Commit bbbedc1f authored by aska-0096's avatar aska-0096
Browse files

add fp16 instances

parent 6f24c2d8
......@@ -25,9 +25,7 @@ template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using FP8 = ck::f8_t;
using F32 = float;
......@@ -41,7 +39,7 @@ using CShuffleDataType = F32;
using D0DataType = F32;
using D1DataType = F32;
using DsDataType = ck::Tuple<D0DataType, D1DataType>;
using EDataType = F16;
using EDataType = BF16;
using A0Layout = Row;
using B0Layout = Col;
......@@ -67,6 +65,17 @@ struct MultiplyMultiply
e = ck::type_convert<F16>(x0_f);
}
template <>
__host__ __device__ constexpr void operator()<BF16, float, float, float>(BF16& e,
const float& c,
const float& d0,
const float& d1) const
{
const float x0_f = c * d0 * d1;
e = ck::type_convert<BF16>(x0_f);
}
template <>
__host__ __device__ constexpr void operator()<ck::half_t, int, float, float>(
ck::half_t& e, const int& c, const float& d0, const float& d1) const
......@@ -76,6 +85,16 @@ struct MultiplyMultiply
e = ck::type_convert<ck::half_t>(x0_f);
}
template <>
__host__ __device__ constexpr void operator()<ck::bhalf_t, int, float, float>(
ck::bhalf_t& e, const int& c, const float& d0, const float& d1) const
{
const float x0_f =
ck::type_convert<float>(c) * ck::type_convert<float>(d0) * ck::type_convert<float>(d1);
e = ck::type_convert<ck::bhalf_t>(x0_f);
}
};
void preShuffleBuffer(const FP8* src,
......@@ -160,10 +179,10 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShu
// < Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 256, 32, 128, 256, 16, 16, 32, 32, 1, 1, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v3, FP8>;
< Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType,
AElementOp, BElementOp, CDEElementOp, GemmSpec, 256,
32, 256, 128,
256, 256, 128,
16, 16,
32, 32,
1, 2,
8, 2,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0,
1, 1, S<1, 32, 1, 8>, S<8, 8, 1>,
......@@ -275,8 +294,8 @@ int main(int argc, char* argv[])
default:
a0_m_k.GenerateTensorValue(GeneratorTensor_3<A0DataType>{0.0, 1.0});
b0_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{-0.5, 0.5});
d0_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5});
d1_m_n.GenerateTensorValue(GeneratorTensor_3<D1DataType>{-0.5, 0.5});
d0_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{0.0, 1.0});
d1_m_n.GenerateTensorValue(GeneratorTensor_3<D1DataType>{0.0, 1.0});
}
DeviceMem a0_device_buf(sizeof(A0DataType) * a0_m_k.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_k_n.mDesc.GetElementSpaceSize());
......
......@@ -17,7 +17,6 @@ namespace tensor_operation {
namespace device {
namespace instance {
#if 0
#if(defined(CK_ENABLE_F16) || defined(CK_ENABLE_FP8))
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p1_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
......@@ -30,9 +29,10 @@ void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_m
F16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances);
MultiplyMultiply>>>&
instances);
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p1_padding_instances(
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p2_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
......@@ -43,9 +43,10 @@ void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_m
F16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances);
MultiplyMultiply>>>&
instances);
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p2_default_instances(
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p3_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
......@@ -56,9 +57,11 @@ void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_m
F16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances);
MultiplyMultiply>>>&
instances);
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p2_padding_instances(
#if 0
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p1_padding_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
......@@ -71,7 +74,8 @@ void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_m
PassThrough,
MultiplyMultiply>>>& instances);
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p3_default_instances(
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p2_padding_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
......@@ -223,32 +227,30 @@ struct DeviceOperationInstanceFactory<
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
// TODO: Add MFMA layout into tensor layout
#if 0
#if(defined(CK_ENABLE_BF16) || defined(CK_ENABLE_FP8))
#if(defined(CK_ENABLE_F16) || defined(CK_ENABLE_FP8))
if constexpr(is_same_v<ADataType, f8_t> && is_same_v<BDataType, f8_t> &&
is_same_v<CDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_comp_default_instances(
add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p1_default_instances(
op_ptrs);
add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_comp_kpadding_instances(
add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p2_default_instances(
op_ptrs);
add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_mem_v1_default_instances(
add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p3_default_instances(
op_ptrs);
add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_mem_v1_kpadding_instances(
#if 0
add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p1_padding_instances(
op_ptrs);
add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_mem_v2_default_instances(
add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p2_padding_instances(
op_ptrs);
add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_mem_v2_kpadding_instances(
add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p3_padding_instances(
op_ptrs);
#endif
}
}
#endif
#endif
#if(defined(CK_ENABLE_BF16) || defined(CK_ENABLE_FP8))
if constexpr(is_same_v<ADataType, f8_t> && is_same_v<BDataType, f8_t> &&
......
......@@ -3,18 +3,32 @@ set(GEMM_MULTIPLY_MULTIPLY_WEIGHT_PRESHUFFLE_INSTANCES)
list(APPEND GEMM_MULTIPLY_MULTIPLY_WEIGHT_PRESHUFFLE_INSTANCES
device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p1_default_instance.cpp
# device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p1_padding_instance.cpp
device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p2_default_instance.cpp
# device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p2_padding_instance.cpp
device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p3_default_instance.cpp
# device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p1_padding_instance.cpp
# device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p2_padding_instance.cpp
# device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p3_padding_instance.cpp
device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p1_default_instance.cpp
device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p2_default_instance.cpp
device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p3_default_instance.cpp
# device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p1_padding_instance.cpp
# device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p2_padding_instance.cpp
# device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p3_padding_instance.cpp
)
set_source_files_properties(device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p1_default_instance.cpp PROPERTIES COMPILE_OPTIONS ";-mllvm;-greedy-reverse-local-assignment=1")
# set_source_files_properties(device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p1_padding_instance.cpp PROPERTIES COMPILE_OPTIONS ";-mllvm;-greedy-reverse-local-assignment=1")
set_source_files_properties(device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p2_default_instance.cpp PROPERTIES COMPILE_OPTIONS ";-mllvm;-greedy-reverse-local-assignment=1")
# set_source_files_properties(device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p2_padding_instance.cpp PROPERTIES COMPILE_OPTIONS ";-mllvm;-greedy-reverse-local-assignment=1")
set_source_files_properties(device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p3_default_instance.cpp PROPERTIES COMPILE_OPTIONS ";-mllvm;-greedy-reverse-local-assignment=1")
# set_source_files_properties(device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p1_padding_instance.cpp PROPERTIES COMPILE_OPTIONS ";-mllvm;-greedy-reverse-local-assignment=1")
# set_source_files_properties(device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p2_padding_instance.cpp PROPERTIES COMPILE_OPTIONS ";-mllvm;-greedy-reverse-local-assignment=1")
# set_source_files_properties(device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_bf16_mk_mfma_mn_p3_padding_instance.cpp PROPERTIES COMPILE_OPTIONS ";-mllvm;-greedy-reverse-local-assignment=1")
set_source_files_properties(device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p1_default_instance.cpp PROPERTIES COMPILE_OPTIONS ";-mllvm;-greedy-reverse-local-assignment=1")
set_source_files_properties(device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p2_default_instance.cpp PROPERTIES COMPILE_OPTIONS ";-mllvm;-greedy-reverse-local-assignment=1")
set_source_files_properties(device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p3_default_instance.cpp PROPERTIES COMPILE_OPTIONS ";-mllvm;-greedy-reverse-local-assignment=1")
# set_source_files_properties(device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p1_padding_instance.cpp PROPERTIES COMPILE_OPTIONS ";-mllvm;-greedy-reverse-local-assignment=1")
# set_source_files_properties(device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p2_padding_instance.cpp PROPERTIES COMPILE_OPTIONS ";-mllvm;-greedy-reverse-local-assignment=1")
# set_source_files_properties(device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16/device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p3_padding_instance.cpp PROPERTIES COMPILE_OPTIONS ";-mllvm;-greedy-reverse-local-assignment=1")
add_instance_library(device_gemm_multiply_multiply_weight_preshuffle_instance ${GEMM_MULTIPLY_MULTIPLY_WEIGHT_PRESHUFFLE_INSTANCES})
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3_b_preshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F8 = f8_t;
using F16 = half_t;
using F32 = float;
using Row = tensor_layout::gemm::RowMajor;
using Col = tensor_layout::gemm::ColumnMajor;
template <index_t... Is>
using S = Sequence<Is...>;
using PassThrough = element_wise::PassThrough;
using MultiplyMultiply = element_wise::MultiplyMultiply;
static constexpr auto GemmDefault = GemmSpecialization::Default;
static constexpr auto GemmKPadding = GemmSpecialization::KPadding;
static constexpr auto GemmMNPadding = GemmSpecialization::MNPadding;
static constexpr auto GemmMNKPadding = GemmSpecialization::MNKPadding;
static constexpr auto Intrawave = BlockGemmPipelineScheduler::Intrawave;
static constexpr auto Interwave = BlockGemmPipelineScheduler::Interwave;
template <GemmSpecialization GemmSpec>
using device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p1_instances =
std::tuple<
// clang-format off
//################################| ALayout| BLayout| DsLayout| ELayout|AData| BData| DsData| EData| AccData| Cshuffle| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1|MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Block-wiseGemm| Block-wiseGemm|
//################################| | | | | Type| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if defined(__gfx94__) || defined(CK_USE_GFX94) || defined(CK_USE_FP8_ON_UNSUPPORTED_ARCH)
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 256, 128, 128, 16, 16, 32, 32, 8, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 128, 128, 128, 16, 16, 32, 32, 4, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 128, 128, 16, 16, 32, 32, 2, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 128, 128, 16, 16, 32, 32, 1, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
// N 256
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 256, 256, 128, 16, 16, 32, 32, 8, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 128, 256, 128, 16, 16, 32, 32, 4, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 256, 128, 16, 16, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 256, 128, 16, 16, 32, 32, 1, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
// N 512
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 512, 128, 16, 16, 32, 32, 2, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 512, 128, 16, 16, 32, 32, 1, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>
#endif
// clang-format on
>;
template <GemmSpecialization GemmSpec>
using device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p2_instances =
std::tuple<
// clang-format off
//################################| ALayout| BLayout| DsLayout| ELayout|AData| BData| DsData| EData| AccData| Cshuffle| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1|MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Block-wiseGemm| Block-wiseGemm|
//################################| | | | | Type| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if defined(__gfx94__) || defined(CK_USE_GFX94) || defined(CK_USE_FP8_ON_UNSUPPORTED_ARCH)
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 128, 128, 256, 16, 16, 32, 32, 4, 1, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 128, 256, 16, 16, 32, 32, 2, 1, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 128, 256, 16, 16, 32, 32, 1, 1, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 128, 512, 16, 16, 32, 32, 2, 1, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 128, 512, 16, 16, 32, 32, 1, 1, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
// N 256
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 128, 256, 256, 16, 16, 32, 32, 4, 2, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 256, 256, 16, 16, 32, 32, 2, 2, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 256, 256, 16, 16, 32, 32, 1, 2, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 256, 512, 16, 16, 32, 32, 2, 2, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 256, 512, 16, 16, 32, 32, 1, 2, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
// N 512
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 64, 512, 256, 16, 16, 32, 32, 2, 4, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 32, 512, 256, 16, 16, 32, 32, 1, 4, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>
#endif
// clang-format on
>;
template <GemmSpecialization GemmSpec>
using device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p3_instances =
std::tuple<
// clang-format off
//################################| ALayout| BLayout| DsLayout| ELayout|AData| BData| DsData| EData| AccData| Cshuffle| A| B| C| GEMM| Block| MPer| NPer| KPer| AK1| BK1|MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Block-wiseGemm| Block-wiseGemm|
//################################| | | | | Type| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Specialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector| Pipeline| Pipeline|
//################################| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl| Scheduler| Verision|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if defined(__gfx94__) || defined(CK_USE_GFX94) || defined(CK_USE_FP8_ON_UNSUPPORTED_ARCH)
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 16, 64, 256, 16, 16, 16, 16, 1, 1, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 16>, S<4, 4, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 16, 128, 256, 16, 16, 16, 16, 1, 2, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 16>, S<4, 4, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 16, 256, 256, 16, 16, 16, 16, 1, 4, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 16>, S<4, 4, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 16, 512, 256, 16, 16, 16, 16, 1, 8, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 16>, S<4, 4, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 16, 64, 512, 16, 16, 16, 16, 1, 1, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 16>, S<4, 4, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 16, 128, 512, 16, 16, 16, 16, 1, 2, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 16>, S<4, 4, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>,
DeviceGemmMultiD_Xdl_CShuffle_V3_BPreshuffle< Row, Col, Tuple<Row, Col>, Row, F8, F8, Tuple<F32, F32>, F16, F32, F32, PassThrough, PassThrough, MultiplyMultiply, GemmSpec, 256, 16, 256, 512, 16, 16, 16, 16, 1, 4, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<32, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 16>, S<4, 4, 1>, BlockGemmPipelineScheduler::Intrawave, BlockGemmPipelineVersion::v3, F8>
#endif
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p1_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
F8,
F8,
Tuple<F32, F32>,
F16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p1_instances<
GemmDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p1_padding_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
F8,
F8,
Tuple<F32, F32>,
F16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p1_instances<
GemmKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p2_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
F8,
F8,
Tuple<F32, F32>,
F16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p2_instances<
GemmDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p2_padding_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
F8,
F8,
Tuple<F32, F32>,
F16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p2_instances<
GemmKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p3_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
F8,
F8,
Tuple<F32, F32>,
F16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p3_instances<
GemmDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p3_padding_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitKBPreShuffle<Row,
Col,
Tuple<Row, Col>,
Row,
F8,
F8,
Tuple<F32, F32>,
F16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_multiply_weight_preshuffle_xdl_f8_f8_f16_mk_mfma_mn_p3_instances<
GemmKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -74,7 +74,7 @@ int profile_gemm_multiply_multiply_weight_preshuffle(int argc, char* argv[])
using F32 = float;
using BF16 = ck::bhalf_t;
// using F16 = ck::half_t;
using F16 = ck::half_t;
using F8 = ck::f8_t;
// using I8 = int8_t;
// using I32 = int;
......@@ -146,7 +146,6 @@ int profile_gemm_multiply_multiply_weight_preshuffle(int argc, char* argv[])
return pass ? 0 : 1;
};
#if 0
if(data_type == GemmDataType::F8_F8_F16 && layout == GemmMatrixLayout::MK_MFMA_MN)
{
return profile(
......@@ -157,12 +156,6 @@ int profile_gemm_multiply_multiply_weight_preshuffle(int argc, char* argv[])
return profile(
F8{}, F8{}, F8{}, F32{}, F32{}, F32{}, BF16{}, Row{}, Col{}, Row{}, Col{}, Row{});
}
#endif
if(data_type == GemmDataType::F8_F8_BF16 && layout == GemmMatrixLayout::MK_MFMA_MN)
{
return profile(
F8{}, F8{}, F8{}, F32{}, F32{}, F32{}, BF16{}, Row{}, Col{}, Row{}, Col{}, Row{});
}
else
{
std::cout << "this data_type & layout is not implemented" << std::endl;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment