Commit c8c016dd authored by aska-0096's avatar aska-0096
Browse files

Merge branch 'develop' of https://github.com/ROCm/composable_kernel into update_cka8w8

parents e8ca3daf 4e731776
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm/device_grouped_gemm_xdl_splitk_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_pv1_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Row,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances, device_grouped_gemm_xdl_splitk_2Bt_rrr_instances<F16, GemmMNKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm/device_grouped_gemm_xdl_splitk_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_pv1_inter_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Row,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_splitk_2Bt_rrr_instances<F16,
GemmMNKPadding,
PipelineV1,
InterwaveScheduler>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm/device_grouped_gemm_xdl_splitk_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_pv2_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Row,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_splitk_2Bt_rrr_instances<F16, GemmMNKPadding, PipelineV2>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp"
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm/device_grouped_gemm_xdl_splitk_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using Empty_Tuple = ck::Tuple<>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// a[m, k] * b[n, k] = e[m, n]
using device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances = std::tuple<
// clang-format off
//################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>
// clang-format on
>;
void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Col,
......@@ -65,8 +22,8 @@ void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances{});
add_device_operation_instances(
instances, device_grouped_gemm_xdl_splitk_2Bt_rcr_instances<F16, GemmDefault>{});
}
} // namespace instance
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp"
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm/device_grouped_gemm_xdl_splitk_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using Empty_Tuple = ck::Tuple<>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_tile_instances = std::tuple<
// clang-format off
//################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 192, 64, 32, 8, 8, 32, 32, 3, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 192, 32, 8, 8, 32, 32, 1, 3, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 48, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 192, 32, 32, 8, 8, 32, 32, 3, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 192, 32, 8, 8, 32, 32, 1, 3, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 256, 32, 8, 8, 32, 32, 1, 4, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 64, 32, 8, 8, 32, 32, 1, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 32, 32, 8, 8, 32, 32, 1, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 64, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>
// clang-format on
>;
void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Col,
......@@ -72,7 +23,7 @@ void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_instances
PassThrough>>>& instances)
{
add_device_operation_instances(
instances, device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_tile_instances{});
instances, device_grouped_gemm_xdl_splitk_2Bt_rcr_instances<F16, GemmMNKPadding>{});
}
} // namespace instance
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multiple_d_xdl_cshuffle_tile_loop.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using MultiplyAddFastGelu = ck::tensor_operation::element_wise::MultiplyAddFastGelu;
using MultiplyFastGelu = ck::tensor_operation::element_wise::MultiplyFastGelu;
using MultiplyAdd = ck::tensor_operation::element_wise::MultiplyAdd;
static constexpr auto GemmDefault = GemmSpecialization::Default;
static constexpr auto GemmKPadding = GemmSpecialization::KPadding;
static constexpr auto GemmMNPadding = GemmSpecialization::MNPadding;
static constexpr auto GemmMNKPadding = GemmSpecialization::MNKPadding;
static constexpr auto Intrawave = BlockGemmPipelineScheduler::Intrawave;
static constexpr auto Interwave = BlockGemmPipelineScheduler::Interwave;
template <typename DsLayout,
typename DsDataType,
typename CDEElementwiseOp,
GemmSpecialization GemmSpec = GemmMNKPadding>
using device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances = std::tuple<
// clang-format off
//###########################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//###########################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//###########################################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//###########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | S<C,D0...,D_N|
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v4>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v5>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 256, 256, 32, 8, 4, 32, 32, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 224, 256, 64, 8, 4, 16, 16, 7, 8, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 2, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 128, 256, 32, 8, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Interwave, BlockGemmPipelineVersion::v1>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8,8,1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v1>
// clang-format on
>;
template <typename DsLayout,
typename DsDataType,
typename CDEElementwiseOp,
GemmSpecialization GemmSpec = GemmMNKPadding,
BlockGemmPipelineScheduler BlkGemmPipeSched = BlockGemmPipelineScheduler::Intrawave>
using device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances =
std::tuple<
// clang-format off
//###########################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//###########################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//###########################################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//###########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | S<C,D0...,D_N|
// Latency friendly
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 64, 16, 16, 256, 8, 4, 16, 16, 1, 1, S<32, 2, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 1, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 4>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v1>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 128, 16, 32, 256, 8, 4, 16, 16, 1, 1, S<32, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 2, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v1>,
// Memory friendly
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 64, 16, 16, 256, 8, 4, 16, 16, 1, 1, S<32, 2, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 1, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 4>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 128, 16, 32, 256, 8, 4, 16, 16, 1, 1, S<32, 4, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<64, 2, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 128, 16, 64, 128, 8, 4, 16, 16, 1, 2, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<32, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 128, 32, 64, 128, 8, 4, 32, 32, 1, 1, S<16, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<32, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, S<8,8,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 128, 16, 128, 64, 8, 4, 16, 16, 1, 4, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 128, 32, 128, 64, 8, 4, 32, 32, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 8>, S<8,8,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 16, 256, 64, 8, 4, 16, 16, 1, 4, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 16>, S<4,4,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>,
// DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, CDEElementwiseOp, GemmSpec, 1, 256, 32, 256, 64, 8, 4, 32, 32, 1, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 4, 0, 1, 1, S<1, 16, 1, 16>, S<8,8,1>, BlkGemmPipeSched, BlockGemmPipelineVersion::v2>
// clang-format on
>;
void add_device_grouped_gemm_xdl_tile_loop_multiply_bf16_i8_bf16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmTileLoop<Row,
Row,
ck::Tuple<Row>,
Row,
BF16,
I8,
ck::Tuple<BF16>,
BF16,
PassThrough,
PassThrough,
Multiply>>>& instances)
{
// comp
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmDefault>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmMNKPadding>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmMNPadding>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_comp_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmKPadding>{});
// mem
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmDefault,
Intrawave>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmMNKPadding,
Intrawave>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmMNPadding,
Intrawave>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmKPadding,
Intrawave>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmDefault,
Interwave>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmMNKPadding,
Interwave>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmMNPadding,
Interwave>{});
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_mem_instances<ck::Tuple<Row>,
ck::Tuple<BF16>,
Multiply,
GemmKPadding,
Interwave>{});
}
void add_device_grouped_gemm_xdl_tile_loop_multiply_bias_fastgelu_bf16_i8_bf16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmTileLoop<Row,
Row,
ck::Tuple<Row, Row>,
Row,
BF16,
I8,
ck::Tuple<BF16, BF16>,
BF16,
PassThrough,
PassThrough,
MultiplyAddFastGelu>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_irregular_tile_instances<
ck::Tuple<Row, Row>,
ck::Tuple<BF16, BF16>,
MultiplyAddFastGelu>{});
}
void add_device_grouped_gemm_xdl_tile_loop_multiply_fastgelu_bf16_i8_bf16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmTileLoop<Row,
Row,
ck::Tuple<Row>,
Row,
BF16,
I8,
ck::Tuple<BF16>,
BF16,
PassThrough,
PassThrough,
MultiplyFastGelu>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_bf16_i8_bf16_mk_kn_mn_irregular_tile_instances<
ck::Tuple<Row>,
ck::Tuple<BF16>,
MultiplyFastGelu>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -6,7 +6,7 @@ set(CK_TILE_SRC_FOLDER ${CMAKE_SOURCE_DIR}/include/ck_tile/)
# CK Codegen requires dataclass which is added in Python 3.7
# Python version 3.8 is required for general good practice as it is default for Ubuntu 20.04
if(NOT CK_USE_ALTERNATIVE_PYTHON)
find_package(PythonInterp 3 REQUIRED)
find_package(Python3 COMPONENTS Interpreter Development)
else()
message("Using alternative python version")
set(EXTRA_PYTHON_PATH)
......@@ -33,7 +33,7 @@ set(FMHA_KNOWN_APIS "fwd,fwd_splitkv,fwd_appendkv,bwd")
# Note: The receipt 3 arg filters the generated backwards instances to reduce compilation time.
# With receipt 3 set, we are generating instances for datatype == {fp16 || bfp16}, bias == {no || alibi}, deterministic == off, and dpad == dvpad.
execute_process(
COMMAND ${PYTHON_EXECUTABLE} ${FMHA_SRC_FOLDER}/generate.py
COMMAND ${Python3_EXECUTABLE} ${FMHA_SRC_FOLDER}/generate.py
--list_blobs ${FMHA_CPP_FOLDER}/blob_list.txt
--api ${FMHA_KNOWN_APIS}
--receipt 3
......@@ -50,7 +50,7 @@ endif()
# With receipt 3 set, we are generating instances for datatype == {fp16 || bfp16}, bias == {no || alibi}, deterministic == off, and dpad == dvpad.
add_custom_command(
OUTPUT ${FMHA_GEN_BLOBS}
COMMAND ${PYTHON_EXECUTABLE} ${FMHA_SRC_FOLDER}/generate.py
COMMAND ${Python3_EXECUTABLE} ${FMHA_SRC_FOLDER}/generate.py
--output_dir ${FMHA_CPP_FOLDER}
--api ${FMHA_KNOWN_APIS}
--receipt 3
......
......@@ -15,7 +15,7 @@ void add_device_pool3d_fwd_ndhwc_f8_instances(
instances)
{
add_device_operation_instances(
instances, device_pool3d_fwd_ndhwc_instances<F8, F8, I32, F8, ReduceOpId, false>{});
instances, device_pool3d_fwd_ndhwc_instances<F8, F8, I32, F32, ReduceOpId, false>{});
}
void add_device_pool3d_fwd_ndhwc_index_f8_instances(
......@@ -23,7 +23,7 @@ void add_device_pool3d_fwd_ndhwc_index_f8_instances(
instances)
{
add_device_operation_instances(
instances, device_pool3d_fwd_ndhwc_instances<F8, F8, I32, F8, ReduceOpId, true>{});
instances, device_pool3d_fwd_ndhwc_instances<F8, F8, I32, F32, ReduceOpId, true>{});
}
} // namespace instance
......
[Back to the main page](../README.md)
# Composable Kernel profiler
## Profile GEMM kernels
```bash
#arg1: tensor operation (gemm=GEMM)
......@@ -180,3 +182,13 @@ Note: Column to image kernel adds to the output memory, this will cause output b
################ op datatype verify init log time dim0 dim1 dim2 in_stride0 in_stride1 in_stride2 out_stride0 out_stride1 out_stride2
./bin/ckProfiler permute_scale 0 1 1 0 1 64 64 64 4096 64 1 1 64 4096
```
## Convert MIOpen driver command to CKProfiler
```bash
python3 ../script/convert_miopen_driver_to_profiler.py
/opt/rocm/bin/MIOpenDriver conv -n 32 -c 64 -H 28 -W 28 -k 64 -y 3 -x 3
-p 1 -q 1 -u 2 -v 2 -l 1 -j 1 -m conv -g 32 -F 1 -t 1
```
Only convolution driver is supported.
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -150,7 +150,7 @@ bool profile_batched_gemm_bias_softmax_gemm_permute_impl(bool do_verification,
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Sequential<B0DataType, 1>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
d0_gs_ms_ns.GenerateTensorValue(GeneratorTensor_1<D0DataType>{1});
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -157,7 +157,7 @@ bool profile_batched_gemm_gemm_impl(bool do_verification,
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<B0DataType, 1>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -174,7 +174,7 @@ bool profile_batched_gemm_softmax_gemm_impl(bool do_verification,
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<B0DataType, 1>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -140,7 +140,7 @@ bool profile_batched_gemm_softmax_gemm_permute_impl(bool do_verification,
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Sequential<B0DataType, 1>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -74,8 +74,8 @@ int profile_gemm_impl(int do_verification,
switch(init_method)
{
case 0:
ck::utils::FillConstant<ADataType>{static_cast<ADataType>(1.f)}(a_m_k);
ck::utils::FillConstant<BDataType>{static_cast<BDataType>(1.f)}(b_k_n);
ck::utils::FillConstant<ADataType>{type_convert<ADataType>(1.f)}(a_m_k);
ck::utils::FillConstant<BDataType>{type_convert<BDataType>(1.f)}(b_k_n);
break;
case 1:
ck::utils::FillUniformDistributionIntegerValue<ADataType>{-5.f, 5.f}(a_m_k);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -17,7 +17,6 @@
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
......@@ -42,11 +41,14 @@ bool profile_grouped_gemm_impl(int do_verification,
const std::vector<int>& StrideAs,
const std::vector<int>& StrideBs,
const std::vector<int>& StrideCs,
int kbatch = 1,
int n_warmup = 1,
int n_iter = 10)
const std::vector<int>& kbatches = {},
int n_warmup = 1,
int n_iter = 10)
{
bool pass = true;
// TODO: Fixme - we do not pass compute data type here but need it
// to compute error thresholds.
using ComputeDataType = ADataType;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
......@@ -75,6 +77,7 @@ bool profile_grouped_gemm_impl(int do_verification,
std::vector<Tensor<CDataType>> c_m_n_host_results;
std::vector<Tensor<CDataType>> c_m_n_device_results;
ComputeDataType max_abs_in_val = 0.f;
for(std::size_t i = 0; i < group_count; i++)
{
a_m_k.push_back(
......@@ -93,17 +96,18 @@ bool profile_grouped_gemm_impl(int do_verification,
<< i << "]:" << b_k_n[i].mDesc << ", c_m_n_device_results[" << i
<< "]:" << c_m_n_device_results[i].mDesc << std::endl;
}
std::size_t num_thread = 1;
switch(init_method)
{
case 0: break;
case 1:
a_m_k[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
b_k_n[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
ck::utils::FillUniformDistributionIntegerValue<ADataType>{-2.f, 2.f}(a_m_k[i]);
ck::utils::FillUniformDistributionIntegerValue<BDataType>{-2.f, 2.f}(b_k_n[i]);
max_abs_in_val = 2.f;
break;
default:
a_m_k[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
b_k_n[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
ck::utils::FillUniformDistribution<ADataType>{-0.5f, 0.5f}(a_m_k[i]);
ck::utils::FillUniformDistribution<BDataType>{-0.5f, 0.5f}(b_k_n[i]);
max_abs_in_val = 0.5f;
}
}
......@@ -164,7 +168,20 @@ bool profile_grouped_gemm_impl(int do_verification,
BElementOp,
CElementOp>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
// If kbatch would be bigger than 1, then we will use SplitK version.
using DeviceOpSplitK = ck::tensor_operation::device::DeviceGroupedGemmSplitK<ALayout,
BLayout,
ck::Tuple<>,
CLayout,
ADataType,
BDataType,
ck::Tuple<>,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
if(op_ptrs.size() <= 0)
......@@ -205,7 +222,6 @@ bool profile_grouped_gemm_impl(int do_verification,
ref_invoker.Run(ref_argument);
}
}
// profile device GEMM instances
for(auto& gemm_ptr : op_ptrs)
{
......@@ -221,43 +237,44 @@ bool profile_grouped_gemm_impl(int do_verification,
auto invoker_ptr = gemm_ptr->MakeInvokerPointer();
DeviceMem gemm_desc_workspace(gemm_ptr->GetWorkSpaceSize(argument_ptr.get()));
std::size_t workspace_size = gemm_ptr->GetWorkSpaceSize(argument_ptr.get());
std::size_t kargs_size = gemm_ptr->GetDeviceKernelArgSize(argument_ptr.get());
gemm_ptr->SetWorkSpacePointer(argument_ptr.get(), gemm_desc_workspace.GetDeviceBuffer());
std::string gemm_name = gemm_ptr->GetTypeString();
DeviceMem gemm_workspace, gemm_kargs;
using DeviceOpSplitK = ck::tensor_operation::device::DeviceGroupedGemmSplitK<ALayout,
BLayout,
ck::Tuple<>,
CLayout,
ADataType,
BDataType,
ck::Tuple<>,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
// skip non-splitk grouped_gemm
if(dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get()) == nullptr)
// The following is necessary since TwoStage kernel is using additional memory both
// for Workspace and kernel arguments.
if(kargs_size > 0)
{
continue;
gemm_kargs.Realloc(kargs_size);
gemm_ptr->SetDeviceKernelArgs(argument_ptr.get(), gemm_kargs.GetDeviceBuffer());
}
if(workspace_size > 0 && workspace_size != kargs_size)
{
gemm_workspace.Realloc(workspace_size);
gemm_ptr->SetWorkSpacePointer(argument_ptr.get(), gemm_workspace.GetDeviceBuffer());
}
std::string gemm_name = gemm_ptr->GetTypeString();
std::vector<int> kbatch_list = {1, 2, 4, 8, 12, 16, 20, 24, 32, 48, 64};
if(kbatch > 0)
// If the user will provide not empty kbatches list, then we test predefined set of kbatch
// values.
if(!kbatches.empty())
{
kbatch_list = {kbatch};
kbatch_list = kbatches;
}
for(std::size_t j = 0; j < kbatch_list.size(); j++)
{
auto kbatch_curr = kbatch_list[j];
dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get())
->SetKBatchSize(argument_ptr.get(), kbatch_curr);
if(kbatch_curr > 1 && dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get()) != nullptr)
{
dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get())
->SetKBatchSize(argument_ptr.get(), kbatch_curr);
}
if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
{
......@@ -272,23 +289,18 @@ bool profile_grouped_gemm_impl(int do_verification,
bool instance_pass = true;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
c_device_buf[i]->FromDevice(c_m_n_device_results[i].mData.data());
if(std::is_same_v<CDataType, ck::half_t> && kbatch_curr > 1)
{
instance_pass =
instance_pass && ck::utils::check_err(c_m_n_device_results[i],
c_m_n_host_results[i],
"Error: Incorrect results!",
0.06);
}
else
{
instance_pass =
instance_pass && ck::utils::check_err(c_m_n_device_results[i],
c_m_n_host_results[i]);
}
auto atol = ck::utils::get_absolute_threshold<ComputeDataType, CDataType>(
max_abs_in_val, gemm_descs[i].K_);
auto rtol = ck::utils::get_relative_threshold<ComputeDataType, CDataType>(
gemm_descs[i].K_);
instance_pass =
instance_pass && ck::utils::check_err(c_m_n_device_results[i],
c_m_n_host_results[i],
"Error: Incorrect results!",
rtol,
atol);
if(do_log)
{
......@@ -311,11 +323,12 @@ bool profile_grouped_gemm_impl(int do_verification,
pass = pass && instance_pass;
}
float ave_time = invoker_ptr->Run(
argument_ptr.get(), StreamConfig{nullptr, time_kernel, 0, n_warmup, n_iter});
if(time_kernel)
{
float ave_time =
invoker_ptr->Run(argument_ptr.get(),
StreamConfig{nullptr, time_kernel, 0, n_warmup, n_iter});
std::size_t flop = 0, num_btype = 0;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
......
......@@ -143,8 +143,7 @@ bool profile_grouped_gemm_multiply_tile_loop_impl(int do_verification,
p_ds.reserve(group_count);
p_e.reserve(group_count);
using KernelArguments =
ck::tensor_operation::device::GroupedGemmTileLoopKernelArguments<NumDTensor>;
using KernelArguments = ck::tensor_operation::device::GroupedGemmKernelArgument<NumDTensor>;
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
std::vector<KernelArguments> gemm_kargs;
......
......@@ -127,7 +127,7 @@ bool profile_grouped_gemm_tile_loop_impl(int do_verification,
p_b.reserve(group_count);
p_c.reserve(group_count);
using KernelArguments = ck::tensor_operation::device::GroupedGemmTileLoopKernelArguments<>;
using KernelArguments = ck::tensor_operation::device::GroupedGemmKernelArgument<>;
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
std::vector<KernelArguments> gemm_kargs;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_splitk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multiple_d_splitk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename ALayout,
typename BLayout,
typename CLayout>
bool profile_grouped_gemm_two_stage_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
const std::vector<int>& Ms,
const std::vector<int>& Ns,
const std::vector<int>& Ks,
const std::vector<int>& StrideAs,
const std::vector<int>& StrideBs,
const std::vector<int>& StrideCs,
int kbatch = 1,
int n_warmup = 1,
int n_iter = 10)
{
bool pass = true;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
std::size_t group_count = Ms.size();
if(!(group_count == Ns.size() && group_count == Ks.size() && group_count == StrideAs.size() &&
group_count == StrideBs.size() && group_count == StrideCs.size()))
{
throw std::runtime_error("wrong! inconsistent M/N/Ks, StrideA/B/Cs size\n");
}
std::vector<Tensor<ADataType>> a_m_k;
std::vector<Tensor<BDataType>> b_k_n;
std::vector<Tensor<CDataType>> c_m_n_host_results;
std::vector<Tensor<CDataType>> c_m_n_device_results;
for(std::size_t i = 0; i < group_count; i++)
{
a_m_k.push_back(
Tensor<ADataType>(f_host_tensor_descriptor(Ms[i], Ks[i], StrideAs[i], ALayout{})));
b_k_n.push_back(
Tensor<BDataType>(f_host_tensor_descriptor(Ks[i], Ns[i], StrideBs[i], BLayout{})));
c_m_n_device_results.push_back(
Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{})));
c_m_n_host_results.push_back(
Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{})));
if(ck::EnvIsEnabled(CK_ENV(CK_LOGGING)))
{
std::cout << "group: " << i << " a_m_k[" << i << "]:" << a_m_k[i].mDesc << ", b_k_n["
<< i << "]:" << b_k_n[i].mDesc << ", c_m_n_device_results[" << i
<< "]:" << c_m_n_device_results[i].mDesc << std::endl;
}
std::size_t num_thread = 1;
switch(init_method)
{
case 0: break;
case 1:
a_m_k[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
b_k_n[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
break;
default:
a_m_k[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
b_k_n[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
}
}
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
std::vector<DeviceMemPtr> a_device_buf, b_device_buf, c_device_buf;
a_device_buf.reserve(group_count);
b_device_buf.reserve(group_count);
c_device_buf.reserve(group_count);
std::vector<const void*> p_a, p_b;
std::vector<void*> p_c;
p_a.reserve(group_count);
p_b.reserve(group_count);
p_c.reserve(group_count);
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
gemm_descs.reserve(group_count);
for(std::size_t i = 0; i < group_count; i++)
{
a_device_buf.emplace_back(
std::make_unique<DeviceMem>(sizeof(ADataType) * a_m_k[i].mDesc.GetElementSpaceSize()));
b_device_buf.emplace_back(
std::make_unique<DeviceMem>(sizeof(BDataType) * b_k_n[i].mDesc.GetElementSpaceSize()));
c_device_buf.emplace_back(std::make_unique<DeviceMem>(
sizeof(CDataType) * c_m_n_device_results[i].mDesc.GetElementSpaceSize()));
a_device_buf[i]->ToDevice(a_m_k[i].mData.data());
b_device_buf[i]->ToDevice(b_k_n[i].mData.data());
gemm_descs.push_back({Ms[i], Ns[i], Ks[i], StrideAs[i], StrideBs[i], StrideCs[i], {}});
p_a.push_back(a_device_buf[i]->GetDeviceBuffer());
p_b.push_back(b_device_buf[i]->GetDeviceBuffer());
p_c.push_back(c_device_buf[i]->GetDeviceBuffer());
}
using DeviceOp = ck::tensor_operation::device::DeviceGroupedGemm<ALayout,
BLayout,
ck::Tuple<>,
CLayout,
ADataType,
BDataType,
ck::Tuple<>,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
if(op_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device GEMM instance found");
}
std::string best_gemm_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
float best_kbatch = 0;
auto p_ds = std::vector<std::array<const void*, 0>>{};
if(do_verification)
{
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_m_k[i],
b_k_n[i],
c_m_n_host_results[i],
a_element_op,
b_element_op,
c_element_op);
ref_invoker.Run(ref_argument);
}
}
// profile device GEMM instances
for(auto& gemm_ptr : op_ptrs)
{
auto argument_ptr =
gemm_ptr->MakeArgumentPointer(p_a,
p_b,
p_ds,
p_c,
gemm_descs,
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{});
auto invoker_ptr = gemm_ptr->MakeInvokerPointer();
DeviceMem gemm_desc_workspace(gemm_ptr->GetWorkSpaceSize(argument_ptr.get()));
gemm_ptr->SetWorkSpacePointer(argument_ptr.get(), gemm_desc_workspace.GetDeviceBuffer());
std::string gemm_name = gemm_ptr->GetTypeString();
using DeviceOpSplitK =
ck::tensor_operation::device::DeviceGroupedGemmMultipleDSplitK<ALayout,
BLayout,
ck::Tuple<>,
CLayout,
ADataType,
BDataType,
ck::Tuple<>,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
// skip non-splitk grouped_gemm
if(dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get()) == nullptr)
{
continue;
}
std::vector<int> kbatch_list = {1, 2, 4, 8, 12, 16, 20, 24, 32, 48, 64};
if(kbatch > 0)
{
kbatch_list = {kbatch};
}
for(std::size_t j = 0; j < kbatch_list.size(); j++)
{
auto kbatch_curr = kbatch_list[j];
dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get())
->SetKBatchSize(argument_ptr.get(), kbatch_curr);
DeviceMem gemm_arg_dev_mem(dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get())
->GetDeviceKernelArgSize(argument_ptr.get()));
dynamic_cast<DeviceOpSplitK*>(gemm_ptr.get())
->SetDeviceKernelArgs(argument_ptr.get(), gemm_arg_dev_mem.GetDeviceBuffer());
if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
{
gemm_desc_workspace.SetZero();
for(std::size_t i = 0; i < gemm_descs.size(); i++)
c_device_buf[i]->SetZero();
invoker_ptr->Run(argument_ptr.get(),
StreamConfig{nullptr, false, 0, n_warmup, n_iter});
if(do_verification)
{
bool instance_pass = true;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
c_device_buf[i]->FromDevice(c_m_n_device_results[i].mData.data());
if(std::is_same_v<CDataType, ck::half_t> && kbatch_curr > 1)
{
instance_pass =
instance_pass && ck::utils::check_err(c_m_n_device_results[i],
c_m_n_host_results[i],
"Error: Incorrect results!",
0.06);
}
else
{
instance_pass =
instance_pass && ck::utils::check_err(c_m_n_device_results[i],
c_m_n_host_results[i]);
}
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k[i].mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n[i].mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_device: ", c_m_n_device_results[i].mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_host : ", c_m_n_host_results[i].mData, ",")
<< std::endl;
}
}
std::cout << "Instance: " << gemm_name << " verification "
<< (instance_pass ? "SUCCEED" : "FAILED") << std::endl;
pass = pass && instance_pass;
}
float ave_time = invoker_ptr->Run(
argument_ptr.get(), StreamConfig{nullptr, time_kernel, 0, n_warmup, n_iter});
if(time_kernel)
{
std::size_t flop = 0, num_btype = 0;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
flop += std::size_t(2) * Ms[i] * Ns[i] * Ks[i];
num_btype += sizeof(ADataType) * Ms[i] * Ks[i] +
sizeof(BDataType) * Ks[i] * Ns[i] +
sizeof(CDataType) * Ms[i] * Ns[i];
}
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops
<< " TFlops, " << gb_per_sec << " GB/s, " << gemm_name << ", KBatch "
<< kbatch_curr << std::endl;
if(tflops > best_tflops)
{
best_gemm_name = gemm_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
best_kbatch = kbatch_curr;
}
}
}
else
{
std::cout << "Instance: " << gemm_name << ", does not support this GEMM problem"
<< std::endl;
}
}
}
if(time_kernel)
{
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_gemm_name << ", KBatch = " << best_kbatch
<< std::endl;
}
return pass;
}
} // namespace profiler
} // namespace ck
......@@ -43,7 +43,6 @@ if(SUPPORTED_GPU_TARGETS MATCHES "gfx9")
list(APPEND PROFILER_SOURCES profile_gemm_add_silu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_relu_add_layernorm.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fixed_nk.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_two_stage.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_tile_loop.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_multiply_tile_loop.cpp)
......
......@@ -85,8 +85,10 @@ int profile_gemm_universal_streamk(int argc, char* argv[])
using F32 = float;
using F16 = ck::half_t;
// using BF16 = ck::bhalf_t;
// using F8 = ck::f8_t;
#if defined(CK_USE_FP8_ON_UNSUPPORTED_ARCH) || defined(CK_USE_GFX94)
using F8 = ck::f8_t;
#endif
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
......@@ -145,6 +147,24 @@ int profile_gemm_universal_streamk(int argc, char* argv[])
{
return profile(F16{}, F16{}, F32{}, F16{}, Row{}, Col{}, Row{});
}
#if defined(CK_USE_FP8_ON_UNSUPPORTED_ARCH) || defined(CK_USE_GFX94)
else if(data_type == GemmDataType::F16_F8_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
return profile(F16{}, F8{}, F32{}, F16{}, Row{}, Row{}, Row{});
}
else if(data_type == GemmDataType::F16_F8_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
return profile(F16{}, F8{}, F32{}, F16{}, Row{}, Col{}, Row{});
}
else if(data_type == GemmDataType::F8_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
return profile(F8{}, F16{}, F32{}, F16{}, Row{}, Row{}, Row{});
}
else if(data_type == GemmDataType::F8_F16_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
return profile(F8{}, F16{}, F32{}, F16{}, Row{}, Col{}, Row{});
}
#endif
else
{
std::cout << "this data_type & layout is not implemented" << std::endl;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment