>(
a_g_n_k_wos_lengths,
a_g_n_k_wos_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
e_g_n_c_wis_lengths,
e_g_n_c_wis_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
tildes);
const auto e_grid_desc_m_n = conv_to_gemm_transform_.MakeCDescriptor_M_N();
// for check validity
ds_grid_desc_m_n_container_.push_back(ds_grid_desc_m_n);
......@@ -522,17 +440,9 @@ struct DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
BElementwiseOp b_element_op_;
CDEElementwiseOp cde_element_op_;
// for checking IsSupportedArgument()
std::array<index_t, NDimSpatial + 3> a_g_n_k_wos_lengths_;
std::array<index_t, NDimSpatial + 3> a_g_n_k_wos_strides_;
std::array<index_t, NDimSpatial + 3> b_g_k_c_xs_lengths_;
std::array<index_t, NDimSpatial + 3> b_g_k_c_xs_strides_;
std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor> ds_g_n_c_wis_lengths_;
std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor> ds_g_n_c_wis_strides_;
std::array<index_t, NDimSpatial + 3> e_g_n_c_wis_lengths_;
std::array<index_t, NDimSpatial + 3> e_g_n_c_wis_strides_;
std::array<index_t, NDimSpatial> conv_filter_strides_;
std::array<index_t, NDimSpatial> conv_filter_dilations_;
std::array<index_t, NDimSpatial> input_left_pads_;
std::array<index_t, NDimSpatial> input_right_pads_;
};
......
......@@ -54,15 +54,16 @@ template <typename GridwiseGemm,
typename ABDataType,
typename DsPointer,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename AElementwiseOp,
typename BElementwiseOp,
typename CDEElementwiseOp,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename Block2ETileMap,
typename ComputePtrOffsetOfBatch,
typename ComputePtrOffsetOfN,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
......@@ -73,10 +74,9 @@ __global__ void
const ABDataType* __restrict__ p_b_grid,
DsPointer p_ds_grid,
EDataType* __restrict__ p_e_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op,
const index_t batch_count,
const AElementwiseOp a_element_op,
const BElementwiseOp b_element_op,
const CDEElementwiseOp cde_element_op,
const AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1,
const DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
......@@ -84,24 +84,29 @@ __global__ void
const EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_,
const Block2ETileMap block_2_ctile_map,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch,
const ComputePtrOffsetOfN compute_ptr_offset_of_n)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
// offset base pointer for each work-group
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const index_t n_idx = __builtin_amdgcn_readfirstlane(blockIdx.z);
const index_t g_idx = __builtin_amdgcn_readfirstlane(blockIdx.y);
const long_index_t a_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t e_batch_offset = amd_wave_read_first_lane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const long_index_t a_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx));
const long_index_t b_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx));
const long_index_t e_batch_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx));
const auto ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
const long_index_t a_n_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_n.GetAPtrOffset(n_idx));
const long_index_t e_n_offset =
amd_wave_read_first_lane(compute_ptr_offset_of_n.GetEPtrOffset(n_idx));
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
DsPointer p_ds_grid_grp;
......@@ -112,10 +117,10 @@ __global__ void
static_for<0, NumDTensor, 1>{}(
[&](auto i) { p_ds_grid_grp(i) = p_ds_grid[i] + ds_batch_offset[i]; });
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid + a_batch_offset,
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid + a_batch_offset + a_n_offset,
p_b_grid + b_batch_offset,
p_ds_grid_grp,
p_e_grid + e_batch_offset,
p_e_grid + e_batch_offset + e_n_offset,
p_shared,
a_element_op,
b_element_op,
......@@ -130,7 +135,6 @@ __global__ void
ignore = p_b_grid;
ignore = p_ds_grid;
ignore = p_e_grid;
ignore = batch_count;
ignore = a_grid_desc_ak0_m_ak1;
ignore = b_grid_desc_bk0_n_bk1;
ignore = ds_grid_desc_mblock_mperblock_nblock_nperblock;
......@@ -139,6 +143,7 @@ __global__ void
ignore = b_element_op;
ignore = cde_element_op;
ignore = compute_ptr_offset_of_batch;
ignore = compute_ptr_offset_of_n;
ignore = block_2_ctile_map;
#endif
}
......@@ -233,8 +238,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto transform_conv_to_gemm =
TransformConvBwdDataToGemm_v1<NDimSpatial,
using ConvToGemmBwdDataTransform = TransformConvBwdDataToGemm_v1<NDimSpatial,
ConvBackwardDataSpecialization,
AK1,
BK1,
......@@ -242,73 +246,46 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
NPerBlock,
KPerBlock,
DoPadGemmM,
DoPadGemmN>{};
DoPadGemmN,
ALayout,
BLayout,
ELayout,
true, /*SplitConvN*/
ABDataType,
EDataType>;
static auto GetDummyABDsEGridDescriptor()
static auto
GetDummyABDsEGridDescriptor(const ConvToGemmBwdDataTransform& conv_to_gemm_transform)
{
const std::array<index_t, NDimSpatial + 3> dummy_tensor_lengths = {1};
const std::array<index_t, NDimSpatial + 3> dummy_tensor_strides = {1};
const std::array<index_t, NDimSpatial> dummy_spatial_lengths = {1};
const auto a_grid_desc_ak0_m_ak1 = conv_to_gemm_transform.MakeADescriptor_AK0_M_AK1();
const auto a_grid_desc_ak0_m_ak1 =
transform_conv_to_gemm.template MakeADescriptor_AK0_M_AK1<ALayout>(
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths);
const auto b_grid_desc_bk0_n_bk1 =
transform_conv_to_gemm.template MakeBDescriptor_BK0_N_BK1<BLayout>(
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths);
const auto b_grid_desc_bk0_n_bk1 = conv_to_gemm_transform.MakeBDescriptor_BK0_N_BK1();
const auto ds_grid_desc_m_n = generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return transform_conv_to_gemm.template MakeCDescriptor_M_N<DLayout>(
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths);
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
using ConvToGemmBwdDataTransformD =
TransformConvBwdDataToGemm_v1<NDimSpatial,
ConvBackwardDataSpecialization,
AK1,
BK1,
MPerBlock,
NPerBlock,
KPerBlock,
DoPadGemmM,
DoPadGemmN,
ALayout,
BLayout,
DLayout,
true, /*SplitConvN*/
ABDataType,
DDataType>;
return ConvToGemmBwdDataTransformD{}.MakeCDescriptor_M_N();
},
Number<NumDTensor>{});
const auto e_grid_desc_m_n =
transform_conv_to_gemm.template MakeCDescriptor_M_N<ELayout>(dummy_tensor_lengths,
dummy_tensor_strides,
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_tensor_lengths,
dummy_tensor_strides,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths,
dummy_spatial_lengths);
const auto e_grid_desc_m_n = conv_to_gemm_transform.MakeCDescriptor_M_N();
return make_tuple(
a_grid_desc_ak0_m_ak1, b_grid_desc_bk0_n_bk1, ds_grid_desc_m_n, e_grid_desc_m_n);
......@@ -377,7 +354,8 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
}
// desc
using ABDsEGridDesc = decltype(GetDummyABDsEGridDescriptor());
constexpr static ConvToGemmBwdDataTransform dummy_conv_to_gemm_transform;
using ABDsEGridDesc = decltype(GetDummyABDsEGridDescriptor(dummy_conv_to_gemm_transform));
using AGridDesc_AK0_M_AK1 = remove_cvref_t<tuple_element_t<0, ABDsEGridDesc>>;
using BGridDesc_BK0_N_BK1 = remove_cvref_t<tuple_element_t<1, ABDsEGridDesc>>;
......@@ -431,15 +409,8 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
b_element_op_{b_element_op},
cde_element_op_{cde_element_op},
a_g_n_k_wos_lengths_{a_g_n_k_wos_lengths},
a_g_n_k_wos_strides_{a_g_n_k_wos_strides},
b_g_k_c_xs_lengths_{b_g_k_c_xs_lengths},
b_g_k_c_xs_strides_{b_g_k_c_xs_strides},
ds_g_n_c_wis_lengths_{ds_g_n_c_wis_lengths},
ds_g_n_c_wis_strides_{ds_g_n_c_wis_strides},
e_g_n_c_wis_lengths_{e_g_n_c_wis_lengths},
e_g_n_c_wis_strides_{e_g_n_c_wis_strides},
conv_filter_strides_{conv_filter_strides},
conv_filter_dilations_{conv_filter_dilations},
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads}
{
......@@ -450,11 +421,6 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
p_ds_grid_(i) = static_cast<const DDataType*>(p_ds[i]);
});
// A/B/Ds/E Batch Stride
compute_ptr_offset_of_batch_.BatchStrideA_ = a_g_n_k_wos_strides[0];
compute_ptr_offset_of_batch_.BatchStrideB_ = b_g_k_c_xs_strides[0];
compute_ptr_offset_of_batch_.BatchStrideE_ = e_g_n_c_wis_strides[0];
static_for<0, NumDTensor, 1>{}([&](auto i) {
compute_ptr_offset_of_batch_.BatchStrideDs_(i) = ds_g_n_c_wis_strides[i][0];
});
......@@ -526,9 +492,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
throw std::runtime_error("wrong! only implemented for 2D and 3D now");
}
const auto a_grid_desc_ak0_m_ak1 =
transform_conv_to_gemm.template MakeADescriptor_AK0_M_AK1<ALayout>(
a_g_n_k_wos_lengths,
ConvToGemmBwdDataTransform conv_to_gemm_transform_{a_g_n_k_wos_lengths,
a_g_n_k_wos_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
......@@ -538,30 +502,39 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
conv_filter_dilations,
input_left_pads,
input_right_pads,
tildes);
tildes};
conv_N_per_block_ = conv_to_gemm_transform_.N_;
const auto a_grid_desc_ak0_m_ak1 =
conv_to_gemm_transform_.MakeADescriptor_AK0_M_AK1();
const auto b_grid_desc_bk0_n_bk1 =
transform_conv_to_gemm.template MakeBDescriptor_BK0_N_BK1<BLayout>(
a_g_n_k_wos_lengths,
a_g_n_k_wos_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
e_g_n_c_wis_lengths,
e_g_n_c_wis_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
tildes);
conv_to_gemm_transform_.MakeBDescriptor_BK0_N_BK1();
DsGridDesc_M_N ds_grid_desc_m_n;
// populate Ds desc
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
ds_grid_desc_m_n(i) =
transform_conv_to_gemm.template MakeCDescriptor_M_N<DLayout>(
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
using ConvToGemmBwdDataTransformD =
TransformConvBwdDataToGemm_v1<NDimSpatial,
ConvBackwardDataSpecialization,
AK1,
BK1,
MPerBlock,
NPerBlock,
KPerBlock,
DoPadGemmM,
DoPadGemmN,
ALayout,
BLayout,
DLayout,
true, /*SplitConvN*/
ABDataType,
DDataType>;
ConvToGemmBwdDataTransformD conv_to_gemm_transform_d{
a_g_n_k_wos_lengths,
a_g_n_k_wos_strides,
b_g_k_c_xs_lengths,
......@@ -572,22 +545,12 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
conv_filter_dilations,
input_left_pads,
input_right_pads,
tildes);
tildes};
ds_grid_desc_m_n(i) = conv_to_gemm_transform_d.MakeCDescriptor_M_N();
});
const auto e_grid_desc_m_n =
transform_conv_to_gemm.template MakeCDescriptor_M_N<ELayout>(
a_g_n_k_wos_lengths,
a_g_n_k_wos_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
e_g_n_c_wis_lengths,
e_g_n_c_wis_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
tildes);
const auto e_grid_desc_m_n = conv_to_gemm_transform_.MakeCDescriptor_M_N();
// desc for problem definition
const auto a_grid_desc_m_k =
......@@ -628,6 +591,13 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
}
}
}
// A/B/Ds/E Batch Stride
compute_ptr_offset_of_batch_.BatchStrideA_ = a_g_n_k_wos_strides[0];
compute_ptr_offset_of_batch_.BatchStrideB_ = b_g_k_c_xs_strides[0];
compute_ptr_offset_of_batch_.BatchStrideE_ = e_g_n_c_wis_strides[0];
compute_ptr_offset_of_n_.BatchStrideA_ = a_g_n_k_wos_strides[1] * conv_N_per_block_;
compute_ptr_offset_of_n_.BatchStrideE_ = e_g_n_c_wis_strides[1] * conv_N_per_block_;
}
void Print() const
......@@ -660,6 +630,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
// tensor descriptor for problem definition
index_t num_group_;
index_t conv_N_per_block_;
std::vector<AGridDesc_M_K> a_grid_desc_m_k_container_;
std::vector<BGridDesc_N_K> b_grid_desc_n_k_container_;
std::vector<DsGridDesc_M_N> ds_grid_desc_m_n_container_;
......@@ -678,23 +649,16 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
// for computing batch offset
ComputePtrOffsetOfStridedBatch<I1, I1, NumDTensor> compute_ptr_offset_of_batch_;
ComputePtrOffsetOfStridedBatch<I1, I1, I0> compute_ptr_offset_of_n_;
// element-wise op
AElementwiseOp a_element_op_;
BElementwiseOp b_element_op_;
CDEElementwiseOp cde_element_op_;
// for checking IsSupportedArgument()
std::array<index_t, NDimSpatial + 3> a_g_n_k_wos_lengths_;
std::array<index_t, NDimSpatial + 3> a_g_n_k_wos_strides_;
std::array<index_t, NDimSpatial + 3> b_g_k_c_xs_lengths_;
std::array<index_t, NDimSpatial + 3> b_g_k_c_xs_strides_;
std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor> ds_g_n_c_wis_lengths_;
std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor> ds_g_n_c_wis_strides_;
std::array<index_t, NDimSpatial + 3> e_g_n_c_wis_lengths_;
std::array<index_t, NDimSpatial + 3> e_g_n_c_wis_strides_;
std::array<index_t, NDimSpatial> conv_filter_strides_;
std::array<index_t, NDimSpatial> conv_filter_dilations_;
std::array<index_t, NDimSpatial> input_left_pads_;
std::array<index_t, NDimSpatial> input_right_pads_;
};
......@@ -711,8 +675,12 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
arg.Print();
}
float ave_time = 0;
const index_t gdy = arg.num_group_;
const index_t num_workgroups_per_Conv_N =
arg.a_g_n_k_wos_lengths_[I1] / arg.conv_N_per_block_;
const index_t gdz = num_workgroups_per_Conv_N;
float ave_time = 0;
for(std::size_t i = 0; i < arg.a_grid_desc_ak0_m_ak1_container_.size(); i++)
{
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_m_k_container_[i],
......@@ -724,9 +692,8 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
throw std::runtime_error("wrong! device_op has invalid setting");
}
const index_t grid_size = arg.block_2_etile_map_container_[i].CalculateGridSize(
arg.e_grid_desc_m_n_container_[i]) *
arg.num_group_;
const index_t gdx = arg.block_2_etile_map_container_[i].CalculateGridSize(
arg.e_grid_desc_m_n_container_[i]);
const auto GemmK = arg.a_grid_desc_m_k_container_[i].GetLength(I1);
......@@ -747,12 +714,13 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
DeviceOp::EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
Block2ETileMap,
ComputePtrOffsetOfStridedBatch<I1, I1, NumDTensor>,
ComputePtrOffsetOfStridedBatch<I1, I1, I0>,
has_main_loop>;
return launch_and_time_kernel(
stream_config,
kernel,
dim3(grid_size),
dim3(gdx, gdy, gdz),
dim3(BlockSize),
0,
arg.p_a_grid_,
......@@ -762,13 +730,13 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
arg.a_element_op_,
arg.b_element_op_,
arg.cde_element_op_,
arg.a_g_n_k_wos_lengths_[0], // Group count
arg.a_grid_desc_ak0_m_ak1_container_[i],
arg.b_grid_desc_bk0_n_bk1_container_[i],
arg.ds_grid_desc_mblock_mperblock_nblock_nperblock_container_[i],
arg.e_grid_desc_mblock_mperblock_nblock_nperblock_container_[i],
arg.block_2_etile_map_container_[i],
arg.compute_ptr_offset_of_batch_);
arg.compute_ptr_offset_of_batch_,
arg.compute_ptr_offset_of_n_);
};
if(GridwiseGemm::CalculateHasMainKBlockLoop(GemmK))
......
......@@ -111,8 +111,7 @@ __global__ void
[[maybe_unused]] const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch,
[[maybe_unused]] const index_t num_k_per_block)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
// offset base pointer for each work-group
const index_t g_idx = __builtin_amdgcn_readfirstlane(blockIdx.z * NumGroupsToMerge);
const index_t k_idx = __builtin_amdgcn_readfirstlane(blockIdx.y * num_k_per_block);
......
#pragma once
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -603,7 +603,7 @@ struct DeviceGroupedGemmMultipleD_Dl : public DeviceGroupedGemm<ALayout,
}
hipGetErrorString(
hipMemcpyWithStream(arg.p_workspace_,
hipMemcpyAsync(arg.p_workspace_,
arg.gemm_desc_kernel_arg_.data(),
arg.gemm_desc_kernel_arg_.size() * sizeof(GemmKernelArg),
hipMemcpyHostToDevice,
......
......@@ -18,7 +18,6 @@
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multiple_d_splitk.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_elementwise_2d.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
......@@ -78,7 +77,7 @@ template <typename ALayout,
// TODO: change gridwise_gemm_v2r4r2 to support AK1 & BK1
enable_if_t<AK1 == BK1, bool> = false>
struct DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage
: public DeviceGroupedGemmMultipleDSplitK<ALayout,
: public DeviceGroupedGemmSplitK<ALayout,
BLayout,
DsLayout,
ELayout,
......@@ -530,7 +529,7 @@ struct DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage
index_t skipped_group_count_;
index_t grid_size_;
// Pointer to device memory with GEMM kernel arguments.
const void* p_dev_gemm_args_;
void* p_dev_gemm_kargs_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
......@@ -566,7 +565,7 @@ struct DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage
/// @return The average kernel execution time (if time measurement is enabled.)
///
float Run(const Argument& arg,
const void* dev_gemm_args,
void* dev_gemm_args,
void* dev_gemm_workspace,
const StreamConfig& stream_config = StreamConfig{})
{
......@@ -621,7 +620,7 @@ struct DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage
///
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(arg.p_dev_gemm_args_ == nullptr)
if(arg.p_dev_gemm_kargs_ == nullptr)
{
std::ostringstream err;
err << "The gemm arguments device buffer is not allocated!"
......@@ -637,7 +636,7 @@ struct DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage
throw std::runtime_error(err.str());
}
return Run(arg, arg.p_dev_gemm_args_, arg.p_workspace_, stream_config);
return Run(arg, arg.p_dev_gemm_kargs_, arg.p_workspace_, stream_config);
}
float Run(const BaseArgument* p_arg,
......@@ -723,7 +722,7 @@ struct DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage
template <bool HasMainKBlockLoop>
float DispatchKernel(const Argument& arg,
const void* dev_gemm_args,
void* dev_gemm_kargs,
void* dev_gemm_workspace,
const StreamConfig& stream_config) const
{
......@@ -746,7 +745,7 @@ struct DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage
return LaunchKernel(gemm_kernel,
elementwise_kernel,
arg,
dev_gemm_args,
dev_gemm_kargs,
dev_gemm_workspace,
stream_config);
}
......@@ -755,12 +754,19 @@ struct DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage
float LaunchKernel(const KernelFunction& gemm_kernel,
const KernelFunction2& elementwise_kernel,
const Argument& arg,
const void* dev_gemm_args,
void* dev_gemm_kargs,
[[maybe_unused]] void* dev_gemm_workspace,
const StreamConfig& stream_config) const
{
float time{0.f};
hip_check_error(
hipMemcpyAsync(dev_gemm_kargs,
arg.gemm_kernel_args_.data(),
arg.gemm_kernel_args_.size() * sizeof(GemmTransKernelArg),
hipMemcpyHostToDevice,
stream_config.stream_id_));
auto preprocess = [&]() {
hip_check_error(hipMemsetAsync(
dev_gemm_workspace, 0, arg.GetWorkspaceSizeBytes(), stream_config.stream_id_));
......@@ -774,7 +780,7 @@ struct DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage
dim3(arg.grid_size_),
dim3(BlockSize),
0,
cast_pointer_to_constant_address_space(dev_gemm_args),
cast_pointer_to_constant_address_space(dev_gemm_kargs),
arg.gemm_kernel_args_.size(),
arg.a_element_op_,
arg.b_element_op_,
......@@ -930,18 +936,30 @@ struct DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage
return str.str();
}
void SetDeviceKernelArgs(Argument& arg, void* p_dev_kernel_args) const
void SetDeviceKernelArgs(BaseArgument* p_arg, void* p_dev_kernel_args) const override
{
arg.p_dev_gemm_args_ = p_dev_kernel_args;
hip_check_error(hipMemcpy(p_dev_kernel_args,
arg.gemm_kernel_args_.data(),
GetDeviceKernelArgSize(&arg),
hipMemcpyHostToDevice));
auto arg_ptr = dynamic_cast<Argument*>(p_arg);
if(arg_ptr)
{
arg_ptr->p_dev_gemm_kargs_ = p_dev_kernel_args;
}
else
throw std::runtime_error(
"The argument pointer is not an object of "
"DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage::Argument structure!");
}
void SetDeviceKernelArgs(BaseArgument* p_arg, void* p_dev_kernel_args) const override
size_t GetDeviceKernelArgSize(const BaseArgument* p_arg) const override
{
return SetDeviceKernelArgs(*dynamic_cast<Argument*>(p_arg), p_dev_kernel_args);
auto arg = dynamic_cast<const Argument*>(p_arg);
if(arg)
{
return arg->gemm_kernel_args_.size() * sizeof(GemmTransKernelArg);
}
else
throw std::runtime_error(
"The argument pointer is not an object of "
"DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage::Argument structure!");
}
size_t GetWorkSpaceSize(const BaseArgument* p_arg) const override
......@@ -974,17 +992,22 @@ struct DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage
"DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage::Argument structure!");
}
static void SetKBatchSize(Argument& arg, index_t kbatch) { arg.UpdateKBatch(kbatch); }
void SetKBatchSize(BaseArgument* p_arg, index_t kbatch) const override
[[deprecated]] static void SetKBatchSize(Argument& arg, index_t kbatch)
{
return SetKBatchSize(*dynamic_cast<Argument*>(p_arg), kbatch);
arg.UpdateKBatch(kbatch);
}
size_t GetDeviceKernelArgSize(const BaseArgument* p_arg) const override
void SetKBatchSize(BaseArgument* p_arg, index_t kbatch) const override
{
return dynamic_cast<const Argument*>(p_arg)->gemm_kernel_args_.size() *
sizeof(GemmTransKernelArg);
auto p_arg_ = dynamic_cast<Argument*>(p_arg);
if(p_arg_)
{
p_arg_->UpdateKBatch(kbatch);
}
else
throw std::runtime_error(
"The argument pointer is not an object of "
"DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage::Argument structure!");
}
};
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment