"vscode:/vscode.git/clone" did not exist on "f4b78d137cc2e07ebbc3b3b7de1e211da12bba64"
Unverified Commit b79c7afb authored by Illia Silin's avatar Illia Silin Committed by GitHub
Browse files

Merging staging branch into master. (#610)



* Refactor block to C tile map  (#235)

* refactor block-to-ctile-map

* gridwise gemm block2ctile generic validity check

* format

* amend split-k gemm block2ctile map refactor

* add test

* format

* amend

* revert to calculating batch index in kernel instead of passing as block_id_z

* move file

* add valid ctile index check to gridwise v2r4

* remove options.hpp.in (#240)

* example of conv bwd weight 1d/2d/3d fp32/fp16/bf16 xdl (#244)

* enable example of conv 1d/3d for bwd weight

* make bf16 kernel do not use atomic add

* using new gridwise gemm for bwd weight on convnd bwd weight
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* fix build (#246)

* fix build

* Revert "fix build"

This reverts commit d73102384bfbb609e487d6d0cd04a3c8c9c4ec9e.

* post PR #235 merge fix

* amend
Co-authored-by: default avatarAnthony Chang <ac.chang@outlook.com>

* add GetWorkSpaceSize to base arg (#253)

* add GetWorkSpaceSize to base arg and make an example on convnd_bwd_weight

* remove redundant compute

* use datatype and split k to check whether a workspace is used

* remove unused computation for work space size

* Add performance tests as a stage of CI. (#247)

* modify ckProfiler_gemm output

* fix syntax

* change ckProfiler output and return 0

* fix syntax

* output datatype

* fix syntax

* output datatype in another way

* fix syntax

* fix syntax

* test return values of ckProfiler

* add layout info and tests, make sure ckprofiler returns 0

* fix syntax

* change layout output

* fix syntax

* fix syntax again

* update script to process perf results

* rearrange jenkins stages

* fix typo

* add python packages to Docker file

* adding setuptools-rust package

* modify parsing for new test parameters

* test db credentials on jenkins

* fix syntax

* update python script to handle incomplete lines

* ungrade python to 3.8 and write the gemm_params table

* add sqlalchemy package to docker

* move perf data processing to master node

* move the master node inside a steps region

* add new stage for result processing

* move results processing to separate stage

* reduce number of tests to speedup debugging

* pass config to processPerfResults stage

* run script on master in a docker container

* replace show_node_info

* try loading docker on master node again

* use ansible node instead of master

* get rid of pymysql package

* try ssh connection using paramiko

* put back pymysql

* put the perf data processing back on the gpu node

* put back artifact definition

* archive the perf_log before parsing

* clean up jenkinsfile, fix parsing

* fix typo

* enable all perf tests

* put all stages in original order, finalize script

* fix gpu_arch version

* update parsing script

* remove obsolete file causing merge conflict

* Overhaul to Reducton and its dependants  (#237)

* Tiny fix in dynamic_buffer.hpp to support vectorized AtomicAdd for double type

* Update to host layer and host reduction

* Merge and remove reduction kernels

* Merge and remove reduction device interfaces and update pooling device interface

* Merge and remove useless reduction device instances

* Update to reduction profiler and reduction ctests

* Update to reduction and pooling examples and add one reduction example

* Change to reduction examples to let them testable by ctest

* Add explicit pass checking for reduction and pooling examples

* Explicit assignment of tensor shapes in example reduce_blockwise_two_call

* Use atomic_add to repace atomicAdd and add atomic_add for double type

* Add reduce ctest support for double data type

* Replace to_int_vector() by using c++ std::vector::assign()

* Keep DeviceReduceThreadWise separated from DeviceReduceBlockWise

* Merge DeviceReduceBlockWise and DeviceReduceMultiBlockAtomicAdd into DeviceReduceMultiBlock

* Add GetAtomicOperationZeroValue() support for AtomicMax

* Tiny change to reduce example README.md

* Fix some tiny issues due to branch merging

* Revoke previous change in dynamic_buffer.hpp and add atomic_add for double2_t

* Add reduce multiblock_atomic_add instances for fp64 to verify vectorized atomic_add on fp64

* Renaming

* Clean the header includings in device_reduce instances header files

* Navi21 gemm (#197)

* start adding navi21 GEMM

* navi_gemm_km_kn_mn_fp32 compiles and passes one test.

* rename variables and functions in gridwise_gemm_dlops_v1r3

* add other 3 layouts; format instance

* adding more tuning parameters

add tuning parameters for other 3 layouts

* add gemm_dlops_f16

* tmp

* add dependence of DeviceGemm::IsSupportedArg() on arch

* minor changes

* minor changes

* minor changes

* minor changes

* minor changes

* minor changes

* minor changes

* push gemm_dlops into profiler

* minor changes

* if using xdl or dlops is moved into profiler_gemm_impl

* minor changes

* minor changes

* remove is_xdl from profile_gemm_impl

* make IsSupportedArg dependent on arch for other device_gemm

* minor changes

* minor changes

* fix a bug in f_generate_tensor_value

* add 64x64x64 for gemm_dlops_int8

* add 64x64x64 for gemm_dlops_int8

* comment out 3 layouts in gemm_dlops_int8; add 32x32x32 for gemm_dlops_int8; init A values to 1

* fix

* start fixing tuning parameters

* monir

* minor changes

* minor changes

* minor changes

* fixing

* adding example

* adding example

* adding example

* add gemm fp32 example

* clean up

* use 128x128x16 as MNK tile in navi21 gemm example

* bug fix

* fix test

* use new block c tile

* clean

* fix build
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>
Co-authored-by: wangshaojie6's avatarshaojiewang <wsjmessi@163.com>

* minor fix for recent PR (#255)

* minor fix

* clean

* Tensile-style block to C tile map (#239)

* fix build

* Revert "fix build"

This reverts commit d73102384bfbb609e487d6d0cd04a3c8c9c4ec9e.

* post PR #235 merge fix

* amend

* adds tensile-stype c-tile map

* make it dynamic version

* add k-split flavor tile map

* apply tensile-style tile map to all xdl gridwise gemms

* remove dead code
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* Hotfix binary elementwise (for broadcast on fastest axis) (#254)

* Support different length of ScalarPerVector

* Add example of broadcast on fastest axis

* Typo

* Refine fastest example

* Add dimension check

* Modify fastest broadcast example to 3d

* Enforce users give scalarPerVector explicitely

* 1. Add CscalarPerVedctor
2. Not only broadcast on fastest need to set scalarPerVector to 1

* Rename var

* Move IsScalarPerVectorValid() inside IsSupportedArgument()

* Separate GridDesc_M0 into A, B and C

* rename var

* Rename var of length
Co-authored-by: default avatarrocking <chunylai@amd.com>

* Add pooling example (#257)

* Add example for computing LayerNorm mean and meansquare

* Refactor the pool2d_fwd example and add example for float type testing

* Revert "Add example for computing LayerNorm mean and meansquare"

This reverts commit df52e6f9d897b00c981baa48f291450bcd60925d.

* Tiny fix in pool2d_fwd_common.hpp

* Add FP64 XDL GEMM built-in function (#199)

* add intrin_mfma_f64_16x16x4f64

* add example

* gemm reference add double data type

* chang init data

* fix M N PerXdlops

* fix ifdef

* add comparsion config

* add conv fwd example

* format log out

* change rc matrix egister layout

* reorganize example

* reorganize example 2

* format,because merge develop

* fix call impl adding acc data type

* lost ;

* add compiler warning

* change example tunning parameters

* add test for fp64

* add instance

* add test/gemm/gemm_fp64.cpp

* fix get name issue

* remove some tunning parameter

* fix conflict

* format

* use integer value for GEMM test

* add acc data type

* remove typeid because fp16

* fix streamconfig etc bug from merging develop

* format

* remove test_gemm_xdl_fp64

* add AccDataType

* AccDataType problem
Co-authored-by: default avatarqinletao <letaoqin@amd.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* Fixing conv bug  (#258)

* debugging conv

* fix oversight where ctile map is constructed before initializing c desc

* example program should returns error code

* clean up

* changed Block2CTileMap in conv2d and convnd

* clean up

* clean up

* cleanup
Co-authored-by: default avatarAnthony Chang <ac.chang@outlook.com>

* gemm + layernorm (#261)

* Implement reduction meand and reduction square mean

* Refine file name

* Add reduce mean and square mean

* Fix parameter name

* Add normalize device op (not implement invoker::run())

* Remove epislon

* Refine deviceop

* Add 5ary elementwise for normalization

* Add layernorm example

* layerNorm verication

* Fix compiler error due to merge from develop

* Fix typo

* Fix compile error

* Refine naming

* [What] Suport non pointer for invoker and argument
[Why] Snyc coding style with gemm

* Refine folder name

* Refine class name

* Evaluate perf of the kernel

* Fix compile error

* [What] Refine perf evaluation in example of gemm + reduction
[Why] evaluation of gemm + reduction may cause verification fail. Because evaluation will not initial global memory

* clang-format

* Minor fix for recent PR (#260)

* fix example

* update IsSupportedArgument

* fix

* disable fp64 conv example as test

* Multi-kernel CGEMM (#230)

* Reference CGEMM + test stub

* Format.

* Incomplete simple implementation

* Library instances

* Sketch of tests

* Test fixes.

* Example added

* Cosmetics

* Add elementwise operation kernel and example

* Add comment

* Add template argument of dim . Prepare to support multiple dimension

* Rename example

* Support 1 dimension

* Add static assert

* Add comment

* Second auxiliary buffer added

* Extract pad

* Remove redundant argument

* Support any dimension for elementwise operation

* Remove line

* Let it be the multiple number of CU

* Move thread per block to the parameter of constructor

* Consuming binary ops to do A+B / A-B

* Fix + cosmetics + bf16 test commented out temporarily

* Format

* Enabling bf16 test

* Revert "Enabling bf16 test"

This reverts commit f497e2ba441cd38cef062839391ae9fefefdb722.

* Fix + test reenabled

* fix build

* Revert "fix build"

This reverts commit d73102384bfbb609e487d6d0cd04a3c8c9c4ec9e.

* post PR #235 merge fix

* amend

* Single workspace for cgemm + helper

* Perf calc fix

* Review remarks: static_cast

* Review remarks: binary ops templated

* Cleaning

* Removal of instances and their tests

* Review remarks from aosew addressed

* Review remark: unnecessary attribute

* Post-merge fixes

* Restrict 4gemm to PassThrough + bug fix

* Review remarks

* update licence

* change cgemm example to fp16
Co-authored-by: default avatarrocking <chunylai@amd.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>
Co-authored-by: default avatarAnthony Chang <ac.chang@outlook.com>

* Pass gemm_descs for grouped gemm via __constant__ buff (#232)

* moved gemm_descs_args into const buff

* use CK_CONSTANT_ADDRESS_SPACE instead of global constant

* clean

* moved hipMemAlloc outside of deviceOp

* add SetWorkSpacePointer

* fix ignore

* Unify the naming of the math functions used by the host and kernel (#262)

* Use the unified naming for math functions on host and HIP kernel

* Corresponding change/simplification in reduction host/profiler/examples due to unified math functions renaming

* Renaming GetReductionZeroVal() to GetIdentityValue()

* Tiny renaming in profile_reduce_impl.hpp

* More renaming in profile_reduce_impl.hpp

* Replace zeroVal by identiyVal

* Remove ck_ prefix in the naming of ck::math provided functions

* use old ctile to avoid conv2d fwd bias relu add compute error (#271)

* Adding Resnet50 test to Performance tests (#268)

* add resnet50 test to performance tests

* add blanks before gpu_arch in log files

* add resnet50 test with N=4 and process its results

* add ROCM and HIP versions to test tables

* uncomment the sql queries

* fix script syntax in jenkinsfile

* Add performance tests on MI200 in CI, reporting number of CUs, add stand-alone perf test. (#277)

* use pre-built docker instead of building a new one

* try docker.image.pull

* change syntax in docker.image()

* add 30 min timeout

* increase timeout to 3 hours

* move performance tests to first stage for testing

* set image variable to the new container name

* update image name

* check available images

* check available images in both places

* try different image name

* use image ID to refer to image

* run performance on gfx90a

* fix the gpu_arch labeling, add parameter

* move env vars out of stages

* add stand-alone performance script, MI200 tests, CU numbers

* Use new github credentials (#278)

* use pre-built docker instead of building a new one

* try docker.image.pull

* change syntax in docker.image()

* add 30 min timeout

* increase timeout to 3 hours

* move performance tests to first stage for testing

* set image variable to the new container name

* update image name

* check available images

* check available images in both places

* try different image name

* use image ID to refer to image

* run performance on gfx90a

* fix the gpu_arch labeling, add parameter

* move env vars out of stages

* add stand-alone performance script, MI200 tests, CU numbers

* dos2unix for run_perf_tests.sh

* try the new git credentials

* use env var for git credentials

* example for convnd bwd weight bf16 splitk (#265)

* add GetWorkSpaceSize to base arg and make an example on convnd_bwd_weight

* add bwd weight for bf16: init

* remove redundant compute

* use datatype and split k to check whether a workspace is used

* remove unused computation for work space size

* add some code for bfp16

* add device/grid unary op

* add unary type convert to bwd-weight example

* support bf16 splitk kernel for convnd bwd weight

* 1. remove comments. 2. add checkvalidity. 3. add gridsize computation

* add workspace size check

* fix format

* change function name

* Gemm + bias + relu + add + layernorm (#272)

* Copy "gemm reduce" to "gemm bias add reduce"

* Implement gemm bias add reduction

* Fix compiler error due to merge from develop

* Add tensor operation for gemm + bias + add + reduce

* Add gemm_bais_add_reduce to ckProfiler

* Add c1 functor

* Refine type

* Use reduceAccDataType instead of explicitly float

* Change to use check_err()

* Do relu in float32 instead of bhalf_t. Because bhalf_t is unsigned

* Refactor relu. using type_trait instead of overloading

* Rename DxsReduceAccElementwiseOperation to DxsReduceAccElementwiseOperation

* Fix denominator

* Refine nameing

* Fix denominator  in host

* Remove useless include header

* Use AccDataType

* Fix static_cast order

* Refine type

* [What] Remove tuple type in the base class
[Why] External api depend on base class. if base class has relationship with type, we will need many class for different type

* add p_workspace to baseargument (#275)

* use universal workspace pointer in bwd-weight (#286)

* Regulate reduction accumulator operations and Element-wise operations (#274)

* Remove template from Reducton operation classes and add template to their operator() and GetIdentityValue() interfaces

* Change to unary elementwise operators and the reduce_unary_operator (class for mapping) and dependent variations in all host layers

* Remove the data type template parameter from reduce_binary_operator (class for mapping) and dependent variations in host layers

* Add InMemoryDataOperatonSupportedOnDataType to check the matching between data type and InMemoryDataOperation

* Use struct-scope operator template instantiation for binary and unary element-wise operations

* Change a few more elementwise operations to use template for operator()

* Tiny correction in Normalize operator

* Add static_assert to check the data type appliability for some reduction accumulator and element-wise operatons

* Correction in some examples with regard to using ReduceAccDataType

* Use static_assert for UnaryDivide

* Update to merged codes to use Element-wise operations and Reduction Accumulator operations correctly

* Tiny fix with regard to SetWorkSpacePointer()

* Don't look up the /sys/module/amdgpu/version file. (#287)

* use pre-built docker instead of building a new one

* try docker.image.pull

* change syntax in docker.image()

* add 30 min timeout

* increase timeout to 3 hours

* move performance tests to first stage for testing

* set image variable to the new container name

* update image name

* check available images

* check available images in both places

* try different image name

* use image ID to refer to image

* run performance on gfx90a

* fix the gpu_arch labeling, add parameter

* move env vars out of stages

* add stand-alone performance script, MI200 tests, CU numbers

* dos2unix for run_perf_tests.sh

* try the new git credentials

* use env var for git credentials

* don't look up /sys/module/amdgpu/version
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* GEMM with Multiple Source, GEMM+Bias+Add+FastGeLU example and ckProfiler (#241)

* ad gelu and fast_gelu

* added GeLU and fast GeLU

* clean up

* add gemm+fastgelu example

* add gemm+gelu instances

* update profiler

* clean up

* clean up

* adding gemm+bias+activation

* clean

* adding bias

* clean

* adding gemm multiple d

* debugging

* add gemm bias add fastgelu

* rename, clean

* refactoring; add readme

* refactor

* refactor

* refactor

* refactor

* refactor

* refactor

* fix

* fix

* update example

* update example

* rename

* update example

* add ckProfiler

* clean

* clean

* clean

* clean

* add comment

* use type_convert

* clean

* clean element wise op

* update readme and script (#290)

* bring up to date with the usage of __builtin_amdgcn_sched_barrier (#293)

* Create MIT LICENSE (#229)

* Create LICENSE

* add contributors, add license into config.hpp

* update

* Standalone softmax kernel (#284)

* initial stub for standalone softmax

* start device_softmax_mk_to_mk as a wrapper to device_reduce_mk_to_m

* host softmax validates

* compiles; to implement beta scaling

* use NaN trick to efficiently ignore OOB values during sum of exponentials

* freeload device_reduce's utility functions

* clean up interface

* adding prior value (beta scaling)

* remove restriction related to perf considerations

* apply clang-format

* clean; disable diagnostics

* resolve conflicts

* add exp wrapper

* honor HostTensorDesc interface; allow implicit cast from different vector<T> type

* test softmax for fp16/fp32

* update readme

* amend commit NaN trick

* remove redundant param added during development

* format

* replace ScalarDataType with AccDataType

* separate out test programs by precision type

* move softmax sample code to its own folder

* format

* keep up with recent changes in reduction API

* remove extra header

* fix Issue 291 (#294)

* rename for typeconvert functor

* refine code

* Testing all fwd convolution specializations. (#259)

* UniforFill with integer values.

* Log tested instance type string.

* Add UT for all convolution specializations.

* debugging conv

* Fix dangling reference bug.

* Small refinements.

* Fix call to error checking function.

* Small refinements to tests.

* Configure error tolerance
* Change problem size.
* Remove OddC case from types that do not support it.

* Add helper traits for AccumulatorDataType.

* Print first 5 errs in check_err for integral types.

* Rename FillUniform to FillUniformDistribution

* Refactor

* Do not use typed tests.
* Instead use plain fixture class with templatized member functions.
* Initialize tensors with integer values.

* Refine test instances.

* Properly set accumulator data type.
* Add another "big" instance.

* Refactor convolution tests.

* Revert "debugging conv"

This reverts commit b109516455631ff8fd6dce99cf7c14bf8e323ebb.

* Add pragma once + format + small refinement.

* Fix some unwanted changes.

* Clang-format

* Fix profile_convnd to use renamed tensor initializer.

* Add instances for ConvFWDND kernel case 2D

* Helpers to get ConvNDFwd 2D instances.

* Refactoring.

* Remove "small block" instance as it was generating compiler errors.
* Remove default template parameters values.

* Refine and fix test.

* Fix problem with default template parameter types.
* Adjust error thresholds for floating point values test.
* Use integer values initialization for instances test.
* Add tests for ConvNDFwd 2D case.

* Remove AccumulatorDataType type trait.

* Update unit-tests.

* Remove operator<< overload.

* Unlock conv1d/3d nd fwd instances.

* Enable skipping calculating reference using flag.

* Fix number of channels for first ResNet50 layer.

* Clang-format.
Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* update license (#297)

* update license

* update license

* update license

* update license

* Absolute include path (#281)

* ad gelu and fast_gelu

* added GeLU and fast GeLU

* clean up

* add gemm+fastgelu example

* add gemm+gelu instances

* update profiler

* clean up

* clean up

* adding gemm+bias+activation

* clean

* adding bias

* clean

* adding gemm multiple d

* debugging

* add gemm bias add fastgelu

* rename, clean

* refactoring; add readme

* refactor

* refactor

* refactor

* refactor

* refactor

* refactor

* fix

* fix

* update example

* update example

* rename

* update example

* add ckProfiler

* clean

* clean

* clean

* clean

* add client app example

* update readme

* delete obselete files

* remove old client app

* delete old file

* cleaning

* clean

* remove half

* fix header path

* fix header path

* fix header path

* fix header path

* fix header path

* fix header path for all examples

* fix header path

* fix header path

* fix header path

* fix header path

* fix header path

* fix header path

* fix header path

* fix header path

* fix header path

* revert client app example

* clean build

* fix build

* temporary disable client test on Jenkins

* clean

* clean

* clean

* add license in file (#303)

* Switch to standard ROCm packaging (#301)

* Switch to standard ROCm packaging

* Revert .gitignore changes

* install new rocm-cmake version

* update readme
Co-authored-by: default avatarillsilin <Illia.Silin@amd.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* External Interface (#304)

* add client example

* clean

* clean

* reorg

* clean up profiler

* reorg

* clea

* fix profiler

* function for getinstances

* update client example

* update client example

* update client example

* update

* update example

* update Jenkins file

* update cmake

* update Jenkins

* external api for gemm + layernorm (#285)

* Extract base class for elementwise

* Refactor interface of DeviceGemmReduce. Do not use tuple in interface

* [What] Rename d into reduce in gemm + reduction related code
[Why] Prepare to add d term for add

* Unify base class of gemm + reduce and gemm + bias + add + reduce

* 1. Rename gemm_bias_add_reduce for external api
 2. Refine cmake

* Add normalize device operation

* [What] Reorder the argument
[Why] Because d0 is also the input of c.

* Add type string

* Add example of gemm_bias_add_layernorm  via external api

* Refactor example code

* clang-format

* Fix compile error

* clang-format

* Add external api for gemm_add_add_layernorm and normalize

* Add client example

* clang-format

* Remove incorrect old packaging statement (#308)

* Standalone sweep once softmax kernel w/ ckProfiler (#295)

* use 'sweep once' softmax kernel where applicable

* threadwise copy's dst buffer can specify invalid element value

* add int8 in/out float compute softmax support

give a bit of leeway for int absolute tolerance as there's a single data point of all test cases showing off-by-1 error

* format

* softmax inherits DeviceNormalization

* softmax profiler stub

* tighten up reference softmax interface

* example prints tensor dimension

* add fp32 to softmax profiler

* rename header

* hook with ckProfiler

* format

* resolve merge conflict

* resolve merge conflicts

* update normalization profiler help string

* resolve conflict

* typo

* remove residual

* softmax profiler: address feedback

* test for mixed precision input/output

* fully qualify ck::math::isnan

* add comment for device normalization interface

* revise wording

* constness for alpha/beta scaler pointer

* Grouped Gemm ckProfiler hotfix (#313)

* add setWorkspace in profiler

* fix

* Gemm + bias + c_permute (#312)

* init commit

* add desc

* finished c permute

* fixed vector lens

* Improve external interface for GEMM and GEMM+add+add+fastgelu (#311)

* interface for GEMM and GEMM+add+add+fastgelu

* rename namespace

* instance factory

* fix build

* fix build; add GEMM client example

* clean

* add batch_stride into batched gemm (#314)

* add batch_stride

* fixed test
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* Single-kernel GEMM + layernorm (#263)

* dump lds content in appropriate precision type

* add squared add reduction op; allows sq sum

* initial stub from regular gemm impl

* layernorm example code & host verification

* initial layernorm implementation

* tidy up

* make C0 precision type consistent with C

* clang-tidy and additional comments

* tighten up example code

* account for extra flops/bytes from normalization

* clang-format

* c0 bias/beta/gamma now have its own precision type

* AccElemOp for gemm outputs prior to feeding to layernorm

* update workgroup mapping

* rename kernel template param to reflect its dual use

* use LDS mem pool for reduction workspace

* change cshuffle precision type to f16; clean up

* clang-format

* correct naming

* explicit cast

* fully implemented gemm + bias + activation + add + norm

* activation in correct order

* reflect reduction API's recent change

* amend

* clean up; add comment

* keep up with recent changes in reduction API

* format

* resolve merge conflicts
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* modified grouped gemm addressing method (#307)

* modified grouped gemm addressing method

* modified addressing method in device_grouped_gemm_xdl.hpp
Co-authored-by: default avatarroot <root@dc-smc-13.amd.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* Gemm+Bilinear (#316)

* refactor

* update example

* update example

* gemm bilinear

* clean

* update

* Batched Gemm with C Permute (#305)

* init commit

* add c_permute

* add mnk padding

* fixed comments

* Fixed comments
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* N-D Tensor Contraction example, instance, and client example (#270)

* adding contraction

* add contraction example

* update examle

* update example

* format

* update readme

* clean header

* clean header

* contraction with multiple D

* rename

* fix naming issue; add instances for contraction+bilinear

* change assumed virtual layout of contraction; add client example

* update example

* update

* contraction+scale

* use type_convert

* rename

* add conv1d/3d bwd weight instances (#318)

* add conv1d/3d bwd weight instances

* add profiler code

* GEMM pipeline v2 (#317)

* format

* improving pipeline

* fix typo

* format

* adding thread group

* adding thread group

* adding thread group

* adding gemm pipeline

* tweak

* refactor

* refactor

* add missing type convert

* refactor

* refactor

* refactor

* clean

* fix build

* refactor

* format

* clean up

* use remove_cvref_t

* clean

* use pipeline_v2 for gemm kernel

* Remove inconsistent indent

* Fix compilation errors due to incomplete merge process

* Add missing include directives

* Fix compilation errors in currently unused files

* Add license in newly added files

* Re-format touched files by clang-format-10

* Fix wrong template argument count of DeviceGemm<>

* Use language construct to choose between types

* Use language construct to choose GEMM example instance

* Fix compilation error due to interface change

* Re-use type alias to avoid duplication

* Unify type alias usage in source file

* Only use v2 pipeline in one gridwise GEMM type

* Remove no-longer used include directives

* Add static_assert() to check pipeline type requirements

* Revert "Add static_assert() to check pipeline type requirements"

This reverts commit f0985f0a132671a1caaea92810c9f30dcf062bde.

* clean

* clean

* clean

* clean
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>
Co-authored-by: wangshaojie6's avatarshaojiewang <wsjmessi@163.com>

* Add switch between compilers, make 9110 compiler default, add full QA scripts. (#322)

* adding scripts for full perf test suite

* uncomment the sql queries

* fix typo and chmod a+x for scripts

* dos2unix for all new scripts

* disable verification in full performance test

* fix reduction scripts, add gfrouped_gemm hotfix

* fix the grouped_gemm hotfix and only run reduction for fp16

* change compiler flag syntax

* fix syntax

* add predefinition of dockerArgs

* avoid redefinitions of dockerArgs

* add blank space at the end of dockerArgs

* try to build with release compiler

* adding spaces inside if condition

* limit the number of threads for building 9110 compiler

* change the way HIP_CLANG_PATH is set

* remove the export command

* change the conditional ENV syntax

* set HIP_CLANG_PATH at docker run time

* update scripts for full qa

* enable the sql write query

* fix typo

* remove a comment from a script

* minor fix in gemm client example (#328)

* Standalone layernorm (#315)

* Implement layernorm kernel and deviceOp

* verify gpu kernel with host code

* 1. Separate gamma aand beta from affine
2. Check if argument is valid

* clean

* Sync the naming

* Support sweep once mode if we can put k dimension data inside one block

* [What] Get length from upper length.
[Why] if we get length directly, we may get length after padding.

* We only use one block in K dimension.
Hence, we can simplify the indexing of global R/W.

* Use 1d descriptor for gamma and beta

* Add accElementwiseOp

* Extract layernorm host code

* Support different YVectorDim in GridwiseLayernorm

* Rename XSrcVectorDim to XYSrcVectorDim. Because we use same parameter in deviceOp

* Gamma and beta can share the VGPR.

* Add test for fp32 and fp16

* Fix bug of concurrency and add test case which may fail orignally

* Propagate NaN for layernorm
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* fix standalone softmax race condition around blockwise reduction (#323)

* Grouped Gemm device with multiD grid (#319)

* replace gridwise_v2r3 with multiD

* adjust parameters

* add instances

* fixed test_grouped_gemm

* fix standalone softmax race condition around blockwise reduction

* fixed ci

* fixed comment: remove redundant workspace

* use instanceFactory

* add test layout

* add empty Ds

* add bias example

* use array

* sperate examples
Co-authored-by: default avatarAnthony Chang <ac.chang@outlook.com>

* Add full QA with verification option, few other changes. (#331)

* add verify flag and update scripts

* replace old check_error function with the new check_err

* fix syntax

* remove blank spaces

* remove empty line

* add check_err for tensors

* fix syntax

* replace tensors with vectors in check_err calls

* fix syntax

* remove blank spaces

* fix syntax

* add new line at end of file

* disable conv2d_bwd_weight test, add gpu check

* set check_gpu using export

* check GPU using runShell

* add definition of runShell

* fix script syntax

* reduce the number of threads, add full qa option

* run processing scripts in bash

* fix the branch and host names in performance scripts, add chronos

* replace parameterizedCron with cron

* archive the perf log files

* try to fix git call

* pass branch and host names as arguments into scripts

* fix script arguments

* fix script arguments

* process results on master

* fix pipeline

* add definition of gpu_arch

* run processing scripts in docker

* fix the brackets

* add agent master for the processing stage

* get rid of show_node_info call on master

* try using mici label instead of master, disable MI100 tests for now

* fix syntax

* simplify container for results processing

* remove node(master) from the process_results stage

* put all stages in original order

* change the agent label from master to mici for gfx908

* Batched Gemm with multiD (#329)

* add batched_gemm_multiD

* add ds

* rename file

* add batched_gemm_bias example

* add batch_strides into bmm_c_permute

* clean

* rename example_28 to example_29
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* comment out cron trigger (#334)

* Clean up conv example, Instances, profiler and test (#324)

* convnd_fwd fp16 example

* update example

* update example

* update instance

* updating refernce conv

* update reference conv

* update conv fwd profiler

* update conv 1d and 3d instance

* update include path

* clean

* update profiler for conv bwd data and weight

* update conv bwd weight

* clean

* update conv example

* update profiler for conv bwd weight

* update ckprofiler for conv bwd data

* fix reference conv bwd data bug; update conv bwd data test

* update examples

* fix initialization issue

* update test for conv fwd

* clean

* clean

* remove test case too sensitive to error threshhold

* fix test

* clean

* fix build

* adding conv multiple d

* adding conv multiple D

* add matrix padder

* add gemm padding to convnd

* adding group conv

* update gemm multi-d

* refactor

* refactor

* refactor

* clean

* clean

* refactor

* refactor

* reorg

* add ds

* add bias

* clean

* add G

* adding group

* adding group

* adding group

* update Tensor

* clean

* update example

* update DeviceGemmMultipleD_Xdl_CShuffle

* update conv bwd-data and bwd-weight

* upate contraction example

* update gemm and batch gemm with e permute

* fix example build

* instance for grouped conv1d

* update example

* adding group conv instance

* update gemm bilinear instance

* update gemm+add+add+fastgelu instance

* update profiler

* update profiler

* update test

* update test and client example

* clean

* add grouped conv into profiler

* update profiler

* clean

* add test grouped conv, update all conv test to gtest

* update test

* Run CI on MI100 nodes only, run daily QA on MI200 nodes. (#339)

* turn on full qa only on gfx90a, use int initialization

* change script syntax

* update script parsing clinfo, throw exception if 0 devices

* fix syntax

* try using toBoolean for the QA conditions

* run regular CI on MI100 only, use MI200 only for daily QA

* evaluate when conditions before agent

* launch QA on develop branch and update profile_reduce script

* update test script

* update script

* remove false dependency from dockerfile

* try removing rbuild completely
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>
Co-authored-by: default avatarChao Liu <lc.roy86@gmail.com>

* CGEMM examples bf16, fp32, int8 (#332)

* Add int8 specialization for elementwise Add and Subtract.

* CGEMM examples bf16, fp32, int8

* Add convert reference output to CDataType.

* Skip BF16 data type during testing.

* Lower K value to get rid of accumulation error.

* Fix merge artifact.

* Fix changed function name: GetElementSpaceSize()

* Fix merge artifact.
Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>

* Update Group convolution (#341)

* add conv oddC

* update example

* update example

* fix bug in example

* fix bug in group conv example

* fix bug in gemm profiler (#344)

* Fix QA, allow switching compiler versions, fix google test compilation error. (#348)

* allow selecting compiler version

* fix typo

* add Wno-deprecated flag for google tests

* change git repo, fix qa log files names

* change the git clone syntax

* use Omkar's git credentials

* try to use jenkins as git user

* try using illsilin username for gerrit repo with ssh key

* try new gerrit authorization

* change ssh key syntax

* try another way of passing ssh key to docker

* add mount ssh in dockerfile

* create .ssh folder

* move ssh-keyscan to later

* get rid of npm call

* build first docker image on master

* check the contents of the .ssh folder

* try replacing omkars creds with gerrit creds

* use open repo, clean up changes

* get rid of ssh default argument

* Add batched/grouped_gemm contraction deviceOps (#349)

* convnd_fwd fp16 example

* update example

* update example

* update instance

* updating refernce conv

* update reference conv

* update conv fwd profiler

* update conv 1d and 3d instance

* update include path

* clean

* update profiler for conv bwd data and weight

* update conv bwd weight

* clean

* update conv example

* update profiler for conv bwd weight

* update ckprofiler for conv bwd data

* fix reference conv bwd data bug; update conv bwd data test

* update examples

* fix initialization issue

* update test for conv fwd

* clean

* clean

* remove test case too sensitive to error threshhold

* fix test

* clean

* fix build

* adding conv multiple d

* adding conv multiple D

* add matrix padder

* add gemm padding to convnd

* adding group conv

* update gemm multi-d

* refactor

* refactor

* refactor

* clean

* clean

* refactor

* refactor

* reorg

* add ds

* add bias

* clean

* add G

* adding group

* adding group

* adding group

* update Tensor

* clean

* update example

* update DeviceGemmMultipleD_Xdl_CShuffle

* update conv bwd-data and bwd-weight

* upate contraction example

* update gemm and batch gemm with e permute

* fix example build

* instance for grouped conv1d

* update example

* adding group conv instance

* update gemm bilinear instance

* update gemm+add+add+fastgelu instance

* update profiler

* update profiler

* update test

* update test and client example

* clean

* add grouped conv into profiler

* update profiler

* clean

* add test grouped conv, update all conv test to gtest

* update test

* change gemm_c_permute with contraction

* add grouped_contraction

* add contraction in group_gemm

* add example of grouped_gemm with contraction

* add example of grouped_contraction_bias_e_permute

* clean

* fixed ds

* add m3n2 m2n3 examples into gemm_bias_e_permute
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* ckProfiler for layernorm (#330)

* Refine parameter

* Add base class for layernorm

* Add layernorm instance

* Add layernorm to ckProfiler

* Remove redundant

* Add verification

* Fix compile error due to merge

* Add examples for GEMM + AddAddFastGelu (data type: int8, bf16, fp32) (#340)

* Add always_false<> util to delay symbol resolution

* Use always_false<> to prevent trying instantiate unwanted method

* Add new specializations of AddAddFastGelu::operator() method

* Add GEMM + AddAddFastGelu examples for data types: int8, bf16, fp32

* Use floating point literal to simplify code

* Remove unnecessary capture in lambda expressions

* Extract fast GeLU calculation as standalone method

* Mark methods as 'constexpr'

* Add constraint for HostTensorDescriptor templated ctors

* Simplify HostTensorDescriptor ctor calls

* Add C++23 std::size_t literal suffix

* Use _uz suffix to shorten example code

* Remove unnecessary conversion to std::array<>

* Re-order include directives

* Remove C-style casting by literal suffix

* Remove unnecessary statements in main()

* Remove unused type parameter of always_false<>

* Remove unused include directive

* Exit main() by returning meaningful value

* Use 'if constexpr' to switch example flow

* Use std::is_same_v<> to shorten example code

* Add 'inline' specifier to literal functions

* Unify output methods in example

* Move common codes into .inc file

* Add type check in type_convert<>()

* Add type_convert<float>() before computation

* Merge AddAddFastGelu method specializations

* Remove always_false<>

* Add constraint to AddAddFastGelu::operator() parameter types

* Build docker only once in CI, fix conv_bwd logfile names. (#353)

* build docker in separate stage

* build docker with only one prefix

* add parallel statement

* add docker repo url

* fix the name of perf_conv_bwd_data log file

* add g; fixed strides (#355)

* Add example of conv_fwd_bias_relu_add for int4, int8, bfp16, fp16, and fp32 (#343)

* [LWPCK-359] Initial commit

* Working version for fp16, add results to readme

* Update according to PR #341

* Update results in readme

* Add fp32 example

* Add bf16 example

* Update fp16 and fp32 examples

* Add int8 example

* Add separate lengths and strides tensors for D tensors
Co-authored-by: default avatarRosty Geyyer <rosty.geyyer@amd.com>

* Move literal ""_uz & ""_zu into namespace 'ck::literals' (#354)

* Move literal ""_uz & ""_zu into namespace 'literals'

* Move namespace 'literals' as 'ck::literals'

* Fused attention (#345)

* initial stub for gemm_gemm_xdl_cshuffle

* set up example code

* compiles

* prevent integer overflow

* harmonize interface between ref_gemm and ref_batched_gemm

* batched_gemm_gemm

* fix example

* host tensor gen: diagonal pattern in lowest two-dimensions only

* make c descriptors containing only integral constants

* clean up

* add BlockwiseGemmXdlops_v2 while exploring an unified approach

* implement proper interface

* tidy up example

* fix compilation warnings

* coarsely controlled 2nd gemm padding

* remove rocm-cmake's hard requirement for certain revision

* clang-format

* resolve merge conflict

* fix compilation error on gfx10

* adds acc0 elementwise op to interface

* attention host validation

* add blockwsie softmax v1

* iteratively update softmax+gemm

* transpose both gemm0 and gemm1 xdl output so as to avoid broadcasting softmax max/sum

* add init method for easier debugging

* do away with manual thread cluster calculation

* generalize blockwise softmax interface

* row-wise softmax sum & max

* format

* rename to DeviceBatchedGemmSoftmaxGemm

* add gemm_softmax_gemm instances and tests

* comment
Co-authored-by: default avatarltqin <letao.qin@amd.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* Gemm multiple d multiple r (#335)

* Imitate XXX_gemm_multiple_d, add XXX_gemm_multiple_d_multiple_r for gemm + reduction

* Implement run of kernel

* Add example

* Fix parameter of typo

* Rewrite the reduceMax example

* Rewrite the reduceMean + reduceMeanSquare example

* Refine naming

* Refine folder name

* refine naming

* Rewrite the gemm + bias + relu + add + layernorm example

* Rewrite the gemm + layernorm example

* clang-format

* Fix bug if sync lds

* Fix compile error

* Add examples  for reduction fp16/fp32/bp16/int8/fp64   for  3d/4d/5d  (#342)

* Update the reduce_blockwise example to support user specified data type and input+reducing dimensions

* Add examples for using reduce_multiblock_atomic_add

* Add more running examples to the default command-line

* Remove un-necessary header including

* Update to the example README.md

* Skip  lds of b matrix (#326)

* start

* read for gridwise gemm

* add MakeBGridDescriptor_K0_N0_N1_N2_N3_K1

* add thread  copy desc and register buffer

* add K0PerBlock dim

* add read global data

* finish gridwise gemm

* finish blockwise gemm

* add print data

* add smallest config

* add compare code for gridwis gemm

* fix NXdlPerWave

* fix k0perthread and gridewis gemm main loop

* remove b matrix lds alloc

* fix name

* add test code

* create b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3 from parameter

* add double register

* modify b_thread_desc_

* add float

* fp16 tag

* add tail for pipeline

* finish main loop

* optimize main loop

* start clear gridwise gemm

* clear code

* clear redundant code

* change file name

* change file name

* fix bug after merge develop

* fix input parameters

* using MultiK0 control b load data loop

* fix some config

* 4 buffer

* fix bug

* one can use

* change read order

* change buffer array to tuple

* change to 8 buffer

* interleave buffer load

* change to 16

* read 8 buffer

* add data buffer to template

* fix after merge develop(head file)

* format

* change to 4 buffer

* remove unnecessary lambda fun

* Fused GEMM+GEMM (#351)

* initial stub for gemm_gemm_xdl_cshuffle

* set up example code

* compiles

* prevent integer overflow

* harmonize interface between ref_gemm and ref_batched_gemm

* batched_gemm_gemm

* fix example

* host tensor gen: diagonal pattern in lowest two-dimensions only

* make c descriptors containing only integral constants

* clean up

* add BlockwiseGemmXdlops_v2 while exploring an unified approach

* implement proper interface

* tidy up example

* fix compilation warnings

* coarsely controlled 2nd gemm padding

* remove rocm-cmake's hard requirement for certain revision

* clang-format

* resolve merge conflict

* fix compilation error on gfx10

* adds acc0 elementwise op to interface

* add gemm_gemm instances and tests

* avoid LDS data hazard

* fix build
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* Layernorm welford (#346)

* Add threadwise and blockwise welford

* Rename gridwise op, prepare to add welford version

* implement welford and integrate welford into layernorm

* Take care of tail loop

* Fix buf when ThreadSliceK > 1

* Fix bug of merging of two empty set

* Rename clip to clamp

* 1. Fix type of count
2. Remove useless static_assert

* Do not inherit Reduction::Argument

* [What] replace __syncthreads() with block_sync_lds()
[Why] __syncthreads might wait both lgkmcnt(0) and vmcnt(0)

* Add y stride

* Rename.
DeviceLayernorm -> DeviceLayernormImpl
DeviceNormalization2 -> DeviceLayernorm

* Move literal ""_uz & ""_zu into namespace 'literals'

* Move namespace 'literals' as 'ck::literals'
Co-authored-by: default avatarPo-Yen, Chen <PoYen.Chen@amd.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* Change all device operations to use add_instance_library  (#338)

* Change all device operations to use add_instance_library to avoid duplicated cmake configuration.

* update DeviceMem
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* fix build issue (#357)

* fix build

* excludeexample_gemm_max_xdl_fp16 from testing due to random failure on gfx908

* Batchnorm-forward and Batchnorm-infer Implemented using generic kernels (#320)

* Implement multiple-reduction in one kernel (kernels, device ops, examples)

* Add generic elementwise kernel and device interface

* Add generator for normal-distributed data initialization

* Add host refer implementation of batchnorm-forward and batchnorm-infer

* Add examples for implementing batchnorm-forward and batchnorm-infer using generic kernels

* Remove un-needed including in batchnorm example

* Renaming generic_elementwise to elementiwise in kernel and device classes/functions

* Change in gemm_layernorm examples to use DeviceElementwise instead of Device5AryElementwise

* Change in exampe 19_binary_elementwise to use DeviceElementwise instead of DeviceBinaryElementwise

* Change in device_cgemm_4gemm_xdl_cshuffle.hpp to use kernel_elementwise instead of kernel_binary_elementwise

* Add DeviceElementwiseBase and use it in device_normalize_instance.cpp

* Removing and renaming files

* Update to synchronize gemm_layernorm client example to the generic element-wise device op API

* Update to synchronize with the latest headers directory and HostTensorDescriptor interface renaming

* Merge two static member functions in device_elementwise.hpp

* Remove unary_elementwise_1d kernel and device

* Hotfix LDS data hazard in fused attention (#360)

* avoid LDS data hazard in gemm_softmax_gemm pipeline

* trivial refactors

* comments

* shrink blockwise gemm v2 thread buffer size

* reclaim A block lds space when during 2nd gemm

* amend

* amend

* use scale (#363)

* int4 data type (#364)

* Introduce int4 data type.

* Add unit-tests for int4

* Compile int4 UT only when int4 enabled.

* clang-format
Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>

* restart the stages on MI200 in case of failures (#366)

* restart the stages on MI200

* fix the docker image storage issue

* [What] Fix bug of verification fail on E Matrix (#371)

[Why] We need to sync lds even in first loop because Gemm also use the same LDS.

* Implement padding and sanity checks for fused GEMM+GEMM  (#376)

* GemmPadder and GemmGemmPadder

* proper padding using GemmGemmPadder

* test gemm_gemm padding

* properly check size K in IsSupportedArgument()

* properly check size requirement given SrcScalarPerVector in IsSupportedArgument()

* comment

* format

* Add example of Gemm + AddAddFastGelu (data type: int4) (#369)

* Add custom target to bundle examples together

* Add int4 example conditionally (just copy from int8 example)

* Extract common code into common.hpp

* Move ref gemm type alias into data-type-specific sources

* Add #error directive to prevent compile with wrong setting

* Let AddAddFastGelu support int4 parameter type

* Let check_err() support int4 parameter type

* Add wrapper function to hide value conversion while copying memory

* Finish int4 example for GEMM + AddAddFastGelu

* Add new DeviceMem API to copy memory

* Use new DeviceMem API to implement examples

* Fix wrongly use of macro 'CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4'

* Revert "Add new DeviceMem API to copy memory"

This reverts commit e26e7af71e1f982a4ca7406401e2fc9b1f086b32.

* Add conversion ctor for Tensor<>

* Add 'const' specifier to Tensor<>::CopyAsType()

* Convert Tensor<> values before/after transfer between host & device

* Add examples of batched/grouped/SplitK Gemm for int8/bfp16/fp16/fp32 (#361)

* add examples into grouped/batched_gemm

* adding splitK examples

* fixed splitK

* add bfp16 int8 example into splitK

* formatting

* use static_cast

* added common for batched_gemm

* add commons for examples of splitK/batched/grouped_gemm

* return true

* adjust splitK check tol

* update example
Co-authored-by: default avatarChao Liu <lc.roy86@gmail.com>

* Attention with output permutation (#370)

* comment on specialization for TensorSpecialization::Packed

* gemm_softmax_gemm with output permutation

* scaling

* refactor MatrixPadder; rename to GemmPadder

* remove old sanity check

* restore original gemm_softmax_gemm

* revise comment in gemm_softmax_gemm example

* use GetElementSpaceSize()

* remove extra header

* typo

* remove archaic DeviceOpPtr

* Add examples of Gemm (data type: int4) (#367)

* Add GEMM examples for int4

Currently the source files are just copied from int8 examples

* Re-use pre-defined alias in int4 exmples

* Distinguish user-side type from kernel-side type

* Add int4_t support for check_err()

* Allow conversion between Tensor<> specializations

* Re-format source files

* Use different type for host tensors

* Re-use CopyAsType<>() to implement copy ctor

* Re-use element-wise operation type alias

* Fix typo in alias names

* Complete the int4 examples

* Add constraint to Tensor<> templated methods

* Add type traits 'is_signed_integral<>'

* Add type constraints for integer version check_err<>()

* Allow comparing different-sized integral types in check_err()

* Check converted Tensor<int4_t> with golden Tensor<int8_t>

* Remove constraint of Tensor<>::CopyAsType()

* Avoid compilation error while disabling ck::int4_t support

* Remove debug messages

* Add #error directive to prevent compile sources with wrong setting

* Simplify tensor usages in examples

* Add constraint to check_err() input reference type

* Align design with other PR

* Use ""_uz to simplify example code

* Avoid too much generalizing check_err()

* Re-format GEMM instance template arguments

* Extract int4 example common codes

* Sort include directives

* Move #include directives into new header

* Move common codes together

* Re-format template argument in example code

* Reuse same implementation code for most of GEMM examples

* Re-format common.hpp

* Unify structured comment in examples

* Use reinterpret_cast<>() for cross-type pointer conversion

* Revert "Add type traits 'is_signed_integral<>'"

This reverts commit f2c148efaedf42c8ee66032dac6d13a1003b0f3a.

* Allow unsigned integer arguments for check_err()

* Fix compilation error in check_err()

* Remove unnecessary copy ctor for Tensor<>

* Mark Tensor<> special member functions as 'default'

* Use more strict condition to add code in examples

* Fix wrong program return value of GEMM examples

* Handle the case while user specify all the strides

* Fix never-ran examples

* Exit successfully if GEMM instance does not support given problem

* Add missing 'else' keyword

* Re-format CMakeLists.txt

* Add wrapper function to hide value conversion while copying memory

* Add new DeviceMem API to copy memory

* Use new DeviceMem API to implement examples

* Revert "Add new DeviceMem API to copy memory"

This reverts commit 3f190b0779ceedf7aaf0b380712fda0518de72c1.

* Add conversion ctor for Tensor<>

* Write Tensor<> conversion logics explicitly in example code

* Convert Tensor<> values after transfer data to host

* Refactor the design of DeviceGemmMultipleDMultipleR_Xdl_CShuffle (#378)

* layernorm external api (#379)

* Add layernorm client example

* [What] Add default make install dir to gitignore
[Why] client example need to make install

* add scripts (#382)

* Add int4 reduction examples (#372)

* Add int4 reduction examples

* Contain all using of int4_t inside the pre-compiling condition checking

* Add int4 example for convnd_fwd_bias_relu_add (#375)

* Add int4 example for convnd_fwd_bias_relu_add

* Fix AddReluAdd for building without int4 support

* Update CMakeLists.txt

* Format

* Convert int4 tensors for int8 kernel

* Fix device memory allocation

* Format

* Format

* GEMM batched/splitK/cgemm/grouped int4 examples (#383)

* Grouped GEmm int4.

* Formatting + fix K dimension for int8.

* Batched Gemm int4 example.

* CGEMM int4 example.

* Include inc filese in clang-format.

* SplitK int4 example

* Refactoring of performance measurement.

* Fix #ifdef statements.
Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>

* More int4 tests. (#374)

* More int4 UT.

* Disable BitwiseRepresentation UT.

* Add UT with static_cast

* Surround cout statements with #if
Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>

* Fixed splitk gemm fp32 (#384)

* add scripts

* fixed splitK_gemm_fp32

* clean

* clean

* Add an option to build CK with clang directly (#387)

* replace hipcc compiler with clang++

* build client app with hipcc

* build client app with clang

* add an option to build with hipcc ro clang

* fix the environment for client app

* fix setting up compiler in cmake_build

* change the way the compiler is set

* Fix the slow cpu reference batched gemm kernels. (#388)

* fix the performance of the batched gemm verification

* fix tabs

* Try to workaround flaky GemmSoftmaxGemm tests (#386)

* avoid potential hazard; flaky test issue persists

* pin down the random seed to avoid flakiness

* Padding for attention: bmm+scale+softmax+bmm kernel (#385)

* add padding algo for bmm+scale+softmax+bmm. Version for verification

* remove verification code

* remove comments

* add padded bmm scale softmax bmm example

* format

* refactor

* add comments for usages of padding bmm+scale+softmax+bmm
Co-authored-by: default avatarChao Liu <lc.roy86@gmail.com>

* Gemm reduce examples int4/int8/fp32/bf16 (#368)

* GEMM + Reduce max fp16+fp32

* GEmm + Max bf16 + int8

* Refactor common definitions.

* Refactor common func of mean meansquare example.

* More examples for mean meansquare.

* Update int8 examples and skip them cause of random errors.

* Int4 examples.

* Fix examples for max int4/8

* Tensor conversion for int4 input data for mean meansquare example.

* Remove int4 mean_meansquare example

* Fix int8 mean_meansquare example.

-All ReductionAccData and R<N>DataType have to be F32. The INT32 data
type is giving wrong results.

* Guard int4 with ifdef

* Change int8 example to add_addsquare due to div rounding err.

* Clang format

* Change the return type of common function.

* Get back int8 example with division.

* Remove int8 mean meansquare.

* Use proper cast for BF16 data type.

* Use ck::literals.

* Use proper data type for host tensors & reference.

- Use ReduceAccDataType for reference gemm output data type.
- Cast host reference output tensor to EDataType
- Fix ifdefs for int4.
Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>

* conv+conv (1x1 only) example using gemm+gemm  (#393)

* refactor conv

* add conv+conv example, 1x1 only

* Add examples of Conv + reduction (data type: int4, int8, bf16, fp16, fp32)  (#380)

* Refactor the design of DeviceGemmMultipleDMultipleR_Xdl_CShuffle

* Add 'DeviceGroupedConvFwdMultipleDMultipleR' interface

* Add DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle

* Remove 'GridwiseConvFwdMultipleDMultipleR_xdl_cshuffle'

* Add 'TransformConvFwdToGemm<>' utility class (from Chao)

* Use 'TransformConvFwdToGemm<>' to shorten code

* Fix ill-formed method declaration

* Re-implement MakeRGridDescriptor_M() function

* Change problem description

* Use macro to define layout types

* Define K-reduced output tensor layout types

* Let user to decide R output tensor layout

* Rename variables

* Add padding to the reduced output tensor if necessary

* Extract common code as helper method

* Remove debug message

* Add missing include directive

* Add partial fp16 Conv + Reduction example

* Add example verification code for 2D Conv problem

* Use type alias to simplify code

* Share code across different-dimension Conv problems

* Rename file/functions from run_conv_fwd* to run_convnd_fwd*

* Make example code more verbose

* Add code to support 1D & 3D Conv + Reduction on host

* Add more examples for data type: bf16, fp32

* Add example for int8

* Add custom target to group examples

* Use more general custom target name

* Change the description in error message

* Disable testing for example other than fp32

* Add examplel for int4 (just copy from int8)

* Fix wrong data type

* Use larger data type for intermediate tensors

* Finish int4 example

* Undefine macro PP_DEFINE_LAYOUT_TYPE() after use

* Use named variables to replace magic numbers

* Remove debug messages

* Use same A/B data type for host Conv in int4 example

* Add check for the 'RLayout' type argument

* Group same-dim-layouts together in 'LayoutSetting<>'

* Add 'final' specifier to utility classes

* Use different initialization method for examples

* Remove macro PP_DEFINE_LAYOUT_TYPE()

* Fix code-comment mismatch

* Use more reasonable initialization value for all data types

* Default use init_method=1 for all examples

* Remove never-used code

* Remove confusing out-of-date comments

* clean
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>
Co-authored-by: default avatarChao Liu <lc.roy86@gmail.com>

* add more datatype to gemm+gemm and conv+conv example (#397)

* refactor

* refactor

* adding int4/int8/fp16/bf16 for conv+conv and gemm+gemm

* adding int4/int8/fp16/bf16 for conv+conv and gemm+gemm

* clean

* [Hotfix] SplitK Gemm fp32 (#401)

* add scripts

* fixed splitK_gemm_fp32

* clean

* clean

* use gemm_xdl_splitK_c_shuffle into profiler

* remove device_gemm_xdl_splitk.hpp

* Softmax client example (#396)

* Update Softmax device operation interface.

* Update ckProfiler.

* Update Softmax UT.

* Update example.

* Client example.

* Clang format
Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>

* GemmGemm TNNT instances (#399)

* add gemm_gemm TNNT instance

* sanitize Gemm1KPack

* disable instances that failed validation on mi100

* Fused attention instances & padding tests (#395)

* modify comment

* trim unnecessary check

* add gemm spec in kernel name

* add TNTT gemm_gemm + atten kernel instances

* refactor attention padding to better fit in unit tests

This streamlines usage where "ResetNaNToMinusInf" is now hidden from user facing device op.
Also added compile-time conditionals that load OOB value as NaN only after padding is enabled

* add adhoc padding test for atten

* shrink input value range for attention kernel validation to avoid occasional error by 1e-3

Still unsure whether this kind of deterministic floating point accurary issue is expected
or not. May want to try exact same approach as the GPU kernel in the host reference
GEMM+Softmax+GEMM function to see if the accuracy discrepancy goes away. Until then,
shrink the input value range as it is less likely to produce errors of around ~1e-3.

* attention kernel proper granular padding for all 4 dims

* IsSupportedArgument checks

* test more padded cases

* block PadK specialization in attention kernels

* workaround clang crash for gfx908

(gfx908 only) workaround for compiler crash in fused kernels on mainline #9110; #10738 seems ok
error message was "fatal error: error in backend: Error while trying to spill VGPR0 from class
VGPR_32: Cannot scavenge register without an emergency spill slot!"
this fall back to less ideal way of handle NPadding in fused attention kernel

* comment out kernels giving wrong results on MI100; MI200 doesn't seem affected

* Add stderr to QA logfiles, process splitK and ONNX gemm kernels (#402)

* add processing for the onng_gemm and splitK_gemm

* add profile_onnx_gemm.sh

* add stderr to logfiles, add splitK and onnx gemm parsing

* enable splitK gemm wresults posting to db

* Fix gemm-softmax-gemm-permute padding cases (#409)

* fix example; make padding on by default in example; fix argument checks

* fix Gemm1KPacK which has since regressed from PR #399

* embedding fuse layernorm (#405)

* add gridwise/device sparse embedding

* update code

* update code

* remove useless makefile

* code fix

* workable

* work properly

* emb add

* add more instance

* format

* remove useless code

* fix format

* fix clang-tidy

* clean

* fix a compile error
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>
Co-authored-by: default avatarChao Liu <lc.roy86@gmail.com>

* Upgrade the OS and ROCM versions. (#411)

* upgrade the OS and ROCM versions in CK docker

* add cxx flags to link code with rocm5.2 and ck-9110 compiler

* rename the docker image

* run ONNX gemms using init=1

* batched_gemm + multiple_d + gemm + multiple_d (#394)

* refactor

* start

* add device gemm file

* add BatchStrideD0

* add stridd0

* add gridwise file

* add d0 parameters to gridwise gemm

* add c layout transformer

* add d0 threadwise copy

* init kernel

* init kernel

* regular code

* nm desc put to out

* kernel parameter can not use reference

* host add bias+gelu

* run right for bias+gelu

* change AddFastGelu into another file

* interface add d1 bias parameters

* add d1 parameter to argument

* add d1 parameter to gridwise

* first all code,not verify

* gelu change to relu and GetElementSpaceSize bug

* add instance

* start add to ckprofiler

* ckprofiler finish code

* change input parameter for ckProfiler

* fix host bias+gelu bug

* show help for ckProfiler

* fix bug for lunch kernel ignore parametes

* add pad and fix about bug

* mutiple d0

* add dynamic d0_element_op

* change profiler and  instance to mutiple d0

* example have 2 d0

* remove some comments not using

* change 2 d0 have self  parameters

* change d element_op name

* change class name(multiple_d)

* fix bug

* fix bug that don't find file

* update profiler

* refactor

* update profiler

* clean

* revert example change

* add gon layout

* optimize parameter for gno

* add gon to gemm+gemm

* change helping input parameters

* change to GemmPadder_v2

* using ForEach

* fix gb_per_sec
Co-authored-by: default avatarChao Liu <lc.roy86@gmail.com>
Co-authored-by: default avatarltqin <letaoqin@amd.com>

* disable print for group conv multiple D (#421)

* Conv bwd data multiple d (#404)

* init commit of convnd bwd data

* begin compiling example

* have a first version that produce a right result

* refine device level launch kernel code

* add more instances in example and get right results

* clang-format

* format example file

* add more instances

* fix instances

* adding conv_bwd_data multile_d

* adding conv_bwd_data multile_d

* adding conv_bwd multiple d

* adding conv_bwd multiple d

* adding conv_bwd multiple d

* refactor

* refactor

* adding conv bwd data multiple d

* adding conv bwd data multiple d

* adding conv bwd data multiple d

* adding conv bwd data multiple d

* adding conv bwd data multiple d

* adding conv bwd data multiple d

* adding conv bwd data multiple d

* refactor

* update conv fwd's bias impl

* refactor

* reorg file

* clean up cmake

* clean

* clean

* clean
Co-authored-by: default avatarChao Liu <lc.roy86@gmail.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* Grouped batched attention + permute (#412)

* grouped attn without batch validates; now move toward grouped batched attn

* grouped batched attention

* working

* remove debug logging

clean up

clean up

* reintroduce g_ prefix back to host tensor variables

* format

* rename file

* restore old file

* rename

* consolidate padded/non-padded attention example

* harmonize padding specialization in attn examples

* work around inline asm potential hazard using intrinsic (#416)

* Add batched attention special kernel instances (#424)

* sanity check

* add attribution

* add irrgular k tile size for batched attention

* format

* Add 'Permute' device op & example (#408)

* Add example folder for 'DeviceElementwise'

* Re-structure example files

* Move common parts into common.hpp

* Use more strict input

* Add more helper methods in 'DeviceElementwise'

* Use more specific method to write example

* Allow specify problem through command line argument

* Allow specify problem 'axes' through command line argument

* Add check to template type argument

* Add transpose_shape() to generalize shape permute

* Generalize transpose utility functions

* Use better name for tensor indices

* Add checks in helper functions

* Remove debug messages

* Refine error message for check_err()

* Generalize variable naming in example code

* Add device op 'DevicePermute'

This device op is clone of 'DeviceElementwise'

* Use 'DevicePermute' device op in example

* Remove 'elementwise' from identifiers

* Remove 'elementwise' from file paths

* Remove base class of 'DevicePermute'

* Let 'DevicePermute' inherit from 'BaseOperator'

* Add simple type traits to validate device op type

* Add static_assert() to check type constraints

* Create 'DevicePermuteBase' to generate methods

* Use indirect base type to generate methods

* Remove 'is_device_op<>' type traits

* Only accept single-input-single-output for 'DervicePermute'

* Simplify 'DevicePermute' interface

* Re-format 'DeviceElementwise'

* Use CRTP to generate overridden virtual method

* Remove unnecessary include directives

* Distinguish input & output shape in 'DevicePermute'

* Passing 'axes' to 'DevicePermute'

* Use more reasonable return value for Invoker::Run()

* Add 'GridwisePermute' kernel

This kernel is a clone of 'GridwiseElementwise_1D'

* Remove no-longer used type argument

* Check if input/output shape meet the requirement

* Remove no-longer used method

* Remove never-entered-if-clause

* Change problem description for 'DevicePermute'

* Transform descriptor into 3 dimensions

* Add debug code the verify result

* Add comment to indicate template argument location

* Add N/H/WPerBlock template parameter to 'DevicePermute'

* Rename 'GridwisePermute' to 'GridwiseCopy'

* Check tensor descriptor dimensions in 'GridwiseElementwise_1D'

* Add missing include directive

* Add 'BlockSize' parameter to 'DevicePermute'

* Remove no-longer used method

* Add 'BlockToTileMap' for 'GridwiseCopy'

* Use the normal Block2TileMap convention

* Rename 'BlockToTileMap' as 'Block2TileMap'

* Fix most of compilation errors

* Let 'Block2TileMap' map block to 2d coordinate

* Allow data transfer in 'GridwiseCopy'

* Fix wrong output descriptor for 2nd blockwise copy

* Rename 'GridwiseCopy' as 'GridwisePermute'

* Remove '1d' in identifiers

* Remove commented-out codes

* Remove 'MPerThread' template parameter

* Seperate template parameters

* Unify variable namming convention

* Use more verbose way to create expressions

* Add template parameter 'InBlockLdsExtraW'

* Release the constraint on In/OutGridDesc

* Use date type directly as template argument

* Re-arrange template arguments for blockwise copy

* Remove no-longer used template parameters

* Embed layout in the variable names

* Add GridwisePermute::CheckValidity()

* Extract local types as template parameters

* Rename local type alias

* Add more template parameters (vector width related)

* Calculate new SrcVectorDim/DstVectorDim after merge descriptor dimensions

* Fill tensor values start from 1

* Re-formate example code

* Avoid too-large block id

* Add comment

* Make sure 'SrcVectorDim' is not same as 'DstVectorDim'

* Add check for the 'VectorDim' & 'ScalarPerVector' template params

* Let 'DstVectorDim' equals 'SrcVectorDim' after transpose out grid desc

* Remove no-longer used template parameter 'NPerBlock'

* Fix wrong descriptor creation logics

* Specify problem in each examples

* Use better example name

* Add new example 'example_permute_NxHxW_fp32'

* Add example for demonstrating bundle multiple elems in tensor

* Add support to permute multiple elements together

* Change the default problem size

* Add span<> class template

* Use span<> to generalize check_err() interface

* Fix ambiguous ctor call

* Avoid create necessary objects

* Use helper functions to simplify example code

* Add example for 4xfp16 permute

* Disable failed-to-compile example

* Add check for the NUM_ELEMS_IN_BUNDLE

* Remove redundant parameter in helper lambda function

* Add check for the input tensor type's byte-size

* Check scalar-per-vector with padded length

* Use more verbose name to avoid name collision

* Use fixed 'VectorDim' & 'ScalarPerVector' for LDS

* Embed shape info in name of descriptor constructor

* Rename example folder '36_permute' into '37_permute'

* Avoid using too-large LDS in kernel code

* Remove redundant example

* Usw switch() to group similar codes

* Add const to the span<> type arguement

* Simply initialize tensor with floating point values

* Use fp16 as data type in all examples

* Enlarge tensor size in example

* Enalrge N-dim in example

* Add check for the bundled type in example

* Use more stricter error threshold

* Remove global load/store loop in kernel code

* Measure execution time by default

* Use faster device op config for example 'NxHxW_fp16'

* Use faster device op config for example '1xHxW_fp16'

* Use faster device op config for example 'HxWx4_fp16'

* Remove cmd arg parsing logics

* Rename functions

* Extract bundle permutation logic out

* Simplify permute bundle example

* Add Tensor<>::GetElementSpaceSizeInBytes()

* Add Tensor<>::data()

* Use new methods to simplify code

* Use type alias to replace duplicated code

* Use existing method to shorten code

* Allow FillUniformDistribution accept range arugment

* Intialize random values in range

* Add Tensor<>::size()

* Use more meaningful names in permute bundle example

* Use more meaningful names in permute element examples

* Use rangified copy() to copy elements

* Use function return value directly to eliminate variables

* Add to_array() conversion tool to eliminate more variables

* Add Tensor<>::AsSpan<>() to create view of tensor values

* Use AsSpan() to shorten check_err() calls

* Remove no-longer-used 'using' directives

* Move 'using' directive to proper code position

* Remove redudant variables

* Remove useless static_assert()

* Add check for range types

* Declare variable right before first use

* Move long return type as tailing return type

* Add BaseInvokerCRTP<> class template to generate method

* Create new base type for 'DervicePermute' implementations

* Move 'NumDim' template param to the first

* Rename 'DevicePermute' to 'DevicePermuteImpl'

* Add 'noexcept' specifier to CRTP generated method

* Move 'Block2TileMap' definition into 'GridwisePermute'

* Use type alias to reduce code

* Unify naming style in 'DevicePermute'

* Add comments in 'GridwisePermute'

* Rename permute example folder

* Use std::cerr to report error

* Use larger shape in examples

* Rename '38_permute' to '39_permute'

* Make sure we use unsigned type for shape & indices

* Remove opt-ed out assertion

* Remove template BaseInvokerCRTP<>

* Group norm (#417)

* Add groupnorm example by layernorm
1.  Reference is not ready
2. shape of gamma and beta need to be fix

* Let shape of gamma and beta can be same as x

* Modify test, instance and client example

* [What] Fix bug of layernorm for greater than 2 dimension.
[Why] We need to get upper length from merge transform instead of embed transform.

* Add reference for groupnorm

* Fuse sigmoid after groupnorm

* [What] Rename original layernorm into layernorm2d
[Why] Prepare to add groupnorm using layernorm5d

* clang-format

* Add groupnorm test

* Refine error message

* Add groupnorm ckProfiler

* Test groupnorm kernel from device_instance

* update example

* upadte profiler

* Fix test naming

* Fix argc number

* Move descriptor and sweeponce to argument for quick debugging
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* use rocm5.2 compiler as default, use same flags for amd-stg-open as for release (#426)

* MNKO padding support on bmm+masking+scale+softmax+bmm+premute (#425)

* add lower triangle bmm

* init code for tile skipping

* functionality right with lower triangle mask

* add decoder lower triangular mask calculation

* use 7*13 group

* fix n2 compute error

* attention with lower triangle mask with tile skipping

* add template to distinguish masking kernel

* rename template and remove default template value

* remove lower triangle gemm reference struct

* add some comments on example

* add 10 instance for masking bmm + scale + softmax + bmm + permute kernels

* add test

* add test file

* add gtest for bmm masking scale softmax bmm permute

* clang-format

* fix compile error

* check lef bottom corner for tile skipping

* fix error: check left bottom corner for tile skipping

* add k padding

* add test and instance for MNK padding

* passing a mask struct

* fix instances

* delete used comments

* format
Co-authored-by: default avatardanyao12 <yaodan@dc-smc-13.amd.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* fix build (#427)

* fix build

* fix build

* fixed G offset calc for long_index (#428)

* Build the CK targets only once. (#433)

* build CK only once, use deb package in all subsequent stages

* update jenkins file

* change prefix for build_CK stage

* update writing deb metadata to control file

* update ubuntu source for docker, script syntax for deb package metadata

* try different way to create deb metadata

* clean up DEBIAN before creating one

* fix the CI folder names, fix splitK qa

* use correct docker in all stages, separate tests for splitK verification and performance

* clean old comments, change dir before packaging

* use different package syntax

* change packaging syntax

* package with cmake

* remove unnecessary build prefix

* get rid of unnecessary paths

* change paths during unpacking

* change script syntax while unpacking

* get rid of unneccesary steps

* get rid of comments in the scripts

* use double quotes for scripts

* add ccache during build, try dpkg -x

* pull and install each package separately

* use full package names

* try to use stashing for packages

* change stash/unstash syntax

* move unstash out of shell, run tests on any gpu node

* unpack each package separately

* try re-using existing workspace

* merge the build and test stages, only stash ckProfiler

* merge the build and test stages, only stash zipped ckProfiler

* fix syntax

* add GPU check before build and test, rename docker to usual name

* Updated the supported components (#435)

* Replace the obsolete offload-arch flags with GPU_TARGETS and fix a bug. (#437)

* replace obsolete offload-arch flags with GPU_TARGETS

* fix a build error for client app

* replace commma with semicolon in GPU_TARGETS

* fix build (#434)

* fix

* fix

* add instance

* Fix device instance libarary to include all instances (#418)

* fix device instance library to add all instances

* remove cppcheck from requirements.txt
Co-authored-by: default avatarJun Liu <Liu.Jun@amd.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* Fix build issues, set new compiler default, etc. (#451)

* add an option to select specific compiler commit

* change the logic of forcing building a docker

* add check for compiler commit in dockerfile

* compiler check syntax fix

* change compiler selection logic

* fix the new compiler build issue

* set new compiler as default, update dev-requirements

* fix jenkins syntax

* fix docker syntax

* get rid of hipcc.pl editing in jenkinsfile

* fix the hipcc.pl in both places

* try to fix the 10738 compiler linking bug

* fix syntax

* use dockerhub to store images

* use newer amd-stg-open commit as default

* Allow setting ROCM version, activate cchache, etc. (#462)

* enable ccache and decouple it from MIOpen ccache use

* fix the ccache check script

* use another method to get server name

* fix syntax

* add quotes around the server name variable

* use check_host as function

* change syntax

* fix syntax

* test if server name is parsed correctly

* try different syntax

* check the env var value

* test new check node function

* add ROCMVERSION parameter and fix script syntax

* fix script syntax

* add missing instances of rocm version

* install ccache in the docker image

* do not check GPU in clang format stage, clean up old code

* update defaults and clean up

* update document: Readme, contributors, citation, (#463)

* update cmake script

* update readme

* Update README.md

* add citation

* add images

* Update README.md

* update

* Update README.md

* Update CONTRIBUTORS.md

* Update README.md

* Update CITATION.cff

* Update README.md

* Update CITATION.cff

* Update doc (#464)

* update cmake script

* update readme

* Update README.md

* add citation

* add images

* Update README.md

* update

* Update README.md

* Update CONTRIBUTORS.md

* Update README.md

* Update CITATION.cff

* Update README.md

* Update CITATION.cff

* update doc

* Update CONTRIBUTORS.md

* Update LICENSE

* Update readme (#465)

* update cmake script

* update readme

* Update README.md

* add citation

* add images

* Update README.md

* update

* Update README.md

* Update CONTRIBUTORS.md

* Update README.md

* Update CITATION.cff

* Update README.md

* Update CITATION.cff

* update doc

* Update CONTRIBUTORS.md

* Update LICENSE

* update

* Optimization for gridwise group norm (#453)

* use another instance to check the efficiency

* optimize group layer norm

* 1. coalesce load/store data for gridwise layer norm welford. 2. move a sqrt and divison into a outer static loop

* add more instances to layernorm

* add 2 more test cases

* remove ignore in generating tuple of vector
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* Fix build issue and schedule daily tests with latest staging compiler version. (#470)

* run branch once a day, with release and staging compilers

* add GetDockerImage in Clang stage

* apply the new triggers to the develop branch

* Example contraction splitk (#430)

* start split k

* add base device class

* add example after merge develop

* add gridwise gemm

* add b matrix split k

* split=1

* change name for kb

* not bias result right

* bias only add once

* fix register spill

* regular code

* add fp32 example

* fix for 64bit index

* fix CheckValidity of gridwise

* Conv2dFwd example. (#467)
Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>

* Fix bug of layernorm ckProfiler and refine code (#448)

* Fix bug of profiler for layernorm

* 1. Rename layernorm into normalization
2. Decouple softmax from normalization

* clang-format

* Refactor device op implementations into `impl` subdirectory. (#420)

* Move kernel implementation files under impl directory.

* Update examples paths.

* Update device kernel impl include paths.

* Update tensor operation instances include paths.

* Update profiler and tests include paths.

* Clang-format

* Update include paths for batched gemm reduce

* Refactor UnitTest ConvNDBwdWeight.

* Refactor fwd and bwd data convND UT.

* Fix used test macro.

* Fix include path.

* Fix include paths.

* Fix include paths in profiler and tests.

* Fix include paths.
Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>

* adding tensor_permutation example folder (#389)

* adding tensor_permutation example folder

* fixed formatting

* adding tensor_permutation example folder

* fixed formatting

* changed deviceelementwise parameters for outscalar

* removed .swo file

* updated folder/file name

* changed function call in verification for better consistency with hostelementwist parameters

* formatted again

* fixed shape in verification function call

* changed verification function call, added definition for nhwc

* added elementwise permute example

* updated CMakeLists file in folder

* Delete CmakeLists.txt

* Delete tensor_permute.cpp

* first version of 2d gridwise_elementwise kernel

* temporary fix for stride problem

* formatting

* format

* changed directory name

* Delete gridwise_elementwise_2d.hpp

* Delete CMakeLists.txt

* Delete extra file

* delete extra file

* got rid of extraneous code

* added 2d device elementwise file

* deleted accidently added file

* update

* stride values generalized with equations

* updated stride for output matrix

* Update CMakeLists.txt

* removed extraneous commented code

* removed shape_nchw vector, replaced with GetLength for each dimension

* changed vector load in kernel call

* removed extra space in CMake

* Tensor permutation (#479)

* Fused elementwise layernorm (#468)

* add fused addition lyernorm

* add fused addition lyernorm

* changed CMakelist

* removed annotates

* modified descriptor of C

* fixed bug in gridwise add layernorm

* format the files

* modified name from add&layernorm into elementwise&layernorm

* created fused elementwise layernorm branch

* change input into tuple type

* add sweep once to reduce load & read of C from global memory

* modified Argument api

* modified way to malloc c in global memory

* changed gamma and beta to m_k_desc

* fixed bug when sweep once and move CDataType when define device level struct

* add src dim for gamma and beta

* implement optimization for coalesced

* delete a annotation line

* fixed some bug to meet the requirements of ck

* add bandwidth computing in example, and fixed the time unit

* move device_elementwise_layernorm_impl.hpp into device/impl

* fixed bug in device_elementwise_layernorm_impl.hpp

* changed name from layernorm into normalization

* clang-format the changed files

* changed the names

* moved immidiate results into lds, it become faster in non-sweeponce cases

* changed naming of C into X to make the defination more clear

* changed naming in example

* add tests for elementwise normalization

* move example_elementwise_layernorm_blockwise into folder 44_elementwise_normalization

* move test_elementwise_layernorm_fp16 into new folder

* move elementwise_normalization_instances into a new folder

* add more tests in test_elementwise_layernorm_fp16.cpp

* added some corner cases in test

* fixed method to compute lds size for matrix X

* changed name of 44_elementwise_normalization into 45_elementwise_normalization

* modified some comments

* modified some other confused comments

* reduce redundant tests in test_elementwise_layernorm_fp16.cpp

* Revert "Fused elementwise layernorm (#468)" (#491)

This reverts commit efbcc6ed

.

* Update to the Reduction API and instances  (#476)

* Simplify the macros for declaring and defining the add_device_reduce_instance_xxxx() instances

* Change the types of lengths and strides from std::vector to std::array for the reduction device interfaces

* Remove DeviceSoftmaxImpl's depending on DeviceReduceMultiblock

* Split the cpp and hpp files for reduction instances to enable more parallel compiling

* Remove the using of macros for declaring reduction instances and instance references

* Update to add_device_reduce_instance_xxxx templated functions

* Use ReduceOperation+InElementwiseOp+AccElementwiseOp to repace the ReduceOpId in defining add_reduce_instance_xxxx() templates

* Change return format

* fix the script parsing the QA results (#495)

* Gemm standalone bench executable (#480)

* prototype

4 layouts

fix default stride

all problem sizes

tidy

move file

update build script

restore old file

fix build

* refactor standalone test to use gemm test harness

* simplify gemm test

* update build script

* remove redundant

* early return when cmd arg doesn't match

* tidy

* report failure when result not validated

* tidy

* Apply suggestions from code review
Co-authored-by: default avatarAdam Osewski <19374865+aosewski@users.noreply.github.com>
Co-authored-by: default avatarAdam Osewski <19374865+aosewski@users.noreply.github.com>

* Fix Batched Gemm op for int8 data (#482)

* Fix for lwpck-425, update BlockTransferSrcVectorDim

* Revert "Fix for lwpck-425, update BlockTransferSrcVectorDim"

This reverts commit fd24e280e28ff238b452cfdde58a988affd46461.

* Add Batched Gemm int8 test, expect it to fail

* Format

* Re-add the fix

* Input/output permutation for fused attention (#460)

* reopen masking att instance due to CI is upgraded

* re-enable instances previously failed on 9110

* enable ksize-kpadding pair validity test

* add non-masked attention+permute test; expose masking boolean to attention kernel handles

* disable bench

* fix test

* move files

* bulk rename batched_gemm_masking_scale_softmax_gemm_permute to batched_gemm_softmax_gemm_permute

* format

* amend rename

* disable bench in test

* add mask/no-mask test for non-permute attention kernels

* disable broken kernel instance

* example working

add non-permuted problem statement

evaluating whether overhead comes from permutation or the extra kernel arg

* interface for bias addition without implementing it

* test and profiler running

* tidy

* mask type determined by enum class

* unify example code

* move masking specialization to its own header

* align formats

* extract helper functions

* experiment merging dims for attn w/ permute; shows perf parity with attn wo/ permute

* add tensor specialization to template args

since tensor spec packed shows perf parity when permutation isn't needed

remove redundant template args

comment on 'packed' tensor specialization

* grouped attention with input/output permute example

* format

* clean up

* refactor acc0 tile visitor
Co-authored-by: wangshaojie6's avatarshaojiewang <wsjmessi@163.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* Fused attention client example (#494)

* reopen masking att instance due to CI is upgraded

* re-enable instances previously failed on 9110

* enable ksize-kpadding pair validity test

* add non-masked attention+permute test; expose masking boolean to attention kernel handles

* disable bench

* fix test

* move files

* bulk rename batched_gemm_masking_scale_softmax_gemm_permute to batched_gemm_softmax_gemm_permute

* format

* amend rename

* disable bench in test

* add mask/no-mask test for non-permute attention kernels

* disable broken kernel instance

* example working

add non-permuted problem statement

evaluating whether overhead comes from permutation or the extra kernel arg

* interface for bias addition without implementing it

* test and profiler running

* tidy

* mask type determined by enum class

* unify example code

* move masking specialization to its own header

* align formats

* extract helper functions

* experiment merging dims for attn w/ permute; shows perf parity with attn wo/ permute

* add tensor specialization to template args

since tensor spec packed shows perf parity when permutation isn't needed

remove redundant template args

comment on 'packed' tensor specialization

* grouped attention with input/output permute example

* format

* clean up

* refactor acc0 tile visitor

* fused attention client example

* format
Co-authored-by: wangshaojie6's avatarshaojiewang <wsjmessi@163.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* reduce the number of default targets (#489)

* reduce the number of default targets

* re-write the setting of target flags

* move all options to one place

* add new custom target instances for installing CK

* fix missing -fPIC flag for conv3d_fwd instance lib (#473)

* Add quotes for string option values (#472)

* Batchnorm-forward implemented using welford method to calculate variance (#403)

* Update to the batchnorm-forward API and base class

* Fix leeked header including in gridwise_set_buffer_value.hpp

* Add kernels and device file for batchnorm-forward welford supporting both blockwise and multi-block reduction

* Update to the batchnorm-forward example to use the new batchnorm-forward device interface

* Change the batchnorm-forward reference to use sequential welford method

* Change to assign the workspace into four buffers in the host layer

* Use GetReduceCountPerThread functor to replace the initial count for Blockwise and Multiblock welford

* Tiny correction and remove un-used file under example/34_batchnorm

* Renaming in the kernel arguments

* Explicitly use ck::math::sqrt in batchnorm-forward kernels

* Add some comments to some kernels

* Tiny fix

* Generalize the data types in reference_batchnorm_forward_nhwc_c

* Use ck::ignore to mark un-used parameters

* Move GetReduceCountPerThread functor codes from kernel to device

* Remove some un-used codes in device_batchnorm_forward_impl.hpp

* Tiny fix in batchnorm_forward example

* Move GetReduceCountPerThread() to welford_helper.hpp

* Use seperate data type for Scale and Bias

* Renaming in device Op

* Tiny fix in forward example

* Updata to batchnorm-infer (type spliting, renaming)

* Add time and bandwidth measurement to the batchnorm-forward example

* Add support of elementwise operation for batchnorm forward output

* Reduce object copying by passing object as reference type

* Tiny change for performance

* Updates for performance again

* Some Renamings

* Add GetActualVariance template parameter for ThreadwiseWelfordMerge

* Tiny update in reference batchnorm forward nhwc/c

* Move batchnorm multiblock kernel files to grid/batchnorm_multiblock sub-directory

* Fuse mean and bias in the normalization calculation
Co-authored-by: default avatarroot <root@dc-smc-18.amd.com>
Co-authored-by: default avatarrocking5566 <ChunYu.Lai@amd.com>

* Add fp32 and bf16 tests (#487)

* Only need one test case here (#483)

* Add Conv Forward on Navi21 for ResNet50 (#490)

* add device of dl

* fix k1 of GridwiseGemmDl_km_kn_mn_v1r3

* init version for dl conv

* add example(init)

* result right

* disable elementwise operation

* check parameters

* add fp32,int8 example and change check code

* change deive file and class name

* add check vector access of C

* add instance

* add to ckProfiler

* add Filter1x1Pad0 instances

* fix ignore error

* fix for CI
Co-authored-by: default avatarletaoqin <letaoqin@amd.com>

* Conv perlayer int8 quantization (#471)

* Add conv2d requant example

* Fix bash error

* Rename example

* 1. Rename gemm quantization
2. shares the requantization lambda function with conv

* Refine declare type

* Add conv bias relu quantization exmaple

* clang format

* Fix compile error due to merge develop

* Fix CI error

* Extract quantization post operation into another file

* Support quantization for non piecewise linear function

* Add instance for conv quantization

* Add convolution quantization factory

* Add convolution quantization client example

* Add more instances with different template parameters

* clang format

* Sync the naming with the develop

* Softmax unit-test reduction across all and non innermost dims cases. (#406)

* Add reduction across all dims cases.

* host softmax: handle all reduce

* Test cases when reduced dim is not innermost axis.

* Fix syntax.

* Test non innermost dim for fp32 and int8

* Group test suites wrt NumReduceDim.

* Additionally test failing cases.

* Throw error when Rank or NumReduceDims doesn't match arguments.

* Check reducedDims has correct values

* Move don't reuse DeviceReduceMultiblock IsSupportedArgument method.
Instead implement own. (in fact just get rid of one check to enable
reduction across inner dimensions).

* Reorganize unit tests to better cover use scenarios.

* Test input validation
* Test reduction of inner dimensions with custom op instances.

* Refactor fp32 and int8 unit tests.

* Fix FP32 instance template parameters.

* Add more instances.

* Instances with InSrcVectorDim=0.

* Do not initialize and copy data when arg not supported.

* ckProfiler Softmax use instance factory.

* Refactor device softmax IsSupported.

* Additionally add non-polymorphic api functions

* Split softmax instances into multiple files.

* Fix profiler.

* Reorganize tests to reuse profiler and cover edge cases.

* Clang-format

* I8 Softmax instances along with UT.

* Reuse type alias definitions from instance factory header.

* Clean included headers

* Fix variable names.

* Add missing checks in Argument constructor.
Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>
Co-authored-by: default avatarAnthony Chang <ac.chang@outlook.com>

* Add pipeline v1/v2 selector, add more instances (#381)

* Add gridwise gemm pipeline v1/v2 selector

* Pipeline selector working, test-wise add pipeline options to one instance

* Add gemm instances

* Add debug info to DeviceGemmXdl

* Add debug info to DeviceGemmXdl_CShuffle

* Add debug info to DeviceGemmXdl_CShuffle and instances to gemm_add_add_fastgelu

* Minor fix

* Add debug info to DeviceBatchedGemmXdl and instances to batched_gemm

* set up inter-wave configuration

* use defualt loop scheduling for supported gemm ops

for blanket-applying interwave scheduling for all supported gemm ops, define macro CK_EXPERIMENTAL_DEFAULT_TO_INTER_WAVE_SCHEDULING=1. this should be discouraged though as it is not covered by CI

* Add enum PipelineVersion

* Update instances

* Format

* Fix the merge conflict

* Add flags to disable added instances

* Test disable flag check

* Disable flag check

* Enable the instances
Co-authored-by: default avatarAnthony Chang <ac.chang@outlook.com>

* Add client example of grouped conv2d backward data (data type: fp16) (#481)

* Improve example reusability

* Remove no-longer used file

* Rename folder of grouped_conv_bwd_data example

* Add normal grouped conv bwd example

* Add interface 'DeviceGroupedConvBwdData'

* Prettify comment of device op type arguments

* Add grouped conv2d/conv3d backward data fp16 instances

* Fix wrong template argument

* Add grouped_conv2d_bwd_data client example

* Use simpler expression to calculate memory size

* Fix formating

* Remove grouped_conv3d_bw_data instances

Underlying device operator is not ready to handle 3D input

* Remove no-longer necessary include directive

* Add missing include directive

* Use more realistic conv param in example

* remove atten kernel workarounds as we move over to rocm 5.3 (#496)

* Refine layernorm naming and test code (#497)

* Sync the naming

* Sync the test of layernorm with groupnorm

* Sync the naming

* Minor change for comment and log

* [What] Add saveMean and SaveInvVariance in the interface.
[Why] These can optimize the backward

* Disable gtest discovery to run tests per-program not per-case (#432)

* disable gtest discovery to run tests per-program not per-case

* register cmake target to ctest

* Fused elementwise normalization (#492)

* add fused addition lyernorm

* add fused addition lyernorm

* changed CMakelist

* removed annotates

* modified descriptor of C

* fixed bug in gridwise add layernorm

* format the files

* modified name from add&layernorm into elementwise&layernorm

* created fused elementwise layernorm branch

* change input into tuple type

* add sweep once to reduce load & read of C from global memory

* modified Argument api

* modified way to malloc c in global memory

* changed gamma and beta to m_k_desc

* fixed bug when sweep once and move CDataType when define device level struct

* add src dim for gamma and beta

* implement optimization for coalesced

* delete a annotation line

* fixed some bug to meet the requirements of ck

* add bandwidth computing in example, and fixed the time unit

* move device_elementwise_layernorm_impl.hpp into device/impl

* fixed bug in device_elementwise_layernorm_impl.hpp

* changed name from layernorm into normalization

* clang-format the changed files

* changed the names

* moved immidiate results into lds, it become faster in non-sweeponce cases

* changed naming of C into X to make the defination more clear

* changed naming in example

* add tests for elementwise normalization

* move example_elementwise_layernorm_blockwise into folder 44_elementwise_normalization

* move test_elementwise_layernorm_fp16 into new folder

* move elementwise_normalization_instances into a new folder

* add more tests in test_elementwise_layernorm_fp16.cpp

* added some corner cases in test

* fixed method to compute lds size for matrix X

* changed name of 44_elementwise_normalization into 45_elementwise_normalization

* modified some comments

* modified some other confused comments

* reduce redundant tests in test_elementwise_layernorm_fp16.cpp

* Remove interface 'DeviceGroupedConvBwdData' (#500)

* Remove interface 'DeviceGroupedConvBwdData'

* Remove no-longer needed include directive

* Rename client example folder

* Add client example of grouped conv2d backward weight (data type: fp16)  (#498)

* Remove redundant CMake setting

* Extract common code from files

* Rename folder 'convnd' to 'conv'

* Use std::array<> to accept compile-time kwnown # of arguments

* Fix compilation error of tuning parameter

* In example, use same setting as unit-test

* Remove no-longer used include directive

* Add interface for grouped conv bwd weight

* Add group support for conv bwd weight

* Add grouped conv bwd weight example

* Use group parameter in example

* Rename example folder

* Remove non-grouped version example source files

* Rename device op template

* Add group support to convolution backward weight

* Remove debug messages

* Use smaller group size in example

* Use named variable as loop terminate condition

* Prettify example output message

* Enlarge used grid size

* Allow real grid size exceeds expected grid size

* Rename interface file

* Add client example for grouped conv2d bwd weight

* Fix wrong include directive

* Rename client example folder

* Add client example of grouped conv2d forward (data type: fp16) (#488)

* Rename example folder for GroupedConvFwdMultipleD

* Unify example codes

* Change target names

* Add fp16 example for multiple d instance

* Re-format common.hpp

* Add interface 'DeviceGroupedConvFwd'

* Use simpler interface

* Move common conv params out

* Rename conv fwd client example folder

* Add missing include directive

* Update grouped conv instance implementations

* Simplify ckProfiler (grouped conv forward)

* Use GroupedConvFwd to implement client example

* Use greater groupe count in example

* Add custom target to group examples

* Add extra tag param to instance factory function

* Use tag to differentiate factory functions

* Add missing tag argument for factory function

* Remove inheritance relationship

* Remove no-longer used include directive

* Add license in front of file

* add client example for elementwise_normalization (#501)

* add client example for elementwise_normalization

* clang format elementwise_layernorm2d.cpp

* changed some naming to make it more understandable

* changed naming of input into ab_input

* fixed bug for threadwise_x_store

* add elementwise operation to reference

* Rangify FillUniformDistributionIntegerValue<> (#443)

Allow passing forward range to its call operator

* Add packages for examples and profiler (#502)

* Add packages for example and profiler

* correct TEST_NAME -> EXAMPLE_NAME

* Rangify constructor of HostTensorDescriptor & Tensor<> (#445)

* Rangify STL algorithms

This commit adapts rangified std::copy(), std::fill() & std::transform()

* Rangify check_err()

By rangifying check_err(), we can not only compare values between
std::vector<>s, but also compare any ranges which have same value
type.

* Allow constructing Tensor<> like a HostTensorDescriptor

* Simplify Tensor<> object construction logics

* Remove more unnecessary 'HostTensorDescriptor' objects

* Re-format example code

* Re-write more HostTensorDescriptor ctor call

* Fix build errors on CI server (#506)

* Add missing ignore expression

* Add missing include directive

* Rangify check_err() (#444)

* Rangify check_err()

By rangifying check_err(), we can not only compare values between
std::vector<>s, but also compare any ranges which have same value
type.

* Re-format example code

* Rangify STL algorithms (#438)

* Rangify STL algorithms

This commit adapts rangified std::copy(), std::fill() & std::transform()

* Re-write more std::copy() calls

* Re-write std::copy() calls in profiler

* Introduce ck::accumulate_n() (#439)

We can use this template to eliminate duplicated iterator computing
logics. By providing return type to ck::accumulate_n(), we can avoid
type conversion operations.

* Avoid reporting unused member function error (#507)

* Add Conv Backward Data on Navi21 for ResNet50 (#499)

* start add example

* add device dl

* change launch kernel

* change init data method

* change example config

* add config valid check

* add instance for dl bwd

* add instance to ckProfiler

* reserver to profiler and cmakelist

* add instance to ckProfiler2

* change instance f32 config

* fix example return value
Co-authored-by: default avatarletaoqin <letaoqin@amd.com>
Co-authored-by: default avatarPo Yen Chen <PoYen.Chen@amd.com>

* Add BF16 tests for batched_gemm_softmax_gemm_permute (#504)

* fixed bug in softmax reference & add bf16 examples for batched_gemm_scale_softmax_gemm

* added bf16 tests for batched_gemm_softmax_gemm_permute

* changed format of device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instance.cpp

* changed format device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instance.cpp

* aligned annotations

* modified CMakeLists for examples

* add common example code of fp16/bf16 version for batched_gemm_scale_softmax_gemm_xdl

* use macro to control the instances

* added macro control into instances

* clang-format some files

* changed error tolerance for bf16

* changed index for 10_elementwise_normalization

* fixed xdlops code bug in amd_xdlops.hpp
Co-authored-by: default avatarPo Yen Chen <PoYen.Chen@amd.com>

* Work around develop validation failure (#513)

* workaround bf16 atten fwd issue on gfx908

* typo

* Client examples AddFastGelu and FastGelu + instances. (#509)

* FastGelu support for more data types.

* AddFastGelu & FastGelu instances.

* Client example.

* clang-format

* Remove unused stride variable.

* Add new line at EOF.
Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>

* BatchNorm forward instance/external api/profiler/tests/client example (#511)

* Update to device_batchnorm_forward base class to include all template parameters for problem description

* Add batchnorm forward instances and external api

* Add batchnorm forward profiler module which uses the external api

* Add some comments in batchnorm_forward example to explain the dimensions in lengths[]

* Replace the reference_batchnorm_forward_nhwc_c by generic reference_batchnorm_forward

* Improvement to the batchnorm infer base API

* Add batchnorm forward client example which shows using the batchnorm forward external API

* Add test for batchnorm forward

* Tuning the batchnorm profiler initialized values and error threshold

* Add support for bhalf_t in instances/external api/tests

* Add support for int8_t in instances/external api/tests

* Add support for double in instances/external api/tests

* Let ScaleDataType and BiasDataType be same as XDataType and YDataType when creating instances

* Checking before running best instance in batchnorm_fwd_nhwc client example

* Add checking for YElementwiseOp in batchnorm_forward external API

* Add more types in batchnorm forward profiler

* Add more test lengths
Co-authored-by: default avatarrocking5566 <ChunYu.Lai@amd.com>

* Remove int8 from batchnorm-forward instances since it is not needed for forward training and could fail test (#516)

* BatchNorm backward implementation (#461)

* Implemented batchnorm-backward Blockwise and Multiblock kernels

* Add batchnorm-backward device op

* Add batchnorm-backward host-reference op

* Add batchnorm-backward example

* Parameters renaming in batchnorm backward kernels and device op

* Change in the example to loose the threshold for ScaleDiff checking

* Add comments to explain the implementation of batchnorm-backward

* Parameters renaming again in batchnorm backward kernels

* Improve the expression calculation for performance

* Add batchnorm backward to README

* Add comments to explain inv-variance in batchnorm forward and backward

* Renaming the batchnorm forward training and inferring examples

* Add/update the comments for batchnorm-backward kernels

* Renaming again

* Add block_sync_lds between two consecutive blockwise reductions

* Move common expression 1/N out of the static_for loops

* Add dy_elementwise_op

* Renaming in backward example again

* Add checking for reduceDims in reference_batchnorm_backward

* Update to comments and codes format

* Rename in the comments

* Remove common expression out of the loop in reference_batchnorm_backward_nhwc_c

* Add block_sync_lds() between blockwise reduction again

* Fix comments again

* Remove int8 from batchnorm-forward instances since it is not needed for forward training and could fail test

* fix GetTypeString

* Fix split-k gemm test (#231)

* properly return error flag; reveals bug in split-k gemm

* fix bug in split k

* update split-k test case
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* BatchNorm backward instance/external API/profiler/tests (#519)

* Refine the device batchnorm-backward base API templates and data type assignments

* Remove duplicated kernel file

* Add batchnorm backward instances and external API

* Add batchnorm-backward profiler and tests

* Add client example which uses batchnorm backward external API

* Merge test/batchnorm_fwd and test/batchnorm_bwd into one directory

* Loose the threshold for batchnorm-backward check_err()

* gemm, conv perchannel quantization (#503)

* Use gemm_multiple_D instead

* Add gemm bias relu quantization example

* Add pure gemm quantization example

* Add quantization of perchannel conv + bias + relu example

* Refine the code

* Rename multiplier to requant_scale

* Rename the folder

* Remove redundant comment

* Rename the file. Prepare to add perchannel

* Add conv perchannel instance

* Move to quantization folder

* Add conv perchannel client example

* Apply Rangify constructor of HostTensorDescriptor & Tensor<>

* Fix merge error

* Modularize ckProfiler operations (#514)

* Re-structure ckProfiler source files

* Rename profiler.cpp to main.cpp

* Modularize ckProfiler operations

* Add description for profiler operations

* Use longer name to avoid name collision

* Use macro to delay expansion

* Use std::move() to avoid object copying

* Prohibit users from calling dtor

* Use macro to eliminate redundant code

* Make friend function hidden

* Add missing include directive <iostream>

* Fix wrong include directives

* Remove int8 from batchnorm-forward instances since it is not needed for forward training and could fail test
Co-authored-by: default avatarQianfeng Zhang <Qianfeng.Zhang@amd.com>

* [Navi3x-LWPCK-449] wmma_op + unit test (#484)

* wmma_op + unit test

* add arch limitation to wmma test

* change arch limitation

* Refactor + Add all type unit test(int4 compile failed)

* Add f32_16x16x16_bf16 unit test

* Remote int4 related

* delete deprecated test
Co-authored-by: default avatarPo Yen Chen <PoYen.Chen@amd.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* Add multiple d gridwise gemm on Navi21 for ResNet50 (#517)

* start add example

* add multiple d fp16 example

* device transfer elementwiseop to gridwise

* gridwise add multiple d

* change example for multiple d

* fix spill registers

* fix for passthrough element op

* fix int8 overflow

* change example file name

* add instance for dl multiple d

* example add DsDataType

* remove grouped_convolution_forward_dl.hpp

* add head file(was deleted before)

* fix not support device issue

* format

* remove passthrough check
Co-authored-by: default avatarletaoqin <letaoqin@amd.com>

* Fix bug where scaling may not be applied in some code path (#526)

* fix bug where scaling may not be applied in some code path

* more test

* revert accidental example code changes

* Fix CI error. (#530)

* ignore .git folder when doing clang-format

* fix syntax

* add backslashes before quotes

* add path filter for several extensions

* modified half function in math_v2.hpp (#528)
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* Add padding device_gemm_xdl instances (#529)
Co-authored-by: default avatarRosty Geyyer <rosty.geyyer@amd.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>

* Fix Grouped ConvBwdWeight test case failure (#524)

* Use smaller tensor size in test

* Use even more smaller tensor size

* Touch only failing test case inputs

* Make sure that GEMM sizes in K dimension are supported. (#527)

* apply new K-dimension check in gemm_xdl_cshuffle

* add K-dim check to gemm_xdl and batched_gemm_xdl

* fix syntax

* fix syntax

* clean-up the debug output

* Gridwise elementwise 2d (#466)

* added 2d gridwise elementwise

* added 2d version of device elementwise

* added example file with updated device elementwise call

* added Cmake file

* changed NumDim into 2D

* fixed compiler issues

* fixed indexing for loop step

* fixed NumDim dimension error

* changed blockID to 2D

* updated Grid Desc

* updated kernel call

* fixed 2d thread indexing

* added dimensions for example file

* commented out unused code

* changed vector load

* removed extra code

* temporarily removing vector load on 2nd dim

* changed vector load back, still causing errors

* altered indexing

* changed isSupportedArgument for 2D

* changed indexing + do/while

* fixed isSupportedArgument

* changed dimension for debugging

* fixed

* added testing printouts

* testing change

* added variables to distribute threads through both dimensions

* testing changes

* integrated variable for thread distribution into device elementwise and added as parameter for gridwise elementwise

* removed most of the extraneous code, testing with different dimensions

* testing

* removed debugging print statements

* moved 2d elementwise permute into elementwise permute directory

* fixed formatting

* removed debugging comments from threadwise transfer
Co-authored-by: default avatarJing Zhang <jizhan@amd.com>
Co-authored-by: default avatarPo Yen Chen <PoYen.Chen@amd.com>

* Add a docker hub doc file (#538)

* Add padding device_gemm_add_add_fastgelu_xdl_c_shuffle instances to enable arbitrary problem size (#535)

* Add padding device_gemm_add_add_fastgelu_xdl_c_shuffle instances

* Add padding device_gemm_add_fastgelu_xdl_c_shuffle instances

* Add gemm_add_fastgelu profiler impl

* Add padding device_gemm_fastgelu_xdl_c_shuffle instances

* Add gemm_fastgelu profiler impl

* Add interface GetTypeIdName() and GetTypeIdHashCode() for Device Op (#533)

* disable the attention test that fails on MI100 (#540)

* Add MNK padding, M = 0 support into grouped_gemm (#539)

* add mnk padding, support m=0

* clean code

* clean code
Co-authored-by: default avatarRostyslav Geyyer <46627076+geyyer@users.noreply.github.com>

* Remove including of cmath (#551)

* Let cmath included when compiling host codes in math_v2.hpp

* Remove including of cmath in device_base.hpp and device_permute.hpp

* Add a flag to enable/disable debug output in many kernels. (#549)

* add DEBUG_LOG macro to enable/disable debug output

* fix syntax

* fix syntax again

* fix syntax one more time

* remove balnk spaces

* use ifdefs

* add the Print argument

* move the definition of DEBUG_LOG to ck.hpp

* add the missign argument to Print()

* [Navi3x-LWPCK-545] Block-wise GEMM + Real GEMM_WMMA_FP16 (#541)

* wmma_op + unit test

* add arch limitation to wmma test

* change arch limitation

* Refactor + Add all type unit test(int4 compile failed)

* Add f32_16x16x16_bf16 unit test

* tempsave

* tempsave

* tempsave

* runtime bug, cannot find symbol

* workaround for incorrect HIP warpSize return value

* debugging

* tempsave

* Correctness OK, waiting for optimization

* Tidy up + format

* temp save

* temp save, reproduce the v_bfi_b32 issue

* add inline asm for wmmaop test

* tidy up

* clean some debug purpose code

* discard some codes

* clang format

* clang format

* compiler issue fixed + increase tile size

* Gemm layernorm welford (#413)

* Add device op of gemm layernorm

* [What] Rename F to H
[Why] F and G prepare for welford tensor

* Add gridwise gemm + welford

* Extract template parameter

* Rename kernel. Prepare to add second half kernel

* Extract var

* Add second kernel for gemm+layernorm

* Move to the gemm_layernorm folder

* Rename F and G to mean and var

* Do not use snakeCurved, it makes determination of padding  for welford difficult

* Rewrite the device interface and rename some var

* Add welford count

* Update interface

* Sync code, prepare to test on MI200

* Clean the code

* Implement layernorm

* Add comment to mension hipFree

* Wrtie out the e for debug.
This could be remove and use h for instead

* 1. Allocate mean, var and count into by SetWorkSpacePointer.
2. Add GetWorkSpaceSize to calculate the space size

* Add gemm layernorm host code

* use reference layernorm

* Fix bug of blockwise welford for first kernel

* Fix bug of mean var padding for layernorm

* Use sgpr for shuffleM_index

* padding for GemmMeanVarCountGridDescriptor_M_NBlock

* Add layout parameter

* Check argument for gemm

* calculate max count for tail block

* Share E and H memory in device op

* Hard code the vector dim

* Refine the MakeDescriptor

* 1. Remove E parameter, because E is inside of device op
2. Check vector size

* [What] Rename MakeMeanVarDescriptor_M_N
[Why] Prepare to add count version of make descriptor

* Use 1D global memory for count

* Prevent redundant IO

* Update parameter

* Add pipeline v1/v2 selector

* Rename the example name

* Add base class for gemm layernorm

* Refine naming to distinguish naive and welford

* Add comment to explan in detail

* We don't need to pad in N dimension in gemm for mean/var/count. Set NPerTile 1

* Rewrite the 2st kernel, use multiple block along N dimension in layernorm kernel

* Share the vector size

* Refine var name

* [What] Force LayernormThreadSliceSize_N = vector size.
[Why] Memory coalesce

* Add comment

* Extract divisor out of the loop in reference layernorm

* Pad different size for E and H in layernorm kernel according to different block tile

* Refine naming

* Refine naming

* Prevent implicit cast

* [What] use ck::math::sqrt instead of __builtin_amdgcn_sqrtf
[Why] __builtin_amdgcn_sqrtf is only support float, double will cause casting

* Cast only constant

* Change of post shuffle thread descriptor

* Add EMeanVarDataType parameter.

* Merge the mean and var threadwise copy

* Add missing index

* Fix Typo

* Sync the variable with previous if

* 1. Declare e inside the host_gemm_layernorm()
2. Prevent implicit cast in reference code
Co-authored-by: default avatarPo Yen Chen <PoYen.Chen@amd.com>

* Reduction external API and client examples (#493)

* Change to the DeviceReduce base class template to include all problem description information

* Add external api for reduction

* Add client example to test the reduction external api

* Spelling correction

* Re-implement the host_reduction to follow the DeviceReduce base API format

* Change the reduce profiler to call the external API for collecting device instances

* Rename reduce client example directory from 08_reduce to 12_reduce

* Remove (void) before the functional call

* Tiny update in reduce client example

* Tiny update in profile_reduce_impl.hpp

* Rename the reduce client example directory
Co-authored-by: default avatarPo Yen Chen <PoYen.Chen@amd.com>

* Add client API/examples for 3xGemm+Bias+Add+Permute{0, 2, 3, 1} (#550)

* add example

* fix example

* add instance for gemm permute

* add to client example

* change configs

* change instance file name

* formate

* change client example file name and remove example

* add multi embeddings support (#542)

* add multi embeddings support

* fix format

* optimize sqrt

* add reduce operation

* change to elementwise op

* fix name

* rename

* run ci cd

* format example

* format code

* format code

* fix a bug for 6-dim kernels (#555)

* Add multiD Gemm client APIs (#534)

* start add example

* fix config

* fix showinfo bug

* add an elementop

* change to padding

* add xdl example

* change elementwiseop

* add instance

* add instance to profiler

* change file name

* fix deive not support issue

* add client example

* fix client gemm_add_multiply name

* change AddMultiply elementwiseop

* fix elementwiseop

* fix client example

* fix addmultiply op

* fix comments and fun name
Co-authored-by: default avatarletaoqin <letaoqin@amd.com>

* Wavelet (inter-wave consumer-producer) GEMM (#310)

* wavelet gemm programming model support for CK

* GEMM pipeline update for wavelet progrmmaing model

* Updated wavelet programming pipeline

* fixes for global-write for math-wave

* fixed bug in global writes

* Updated comments for better readability

* fixed clang format errors

* added block_lds without barrier sync

* clean

* clean

* clean

* clean

* refactor

* prototype

4 layouts

fix default stride

all problem sizes

tidy

move file

update build script

restore old file

fix build

* refactor standalone test to use gemm test harness

* simplify gemm test

* update build script

* remove redundant

* early return when cmd arg doesn't match

* tidy

* report failure when result not validated

* tidy

* Add comment depicting B2C mapping pattern.

* Formatting & comments.

* Comparison with custom B2C mapping pattern.

* Example for wavelet gemm.

* Add wavelet to Gemm standalone test.

* Remove debug code.

* Remove dangling #endif directive.

Co-authored-by: root <Raman Jana>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>
Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>
Co-authored-by: default avatarAnthony Chang <ac.chang@outlook.com>
Co-authored-by: default avatarAdam Osewski <19374865+aosewski@users.noreply.github.com>

* Use double for all scaling values and float-point constant values at the Device Op API (#557)

* Use double as alpha/beta values type in reduce device op api

* Use double as alpha/beta values type in softmax device op api

* Use double as alpha/beta values type in multiple-reduce device op api

* Use double as epsilon value type in normalization/elementwise-normalization device op api

* Batchnorm inference instances, external API, client examples and gtests (#531)

* File renaming and class renaming for device element-wise operation

* Add batchnorm-infer instances, external API and client example

* Add batchnorm-infer profiler module and gtests

* Remove file device_elementwise_extension.hpp and move NormalizeInInfer operation to element_wise_operation.hpp

* Remove the using of class aliasing for DeviceElementwiseForBatchNormInfer

* Rename class and file due to conflict from device_elementwise_2d.hpp

* Fix namespace in batcnnorm_infer_nhwc client example

* Add more instances for irregular GEMM sizes. (#560)
Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>

* Use defined seed for deterministic test runs. (#562)
Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>

* remove unused variable (#564)

* remove unused variable

* format code

* Add the markdown tutorial hello world (#563)

* Add the markdown tutorial

* Clean up

---------
Co-authored-by: default avatarRosty Geyyer <rosty.geyyer@amd.com>

* Fix CI issues. (#572)

* switch to recent staging compiler as default for CI

* fix the baseline query

* roll back sqlalchemy to version 1.4.46

* Fix a couple more CI issues. (#578)

* test the QA cron parameter for compiler commit

* create separate dockers for latest and fixed amd-stg-open compiler versions

* change groovy syntax

* apply cron timers back to develop branch

* Add GemmAddSoftmaxGemm support for MSFT ORT (instances and client API) (#576)

* add instance for gemm bias softmax gemm

* add client example

* change CGridDesc_G_M_N to CGridDesc_G_M_O

* add gridwise

* change c grid name

* device add d0s data

* fix 08 client_example

* add example 47_fused_attention

* example output correct

* add d0 to example

* add d0 element op

* rechange instance code

* change Acc0ElementwiseOperation to C0DEElementwiseOperation

* change example name

* update instance for cdeelementwiseop

* add bhalf_t ScaleAdd

* add test

* not surport geem1 bias

* remove some ignore

* fix test bug

* adding the first draft of changelog (#571)

* adding the first draft of changelog

* second draft of changelog

* Add instance for elementwise normlization (#573)

* added instances for large N

* add instance for elementwise normlization

* added supported restrict in device_elementwise_normalization_impl.hpp

* Gemm+layernorm instance, ckProfiler, client example (#568)

* Add gemm + layernorm instance

* Add ckProfiler

* Add test

* Add client example

* Detect if user forger to set the workrspace

* Use literal in the example

* [What] use builtin function for sqrt
[Why] compiler will not use v_sqrt_f64_e64 if we use ::sqrt()

* check gemm vaildity in IsSupportedArgument

* Add more testcases

* Merge duplicated folder in client example

* Print more infomation

* Use better kernel parameter for MS problem size

* clang format

* Add constexpr for if condition and remove redundant include

* Remove cstdlib and add constexpr

* enable batched_gemm_softmax_bf16 tests (#582)

* GroupedGEMM more bigger tiles. (#577)

* Adding more bigger tiles.

* Remove failing instance.

* Remove instances which that don't improve perf.

---------
Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>
Co-authored-by: default avatarzjing14 <zhangjing14@gmail.com>

* Remove the workaround for bf16 attention tests. (#586)

* remove workanround in bf16 attention test

* clean up another workaround

* Conv3D FWD BWD WRW fp16 fp32 client examples (#559)

* Conv3d bwd weight client example.

* Update year in license

* Convolution bwd data 3D fp16/fp32 client example.

* Client example for convnd fwd fp16 fp32

* clang-format

* Review remarks.

* Fix compiler err.

* Update data layout to standard one.

* Add conv 3d fwd NDHWGC instances

* clang-format

* Conv3d fwd NDHWGC instances.

---------
Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>
Co-authored-by: default avatarzjing14 <zhangjing14@gmail.com>

* [Navi3x]  Add Device Operations (#567)

* wmma_op + unit test

* add arch limitation to wmma test

* change arch limitation

* Refactor + Add all type unit test(int4 compile failed)

* Add f32_16x16x16_bf16 unit test

* tempsave

* tempsave

* tempsave

* runtime bug, cannot find symbol

* workaround for incorrect HIP warpSize return value

* debugging

* tempsave

* Correctness OK, waiting for optimization

* Tidy up + format

* temp save

* temp save, reproduce the v_bfi_b32 issue

* add inline asm for wmmaop test

* tidy up

* clean some debug purpose code

* discard some codes

* clang format

* clang format

* compiler issue fixed + increase tile size

* navi3x_multipleD+example

* temp save

* workable

* batchedgemm[OK], groupconv[debug]

* groupconv: Sanity check[OK], Performance[Bad]

* navi3x_groupconv_need_optimization

* format

* Add arch limitation to all wmma examples

* fix bug: example30 input conv args

* Improve normalization (#580)

* Sync the order of type string with template parameter

* Add more instances

* Check the vector size and remove redundant var

* Extract var to static, prepare to separate sweep once kernel

* Separate sweeponce flow and optimize the flow

* 1. Rename AccDatatype in normalization to computeData
2. Rename AccElementwiseOperation to YElementwiseOperation in normalization

* Remove useless code

* Update naive variance kernel

* Refine string

* Fix typo

* Support naive variance for device_normalization

* Check the blocksize

* Share the VGPR of x and y

* Share the VGPR of gamma and beta

* Add more instances

* Support fp16 sqrt for experiment

* Add CHANGELOG

* Fix typo

* clang-format

* Add contraction_fp64 example  (#570)

* add contraction_bilinear

* add contraction_scale_xdl_fp64

* reduce tile size to avoid register spill

---------
Co-authored-by: default avatarroot <root@ctr-ubbsmc16.amd.com>

* Clean up kernel launch output (#569)

* clean up output from kernel_launch

* set RUN_WARMUP to 0 by default

* split the warm-up into a separate issue

---------
Co-authored-by: default avatarzjing14 <zhangjing14@gmail.com>

* Sphinx doc (#581)

* New docs directory with minimal config

* Based on docs directory of rocBLAS

* Config for running Doxygen then Sphinx to generate HTML

* Add minimal content - intro to doc

* Add some boilerplate sections to doc

* content still needs to be done,
* e.g., need to generate API documentation using Doxygen
* need to write contributor guide

* Start Softmax section of Support Primitives doc

* Written as a test bed for typesetting math content

* Need to decide how much detail to go into

* add doc directories to git ignore file.

* Minor edits - new line at EOF, change year in copyright notices

* Port Markdown files to ReStructuredText

* Copy Markdown files from pre-existing doc directory to docs directory

* Convert to reStructured Text (rst) - section headings, links, tables
  have a different syntax in rst

* New rst files added to index - can generate HTML with same style as
  HTML generated from rst files in previous commits

* Intention is to make all the content in doc redundant and use rst
  throughout rather than mix of md and rst

* Extend Softmax section of Primitives Guide

* rename l to z

* add material on applying softmax row-wise to matrix

* define macro for diag operator (represents diagonal matrix)

---------
Co-authored-by: default avatarzjing14 <zhangjing14@gmail.com>

* Build and archive deb packages. (#590)

* build and archive deb packages

* fix syntax

* run QA to test building packages

* apply cron to develop branch again

* fix a bug when building for gfx1030 target. (#591)

* fix a bug while building for gfx1030 and add gfx1030 to targets

* fix syntax

* Grouped conv1d client example (#589)

* add conv1d fwd client example

* change 07_grouped_conv2d_fwd to 07_grouped_convnd_fwd

* add conv1d bwd weight

---------
Co-authored-by: default avatarzjing14 <zhangjing14@gmail.com>

* Add Grouped Conv Backward Weight on Navi21 for ResNet50. (#505)

* Add DeviceOp and examples

* Format DeviceOp template arguments

* Remove bf16 example

* Format

* Format

* Update MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N

* Refactor argument preparation

* Update conv_bwd_weight_dl to grouped_conv_bwd_weight_dl

* Rename device op file

* Update include directive in the example file

* Update descriptor preparation for grouped op

* Update the argument

* Update batch handling

* Add gridwise gemm supporting batched input

* Update blockwise indexing, working version

* Update copyright year

* Update check if argument is supported

* Refactor and make consistent with xdl examples

* Update check if argument is supported

* Add changelog entry

* Added comments on Dl op split_k>1 support

---------
Co-authored-by: default avatarRosty Geyyer <rosty.geyyer@amd.com>
Co-authored-by: default avatarzjing14 <zhangjing14@gmail.com>

* disable tensor contraction f64 on MI100 (#602)

* Fast GeLU using built-in function (#587)

* clean up

* fast gelu using builtin function

* clean

* clean

* clean

* clean:

* clean

* fix compilation

* clean

* clean

---------
Co-authored-by: default avatarzjing14 <zhangjing14@gmail.com>

* [Navi3x Bug Fix] fix typo to accept MNKPadding flag correctly. (#597)

* fix a bug blocking wmma_gemm_multipleD

* Utilize matrix padder in device_wmma_op

* cosmetic change for gemmpadding format

* clang format

* Change gridwise gemm from FIFO to KMN loop fashion

* Suppress reserved-identifier warning and catch all warnings. (#608)

* suppress the reserved-identifier warnings

* keep BUILD_DEV=On and use -Werror by default

---------
Co-authored-by: default avatarAnthony Chang <ac.chang@outlook.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>
Co-authored-by: default avatarShaojie WANG <shaojie.wang@amd.com>
Co-authored-by: default avatarQianfeng <qianfeng.zhang@amd.com>
Co-authored-by: default avatarJianfeng Yan <jfyan008@gmail.com>
Co-authored-by: wangshaojie6's avatarshaojiewang <wsjmessi@163.com>
Co-authored-by: default avatarrocking5566 <ChunYu.Lai@amd.com>
Co-authored-by: default avatarrocking <chunylai@amd.com>
Co-authored-by: default avatarltqin <letao.qin@amd.com>
Co-authored-by: default avatarqinletao <letaoqin@amd.com>
Co-authored-by: default avatarmyamlak <Marcin.Makowski@amd.com>
Co-authored-by: default avatarzjing14 <zhangjing14@gmail.com>
Co-authored-by: default avatarAdam Osewski <19374865+aosewski@users.noreply.github.com>
Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>
Co-authored-by: default avatarLiam Wrubleski <Liam.Wrubleski@amd.com>
Co-authored-by: default avatarguangzlu <87220526+guangzlu@users.noreply.github.com>
Co-authored-by: default avatarroot <root@dc-smc-13.amd.com>
Co-authored-by: default avatarPo Yen Chen <PoYen.Chen@amd.com>
Co-authored-by: default avatarDaming Feng <dmfeng8898@gmail.com>
Co-authored-by: default avatarChao Liu <lc.roy86@gmail.com>
Co-authored-by: default avatarRostyslav Geyyer <46627076+geyyer@users.noreply.github.com>
Co-authored-by: default avatarRosty Geyyer <rosty.geyyer@amd.com>
Co-authored-by: default avatarcloudhan <cloudhan@outlook.com>
Co-authored-by: default avatarcarlushuang <carlus.huang@amd.com>
Co-authored-by: default avatardanyao12 <yaodan@dc-smc-13.amd.com>
Co-authored-by: default avatarLixun Zhang <Lixun.Zhang@amd.com>
Co-authored-by: default avatarJD <Jehandad.Khan@amd.com>
Co-authored-by: default avatarJun Liu <Liu.Jun@amd.com>
Co-authored-by: default avatararai713 <67439843+arai713@users.noreply.github.com>
Co-authored-by: default avatarroot <root@dc-smc-18.amd.com>
Co-authored-by: default avatarfsx950223 <fsx950223@outlook.com>
Co-authored-by: default avatarHaocong WANG <haocwang@amd.com>
Co-authored-by: default avatarJing Zhang <jizhan@amd.com>
Co-authored-by: default avatarRaman R jana <raman.jana@amd.com>
Co-authored-by: default avatarroot <root@ctr-ubbsmc16.amd.com>
Co-authored-by: default avatarpmaybank <113125070+pmaybank@users.noreply.github.com>
parent 646fcc26
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#include "config.hpp"
#include "number.hpp"
#include "sequence.hpp"
#include "tensor_descriptor_helper.hpp"
#include "data_type_enum_helper.hpp"
#include "reduction_common.hpp"
#include "gridwise_generic_2d_reduction_direct_threadwise.hpp"
using namespace ck;
using srcDataType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_SRC_DATATYPE)>::type;
using dstDataType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_DST_DATATYPE)>::type;
using compType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_REDUCE_COMPTYPE)>::type;
constexpr index_t BlockSize = CK_PARAM_BLOCKSIZE; // tunable
constexpr index_t srcDims = CK_PARAM_IN_DIMS;
constexpr index_t dstDims = CK_PARAM_OUT_DIMS;
constexpr index_t num_toReduceDims = CK_PARAM_NUM_TOREDUCE_DIMS;
constexpr index_t num_invariantDims = srcDims - num_toReduceDims;
using invariantDims = typename arithmetic_sequence_gen<0, num_invariantDims, 1>::type;
using toReduceDims = typename arithmetic_sequence_gen<num_invariantDims, srcDims, 1>::type;
constexpr ReduceTensorOp_t op = static_cast<ReduceTensorOp_t>(CK_PARAM_REDUCE_OP);
constexpr NanPropagation_t nanPropaOpt = CK_PARAM_NAN_PROPAGATE == 0
? NanPropagation_t::NOT_PROPAGATE_NAN
: NanPropagation_t::PROPAGATE_NAN;
constexpr ReduceTensorIndices_t reduceIndicesOpt = CK_PARAM_REDUCE_INDICES == 0
? ReduceTensorIndices_t::NO_INDICES
: ReduceTensorIndices_t::FLATTENED_INDICES;
constexpr bool src2d_need_padding = static_cast<bool>(CK_PARAM_SRC2D_PADDING);
constexpr bool dst1d_need_padding = static_cast<bool>(CK_PARAM_DST1D_PADDING);
static_assert(num_invariantDims > 0, "Not all dimensins are reduced for this kernel !!");
constexpr bool indexable = reduce_binary_operator<compType, op>::indexable;
constexpr bool need_indices = indexable && (reduceIndicesOpt != ReduceTensorIndices_t::NO_INDICES);
constexpr index_t GredThreadBufferLength = CK_PARAM_THREAD_BUFFER_LENGTH; // tunable
// helper functions using variadic template arguments
template <index_t... Ns>
__device__ static auto make_tuple_from_array_and_index_seq(const int* lengths, Sequence<Ns...>)
{
return make_tuple(static_cast<index_t>(lengths[Ns])...);
};
template <index_t arraySize>
__device__ static auto make_tuple_from_array(const int* lengths, Number<arraySize>)
{
static_assert(arraySize >= 1 && arraySize <= 6, "The tensor should have 1 to 6 dimensions");
constexpr auto index_seq = typename arithmetic_sequence_gen<0, arraySize, 1>::type{};
return make_tuple_from_array_and_index_seq(lengths, index_seq);
};
template <index_t... Ns>
__device__ static constexpr auto make_tuple_from_seq(Sequence<Ns...>)
{
return make_tuple(Ns...);
};
extern "C" __global__ void gridwise_generic_reduce_1_prepare(int GridSize,
int BlkGroupSize,
int inLength0,
int inLength1,
int inLength2,
int inLength3,
int inLength4,
int inLength5,
int inStride0,
int inStride1,
int inStride2,
int inStride3,
int inStride4,
int inStride5,
int outStride0,
int outStride1,
int outStride2,
int outStride3,
int outStride4,
int outStride5,
void* __restrict__ ws_global)
{
(void)BlkGroupSize;
void* p_src2dDesc = ws_global;
void* p_dst1dDesc = static_cast<char*>(ws_global) + 2048;
const int srcLengths[6] = {inLength0, inLength1, inLength2, inLength3, inLength4, inLength5};
const int srcStrides[6] = {inStride0, inStride1, inStride2, inStride3, inStride4, inStride5};
const int dstStrides[6] = {
outStride0, outStride1, outStride2, outStride3, outStride4, outStride5};
const auto tupleSrcLengths = make_tuple_from_array(srcLengths, Number<srcDims>{});
const auto tupleSrcStrides = make_tuple_from_array(srcStrides, Number<srcDims>{});
const auto tupleDstLengths = make_tuple_from_array(srcLengths, Number<dstDims>{});
const auto tupleDstStrides = make_tuple_from_array(dstStrides, Number<dstDims>{});
const auto srcDesc = make_naive_tensor_descriptor(tupleSrcLengths, tupleSrcStrides);
const auto dstDesc = make_naive_tensor_descriptor(tupleDstLengths, tupleDstStrides);
const auto toReduceDimLengths = make_tuple_from_array_and_index_seq(srcLengths, toReduceDims{});
const auto invariantDimLengths =
make_tuple_from_array_and_index_seq(srcLengths, invariantDims{});
auto src2dDesc =
transform_tensor_descriptor(srcDesc,
make_tuple(make_merge_transform(invariantDimLengths),
make_merge_transform(toReduceDimLengths)),
make_tuple(invariantDims{}, toReduceDims{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
auto dst1dDesc = transform_tensor_descriptor(
dstDesc,
make_tuple(make_merge_transform(tupleDstLengths)),
make_tuple(typename arithmetic_sequence_gen<0, dstDims, 1>::type{}),
make_tuple(Sequence<0>{}));
const auto invariantLen = src2dDesc.GetLength(Number<0>{});
const auto toReduceLen = src2dDesc.GetLength(Number<1>{});
constexpr auto copySliceLen = GredThreadBufferLength;
if constexpr(src2d_need_padding)
{
const auto srcPad1 = GridSize * BlockSize - invariantLen;
const auto srcPad2 =
((toReduceLen + copySliceLen - 1) / copySliceLen) * copySliceLen - toReduceLen;
auto src2dDesc_2 =
transform_tensor_descriptor(src2dDesc,
make_tuple(make_pad_transform(invariantLen, 0, srcPad1),
make_pad_transform(toReduceLen, 0, srcPad2)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(src2dDesc_2)*>(p_src2dDesc) = src2dDesc_2;
}
else
{
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(src2dDesc)*>(p_src2dDesc) = src2dDesc;
}
if constexpr(dst1d_need_padding)
{
const auto dstPad = GridSize * BlockSize - invariantLen;
auto dst1dDesc_2 =
transform_tensor_descriptor(dst1dDesc,
make_tuple(make_pad_transform(invariantLen, 0, dstPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(dst1dDesc_2)*>(p_dst1dDesc) = dst1dDesc_2;
}
else
{
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(dst1dDesc)*>(p_dst1dDesc) = dst1dDesc;
}
};
template <index_t srcDims, index_t dstDims, typename invariantDims, typename toReduceDims>
struct get_ref_desc_types
{
static constexpr auto ref_toReduceDimLengths =
typename uniform_sequence_gen<toReduceDims::Size(), 8>::type{};
static constexpr auto ref_invariantDimLengths =
typename uniform_sequence_gen<invariantDims::Size(), 8>::type{};
static constexpr auto ref_srcLengths = typename uniform_sequence_gen<srcDims, 8>::type{};
static constexpr auto ref_dstLengths = typename uniform_sequence_gen<dstDims, 8>::type{};
// don't have to use accurate strides to get an expected referrence type
static constexpr auto ref_srcDesc = make_naive_tensor_descriptor(
make_tuple_from_seq(ref_srcLengths), make_tuple_from_seq(ref_srcLengths));
static constexpr auto ref_dstDesc = make_naive_tensor_descriptor(
make_tuple_from_seq(ref_dstLengths), make_tuple_from_seq(ref_dstLengths));
static constexpr auto ref_src2dDesc = transform_tensor_descriptor(
ref_srcDesc,
make_tuple(make_merge_transform(make_tuple_from_seq(ref_invariantDimLengths)),
make_merge_transform(make_tuple_from_seq(ref_toReduceDimLengths))),
make_tuple(invariantDims{}, toReduceDims{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
static constexpr auto ref_dst1dDesc = transform_tensor_descriptor(
ref_dstDesc,
make_tuple(make_merge_transform(make_tuple_from_seq(ref_dstLengths))),
make_tuple(typename arithmetic_sequence_gen<0, dstDims, 1>::type{}),
make_tuple(Sequence<0>{}));
static constexpr auto ref_invariantLen = ref_src2dDesc.GetLength(Number<0>{});
static constexpr auto ref_toReduceLen = ref_src2dDesc.GetLength(Number<1>{});
// used by the DirectThreadWise and DirectWarpWise method
using refType_src2dDesc_padded_12 =
decltype(transform_tensor_descriptor(ref_src2dDesc,
make_tuple(make_pad_transform(ref_invariantLen, 0, 2),
make_pad_transform(ref_toReduceLen, 0, 2)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{})));
using refType_dst1dDesc_padded =
decltype(transform_tensor_descriptor(ref_dst1dDesc,
make_tuple(make_pad_transform(ref_invariantLen, 0, 2)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{})));
using refType_src2dDesc = decltype(ref_src2dDesc);
using refType_dst1dDesc = decltype(ref_dst1dDesc);
};
using refType_src2dDesc =
typename get_ref_desc_types<srcDims, dstDims, invariantDims, toReduceDims>::refType_src2dDesc;
using refType_dst1dDesc =
typename get_ref_desc_types<srcDims, dstDims, invariantDims, toReduceDims>::refType_dst1dDesc;
using refType_src2dDesc_padded_12 =
typename get_ref_desc_types<srcDims, dstDims, invariantDims, toReduceDims>::
refType_src2dDesc_padded_12;
using refType_dst1dDesc_padded =
typename get_ref_desc_types<srcDims, dstDims, invariantDims, toReduceDims>::
refType_dst1dDesc_padded;
template <bool need_padding>
static __device__ auto get_reduction_src2d_descriptor(const void* p_src2dDesc)
{
if constexpr(need_padding)
return (*reinterpret_cast<const refType_src2dDesc_padded_12*>(p_src2dDesc));
else
return (*reinterpret_cast<const refType_src2dDesc*>(p_src2dDesc));
};
template <bool need_padding>
static __device__ auto get_reduction_dst1d_descriptor(const void* p_dst1dDesc)
{
if constexpr(need_padding)
return (*reinterpret_cast<const refType_dst1dDesc_padded*>(p_dst1dDesc));
else
return (*reinterpret_cast<const refType_dst1dDesc*>(p_dst1dDesc));
};
extern "C" __global__ void gridwise_generic_reduce_1(int origReduceLen,
int BlkGroupSize,
float alpha,
const void* __restrict__ p_src_global,
float beta,
void* __restrict__ p_dst_global,
const void CONSTANT* ws_global,
long ws_buf2_bytes_offset,
void* __restrict__ indices_global)
{
(void)BlkGroupSize;
(void)ws_buf2_bytes_offset;
const void* p_src2dDesc = cast_pointer_to_generic_address_space(ws_global);
const void* p_dst1dDesc = static_cast<const char*>(p_src2dDesc) + 2048;
const auto src2dDesc = get_reduction_src2d_descriptor<src2d_need_padding>(p_src2dDesc);
const auto dst1dDesc = get_reduction_dst1d_descriptor<dst1d_need_padding>(p_dst1dDesc);
using gridwise_2d_reduce = GridwiseReduction_xy_to_x_direct_threadwise<BlockSize,
srcDataType,
dstDataType,
compType,
decltype(src2dDesc),
decltype(dst1dDesc),
op,
nanPropaOpt,
reduceIndicesOpt,
true,
true,
GredThreadBufferLength>;
constexpr int RunId = need_indices ? 2 : 1;
gridwise_2d_reduce::template Run<RunId>(
src2dDesc,
dst1dDesc,
origReduceLen,
alpha,
static_cast<const srcDataType* const __restrict__>(p_src_global),
beta,
static_cast<dstDataType* const __restrict__>(p_dst_global),
static_cast<const int* const __restrict__>(nullptr),
static_cast<int* const __restrict__>(indices_global));
};
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#include "config.hpp"
#include "number.hpp"
#include "sequence.hpp"
#include "tensor_descriptor_helper.hpp"
#include "data_type_enum_helper.hpp"
#include "reduction_common.hpp"
#include "gridwise_generic_2d_reduction_direct_warpwise.hpp"
using namespace ck;
using srcDataType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_SRC_DATATYPE)>::type;
using dstDataType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_DST_DATATYPE)>::type;
using compType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_REDUCE_COMPTYPE)>::type;
constexpr index_t BlockSize = CK_PARAM_BLOCKSIZE; // tunable
constexpr index_t srcDims = CK_PARAM_IN_DIMS;
constexpr ReduceTensorOp_t op = static_cast<ReduceTensorOp_t>(CK_PARAM_REDUCE_OP);
constexpr NanPropagation_t nanPropaOpt = CK_PARAM_NAN_PROPAGATE == 0
? NanPropagation_t::NOT_PROPAGATE_NAN
: NanPropagation_t::PROPAGATE_NAN;
constexpr ReduceTensorIndices_t reduceIndicesOpt = CK_PARAM_REDUCE_INDICES == 0
? ReduceTensorIndices_t::NO_INDICES
: ReduceTensorIndices_t::FLATTENED_INDICES;
constexpr bool src2d_need_padding = static_cast<bool>(CK_PARAM_SRC2D_PADDING);
constexpr bool dst1d_need_padding = static_cast<bool>(CK_PARAM_DST1D_PADDING);
constexpr bool indexable = reduce_binary_operator<compType, op>::indexable;
constexpr bool need_indices = indexable && (reduceIndicesOpt != ReduceTensorIndices_t::NO_INDICES);
constexpr index_t GredAccessesPerThreadInWarp = CK_PARAM_ACCESSES_PER_THREAD_INWARP; // tunable
// helper functions using variadic template arguments
template <index_t... Ns>
__device__ static auto make_tuple_from_array_and_index_seq(const int* lengths, Sequence<Ns...>)
{
return make_tuple(static_cast<index_t>(lengths[Ns])...);
};
template <index_t arraySize>
__device__ static auto make_tuple_from_array(const int* lengths, Number<arraySize>)
{
static_assert(arraySize >= 1 && arraySize <= 6, "The tensor should have 1 to 6 dimensions");
constexpr auto index_seq = typename arithmetic_sequence_gen<0, arraySize, 1>::type{};
return make_tuple_from_array_and_index_seq(lengths, index_seq);
};
template <index_t... Ns>
__device__ static constexpr auto make_tuple_from_seq(Sequence<Ns...>)
{
return make_tuple(Ns...);
};
extern "C" __global__ void gridwise_generic_reduce_1_prepare(int GridSize,
int BlkGroupSize,
int inLength0,
int inLength1,
int inLength2,
int inLength3,
int inLength4,
int inLength5,
int inStride0,
int inStride1,
int inStride2,
int inStride3,
int inStride4,
int inStride5,
void* __restrict__ ws_global)
{
(void)BlkGroupSize;
void* p_src2dDesc = ws_global;
void* p_dst1dDesc = static_cast<char*>(ws_global) + 2048;
const int srcLengths[6] = {inLength0, inLength1, inLength2, inLength3, inLength4, inLength5};
const int srcStrides[6] = {inStride0, inStride1, inStride2, inStride3, inStride4, inStride5};
const auto tupleSrcLengths = make_tuple_from_array(srcLengths, Number<srcDims>{});
const auto tupleSrcStrides = make_tuple_from_array(srcStrides, Number<srcDims>{});
const auto tupleDstLengths = make_tuple(1);
const auto tupleDstStrides = make_tuple(1);
const auto srcDesc = make_naive_tensor_descriptor(tupleSrcLengths, tupleSrcStrides);
auto dstDesc = make_naive_tensor_descriptor(tupleDstLengths, tupleDstStrides);
const auto one_dim_srcDesc = transform_tensor_descriptor(
srcDesc,
make_tuple(make_merge_transform(tupleSrcLengths)),
make_tuple(typename arithmetic_sequence_gen<0, srcDims, 1>::type{}),
make_tuple(Sequence<0>{}));
auto src2dDesc = transform_tensor_descriptor(
one_dim_srcDesc,
make_tuple(make_unmerge_transform(make_tuple(1, one_dim_srcDesc.GetLength(Number<0>{})))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1>{}));
constexpr int invariantLen = 1;
const auto toReduceLen = src2dDesc.GetLength(Number<1>{});
constexpr auto copySliceLen = warpSize * GredAccessesPerThreadInWarp;
if constexpr(src2d_need_padding)
{
const auto srcPad1 = GridSize * BlockSize / warpSize - invariantLen;
const auto srcPad2 =
((toReduceLen + copySliceLen - 1) / copySliceLen) * copySliceLen - toReduceLen;
auto src2dDesc_2 =
transform_tensor_descriptor(src2dDesc,
make_tuple(make_pad_transform(invariantLen, 0, srcPad1),
make_pad_transform(toReduceLen, 0, srcPad2)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(src2dDesc_2)*>(p_src2dDesc) = src2dDesc_2;
}
else
{
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(src2dDesc)*>(p_src2dDesc) = src2dDesc;
}
if constexpr(dst1d_need_padding)
{
const auto dstPad = GridSize * BlockSize / warpSize - invariantLen;
auto dst1dDesc_2 =
transform_tensor_descriptor(dstDesc,
make_tuple(make_pad_transform(invariantLen, 0, dstPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(dst1dDesc_2)*>(p_dst1dDesc) = dst1dDesc_2;
}
else
{
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(dstDesc)*>(p_dst1dDesc) = dstDesc;
}
};
template <index_t srcDims>
struct get_ref_desc_types
{
static constexpr auto ref_srcLengths = typename uniform_sequence_gen<srcDims, 8>::type{};
// don't have to use accurate strides to get an expected referrence type
static constexpr auto ref_srcDesc = make_naive_tensor_descriptor(
make_tuple_from_seq(ref_srcLengths), make_tuple_from_seq(ref_srcLengths));
static constexpr auto ref_dstDesc = make_naive_tensor_descriptor(make_tuple(1), make_tuple(1));
static constexpr auto ref_one_dim_srcDesc = transform_tensor_descriptor(
ref_srcDesc,
make_tuple(make_merge_transform(make_tuple_from_seq(ref_srcLengths))),
make_tuple(typename arithmetic_sequence_gen<0, srcDims, 1>::type{}),
make_tuple(Sequence<0>{}));
static constexpr auto ref_src2dDesc =
transform_tensor_descriptor(ref_one_dim_srcDesc,
make_tuple(make_unmerge_transform(
make_tuple(1, ref_one_dim_srcDesc.GetLength(Number<0>{})))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1>{}));
static constexpr auto ref_invariantLen = ref_src2dDesc.GetLength(Number<0>{});
static constexpr auto ref_toReduceLen = ref_src2dDesc.GetLength(Number<1>{});
// used by the DirectThreadWise and DirectWarpWise method
using refType_src2dDesc_padded_12 =
decltype(transform_tensor_descriptor(ref_src2dDesc,
make_tuple(make_pad_transform(ref_invariantLen, 0, 2),
make_pad_transform(ref_toReduceLen, 0, 2)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{})));
using refType_dst1dDesc_padded =
decltype(transform_tensor_descriptor(ref_dstDesc,
make_tuple(make_pad_transform(ref_invariantLen, 0, 2)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{})));
using refType_src2dDesc = decltype(ref_src2dDesc);
using refType_dst1dDesc = decltype(ref_dstDesc);
};
using refType_src2dDesc = typename get_ref_desc_types<srcDims>::refType_src2dDesc;
using refType_dst1dDesc = typename get_ref_desc_types<srcDims>::refType_dst1dDesc;
using refType_src2dDesc_padded_12 typename get_ref_desc_types<srcDims>::refType_src2dDesc_padded_12;
using refType_dst1dDesc_padded = typename get_ref_desc_types<srcDims>::refType_dst1dDesc_padded;
template <bool need_padding>
static __device__ auto get_reduction_src2d_descriptor(const void* p_src2dDesc)
{
if constexpr(need_padding)
return (*reinterpret_cast<const refType_src2dDesc_padded_12*>(p_src2dDesc));
else
return (*reinterpret_cast<const refType_src2dDesc*>(p_src2dDesc));
};
template <bool need_padding>
static __device__ auto get_reduction_dst1d_descriptor(const void* p_dst1dDesc)
{
if constexpr(need_padding)
return (*reinterpret_cast<const refType_dst1dDesc_padded*>(p_dst1dDesc));
else
return (*reinterpret_cast<const refType_dst1dDesc*>(p_dst1dDesc));
};
extern "C" __global__ void gridwise_generic_reduce_1(int origReduceLen,
int BlkGroupSize,
float alpha,
const void* __restrict__ p_src_global,
float beta,
void* __restrict__ p_dst_global,
const void CONSTANT* ws_global,
long ws_buf2_bytes_offset,
void* __restrict__ indices_global)
{
(void)BlkGroupSize;
(void)ws_buf2_bytes_offset;
const void* p_src2dDesc = cast_pointer_to_generic_address_space(ws_global);
const void* p_dst1dDesc = static_cast<const char*>(p_src2dDesc) + 2048;
const auto src2dDesc = get_reduction_src2d_descriptor<src2d_need_padding>(p_src2dDesc);
const auto dst1dDesc = get_reduction_dst1d_descriptor<dst1d_need_padding>(p_dst1dDesc);
using gridwise_2d_reduce =
GridwiseReduction_xy_to_x_direct_warpwise<BlockSize,
srcDataType,
dstDataType,
compType,
decltype(src2dDesc),
decltype(dst1dDesc),
op,
nanPropaOpt,
reduceIndicesOpt,
true,
true,
GredAccessesPerThreadInWarp>;
constexpr int RunId = need_indices ? 2 : 1;
gridwise_2d_reduce::template Run<RunId>(
src2dDesc,
dst1dDesc,
origReduceLen,
alpha,
static_cast<const srcDataType* const __restrict__>(p_src_global),
beta,
static_cast<dstDataType* const __restrict__>(p_dst_global),
static_cast<const int* const __restrict__>(nullptr),
static_cast<int* const __restrict__>(indices_global));
};
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#include "config.hpp"
#include "number.hpp"
#include "sequence.hpp"
#include "tensor_descriptor_helper.hpp"
#include "data_type_enum_helper.hpp"
#include "reduction_common.hpp"
#include "gridwise_generic_2d_reduction_direct_warpwise.hpp"
using namespace ck;
using srcDataType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_SRC_DATATYPE)>::type;
using dstDataType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_DST_DATATYPE)>::type;
using compType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_REDUCE_COMPTYPE)>::type;
constexpr index_t BlockSize = CK_PARAM_BLOCKSIZE; // tunable
constexpr index_t srcDims = CK_PARAM_IN_DIMS;
constexpr index_t dstDims = CK_PARAM_OUT_DIMS;
constexpr index_t num_toReduceDims = CK_PARAM_NUM_TOREDUCE_DIMS;
constexpr index_t num_invariantDims = srcDims - num_toReduceDims;
using invariantDims = typename arithmetic_sequence_gen<0, num_invariantDims, 1>::type;
using toReduceDims = typename arithmetic_sequence_gen<num_invariantDims, srcDims, 1>::type;
constexpr ReduceTensorOp_t op = static_cast<ReduceTensorOp_t>(CK_PARAM_REDUCE_OP);
constexpr NanPropagation_t nanPropaOpt = CK_PARAM_NAN_PROPAGATE == 0
? NanPropagation_t::NOT_PROPAGATE_NAN
: NanPropagation_t::PROPAGATE_NAN;
constexpr ReduceTensorIndices_t reduceIndicesOpt = CK_PARAM_REDUCE_INDICES == 0
? ReduceTensorIndices_t::NO_INDICES
: ReduceTensorIndices_t::FLATTENED_INDICES;
constexpr bool src2d_need_padding = static_cast<bool>(CK_PARAM_SRC2D_PADDING);
constexpr bool dst1d_need_padding = static_cast<bool>(CK_PARAM_DST1D_PADDING);
static_assert(num_invariantDims > 0, "Not all dimensins are reduced for this kernel !!");
constexpr bool indexable = reduce_binary_operator<compType, op>::indexable;
constexpr bool need_indices = indexable && (reduceIndicesOpt != ReduceTensorIndices_t::NO_INDICES);
constexpr index_t GredAccessesPerThreadInWarp = CK_PARAM_ACCESSES_PER_THREAD_INWARP; // tunable
// helper functions using variadic template arguments
template <index_t... Ns>
__device__ static auto make_tuple_from_array_and_index_seq(const int* lengths, Sequence<Ns...>)
{
return make_tuple(static_cast<index_t>(lengths[Ns])...);
};
template <index_t arraySize>
__device__ static auto make_tuple_from_array(const int* lengths, Number<arraySize>)
{
static_assert(arraySize >= 1 && arraySize <= 6, "The tensor should have 1 to 6 dimensions");
constexpr auto index_seq = typename arithmetic_sequence_gen<0, arraySize, 1>::type{};
return make_tuple_from_array_and_index_seq(lengths, index_seq);
};
template <index_t... Ns>
__device__ static constexpr auto make_tuple_from_seq(Sequence<Ns...>)
{
return make_tuple(Ns...);
};
extern "C" __global__ void gridwise_generic_reduce_1_prepare(int GridSize,
int BlkGroupSize,
int inLength0,
int inLength1,
int inLength2,
int inLength3,
int inLength4,
int inLength5,
int inStride0,
int inStride1,
int inStride2,
int inStride3,
int inStride4,
int inStride5,
int outStride0,
int outStride1,
int outStride2,
int outStride3,
int outStride4,
int outStride5,
void* __restrict__ ws_global)
{
(void)BlkGroupSize;
void* p_src2dDesc = ws_global;
void* p_dst1dDesc = static_cast<char*>(ws_global) + 2048;
const int srcLengths[6] = {inLength0, inLength1, inLength2, inLength3, inLength4, inLength5};
const int srcStrides[6] = {inStride0, inStride1, inStride2, inStride3, inStride4, inStride5};
const int dstStrides[6] = {
outStride0, outStride1, outStride2, outStride3, outStride4, outStride5};
const auto tupleSrcLengths = make_tuple_from_array(srcLengths, Number<srcDims>{});
const auto tupleSrcStrides = make_tuple_from_array(srcStrides, Number<srcDims>{});
const auto tupleDstLengths = make_tuple_from_array(srcLengths, Number<dstDims>{});
const auto tupleDstStrides = make_tuple_from_array(dstStrides, Number<dstDims>{});
const auto srcDesc = make_naive_tensor_descriptor(tupleSrcLengths, tupleSrcStrides);
const auto dstDesc = make_naive_tensor_descriptor(tupleDstLengths, tupleDstStrides);
const auto toReduceDimLengths = make_tuple_from_array_and_index_seq(srcLengths, toReduceDims{});
const auto invariantDimLengths =
make_tuple_from_array_and_index_seq(srcLengths, invariantDims{});
auto src2dDesc =
transform_tensor_descriptor(srcDesc,
make_tuple(make_merge_transform(invariantDimLengths),
make_merge_transform(toReduceDimLengths)),
make_tuple(invariantDims{}, toReduceDims{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
auto dst1dDesc = transform_tensor_descriptor(
dstDesc,
make_tuple(make_merge_transform(tupleDstLengths)),
make_tuple(typename arithmetic_sequence_gen<0, dstDims, 1>::type{}),
make_tuple(Sequence<0>{}));
const auto invariantLen = src2dDesc.GetLength(Number<0>{});
const auto toReduceLen = src2dDesc.GetLength(Number<1>{});
constexpr auto copySliceLen = warpSize * GredAccessesPerThreadInWarp;
if constexpr(src2d_need_padding)
{
const auto srcPad1 = GridSize * BlockSize / warpSize - invariantLen;
const auto srcPad2 =
((toReduceLen + copySliceLen - 1) / copySliceLen) * copySliceLen - toReduceLen;
auto src2dDesc_2 =
transform_tensor_descriptor(src2dDesc,
make_tuple(make_pad_transform(invariantLen, 0, srcPad1),
make_pad_transform(toReduceLen, 0, srcPad2)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(src2dDesc_2)*>(p_src2dDesc) = src2dDesc_2;
}
else
{
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(src2dDesc)*>(p_src2dDesc) = src2dDesc;
}
if constexpr(dst1d_need_padding)
{
const auto dstPad = GridSize * BlockSize / warpSize - invariantLen;
auto dst1dDesc_2 =
transform_tensor_descriptor(dst1dDesc,
make_tuple(make_pad_transform(invariantLen, 0, dstPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(dst1dDesc_2)*>(p_dst1dDesc) = dst1dDesc_2;
}
else
{
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(dst1dDesc)*>(p_dst1dDesc) = dst1dDesc;
}
};
template <index_t srcDims, index_t dstDims, typename invariantDims, typename toReduceDims>
struct get_ref_desc_types
{
static constexpr auto ref_toReduceDimLengths =
typename uniform_sequence_gen<toReduceDims::Size(), 8>::type{};
static constexpr auto ref_invariantDimLengths =
typename uniform_sequence_gen<invariantDims::Size(), 8>::type{};
static constexpr auto ref_srcLengths = typename uniform_sequence_gen<srcDims, 8>::type{};
static constexpr auto ref_dstLengths = typename uniform_sequence_gen<dstDims, 8>::type{};
// don't have to use accurate strides to get an expected referrence type
static constexpr auto ref_srcDesc = make_naive_tensor_descriptor(
make_tuple_from_seq(ref_srcLengths), make_tuple_from_seq(ref_srcLengths));
static constexpr auto ref_dstDesc = make_naive_tensor_descriptor(
make_tuple_from_seq(ref_dstLengths), make_tuple_from_seq(ref_dstLengths));
static constexpr auto ref_src2dDesc = transform_tensor_descriptor(
ref_srcDesc,
make_tuple(make_merge_transform(make_tuple_from_seq(ref_invariantDimLengths)),
make_merge_transform(make_tuple_from_seq(ref_toReduceDimLengths))),
make_tuple(invariantDims{}, toReduceDims{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
static constexpr auto ref_dst1dDesc = transform_tensor_descriptor(
ref_dstDesc,
make_tuple(make_merge_transform(make_tuple_from_seq(ref_dstLengths))),
make_tuple(typename arithmetic_sequence_gen<0, dstDims, 1>::type{}),
make_tuple(Sequence<0>{}));
static constexpr auto ref_invariantLen = ref_src2dDesc.GetLength(Number<0>{});
static constexpr auto ref_toReduceLen = ref_src2dDesc.GetLength(Number<1>{});
// used by the DirectThreadWise and DirectWarpWise method
using refType_src2dDesc_padded_12 =
decltype(transform_tensor_descriptor(ref_src2dDesc,
make_tuple(make_pad_transform(ref_invariantLen, 0, 2),
make_pad_transform(ref_toReduceLen, 0, 2)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{})));
using refType_dst1dDesc_padded =
decltype(transform_tensor_descriptor(ref_dst1dDesc,
make_tuple(make_pad_transform(ref_invariantLen, 0, 2)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{})));
using refType_src2dDesc = decltype(ref_src2dDesc);
using refType_dst1dDesc = decltype(ref_dst1dDesc);
};
using refType_src2dDesc =
typename get_ref_desc_types<srcDims, dstDims, invariantDims, toReduceDims>::refType_src2dDesc;
using refType_dst1dDesc =
typename get_ref_desc_types<srcDims, dstDims, invariantDims, toReduceDims>::refType_dst1dDesc;
using refType_src2dDesc_padded_12 =
typename get_ref_desc_types<srcDims, dstDims, invariantDims, toReduceDims>::
refType_src2dDesc_padded_12;
using refType_dst1dDesc_padded =
typename get_ref_desc_types<srcDims, dstDims, invariantDims, toReduceDims>::
refType_dst1dDesc_padded;
template <bool need_padding>
static __device__ auto get_reduction_src2d_descriptor(const void* p_src2dDesc)
{
if constexpr(need_padding)
return (*reinterpret_cast<const refType_src2dDesc_padded_12*>(p_src2dDesc));
else
return (*reinterpret_cast<const refType_src2dDesc*>(p_src2dDesc));
};
template <bool need_padding>
static __device__ auto get_reduction_dst1d_descriptor(const void* p_dst1dDesc)
{
if constexpr(need_padding)
return (*reinterpret_cast<const refType_dst1dDesc_padded*>(p_dst1dDesc));
else
return (*reinterpret_cast<const refType_dst1dDesc*>(p_dst1dDesc));
};
extern "C" __global__ void gridwise_generic_reduce_1(int origReduceLen,
int BlkGroupSize,
float alpha,
const void* __restrict__ p_src_global,
float beta,
void* __restrict__ p_dst_global,
const void CONSTANT* ws_global,
long ws_buf2_bytes_offset,
void* __restrict__ indices_global)
{
(void)BlkGroupSize;
(void)ws_buf2_bytes_offset;
const void* p_src2dDesc = cast_pointer_to_generic_address_space(ws_global);
const void* p_dst1dDesc = static_cast<const char*>(p_src2dDesc) + 2048;
const auto src2dDesc = get_reduction_src2d_descriptor<src2d_need_padding>(p_src2dDesc);
const auto dst1dDesc = get_reduction_dst1d_descriptor<dst1d_need_padding>(p_dst1dDesc);
using gridwise_2d_reduce =
GridwiseReduction_xy_to_x_direct_warpwise<BlockSize,
srcDataType,
dstDataType,
compType,
decltype(src2dDesc),
decltype(dst1dDesc),
op,
nanPropaOpt,
reduceIndicesOpt,
true,
true,
GredAccessesPerThreadInWarp>;
constexpr int RunId = need_indices ? 2 : 1;
gridwise_2d_reduce::template Run<RunId>(
src2dDesc,
dst1dDesc,
origReduceLen,
alpha,
static_cast<const srcDataType* const __restrict__>(p_src_global),
beta,
static_cast<dstDataType* const __restrict__>(p_dst_global),
static_cast<const int* const __restrict__>(nullptr),
static_cast<int* const __restrict__>(indices_global));
};
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#include "config.hpp"
#include "number.hpp"
#include "sequence.hpp"
#include "tensor_descriptor_helper.hpp"
#include "data_type_enum_helper.hpp"
#include "reduction_common.hpp"
#include "gridwise_generic_2d_reduction_blockwise.hpp"
using namespace ck;
using srcDataType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_SRC_DATATYPE)>::type;
using dstDataType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_DST_DATATYPE)>::type;
using compType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_REDUCE_COMPTYPE)>::type;
constexpr index_t BlockSize = CK_PARAM_BLOCKSIZE; // tunable
constexpr ReduceTensorOp_t op = static_cast<ReduceTensorOp_t>(CK_PARAM_REDUCE_OP);
constexpr NanPropagation_t nanPropaOpt = CK_PARAM_NAN_PROPAGATE == 0
? NanPropagation_t::NOT_PROPAGATE_NAN
: NanPropagation_t::PROPAGATE_NAN;
constexpr ReduceTensorIndices_t reduceIndicesOpt = CK_PARAM_REDUCE_INDICES == 0
? ReduceTensorIndices_t::NO_INDICES
: ReduceTensorIndices_t::FLATTENED_INDICES;
constexpr bool src2d_need_padding = static_cast<bool>(CK_PARAM_SRC2D_PADDING);
constexpr bool dst1d_need_padding = static_cast<bool>(CK_PARAM_DST1D_PADDING);
constexpr bool indexable = reduce_binary_operator<compType, op>::indexable;
constexpr bool need_indices = indexable && (reduceIndicesOpt != ReduceTensorIndices_t::NO_INDICES);
constexpr index_t GredAccessesPerThreadInBlock = CK_PARAM_ACCESSES_PER_THREAD_INBLOCK; // tunable
extern "C" __global__ void
gridwise_generic_reduce_2_prepare(int GridSize, int BlkGroupSize, void* __restrict__ ws_global)
{
(void)GridSize;
void* p_src2dDesc = ws_global;
void* p_dst1dDesc = static_cast<char*>(ws_global) + 2048;
const auto tupleDstLengths = make_tuple(1);
const auto tupleDstStrides = make_tuple(1);
auto dstDesc = make_naive_tensor_descriptor(tupleDstLengths, tupleDstStrides);
const index_t invariantLen = dstDesc.GetLength(Number<0>{});
const index_t toReduceLen = BlkGroupSize;
auto src2dDesc = make_naive_tensor_descriptor_packed(make_tuple(invariantLen, toReduceLen));
constexpr auto copySliceLen = BlockSize * GredAccessesPerThreadInBlock;
if constexpr(src2d_need_padding)
{
const auto srcPad =
((toReduceLen + copySliceLen - 1) / copySliceLen) * copySliceLen - toReduceLen;
auto src2dDesc_2 =
transform_tensor_descriptor(src2dDesc,
make_tuple(make_pass_through_transform(invariantLen),
make_pad_transform(toReduceLen, 0, srcPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(src2dDesc_2)*>(p_src2dDesc) = src2dDesc_2;
}
else
{
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(src2dDesc)*>(p_src2dDesc) = src2dDesc;
}
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(dstDesc)*>(p_dst1dDesc) = dstDesc;
};
struct get_ref_desc_types
{
static constexpr auto ref_tupleDstLengths = make_tuple(8);
static constexpr auto ref_dstDesc =
make_naive_tensor_descriptor(ref_tupleDstLengths, ref_tupleDstLengths);
static constexpr index_t ref_invariantLen = ref_dstDesc.GetLength(Number<0>{});
static constexpr index_t ref_toReduceLen = 8;
static constexpr auto ref_src2dDesc =
make_naive_tensor_descriptor_packed(make_tuple(ref_invariantLen, ref_toReduceLen));
using refType_src2dDesc = decltype(ref_src2dDesc);
using refType_dst1dDesc = decltype(ref_dstDesc);
// used by the BlockWise and MultiBlock method
using refType_src2dDesc_padded_34 = decltype(
transform_tensor_descriptor(ref_src2dDesc,
make_tuple(make_pass_through_transform(ref_invariantLen),
make_pad_transform(ref_toReduceLen, 0, 2)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{})));
using refType_dst1dDesc_padded =
decltype(transform_tensor_descriptor(ref_dstDesc,
make_tuple(make_pad_transform(ref_invariantLen, 0, 2)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{})));
};
using refType_src2dDesc = typename get_ref_desc_types::refType_src2dDesc;
using refType_dst1dDesc = typename get_ref_desc_types::refType_dst1dDesc;
using refType_src2dDesc_padded_34 = typename get_ref_desc_types::refType_src2dDesc_padded_34;
using refType_dst1dDesc_padded = typename get_ref_desc_types::refType_dst1dDesc_padded;
template <bool need_padding>
static __device__ auto get_reduction_src2d_descriptor(const void* p_src2dDesc)
{
if constexpr(need_padding)
return (*reinterpret_cast<const refType_src2dDesc_padded_34*>(p_src2dDesc));
else
return (*reinterpret_cast<const refType_src2dDesc*>(p_src2dDesc));
};
template <bool need_padding>
static __device__ auto get_reduction_dst1d_descriptor(const void* p_dst1dDesc)
{
if constexpr(need_padding)
return (*reinterpret_cast<const refType_dst1dDesc_padded*>(p_dst1dDesc));
else
return (*reinterpret_cast<const refType_dst1dDesc*>(p_dst1dDesc));
};
extern "C" __global__ void gridwise_generic_reduce_2(int origReduceLen,
float alpha,
const void* __restrict__ p_src_global,
float beta,
void* __restrict__ p_dst_global,
const void CONSTANT* ws_global,
long ws_buf2_bytes_offset,
void* __restrict__ indices_global)
{
(void)p_src_global;
const void* p_src2dDesc = cast_pointer_to_generic_address_space(ws_global);
const void* p_dst1dDesc = static_cast<const char*>(p_src2dDesc) + 2048;
void* ws_buf1_global = const_cast<char*>(static_cast<const char*>(p_src2dDesc) + 4096);
const auto src2dDesc = get_reduction_src2d_descriptor<src2d_need_padding>(p_src2dDesc);
const auto dst1dDesc = get_reduction_dst1d_descriptor<dst1d_need_padding>(p_dst1dDesc);
using gridwise_2d_reduce = GridwiseReduction_xy_to_x_blockwise<BlockSize,
srcDataType,
dstDataType,
compType,
decltype(src2dDesc),
decltype(dst1dDesc),
op,
nanPropaOpt,
reduceIndicesOpt,
false,
true,
GredAccessesPerThreadInBlock>;
void* const ws_buf2_global =
ws_buf2_bytes_offset > 0
? static_cast<void*>(static_cast<char*>(ws_buf1_global) + ws_buf2_bytes_offset)
: nullptr;
constexpr int RunId = need_indices ? 3 : 1;
gridwise_2d_reduce::template Run<RunId>(
src2dDesc,
dst1dDesc,
origReduceLen,
alpha,
static_cast<const srcDataType* const __restrict__>(ws_buf1_global),
beta,
static_cast<dstDataType* const __restrict__>(p_dst_global),
static_cast<const int* const __restrict__>(ws_buf2_global),
static_cast<int* const __restrict__>(indices_global));
};
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#include "config.hpp"
#include "number.hpp"
#include "sequence.hpp"
#include "tensor_descriptor_helper.hpp"
#include "data_type_enum_helper.hpp"
#include "reduction_common.hpp"
#include "gridwise_generic_2d_reduction_blockwise.hpp"
using namespace ck;
using srcDataType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_SRC_DATATYPE)>::type;
using dstDataType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_DST_DATATYPE)>::type;
using compType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_REDUCE_COMPTYPE)>::type;
constexpr index_t BlockSize = CK_PARAM_BLOCKSIZE; // tunable
constexpr index_t dstDims = CK_PARAM_OUT_DIMS;
constexpr ReduceTensorOp_t op = static_cast<ReduceTensorOp_t>(CK_PARAM_REDUCE_OP);
constexpr NanPropagation_t nanPropaOpt = CK_PARAM_NAN_PROPAGATE == 0
? NanPropagation_t::NOT_PROPAGATE_NAN
: NanPropagation_t::PROPAGATE_NAN;
constexpr ReduceTensorIndices_t reduceIndicesOpt = CK_PARAM_REDUCE_INDICES == 0
? ReduceTensorIndices_t::NO_INDICES
: ReduceTensorIndices_t::FLATTENED_INDICES;
constexpr bool src2d_need_padding = static_cast<bool>(CK_PARAM_SRC2D_PADDING);
constexpr bool dst1d_need_padding = static_cast<bool>(CK_PARAM_DST1D_PADDING);
constexpr bool indexable = reduce_binary_operator<compType, op>::indexable;
constexpr bool need_indices = indexable && (reduceIndicesOpt != ReduceTensorIndices_t::NO_INDICES);
constexpr index_t GredAccessesPerThreadInBlock = CK_PARAM_ACCESSES_PER_THREAD_INBLOCK; // tunable
// helper functions using variadic template arguments
template <index_t... Ns>
__device__ static auto make_tuple_from_array_and_index_seq(const int* lengths, Sequence<Ns...>)
{
return make_tuple(static_cast<index_t>(lengths[Ns])...);
};
template <index_t arraySize>
__device__ static auto make_tuple_from_array(const int* lengths, Number<arraySize>)
{
static_assert(arraySize >= 1 && arraySize <= 6, "The tensor should have 1 to 6 dimensions");
constexpr auto index_seq = typename arithmetic_sequence_gen<0, arraySize, 1>::type{};
return make_tuple_from_array_and_index_seq(lengths, index_seq);
};
template <index_t... Ns>
__device__ static constexpr auto make_tuple_from_seq(Sequence<Ns...>)
{
return make_tuple(Ns...);
};
extern "C" __global__ void gridwise_generic_reduce_2_prepare(int GridSize,
int BlkGroupSize,
int outLength0,
int outLength1,
int outLength2,
int outLength3,
int outLength4,
int outLength5,
int outStride0,
int outStride1,
int outStride2,
int outStride3,
int outStride4,
int outStride5,
void* __restrict__ ws_global)
{
(void)GridSize;
void* p_src2dDesc = ws_global;
void* p_dst1dDesc = static_cast<char*>(ws_global) + 2048;
const int dstLengths[6] = {
outLength0, outLength1, outLength2, outLength3, outLength4, outLength5};
const int dstStrides[6] = {
outStride0, outStride1, outStride2, outStride3, outStride4, outStride5};
const auto tupleDstLengths = make_tuple_from_array(dstLengths, Number<dstDims>{});
const auto tupleDstStrides = make_tuple_from_array(dstStrides, Number<dstDims>{});
const auto dstDesc = make_naive_tensor_descriptor(tupleDstLengths, tupleDstStrides);
auto dst1dDesc = transform_tensor_descriptor(
dstDesc,
make_tuple(make_merge_transform(tupleDstLengths)),
make_tuple(typename arithmetic_sequence_gen<0, dstDims, 1>::type{}),
make_tuple(Sequence<0>{}));
const index_t invariantLen = dst1dDesc.GetLength(Number<0>{});
const index_t toReduceLen = BlkGroupSize;
auto src2dDesc = make_naive_tensor_descriptor_packed(make_tuple(invariantLen, toReduceLen));
constexpr auto copySliceLen = BlockSize * GredAccessesPerThreadInBlock;
if constexpr(src2d_need_padding)
{
const auto srcPad =
((toReduceLen + copySliceLen - 1) / copySliceLen) * copySliceLen - toReduceLen;
auto src2dDesc_2 =
transform_tensor_descriptor(src2dDesc,
make_tuple(make_pass_through_transform(invariantLen),
make_pad_transform(toReduceLen, 0, srcPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(src2dDesc_2)*>(p_src2dDesc) = src2dDesc_2;
}
else
{
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(src2dDesc)*>(p_src2dDesc) = src2dDesc;
}
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(dst1dDesc)*>(p_dst1dDesc) = dst1dDesc;
};
template <index_t dstDims>
struct get_ref_desc_types
{
static constexpr auto ref_tupleDstLengths =
make_tuple_from_seq(typename uniform_sequence_gen<dstDims, 8>::type{});
static constexpr auto ref_dstDesc =
make_naive_tensor_descriptor(ref_tupleDstLengths, ref_tupleDstLengths);
static constexpr auto ref_dst1dDesc = transform_tensor_descriptor(
ref_dstDesc,
make_tuple(make_merge_transform(ref_tupleDstLengths)),
make_tuple(typename arithmetic_sequence_gen<0, dstDims, 1>::type{}),
make_tuple(Sequence<0>{}));
static constexpr index_t ref_invariantLen = ref_dst1dDesc.GetLength(Number<0>{});
static constexpr index_t ref_toReduceLen = 8;
static constexpr auto ref_src2dDesc =
make_naive_tensor_descriptor_packed(make_tuple(ref_invariantLen, ref_toReduceLen));
using refType_src2dDesc = decltype(ref_src2dDesc);
using refType_dst1dDesc = decltype(ref_dst1dDesc);
// used by the BlockWise and MultiBlock method
using refType_src2dDesc_padded_34 = decltype(
transform_tensor_descriptor(ref_src2dDesc,
make_tuple(make_pass_through_transform(ref_invariantLen),
make_pad_transform(ref_toReduceLen, 0, 2)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{})));
using refType_dst1dDesc_padded =
decltype(transform_tensor_descriptor(ref_dst1dDesc,
make_tuple(make_pad_transform(ref_invariantLen, 0, 2)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{})));
};
using refType_src2dDesc = typename get_ref_desc_types<dstDims>::refType_src2dDesc;
using refType_dst1dDesc = typename get_ref_desc_types<dstDims>::refType_dst1dDesc;
using refType_src2dDesc_padded_34 =
typename get_ref_desc_types<dstDims>::refType_src2dDesc_padded_34;
using refType_dst1dDesc_padded = typename get_ref_desc_types<dstDims>::refType_dst1dDesc_padded;
template <bool need_padding>
static __device__ auto get_reduction_src2d_descriptor(const void* p_src2dDesc)
{
if constexpr(need_padding)
return (*reinterpret_cast<const refType_src2dDesc_padded_34*>(p_src2dDesc));
else
return (*reinterpret_cast<const refType_src2dDesc*>(p_src2dDesc));
};
template <bool need_padding>
static __device__ auto get_reduction_dst1d_descriptor(const void* p_dst1dDesc)
{
if constexpr(need_padding)
return (*reinterpret_cast<const refType_dst1dDesc_padded*>(p_dst1dDesc));
else
return (*reinterpret_cast<const refType_dst1dDesc*>(p_dst1dDesc));
};
extern "C" __global__ void gridwise_generic_reduce_2(int origReduceLen,
float alpha,
const void* __restrict__ p_src_global,
float beta,
void* __restrict__ p_dst_global,
const void CONSTANT* ws_global,
long ws_buf2_bytes_offset,
void* __restrict__ indices_global)
{
(void)p_src_global;
const void* p_src2dDesc = cast_pointer_to_generic_address_space(ws_global);
const void* p_dst1dDesc = static_cast<const char*>(p_src2dDesc) + 2048;
void* ws_buf1_global = const_cast<char*>(static_cast<const char*>(p_src2dDesc) + 4096);
const auto src2dDesc = get_reduction_src2d_descriptor<src2d_need_padding>(p_src2dDesc);
const auto dst1dDesc = get_reduction_dst1d_descriptor<dst1d_need_padding>(p_dst1dDesc);
using gridwise_2d_reduce = GridwiseReduction_xy_to_x_blockwise<BlockSize,
srcDataType,
dstDataType,
compType,
decltype(src2dDesc),
decltype(dst1dDesc),
op,
nanPropaOpt,
reduceIndicesOpt,
false,
true,
GredAccessesPerThreadInBlock>;
void* const ws_buf2_global =
ws_buf2_bytes_offset > 0
? static_cast<void*>(static_cast<char*>(ws_buf1_global) + ws_buf2_bytes_offset)
: nullptr;
constexpr int RunId = need_indices ? 3 : 1;
gridwise_2d_reduce::template Run<RunId>(
src2dDesc,
dst1dDesc,
origReduceLen,
alpha,
static_cast<const srcDataType* const __restrict__>(ws_buf1_global),
beta,
static_cast<dstDataType* const __restrict__>(p_dst_global),
static_cast<const int* const __restrict__>(ws_buf2_global),
static_cast<int* const __restrict__>(indices_global));
};
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#include "config.hpp"
#include "number.hpp"
#include "sequence.hpp"
#include "tensor_descriptor_helper.hpp"
#include "data_type_enum_helper.hpp"
#include "reduction_common.hpp"
#include "gridwise_generic_2d_reduction_direct_threadwise.hpp"
using namespace ck;
using srcDataType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_SRC_DATATYPE)>::type;
using dstDataType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_DST_DATATYPE)>::type;
using compType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_REDUCE_COMPTYPE)>::type;
constexpr index_t BlockSize = CK_PARAM_BLOCKSIZE; // tunable
using toReduceDims = Sequence<CK_PARAM_TOREDUCE_DIMS>;
using invariantDims = Sequence<CK_PARAM_INVARIANT_DIMS>; // this could be empty
constexpr ReduceTensorOp_t op = static_cast<ReduceTensorOp_t>(CK_PARAM_REDUCE_OP);
constexpr NanPropagation_t nanPropaOpt = CK_PARAM_NAN_PROPAGATE == 0
? NanPropagation_t::NOT_PROPAGATE_NAN
: NanPropagation_t::PROPAGATE_NAN;
constexpr ReduceTensorIndices_t reduceIndicesOpt = CK_PARAM_REDUCE_INDICES == 0
? ReduceTensorIndices_t::NO_INDICES
: ReduceTensorIndices_t::FLATTENED_INDICES;
constexpr bool src2d_need_padding = static_cast<bool>(CK_PARAM_SRC2D_PADDING);
constexpr bool dst1d_need_padding = static_cast<bool>(CK_PARAM_DST1D_PADDING);
constexpr bool indexable = reduce_binary_operator<compType, op>::indexable;
constexpr bool need_indices = indexable && (reduceIndicesOpt != ReduceTensorIndices_t::NO_INDICES);
constexpr index_t GredThreadBufferLength = CK_PARAM_THREAD_BUFFER_LENGTH; // tunable
extern "C" __global__ void
gridwise_generic_reduce_2_prepare(int GridSize, int BlkGroupSize, void* __restrict__ ws_global)
{
(void)BlkGroupSize;
void* p_src2dDesc = ws_global;
void* p_dst1dDesc = static_cast<char*>(ws_global) + 2048;
const auto tupleDstLengths = make_tuple(1);
const auto tupleDstStrides = make_tuple(1);
auto dstDesc = make_naive_tensor_descriptor(tupleDstLengths, tupleDstStrides);
const index_t invariantLen = dstDesc.GetLength(Number<0>{});
const index_t toReduceLen = BlkGroupSize;
auto src2dDesc = make_naive_tensor_descriptor_packed(make_tuple(invariantLen, toReduceLen));
constexpr auto copySliceLen = GredThreadBufferLength;
if constexpr(src2d_need_padding)
{
const auto srcPad1 = GridSize * BlockSize - invariantLen;
const auto srcPad2 =
((toReduceLen + copySliceLen - 1) / copySliceLen) * copySliceLen - toReduceLen;
auto src2dDesc_2 =
transform_tensor_descriptor(src2dDesc,
make_tuple(make_pad_transform(invariantLen, 0, srcPad1),
make_pad_transform(toReduceLen, 0, srcPad2)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(src2dDesc_2)*>(p_src2dDesc) = src2dDesc_2;
}
else
{
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(src2dDesc)*>(p_src2dDesc) = src2dDesc;
}
if constexpr(dst1d_need_padding)
{
const auto dstPad = GridSize * BlockSize - invariantLen;
auto dst1dDesc_2 =
transform_tensor_descriptor(dstDesc,
make_tuple(make_pad_transform(invariantLen, 0, dstPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(dst1dDesc_2)*>(p_dst1dDesc) = dst1dDesc_2;
}
else
{
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(dstDesc)*>(p_dst1dDesc) = dstDesc;
}
};
struct get_ref_desc_types
{
static constexpr auto ref_tupleDstLengths = make_tuple(8);
static constexpr auto ref_dstDesc =
make_naive_tensor_descriptor(ref_tupleDstLengths, ref_tupleDstLengths);
static constexpr index_t ref_invariantLen = ref_dstDesc.GetLength(Number<0>{});
static constexpr index_t ref_toReduceLen = 8;
static constexpr auto ref_src2dDesc =
make_naive_tensor_descriptor_packed(make_tuple(ref_invariantLen, ref_toReduceLen));
using refType_src2dDesc = decltype(ref_src2dDesc);
using refType_dst1dDesc = decltype(ref_dstDesc);
// used by the DirectThreadWise and DirectWarpWise method
using refType_src2dDesc_padded_12 =
decltype(transform_tensor_descriptor(ref_src2dDesc,
make_tuple(make_pad_transform(ref_invariantLen, 0, 2),
make_pad_transform(ref_toReduceLen, 0, 2)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{})));
using refType_dst1dDesc_padded =
decltype(transform_tensor_descriptor(ref_dstDesc,
make_tuple(make_pad_transform(ref_invariantLen, 0, 2)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{})));
};
using refType_src2dDesc = typename get_ref_desc_types::refType_src2dDesc;
using refType_dst1dDesc = typename get_ref_desc_types::refType_dst1dDesc;
using refType_src2dDesc_padded_12 = typename get_ref_desc_types::refType_src2dDesc_padded_12;
using refType_dst1dDesc_padded = typename get_ref_desc_types::refType_dst1dDesc_padded;
template <bool need_padding>
static __device__ auto get_reduction_src2d_descriptor(const void* p_src2dDesc)
{
if constexpr(need_padding)
return (*reinterpret_cast<const refType_src2dDesc_padded_12*>(p_src2dDesc));
else
return (*reinterpret_cast<const refType_src2dDesc*>(p_src2dDesc));
};
template <bool need_padding>
static __device__ auto get_reduction_dst1d_descriptor(const void* p_dst1dDesc)
{
if constexpr(need_padding)
return (*reinterpret_cast<const refType_dst1dDesc_padded*>(p_dst1dDesc));
else
return (*reinterpret_cast<const refType_dst1dDesc*>(p_dst1dDesc));
};
extern "C" __global__ void gridwise_generic_reduce_2(int origReduceLen,
float alpha,
const void* __restrict__ p_src_global,
float beta,
void* __restrict__ p_dst_global,
const void CONSTANT* ws_global,
long ws_buf2_bytes_offset,
void* __restrict__ indices_global)
{
(void)p_src_global;
const void* p_src2dDesc = cast_pointer_to_generic_address_space(ws_global);
const void* p_dst1dDesc = static_cast<const char*>(p_src2dDesc) + 2048;
void* ws_buf1_global = const_cast<char*>(static_cast<const char*>(p_src2dDesc) + 4096);
const auto src2dDesc = get_reduction_src2d_descriptor<src2d_need_padding>(p_src2dDesc);
const auto dst1dDesc = get_reduction_dst1d_descriptor<dst1d_need_padding>(p_dst1dDesc);
using gridwise_2d_reduce = GridwiseReduction_xy_to_x_direct_threadwise<BlockSize,
srcDataType,
dstDataType,
compType,
decltype(src2dDesc),
decltype(dst1dDesc),
op,
nanPropaOpt,
reduceIndicesOpt,
false,
true,
GredThreadBufferLength>;
void* const ws_buf2_global =
ws_buf2_bytes_offset > 0
? static_cast<void*>(static_cast<char*>(ws_buf1_global) + ws_buf2_bytes_offset)
: nullptr;
constexpr int RunId = need_indices ? 3 : 1;
gridwise_2d_reduce::template Run<RunId>(
src2dDesc,
dst1dDesc,
origReduceLen,
alpha,
static_cast<const srcDataType* const __restrict__>(ws_buf1_global),
beta,
static_cast<dstDataType* const __restrict__>(p_dst_global),
static_cast<const int* const __restrict__>(ws_buf2_global),
static_cast<int* const __restrict__>(indices_global));
};
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#include "config.hpp"
#include "number.hpp"
#include "sequence.hpp"
#include "tensor_descriptor_helper.hpp"
#include "data_type_enum_helper.hpp"
#include "reduction_common.hpp"
#include "gridwise_generic_2d_reduction_direct_threadwise.hpp"
using namespace ck;
using srcDataType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_SRC_DATATYPE)>::type;
using dstDataType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_DST_DATATYPE)>::type;
using compType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_REDUCE_COMPTYPE)>::type;
constexpr index_t BlockSize = CK_PARAM_BLOCKSIZE; // tunable
constexpr index_t dstDims = CK_PARAM_OUT_DIMS;
constexpr ReduceTensorOp_t op = static_cast<ReduceTensorOp_t>(CK_PARAM_REDUCE_OP);
constexpr NanPropagation_t nanPropaOpt = CK_PARAM_NAN_PROPAGATE == 0
? NanPropagation_t::NOT_PROPAGATE_NAN
: NanPropagation_t::PROPAGATE_NAN;
constexpr ReduceTensorIndices_t reduceIndicesOpt = CK_PARAM_REDUCE_INDICES == 0
? ReduceTensorIndices_t::NO_INDICES
: ReduceTensorIndices_t::FLATTENED_INDICES;
constexpr bool src2d_need_padding = static_cast<bool>(CK_PARAM_SRC2D_PADDING);
constexpr bool dst1d_need_padding = static_cast<bool>(CK_PARAM_DST1D_PADDING);
constexpr bool indexable = reduce_binary_operator<compType, op>::indexable;
constexpr bool need_indices = indexable && (reduceIndicesOpt != ReduceTensorIndices_t::NO_INDICES);
constexpr index_t GredThreadBufferLength = CK_PARAM_THREAD_BUFFER_LENGTH; // tunable
// helper functions using variadic template arguments
template <index_t... Ns>
__device__ static auto make_tuple_from_array_and_index_seq(const int* lengths, Sequence<Ns...>)
{
return make_tuple(static_cast<index_t>(lengths[Ns])...);
};
template <index_t arraySize>
__device__ static auto make_tuple_from_array(const int* lengths, Number<arraySize>)
{
static_assert(arraySize >= 1 && arraySize <= 6, "The tensor should have 1 to 6 dimensions");
constexpr auto index_seq = typename arithmetic_sequence_gen<0, arraySize, 1>::type{};
return make_tuple_from_array_and_index_seq(lengths, index_seq);
};
template <index_t... Ns>
__device__ static constexpr auto make_tuple_from_seq(Sequence<Ns...>)
{
return make_tuple(Ns...);
};
extern "C" __global__ void gridwise_generic_reduce_2_prepare(int GridSize,
int BlkGroupSize,
int outLength0,
int outLength1,
int outLength2,
int outLength3,
int outLength4,
int outLength5,
int outStride0,
int outStride1,
int outStride2,
int outStride3,
int outStride4,
int outStride5,
void* __restrict__ ws_global)
{
(void)BlkGroupSize;
void* p_src2dDesc = ws_global;
void* p_dst1dDesc = static_cast<char*>(ws_global) + 2048;
const int dstLengths[6] = {
outLength0, outLength1, outLength2, outLength3, outLength4, outLength5};
const int dstStrides[6] = {
outStride0, outStride1, outStride2, outStride3, outStride4, outStride5};
const auto tupleDstLengths = make_tuple_from_array(dstLengths, Number<dstDims>{});
const auto tupleDstStrides = make_tuple_from_array(dstStrides, Number<dstDims>{});
const auto dstDesc = make_naive_tensor_descriptor(tupleDstLengths, tupleDstStrides);
auto dst1dDesc = transform_tensor_descriptor(
dstDesc,
make_tuple(make_merge_transform(tupleDstLengths)),
make_tuple(typename arithmetic_sequence_gen<0, dstDims, 1>::type{}),
make_tuple(Sequence<0>{}));
const index_t invariantLen = dst1dDesc.GetLength(Number<0>{});
const index_t toReduceLen = BlkGroupSize;
auto src2dDesc = make_naive_tensor_descriptor_packed(make_tuple(invariantLen, toReduceLen));
constexpr auto copySliceLen = GredThreadBufferLength;
if constexpr(src2d_need_padding)
{
const auto srcPad1 = GridSize * BlockSize - invariantLen;
const auto srcPad2 =
((toReduceLen + copySliceLen - 1) / copySliceLen) * copySliceLen - toReduceLen;
auto src2dDesc_2 =
transform_tensor_descriptor(src2dDesc,
make_tuple(make_pad_transform(invariantLen, 0, srcPad1),
make_pad_transform(toReduceLen, 0, srcPad2)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(src2dDesc_2)*>(p_src2dDesc) = src2dDesc_2;
}
else
{
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(src2dDesc)*>(p_src2dDesc) = src2dDesc;
}
if constexpr(dst1d_need_padding)
{
const auto dstPad = GridSize * BlockSize - invariantLen;
auto dst1dDesc_2 =
transform_tensor_descriptor(dst1dDesc,
make_tuple(make_pad_transform(invariantLen, 0, dstPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(dst1dDesc_2)*>(p_dst1dDesc) = dst1dDesc_2;
}
else
{
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(dst1dDesc)*>(p_dst1dDesc) = dst1dDesc;
}
};
template <index_t dstDims>
struct get_ref_desc_types
{
static constexpr auto ref_tupleDstLengths =
make_tuple_from_seq(typename uniform_sequence_gen<dstDims, 8>::type{});
static constexpr auto ref_dstDesc =
make_naive_tensor_descriptor(ref_tupleDstLengths, ref_tupleDstLengths);
static constexpr auto ref_dst1dDesc = transform_tensor_descriptor(
ref_dstDesc,
make_tuple(make_merge_transform(ref_tupleDstLengths)),
make_tuple(typename arithmetic_sequence_gen<0, dstDims, 1>::type{}),
make_tuple(Sequence<0>{}));
static constexpr index_t ref_invariantLen = ref_dst1dDesc.GetLength(Number<0>{});
static constexpr index_t ref_toReduceLen = 8;
static constexpr auto ref_src2dDesc =
make_naive_tensor_descriptor_packed(make_tuple(ref_invariantLen, ref_toReduceLen));
using refType_src2dDesc = decltype(ref_src2dDesc);
using refType_dst1dDesc = decltype(ref_dst1dDesc);
// used by the DirectThreadWise and DirectWarpWise method
using refType_src2dDesc_padded_12 =
decltype(transform_tensor_descriptor(ref_src2dDesc,
make_tuple(make_pad_transform(ref_invariantLen, 0, 2),
make_pad_transform(ref_toReduceLen, 0, 2)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{})));
using refType_dst1dDesc_padded =
decltype(transform_tensor_descriptor(ref_dst1dDesc,
make_tuple(make_pad_transform(ref_invariantLen, 0, 2)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{})));
};
using refType_src2dDesc = typename get_ref_desc_types<dstDims>::refType_src2dDesc;
using refType_dst1dDesc = typename get_ref_desc_types<dstDims>::refType_dst1dDesc;
using refType_src2dDesc_padded_12 =
typename get_ref_desc_types<dstDims>::refType_src2dDesc_padded_12;
using refType_dst1dDesc_padded = typename get_ref_desc_types<dstDims>::refType_dst1dDesc_padded;
template <bool need_padding>
static __device__ auto get_reduction_src2d_descriptor(const void* p_src2dDesc)
{
if constexpr(need_padding)
return (*reinterpret_cast<const refType_src2dDesc_padded_12*>(p_src2dDesc));
else
return (*reinterpret_cast<const refType_src2dDesc*>(p_src2dDesc));
};
template <bool need_padding>
static __device__ auto get_reduction_dst1d_descriptor(const void* p_dst1dDesc)
{
if constexpr(need_padding)
return (*reinterpret_cast<const refType_dst1dDesc_padded*>(p_dst1dDesc));
else
return (*reinterpret_cast<const refType_dst1dDesc*>(p_dst1dDesc));
};
extern "C" __global__ void gridwise_generic_reduce_2(int origReduceLen,
float alpha,
const void* __restrict__ p_src_global,
float beta,
void* __restrict__ p_dst_global,
const void CONSTANT* ws_global,
long ws_buf2_bytes_offset,
void* __restrict__ indices_global)
{
(void)p_src_global;
const void* p_src2dDesc = cast_pointer_to_generic_address_space(ws_global);
const void* p_dst1dDesc = static_cast<const char*>(p_src2dDesc) + 2048;
void* ws_buf1_global = const_cast<char*>(static_cast<const char*>(p_src2dDesc) + 4096);
const auto src2dDesc = get_reduction_src2d_descriptor<src2d_need_padding>(p_src2dDesc);
const auto dst1dDesc = get_reduction_dst1d_descriptor<dst1d_need_padding>(p_dst1dDesc);
using gridwise_2d_reduce = GridwiseReduction_xy_to_x_direct_threadwise<BlockSize,
srcDataType,
dstDataType,
compType,
decltype(src2dDesc),
decltype(dst1dDesc),
op,
nanPropaOpt,
reduceIndicesOpt,
false,
true,
GredThreadBufferLength>;
void* const ws_buf2_global =
ws_buf2_bytes_offset > 0
? static_cast<void*>(static_cast<char*>(ws_buf1_global) + ws_buf2_bytes_offset)
: nullptr;
constexpr int RunId = need_indices ? 3 : 1;
gridwise_2d_reduce::template Run<RunId>(
src2dDesc,
dst1dDesc,
origReduceLen,
alpha,
static_cast<const srcDataType* const __restrict__>(ws_buf1_global),
beta,
static_cast<dstDataType* const __restrict__>(p_dst_global),
static_cast<const int* const __restrict__>(ws_buf2_global),
static_cast<int* const __restrict__>(indices_global));
};
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#include "config.hpp"
#include "number.hpp"
#include "sequence.hpp"
#include "tensor_descriptor_helper.hpp"
#include "data_type_enum_helper.hpp"
#include "reduction_common.hpp"
#include "gridwise_generic_2d_reduction_direct_warpwise.hpp"
using namespace ck;
using srcDataType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_SRC_DATATYPE)>::type;
using dstDataType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_DST_DATATYPE)>::type;
using compType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_REDUCE_COMPTYPE)>::type;
constexpr index_t BlockSize = CK_PARAM_BLOCKSIZE; // tunable
constexpr ReduceTensorOp_t op = static_cast<ReduceTensorOp_t>(CK_PARAM_REDUCE_OP);
constexpr NanPropagation_t nanPropaOpt = CK_PARAM_NAN_PROPAGATE == 0
? NanPropagation_t::NOT_PROPAGATE_NAN
: NanPropagation_t::PROPAGATE_NAN;
constexpr ReduceTensorIndices_t reduceIndicesOpt = CK_PARAM_REDUCE_INDICES == 0
? ReduceTensorIndices_t::NO_INDICES
: ReduceTensorIndices_t::FLATTENED_INDICES;
constexpr bool src2d_need_padding = static_cast<bool>(CK_PARAM_SRC2D_PADDING);
constexpr bool dst1d_need_padding = static_cast<bool>(CK_PARAM_DST1D_PADDING);
constexpr bool indexable = reduce_binary_operator<compType, op>::indexable;
constexpr bool need_indices = indexable && (reduceIndicesOpt != ReduceTensorIndices_t::NO_INDICES);
constexpr index_t GredAccessesPerThreadInWarp = CK_PARAM_ACCESSES_PER_THREAD_INWARP; // tunable
extern "C" __global__ void
gridwise_generic_reduce_2_prepare(int GridSize, int BlkGroupSize, void* __restrict__ ws_global)
{
(void)BlkGroupSize;
void* p_src2dDesc = ws_global;
void* p_dst1dDesc = static_cast<char*>(ws_global) + 2048;
const auto tupleDstLengths = make_tuple(1);
const auto tupleDstStrides = make_tuple(1);
auto dstDesc = make_naive_tensor_descriptor(tupleDstLengths, tupleDstStrides);
const index_t invariantLen = dstDesc.GetLength(Number<0>{});
const index_t toReduceLen = BlkGroupSize;
auto src2dDesc = make_naive_tensor_descriptor_packed(make_tuple(invariantLen, toReduceLen));
constexpr auto copySliceLen = warpSize * GredAccessesPerThreadInWarp;
if constexpr(src2d_need_padding)
{
const auto srcPad1 = GridSize * BlockSize / warpSize - invariantLen;
const auto srcPad2 =
((toReduceLen + copySliceLen - 1) / copySliceLen) * copySliceLen - toReduceLen;
auto src2dDesc_2 =
transform_tensor_descriptor(src2dDesc,
make_tuple(make_pad_transform(invariantLen, 0, srcPad1),
make_pad_transform(toReduceLen, 0, srcPad2)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(src2dDesc_2)*>(p_src2dDesc) = src2dDesc_2;
}
else
{
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(src2dDesc)*>(p_src2dDesc) = src2dDesc;
}
if constexpr(dst1d_need_padding)
{
const auto dstPad = GridSize * BlockSize / warpSize - invariantLen;
auto dst1dDesc_2 =
transform_tensor_descriptor(dstDesc,
make_tuple(make_pad_transform(invariantLen, 0, dstPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(dst1dDesc_2)*>(p_dst1dDesc) = dst1dDesc_2;
}
else
{
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(dstDesc)*>(p_dst1dDesc) = dstDesc;
}
};
struct get_ref_desc_types
{
static constexpr auto ref_tupleDstLengths = make_tuple(8);
static constexpr auto ref_dstDesc =
make_naive_tensor_descriptor(ref_tupleDstLengths, ref_tupleDstLengths);
static constexpr index_t ref_invariantLen = ref_dstDesc.GetLength(Number<0>{});
static constexpr index_t ref_toReduceLen = 8;
static constexpr auto ref_src2dDesc =
make_naive_tensor_descriptor_packed(make_tuple(ref_invariantLen, ref_toReduceLen));
using refType_src2dDesc = decltype(ref_src2dDesc);
using refType_dst1dDesc = decltype(ref_dstDesc);
// used by the DirectThreadWise and DirectWarpWise method
using refType_src2dDesc_padded_12 =
decltype(transform_tensor_descriptor(ref_src2dDesc,
make_tuple(make_pad_transform(ref_invariantLen, 0, 2),
make_pad_transform(ref_toReduceLen, 0, 2)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{})));
using refType_dst1dDesc_padded =
decltype(transform_tensor_descriptor(ref_dstDesc,
make_tuple(make_pad_transform(ref_invariantLen, 0, 2)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{})));
};
using refType_src2dDesc = typename get_ref_desc_types::refType_src2dDesc;
using refType_dst1dDesc = typename get_ref_desc_types::refType_dst1dDesc;
using refType_src2dDesc_padded_12 = typename get_ref_desc_types::refType_src2dDesc_padded_12;
using refType_dst1dDesc_padded = typename get_ref_desc_types::refType_dst1dDesc_padded;
template <bool need_padding>
static __device__ auto get_reduction_src2d_descriptor(const void* p_src2dDesc)
{
if constexpr(need_padding)
return (*reinterpret_cast<const refType_src2dDesc_padded_12*>(p_src2dDesc));
else
return (*reinterpret_cast<const refType_src2dDesc*>(p_src2dDesc));
};
template <bool need_padding>
static __device__ auto get_reduction_dst1d_descriptor(const void* p_dst1dDesc)
{
if constexpr(need_padding)
return (*reinterpret_cast<const refType_dst1dDesc_padded*>(p_dst1dDesc));
else
return (*reinterpret_cast<const refType_dst1dDesc*>(p_dst1dDesc));
};
extern "C" __global__ void gridwise_generic_reduce_2(int origReduceLen,
float alpha,
const void* __restrict__ p_src_global,
float beta,
void* __restrict__ p_dst_global,
const void CONSTANT* ws_global,
long ws_buf2_bytes_offset,
void* __restrict__ indices_global)
{
(void)p_src_global;
const void* p_src2dDesc = cast_pointer_to_generic_address_space(ws_global);
const void* p_dst1dDesc = static_cast<const char*>(p_src2dDesc) + 2048;
void* ws_buf1_global = const_cast<char*>(static_cast<const char*>(p_src2dDesc) + 4096);
const auto src2dDesc = get_reduction_src2d_descriptor<src2d_need_padding>(p_src2dDesc);
const auto dst1dDesc = get_reduction_dst1d_descriptor<dst1d_need_padding>(p_dst1dDesc);
using gridwise_2d_reduce =
GridwiseReduction_xy_to_x_direct_warpwise<BlockSize,
srcDataType,
dstDataType,
compType,
decltype(src2dDesc),
decltype(dst1dDesc),
op,
nanPropaOpt,
reduceIndicesOpt,
false,
true,
GredAccessesPerThreadInWarp>;
void* const ws_buf2_global =
ws_buf2_bytes_offset > 0
? static_cast<void*>(static_cast<char*>(ws_buf1_global) + ws_buf2_bytes_offset)
: nullptr;
constexpr int RunId = need_indices ? 3 : 1;
gridwise_2d_reduce::template Run<RunId>(
src2dDesc,
dst1dDesc,
origReduceLen,
alpha,
static_cast<const srcDataType* const __restrict__>(ws_buf1_global),
beta,
static_cast<dstDataType* const __restrict__>(p_dst_global),
static_cast<const int* const __restrict__>(ws_buf2_global),
static_cast<int* const __restrict__>(indices_global));
};
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#include "config.hpp"
#include "number.hpp"
#include "sequence.hpp"
#include "tensor_descriptor_helper.hpp"
#include "data_type_enum_helper.hpp"
#include "reduction_common.hpp"
#include "gridwise_generic_2d_reduction_direct_warpwise.hpp"
using namespace ck;
using srcDataType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_SRC_DATATYPE)>::type;
using dstDataType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_DST_DATATYPE)>::type;
using compType =
typename get_datatype_from_enum<static_cast<DataTypeEnum_t>(CK_PARAM_REDUCE_COMPTYPE)>::type;
constexpr index_t BlockSize = CK_PARAM_BLOCKSIZE; // tunable
constexpr index_t dstDims = CK_PARAM_OUT_DIMS;
constexpr ReduceTensorOp_t op = static_cast<ReduceTensorOp_t>(CK_PARAM_REDUCE_OP);
constexpr NanPropagation_t nanPropaOpt = CK_PARAM_NAN_PROPAGATE == 0
? NanPropagation_t::NOT_PROPAGATE_NAN
: NanPropagation_t::PROPAGATE_NAN;
constexpr ReduceTensorIndices_t reduceIndicesOpt = CK_PARAM_REDUCE_INDICES == 0
? ReduceTensorIndices_t::NO_INDICES
: ReduceTensorIndices_t::FLATTENED_INDICES;
constexpr bool src2d_need_padding = static_cast<bool>(CK_PARAM_SRC2D_PADDING);
constexpr bool dst1d_need_padding = static_cast<bool>(CK_PARAM_DST1D_PADDING);
constexpr bool indexable = reduce_binary_operator<compType, op>::indexable;
constexpr bool need_indices = indexable && (reduceIndicesOpt != ReduceTensorIndices_t::NO_INDICES);
constexpr index_t GredAccessesPerThreadInWarp = CK_PARAM_ACCESSES_PER_THREAD_INWARP; // tunable
// helper functions using variadic template arguments
template <index_t... Ns>
__device__ static auto make_tuple_from_array_and_index_seq(const int* lengths, Sequence<Ns...>)
{
return make_tuple(static_cast<index_t>(lengths[Ns])...);
};
template <index_t arraySize>
__device__ static auto make_tuple_from_array(const int* lengths, Number<arraySize>)
{
static_assert(arraySize >= 1 && arraySize <= 6, "The tensor should have 1 to 6 dimensions");
constexpr auto index_seq = typename arithmetic_sequence_gen<0, arraySize, 1>::type{};
return make_tuple_from_array_and_index_seq(lengths, index_seq);
};
template <index_t... Ns>
__device__ static constexpr auto make_tuple_from_seq(Sequence<Ns...>)
{
return make_tuple(Ns...);
};
extern "C" __global__ void gridwise_generic_reduce_2_prepare(int GridSize,
int BlkGroupSize,
int outLength0,
int outLength1,
int outLength2,
int outLength3,
int outLength4,
int outLength5,
int outStride0,
int outStride1,
int outStride2,
int outStride3,
int outStride4,
int outStride5,
void* __restrict__ ws_global)
{
(void)BlkGroupSize;
void* p_src2dDesc = ws_global;
void* p_dst1dDesc = static_cast<char*>(ws_global) + 2048;
const int dstLengths[6] = {
outLength0, outLength1, outLength2, outLength3, outLength4, outLength5};
const int dstStrides[6] = {
outStride0, outStride1, outStride2, outStride3, outStride4, outStride5};
const auto tupleDstLengths = make_tuple_from_array(dstLengths, Number<dstDims>{});
const auto tupleDstStrides = make_tuple_from_array(dstStrides, Number<dstDims>{});
const auto dstDesc = make_naive_tensor_descriptor(tupleDstLengths, tupleDstStrides);
auto dst1dDesc = transform_tensor_descriptor(
dstDesc,
make_tuple(make_merge_transform(tupleDstLengths)),
make_tuple(typename arithmetic_sequence_gen<0, dstDims, 1>::type{}),
make_tuple(Sequence<0>{}));
const index_t invariantLen = dst1dDesc.GetLength(Number<0>{});
const index_t toReduceLen = BlkGroupSize;
auto src2dDesc = make_naive_tensor_descriptor_packed(make_tuple(invariantLen, toReduceLen));
constexpr auto copySliceLen = warpSize * GredAccessesPerThreadInWarp;
if constexpr(src2d_need_padding)
{
const auto srcPad1 = GridSize * BlockSize / warpSize - invariantLen;
const auto srcPad2 =
((toReduceLen + copySliceLen - 1) / copySliceLen) * copySliceLen - toReduceLen;
auto src2dDesc_2 =
transform_tensor_descriptor(src2dDesc,
make_tuple(make_pad_transform(invariantLen, 0, srcPad1),
make_pad_transform(toReduceLen, 0, srcPad2)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(src2dDesc_2)*>(p_src2dDesc) = src2dDesc_2;
}
else
{
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(src2dDesc)*>(p_src2dDesc) = src2dDesc;
}
if constexpr(dst1d_need_padding)
{
const auto dstPad = GridSize * BlockSize / warpSize - invariantLen;
auto dst1dDesc_2 =
transform_tensor_descriptor(dst1dDesc,
make_tuple(make_pad_transform(invariantLen, 0, dstPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(dst1dDesc_2)*>(p_dst1dDesc) = dst1dDesc_2;
}
else
{
if(get_thread_local_1d_id() == 0)
*static_cast<decltype(dst1dDesc)*>(p_dst1dDesc) = dst1dDesc;
}
};
template <index_t dstDims>
struct get_ref_desc_types
{
static constexpr auto ref_tupleDstLengths =
make_tuple_from_seq(typename uniform_sequence_gen<dstDims, 8>::type{});
static constexpr auto ref_dstDesc =
make_naive_tensor_descriptor(ref_tupleDstLengths, ref_tupleDstLengths);
static constexpr auto ref_dst1dDesc = transform_tensor_descriptor(
ref_dstDesc,
make_tuple(make_merge_transform(ref_tupleDstLengths)),
make_tuple(typename arithmetic_sequence_gen<0, dstDims, 1>::type{}),
make_tuple(Sequence<0>{}));
static constexpr index_t ref_invariantLen = ref_dst1dDesc.GetLength(Number<0>{});
static constexpr index_t ref_toReduceLen = 8;
static constexpr auto ref_src2dDesc =
make_naive_tensor_descriptor_packed(make_tuple(ref_invariantLen, ref_toReduceLen));
using refType_src2dDesc = decltype(ref_src2dDesc);
using refType_dst1dDesc = decltype(ref_dst1dDesc);
// used by the DirectThreadWise and DirectWarpWise method
using refType_src2dDesc_padded_12 =
decltype(transform_tensor_descriptor(ref_src2dDesc,
make_tuple(make_pad_transform(ref_invariantLen, 0, 2),
make_pad_transform(ref_toReduceLen, 0, 2)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{})));
using refType_dst1dDesc_padded =
decltype(transform_tensor_descriptor(ref_dst1dDesc,
make_tuple(make_pad_transform(ref_invariantLen, 0, 2)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{})));
};
using refType_src2dDesc = typename get_ref_desc_types<dstDims>::refType_src2dDesc;
using refType_dst1dDesc = typename get_ref_desc_types<dstDims>::refType_dst1dDesc;
using refType_src2dDesc_padded_12 =
typename get_ref_desc_types<dstDims>::refType_src2dDesc_padded_12;
using refType_dst1dDesc_padded = typename get_ref_desc_types<dstDims>::refType_dst1dDesc_padded;
template <bool need_padding>
static __device__ auto get_reduction_src2d_descriptor(const void* p_src2dDesc)
{
if constexpr(need_padding)
return (*reinterpret_cast<const refType_src2dDesc_padded_12*>(p_src2dDesc));
else
return (*reinterpret_cast<const refType_src2dDesc*>(p_src2dDesc));
};
template <bool need_padding>
static __device__ auto get_reduction_dst1d_descriptor(const void* p_dst1dDesc)
{
if constexpr(need_padding)
return (*reinterpret_cast<const refType_dst1dDesc_padded*>(p_dst1dDesc));
else
return (*reinterpret_cast<const refType_dst1dDesc*>(p_dst1dDesc));
};
extern "C" __global__ void gridwise_generic_reduce_2(int origReduceLen,
float alpha,
const void* __restrict__ p_src_global,
float beta,
void* __restrict__ p_dst_global,
const void CONSTANT* ws_global,
long ws_buf2_bytes_offset,
void* __restrict__ indices_global)
{
(void)p_src_global;
const void* p_src2dDesc = cast_pointer_to_generic_address_space(ws_global);
const void* p_dst1dDesc = static_cast<const char*>(p_src2dDesc) + 2048;
void* ws_buf1_global = const_cast<char*>(static_cast<const char*>(p_src2dDesc) + 4096);
const auto src2dDesc = get_reduction_src2d_descriptor<src2d_need_padding>(p_src2dDesc);
const auto dst1dDesc = get_reduction_dst1d_descriptor<dst1d_need_padding>(p_dst1dDesc);
using gridwise_2d_reduce =
GridwiseReduction_xy_to_x_direct_warpwise<BlockSize,
srcDataType,
dstDataType,
compType,
decltype(src2dDesc),
decltype(dst1dDesc),
op,
nanPropaOpt,
reduceIndicesOpt,
false,
true,
GredAccessesPerThreadInWarp>;
void* const ws_buf2_global =
ws_buf2_bytes_offset > 0
? static_cast<void*>(static_cast<char*>(ws_buf1_global) + ws_buf2_bytes_offset)
: nullptr;
constexpr int RunId = need_indices ? 3 : 1;
gridwise_2d_reduce::template Run<RunId>(
src2dDesc,
dst1dDesc,
origReduceLen,
alpha,
static_cast<const srcDataType* const __restrict__>(ws_buf1_global),
beta,
static_cast<dstDataType* const __restrict__>(p_dst_global),
static_cast<const int* const __restrict__>(ws_buf2_global),
static_cast<int* const __restrict__>(indices_global));
};
## CK docker hub
[Docker hub](https://hub.docker.com/r/rocm/composable_kernel)
## Why do I need this?
To make our lives easier and bring Composable Kernel dependencies together, we recommend using docker images.
## So what is Composable Kernel?
Composable Kernel (CK) library aims to provide a programming model for writing performance critical kernels for machine learning workloads across multiple architectures including GPUs, CPUs, etc, through general purpose kernel languages, like HIP C++.
To get the CK library
```
git clone https://github.com/ROCmSoftwarePlatform/composable_kernel.git
```
run a docker container
```
docker run \
-it \
--privileged \
--group-add sudo \
-w /root/workspace \
-v ${PATH_TO_LOCAL_WORKSPACE}:/root/workspace \
rocm/composable_kernel:ck_ub20.04_rocm5.3_release \
/bin/bash
```
and build the CK
```
mkdir build && cd build
# Need to specify target ID, example below is for gfx908 and gfx90a
cmake \
-D CMAKE_PREFIX_PATH=/opt/rocm \
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-D CMAKE_CXX_FLAGS="-O3" \
-D CMAKE_BUILD_TYPE=Release \
-D GPU_TARGETS="gfx908;gfx90a" \
..
```
and
```
make -j examples tests
```
To run all the test cases including tests and examples run
```
make test
```
We can also run specific examples or tests like
```
./bin/example_gemm_xdl_fp16
./bin/test_gemm_fp16
```
For more details visit [CK github repo](https://github.com/ROCmSoftwarePlatform/composable_kernel), [CK examples](https://github.com/ROCmSoftwarePlatform/composable_kernel/tree/develop/example), [even more CK examples](https://github.com/ROCmSoftwarePlatform/composable_kernel/tree/develop/client_example).
## And what is inside?
The docker images have everything you need for running CK including:
* [ROCm](https://www.amd.com/en/graphics/servers-solutions-rocm)
* [CMake](https://cmake.org/)
* [Compiler](https://github.com/RadeonOpenCompute/llvm-project)
## Which image is right for me?
Let's take a look at the image naming, for example "ck_ub20.04_rocm5.4_release". The image specs are:
* "ck" - made for running Composable Kernel
* "ub20.04" - based on Ubuntu 20.04
* "rocm5.4" - ROCm platform version 5.4
* "release" - compiler version is release
So just pick the right image for your project dependencies and you're all set.
## DIY starts here
If you need to customize a docker image or just can't stop tinkering, feel free to adjust the [Dockerfile](https://github.com/ROCmSoftwarePlatform/composable_kernel/blob/develop/Dockerfile) for your needs.
## License
CK is released under the MIT [license](https://github.com/ROCmSoftwarePlatform/composable_kernel/blob/develop/LICENSE).
## CK Hello world
## Motivation
This tutorial is aimed at engineers dealing with artificial intelligence and machine learning who would like to optimize their pipelines and squeeze every performance drop by adding Composable Kernel (CK) library to their projects. We would like to make the CK library approachable so the tutorial is not based on the latest release and doesn't have all the bleeding edge features, but it will be reproducible now and forever.
During this tutorial we will have an introduction to the CK library, we will build it and run some examples and tests, so to say we will run a "Hello world" example. In future tutorials we will go in depth and breadth and get familiar with other tools and ways to integrate CK into your project.
## Description
Modern AI technology solves more and more problems in all imaginable fields, but crafting fast and efficient workflows is still challenging. CK is one of the tools to make AI heavy lifting as fast and efficient as possible. CK is a collection of optimized AI operator kernels and tools to create new ones. The library has components required for majority of modern neural networks architectures including matrix multiplication, convolution, contraction, reduction, attention modules, variety of activation functions, fused operators and many more.
So how do we (almost) reach the speed of light? CK acceleration abilities are based on:
* Layered structure.
* Tile-based computation model.
* Tensor coordinate transformation.
* Hardware acceleration use.
* Support of low precision data types including fp16, bf16, int8 and int4.
If you are excited and need more technical details and benchmarking results - read this awesome blog [post](https://community.amd.com/t5/instinct-accelerators/amd-composable-kernel-library-efficient-fused-kernels-for-ai/ba-p/553224).
For more details visit our [github repo](https://github.com/ROCmSoftwarePlatform/composable_kernel).
## Hardware targets
CK library fully supports "gfx908" and "gfx90a" GPU architectures and only some operators are supported for "gfx1030". Let's check the hardware you have at hand and decide on the target GPU architecture
GPU Target AMD GPU
gfx908 Radeon Instinct MI100
gfx90a Radeon Instinct MI210, MI250, MI250X
gfx1030 Radeon PRO V620, W6800, W6800X, W6800X Duo, W6900X, RX 6800, RX 6800 XT, RX 6900 XT, RX 6900 XTX, RX 6950 XT
There are also [cloud options](https://aws.amazon.com/ec2/instance-types/g4/) you can find if you don't have an AMD GPU at hand.
## Build the library
First let's clone the library and rebase to the tested version:
```
git clone https://github.com/ROCmSoftwarePlatform/composable_kernel.git
cd composable_kernel/
git checkout tutorial_hello_world
```
To make our lives easier we prepared [docker images](https://hub.docker.com/r/rocm/composable_kernel) with all the necessary dependencies. Pick the right image and create a container. In this tutorial we use "rocm/composable_kernel:ck_ub20.04_rocm5.3_release" image, it is based on Ubuntu 20.04, ROCm v5.3, compiler release version.
If your current folder is ${HOME}, start the docker container with
```
docker run \
-it \
--privileged \
--group-add sudo \
-w /root/workspace \
-v ${HOME}:/root/workspace \
rocm/composable_kernel:ck_ub20.04_rocm5.3_release \
/bin/bash
```
If your current folder is different from ${HOME}, adjust the line `-v ${HOME}:/root/workspace` to fit your folder structure.
Inside the docker container current folder is "~/workspace", library path is "~/workspace/composable_kernel", navigate to the library
```
cd composable_kernel/
```
Create and go to the "build" directory
```
mkdir build && cd build
```
In the previous section we talked about target GPU architecture. Once you decide which one is right for you, run cmake using the right GPU_TARGETS flag
```
cmake \
-D CMAKE_PREFIX_PATH=/opt/rocm \
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-D CMAKE_CXX_FLAGS="-O3" \
-D CMAKE_BUILD_TYPE=Release \
-D BUILD_DEV=OFF \
-D GPU_TARGETS="gfx908;gfx90a;gfx1030" ..
```
If everything went well the cmake run will end up with:
```
-- Configuring done
-- Generating done
-- Build files have been written to: "/root/workspace/composable_kernel/build"
```
Finally, we can build examples and tests
```
make -j examples tests
```
If everything is smooth, you'll see
```
Scanning dependencies of target tests
[100%] Built target tests
```
## Run examples and tests
Examples are listed as test cases as well, so we can run all examples and tests with
```
ctest
```
You can check the list of all tests by running
```
ctest -N
```
We can also run them separately, here is a separate example execution.
```
./bin/example_gemm_xdl_fp16 1 1 1
```
The arguments "1 1 1" mean that we want to run this example in the mode: verify results with CPU, initialize matrices with integers and benchmark the kernel execution. You can play around with these parameters and see how output and execution results change.
If everything goes well and you have a device based on gfx908 or gfx90a architecture you should see something like
```
a_m_k: dim 2, lengths {3840, 4096}, strides {4096, 1}
b_k_n: dim 2, lengths {4096, 4096}, strides {1, 4096}
c_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
launch_and_time_kernel: grid_dim {480, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 1.10017 ms, 117.117 TFlops, 87.6854 GB/s, DeviceGemmXdl<256, 256, 128, 4, 8, 32, 32, 4, 2> NumPrefetch: 1, LoopScheduler: Default, PipelineVersion: v1
```
Meanwhile, running it on a gfx1030 device should result in
```
a_m_k: dim 2, lengths {3840, 4096}, strides {4096, 1}
b_k_n: dim 2, lengths {4096, 4096}, strides {1, 4096}
c_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
DeviceGemmXdl<256, 256, 128, 4, 8, 32, 32, 4, 2> NumPrefetch: 1, LoopScheduler: Default, PipelineVersion: v1 does not support this problem
```
But don't panic, some of the operators are supported on gfx1030 architecture, so you can run a separate example like
```
./bin/example_gemm_dl_fp16 1 1 1
```
and it should result in something nice similar to
```
a_m_k: dim 2, lengths {3840, 4096}, strides {1, 4096}
b_k_n: dim 2, lengths {4096, 4096}, strides {4096, 1}
c_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
arg.a_grid_desc_k0_m0_m1_k1_{2048, 3840, 2}
arg.b_grid_desc_k0_n0_n1_k1_{2048, 4096, 2}
arg.c_grid_desc_m_n_{ 3840, 4096}
launch_and_time_kernel: grid_dim {960, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 3.65695 ms, 35.234 TFlops, 26.3797 GB/s, DeviceGemmDl<256, 128, 128, 16, 2, 4, 4, 1>
```
Or we can run a separate test
```
ctest -R test_gemm_fp16
```
If everything goes well you should see something like
```
Start 121: test_gemm_fp16
1/1 Test #121: test_gemm_fp16 ................... Passed 51.81 sec
100% tests passed, 0 tests failed out of 1
```
## Summary
In this tutorial we took the first look at the Composable Kernel library, built it on your system and ran some examples and tests. Stay tuned, in the next tutorial we will run kernels with different configs to find out the best one for your hardware and task.
P.S.: Don't forget to switch out the cloud instance if you have launched one, you can find better ways to spend your money for sure!
# Doxyfile 1.8.10
# This file describes the settings to be used by the documentation system
# doxygen (www.doxygen.org) for a project.
#
# All text after a double hash (##) is considered a comment and is placed in
# front of the TAG it is preceding.
#
# All text after a single hash (#) is considered a comment and will be ignored.
# The format is:
# TAG = value [value, ...]
# For lists, items can also be appended using:
# TAG += value [value, ...]
# Values that contain spaces should be placed between quotes (\" \").
#---------------------------------------------------------------------------
# Project related configuration options
#---------------------------------------------------------------------------
# This tag specifies the encoding used for all characters in the config file
# that follow. The default is UTF-8 which is also the encoding used for all text
# before the first occurrence of this tag. Doxygen uses libiconv (or the iconv
# built into libc) for the transcoding. See http://www.gnu.org/software/libiconv
# for the list of possible encodings.
# The default value is: UTF-8.
DOXYFILE_ENCODING = UTF-8
# The PROJECT_NAME tag is a single word (or a sequence of words surrounded by
# double-quotes, unless you are using Doxywizard) that should identify the
# project for which the documentation is generated. This name is used in the
# title of most generated pages and in a few other places.
# The default value is: My Project.
PROJECT_NAME = "ck"
# The PROJECT_NUMBER tag can be used to enter a project or revision number. This
# could be handy for archiving the generated documentation or if some version
# control system is used.
PROJECT_NUMBER = v3.0.1.0
# Using the PROJECT_BRIEF tag one can provide an optional one line description
# for a project that appears at the top of each page and should give viewer a
# quick idea about the purpose of the project. Keep the description short.
PROJECT_BRIEF = "prototype interfaces compatible with ROCm platform and HiP"
# With the PROJECT_LOGO tag one can specify a logo or an icon that is included
# in the documentation. The maximum height of the logo should not exceed 55
# pixels and the maximum width should not exceed 200 pixels. Doxygen will copy
# the logo to the output directory.
PROJECT_LOGO = ./rocm.jpg
# The OUTPUT_DIRECTORY tag is used to specify the (relative or absolute) path
# into which the generated documentation will be written. If a relative path is
# entered, it will be relative to the location where doxygen was started. If
# left blank the current directory will be used.
OUTPUT_DIRECTORY = docBin
# If the CREATE_SUBDIRS tag is set to YES then doxygen will create 4096 sub-
# directories (in 2 levels) under the output directory of each output format and
# will distribute the generated files over these directories. Enabling this
# option can be useful when feeding doxygen a huge amount of source files, where
# putting all generated files in the same directory would otherwise causes
# performance problems for the file system.
# The default value is: NO.
CREATE_SUBDIRS = NO
# If the ALLOW_UNICODE_NAMES tag is set to YES, doxygen will allow non-ASCII
# characters to appear in the names of generated files. If set to NO, non-ASCII
# characters will be escaped, for example _xE3_x81_x84 will be used for Unicode
# U+3044.
# The default value is: NO.
ALLOW_UNICODE_NAMES = NO
# The OUTPUT_LANGUAGE tag is used to specify the language in which all
# documentation generated by doxygen is written. Doxygen will use this
# information to generate all constant output in the proper language.
# Possible values are: Afrikaans, Arabic, Armenian, Brazilian, Catalan, Chinese,
# Chinese-Traditional, Croatian, Czech, Danish, Dutch, English (United States),
# Esperanto, Farsi (Persian), Finnish, French, German, Greek, Hungarian,
# Indonesian, Italian, Japanese, Japanese-en (Japanese with English messages),
# Korean, Korean-en (Korean with English messages), Latvian, Lithuanian,
# Macedonian, Norwegian, Persian (Farsi), Polish, Portuguese, Romanian, Russian,
# Serbian, Serbian-Cyrillic, Slovak, Slovene, Spanish, Swedish, Turkish,
# Ukrainian and Vietnamese.
# The default value is: English.
OUTPUT_LANGUAGE = English
# If the BRIEF_MEMBER_DESC tag is set to YES, doxygen will include brief member
# descriptions after the members that are listed in the file and class
# documentation (similar to Javadoc). Set to NO to disable this.
# The default value is: YES.
BRIEF_MEMBER_DESC = YES
# If the REPEAT_BRIEF tag is set to YES, doxygen will prepend the brief
# description of a member or function before the detailed description
#
# Note: If both HIDE_UNDOC_MEMBERS and BRIEF_MEMBER_DESC are set to NO, the
# brief descriptions will be completely suppressed.
# The default value is: YES.
REPEAT_BRIEF = YES
# This tag implements a quasi-intelligent brief description abbreviator that is
# used to form the text in various listings. Each string in this list, if found
# as the leading text of the brief description, will be stripped from the text
# and the result, after processing the whole list, is used as the annotated
# text. Otherwise, the brief description is used as-is. If left blank, the
# following values are used ($name is automatically replaced with the name of
# the entity):The $name class, The $name widget, The $name file, is, provides,
# specifies, contains, represents, a, an and the.
ABBREVIATE_BRIEF = "The $name class" \
"The $name widget" \
"The $name file" \
is \
provides \
specifies \
contains \
represents \
a \
an \
the
# If the ALWAYS_DETAILED_SEC and REPEAT_BRIEF tags are both set to YES then
# doxygen will generate a detailed section even if there is only a brief
# description.
# The default value is: NO.
ALWAYS_DETAILED_SEC = NO
# If the INLINE_INHERITED_MEMB tag is set to YES, doxygen will show all
# inherited members of a class in the documentation of that class as if those
# members were ordinary class members. Constructors, destructors and assignment
# operators of the base classes will not be shown.
# The default value is: NO.
INLINE_INHERITED_MEMB = NO
# If the FULL_PATH_NAMES tag is set to YES, doxygen will prepend the full path
# before files name in the file list and in the header files. If set to NO the
# shortest path that makes the file name unique will be used
# The default value is: YES.
FULL_PATH_NAMES = YES
# The STRIP_FROM_PATH tag can be used to strip a user-defined part of the path.
# Stripping is only done if one of the specified strings matches the left-hand
# part of the path. The tag can be used to show relative paths in the file list.
# If left blank the directory from which doxygen is run is used as the path to
# strip.
#
# Note that you can specify absolute paths here, but also relative paths, which
# will be relative from the directory where doxygen is started.
# This tag requires that the tag FULL_PATH_NAMES is set to YES.
STRIP_FROM_PATH =
# The STRIP_FROM_INC_PATH tag can be used to strip a user-defined part of the
# path mentioned in the documentation of a class, which tells the reader which
# header file to include in order to use a class. If left blank only the name of
# the header file containing the class definition is used. Otherwise one should
# specify the list of include paths that are normally passed to the compiler
# using the -I flag.
STRIP_FROM_INC_PATH =
# If the SHORT_NAMES tag is set to YES, doxygen will generate much shorter (but
# less readable) file names. This can be useful is your file systems doesn't
# support long names like on DOS, Mac, or CD-ROM.
# The default value is: NO.
SHORT_NAMES = NO
# If the JAVADOC_AUTOBRIEF tag is set to YES then doxygen will interpret the
# first line (until the first dot) of a Javadoc-style comment as the brief
# description. If set to NO, the Javadoc-style will behave just like regular Qt-
# style comments (thus requiring an explicit @brief command for a brief
# description.)
# The default value is: NO.
JAVADOC_AUTOBRIEF = NO
# If the QT_AUTOBRIEF tag is set to YES then doxygen will interpret the first
# line (until the first dot) of a Qt-style comment as the brief description. If
# set to NO, the Qt-style will behave just like regular Qt-style comments (thus
# requiring an explicit \brief command for a brief description.)
# The default value is: NO.
QT_AUTOBRIEF = NO
# The MULTILINE_CPP_IS_BRIEF tag can be set to YES to make doxygen treat a
# multi-line C++ special comment block (i.e. a block of //! or /// comments) as
# a brief description. This used to be the default behavior. The new default is
# to treat a multi-line C++ comment block as a detailed description. Set this
# tag to YES if you prefer the old behavior instead.
#
# Note that setting this tag to YES also means that rational rose comments are
# not recognized any more.
# The default value is: NO.
MULTILINE_CPP_IS_BRIEF = NO
# If the INHERIT_DOCS tag is set to YES then an undocumented member inherits the
# documentation from any documented member that it re-implements.
# The default value is: YES.
INHERIT_DOCS = YES
# If the SEPARATE_MEMBER_PAGES tag is set to YES then doxygen will produce a new
# page for each member. If set to NO, the documentation of a member will be part
# of the file/class/namespace that contains it.
# The default value is: NO.
SEPARATE_MEMBER_PAGES = NO
# The TAB_SIZE tag can be used to set the number of spaces in a tab. Doxygen
# uses this value to replace tabs by spaces in code fragments.
# Minimum value: 1, maximum value: 16, default value: 4.
TAB_SIZE = 4
# This tag can be used to specify a number of aliases that act as commands in
# the documentation. An alias has the form:
# name=value
# For example adding
# "sideeffect=@par Side Effects:\n"
# will allow you to put the command \sideeffect (or @sideeffect) in the
# documentation, which will result in a user-defined paragraph with heading
# "Side Effects:". You can put \n's in the value part of an alias to insert
# newlines.
ALIASES =
# This tag can be used to specify a number of word-keyword mappings (TCL only).
# A mapping has the form "name=value". For example adding "class=itcl::class"
# will allow you to use the command class in the itcl::class meaning.
TCL_SUBST =
# Set the OPTIMIZE_OUTPUT_FOR_C tag to YES if your project consists of C sources
# only. Doxygen will then generate output that is more tailored for C. For
# instance, some of the names that are used will be different. The list of all
# members will be omitted, etc.
# The default value is: NO.
OPTIMIZE_OUTPUT_FOR_C = NO
# Set the OPTIMIZE_OUTPUT_JAVA tag to YES if your project consists of Java or
# Python sources only. Doxygen will then generate output that is more tailored
# for that language. For instance, namespaces will be presented as packages,
# qualified scopes will look different, etc.
# The default value is: NO.
OPTIMIZE_OUTPUT_JAVA = NO
# Set the OPTIMIZE_FOR_FORTRAN tag to YES if your project consists of Fortran
# sources. Doxygen will then generate output that is tailored for Fortran.
# The default value is: NO.
OPTIMIZE_FOR_FORTRAN = NO
# Set the OPTIMIZE_OUTPUT_VHDL tag to YES if your project consists of VHDL
# sources. Doxygen will then generate output that is tailored for VHDL.
# The default value is: NO.
OPTIMIZE_OUTPUT_VHDL = NO
# Doxygen selects the parser to use depending on the extension of the files it
# parses. With this tag you can assign which parser to use for a given
# extension. Doxygen has a built-in mapping, but you can override or extend it
# using this tag. The format is ext=language, where ext is a file extension, and
# language is one of the parsers supported by doxygen: IDL, Java, Javascript,
# C#, C, C++, D, PHP, Objective-C, Python, Fortran (fixed format Fortran:
# FortranFixed, free formatted Fortran: FortranFree, unknown formatted Fortran:
# Fortran. In the later case the parser tries to guess whether the code is fixed
# or free formatted code, this is the default for Fortran type files), VHDL. For
# instance to make doxygen treat .inc files as Fortran files (default is PHP),
# and .f files as C (default is Fortran), use: inc=Fortran f=C.
#
# Note: For files without extension you can use no_extension as a placeholder.
#
# Note that for custom extensions you also need to set FILE_PATTERNS otherwise
# the files are not read by doxygen.
EXTENSION_MAPPING =
# If the MARKDOWN_SUPPORT tag is enabled then doxygen pre-processes all comments
# according to the Markdown format, which allows for more readable
# documentation. See http://daringfireball.net/projects/markdown/ for details.
# The output of markdown processing is further processed by doxygen, so you can
# mix doxygen, HTML, and XML commands with Markdown formatting. Disable only in
# case of backward compatibilities issues.
# The default value is: YES.
MARKDOWN_SUPPORT = YES
# When enabled doxygen tries to link words that correspond to documented
# classes, or namespaces to their corresponding documentation. Such a link can
# be prevented in individual cases by putting a % sign in front of the word or
# globally by setting AUTOLINK_SUPPORT to NO.
# The default value is: YES.
AUTOLINK_SUPPORT = YES
# If you use STL classes (i.e. std::string, std::vector, etc.) but do not want
# to include (a tag file for) the STL sources as input, then you should set this
# tag to YES in order to let doxygen match functions declarations and
# definitions whose arguments contain STL classes (e.g. func(std::string);
# versus func(std::string) {}). This also make the inheritance and collaboration
# diagrams that involve STL classes more complete and accurate.
# The default value is: NO.
BUILTIN_STL_SUPPORT = YES
# If you use Microsoft's C++/CLI language, you should set this option to YES to
# enable parsing support.
# The default value is: NO.
CPP_CLI_SUPPORT = NO
# Set the SIP_SUPPORT tag to YES if your project consists of sip (see:
# http://www.riverbankcomputing.co.uk/software/sip/intro) sources only. Doxygen
# will parse them like normal C++ but will assume all classes use public instead
# of private inheritance when no explicit protection keyword is present.
# The default value is: NO.
SIP_SUPPORT = NO
# For Microsoft's IDL there are propget and propput attributes to indicate
# getter and setter methods for a property. Setting this option to YES will make
# doxygen to replace the get and set methods by a property in the documentation.
# This will only work if the methods are indeed getting or setting a simple
# type. If this is not the case, or you want to show the methods anyway, you
# should set this option to NO.
# The default value is: YES.
IDL_PROPERTY_SUPPORT = YES
# If member grouping is used in the documentation and the DISTRIBUTE_GROUP_DOC
# tag is set to YES then doxygen will reuse the documentation of the first
# member in the group (if any) for the other members of the group. By default
# all members of a group must be documented explicitly.
# The default value is: NO.
DISTRIBUTE_GROUP_DOC = YES
# If one adds a struct or class to a group and this option is enabled, then also
# any nested class or struct is added to the same group. By default this option
# is disabled and one has to add nested compounds explicitly via \ingroup.
# The default value is: NO.
GROUP_NESTED_COMPOUNDS = NO
# Set the SUBGROUPING tag to YES to allow class member groups of the same type
# (for instance a group of public functions) to be put as a subgroup of that
# type (e.g. under the Public Functions section). Set it to NO to prevent
# subgrouping. Alternatively, this can be done per class using the
# \nosubgrouping command.
# The default value is: YES.
SUBGROUPING = YES
# When the INLINE_GROUPED_CLASSES tag is set to YES, classes, structs and unions
# are shown inside the group in which they are included (e.g. using \ingroup)
# instead of on a separate page (for HTML and Man pages) or section (for LaTeX
# and RTF).
#
# Note that this feature does not work in combination with
# SEPARATE_MEMBER_PAGES.
# The default value is: NO.
INLINE_GROUPED_CLASSES = NO
# When the INLINE_SIMPLE_STRUCTS tag is set to YES, structs, classes, and unions
# with only public data fields or simple typedef fields will be shown inline in
# the documentation of the scope in which they are defined (i.e. file,
# namespace, or group documentation), provided this scope is documented. If set
# to NO, structs, classes, and unions are shown on a separate page (for HTML and
# Man pages) or section (for LaTeX and RTF).
# The default value is: NO.
INLINE_SIMPLE_STRUCTS = NO
# When TYPEDEF_HIDES_STRUCT tag is enabled, a typedef of a struct, union, or
# enum is documented as struct, union, or enum with the name of the typedef. So
# typedef struct TypeS {} TypeT, will appear in the documentation as a struct
# with name TypeT. When disabled the typedef will appear as a member of a file,
# namespace, or class. And the struct will be named TypeS. This can typically be
# useful for C code in case the coding convention dictates that all compound
# types are typedef'ed and only the typedef is referenced, never the tag name.
# The default value is: NO.
TYPEDEF_HIDES_STRUCT = YES
# The size of the symbol lookup cache can be set using LOOKUP_CACHE_SIZE. This
# cache is used to resolve symbols given their name and scope. Since this can be
# an expensive process and often the same symbol appears multiple times in the
# code, doxygen keeps a cache of pre-resolved symbols. If the cache is too small
# doxygen will become slower. If the cache is too large, memory is wasted. The
# cache size is given by this formula: 2^(16+LOOKUP_CACHE_SIZE). The valid range
# is 0..9, the default is 0, corresponding to a cache size of 2^16=65536
# symbols. At the end of a run doxygen will report the cache usage and suggest
# the optimal cache size from a speed point of view.
# Minimum value: 0, maximum value: 9, default value: 0.
LOOKUP_CACHE_SIZE = 0
#---------------------------------------------------------------------------
# Build related configuration options
#---------------------------------------------------------------------------
# If the EXTRACT_ALL tag is set to YES, doxygen will assume all entities in
# documentation are documented, even if no documentation was available. Private
# class members and static file members will be hidden unless the
# EXTRACT_PRIVATE respectively EXTRACT_STATIC tags are set to YES.
# Note: This will also disable the warnings about undocumented members that are
# normally produced when WARNINGS is set to YES.
# The default value is: NO.
EXTRACT_ALL = YES
# If the EXTRACT_PRIVATE tag is set to YES, all private members of a class will
# be included in the documentation.
# The default value is: NO.
EXTRACT_PRIVATE = NO
# If the EXTRACT_PACKAGE tag is set to YES, all members with package or internal
# scope will be included in the documentation.
# The default value is: NO.
EXTRACT_PACKAGE = NO
# If the EXTRACT_STATIC tag is set to YES, all static members of a file will be
# included in the documentation.
# The default value is: NO.
EXTRACT_STATIC = NO
# If the EXTRACT_LOCAL_CLASSES tag is set to YES, classes (and structs) defined
# locally in source files will be included in the documentation. If set to NO,
# only classes defined in header files are included. Does not have any effect
# for Java sources.
# The default value is: YES.
EXTRACT_LOCAL_CLASSES = YES
# This flag is only useful for Objective-C code. If set to YES, local methods,
# which are defined in the implementation section but not in the interface are
# included in the documentation. If set to NO, only methods in the interface are
# included.
# The default value is: NO.
EXTRACT_LOCAL_METHODS = NO
# If this flag is set to YES, the members of anonymous namespaces will be
# extracted and appear in the documentation as a namespace called
# 'anonymous_namespace{file}', where file will be replaced with the base name of
# the file that contains the anonymous namespace. By default anonymous namespace
# are hidden.
# The default value is: NO.
EXTRACT_ANON_NSPACES = NO
# If the HIDE_UNDOC_MEMBERS tag is set to YES, doxygen will hide all
# undocumented members inside documented classes or files. If set to NO these
# members will be included in the various overviews, but no documentation
# section is generated. This option has no effect if EXTRACT_ALL is enabled.
# The default value is: NO.
HIDE_UNDOC_MEMBERS = NO
# If the HIDE_UNDOC_CLASSES tag is set to YES, doxygen will hide all
# undocumented classes that are normally visible in the class hierarchy. If set
# to NO, these classes will be included in the various overviews. This option
# has no effect if EXTRACT_ALL is enabled.
# The default value is: NO.
HIDE_UNDOC_CLASSES = NO
# If the HIDE_FRIEND_COMPOUNDS tag is set to YES, doxygen will hide all friend
# (class|struct|union) declarations. If set to NO, these declarations will be
# included in the documentation.
# The default value is: NO.
HIDE_FRIEND_COMPOUNDS = NO
# If the HIDE_IN_BODY_DOCS tag is set to YES, doxygen will hide any
# documentation blocks found inside the body of a function. If set to NO, these
# blocks will be appended to the function's detailed documentation block.
# The default value is: NO.
HIDE_IN_BODY_DOCS = NO
# The INTERNAL_DOCS tag determines if documentation that is typed after a
# \internal command is included. If the tag is set to NO then the documentation
# will be excluded. Set it to YES to include the internal documentation.
# The default value is: NO.
INTERNAL_DOCS = NO
# If the CASE_SENSE_NAMES tag is set to NO then doxygen will only generate file
# names in lower-case letters. If set to YES, upper-case letters are also
# allowed. This is useful if you have classes or files whose names only differ
# in case and if your file system supports case sensitive file names. Windows
# and Mac users are advised to set this option to NO.
# The default value is: system dependent.
CASE_SENSE_NAMES = NO
# If the HIDE_SCOPE_NAMES tag is set to NO then doxygen will show members with
# their full class and namespace scopes in the documentation. If set to YES, the
# scope will be hidden.
# The default value is: NO.
HIDE_SCOPE_NAMES = NO
# If the HIDE_COMPOUND_REFERENCE tag is set to NO (default) then doxygen will
# append additional text to a page's title, such as Class Reference. If set to
# YES the compound reference will be hidden.
# The default value is: NO.
HIDE_COMPOUND_REFERENCE= NO
# If the SHOW_INCLUDE_FILES tag is set to YES then doxygen will put a list of
# the files that are included by a file in the documentation of that file.
# The default value is: YES.
SHOW_INCLUDE_FILES = YES
# If the SHOW_GROUPED_MEMB_INC tag is set to YES then Doxygen will add for each
# grouped member an include statement to the documentation, telling the reader
# which file to include in order to use the member.
# The default value is: NO.
SHOW_GROUPED_MEMB_INC = NO
# If the FORCE_LOCAL_INCLUDES tag is set to YES then doxygen will list include
# files with double quotes in the documentation rather than with sharp brackets.
# The default value is: NO.
FORCE_LOCAL_INCLUDES = NO
# If the INLINE_INFO tag is set to YES then a tag [inline] is inserted in the
# documentation for inline members.
# The default value is: YES.
INLINE_INFO = YES
# If the SORT_MEMBER_DOCS tag is set to YES then doxygen will sort the
# (detailed) documentation of file and class members alphabetically by member
# name. If set to NO, the members will appear in declaration order.
# The default value is: YES.
SORT_MEMBER_DOCS = YES
# If the SORT_BRIEF_DOCS tag is set to YES then doxygen will sort the brief
# descriptions of file, namespace and class members alphabetically by member
# name. If set to NO, the members will appear in declaration order. Note that
# this will also influence the order of the classes in the class list.
# The default value is: NO.
SORT_BRIEF_DOCS = NO
# If the SORT_MEMBERS_CTORS_1ST tag is set to YES then doxygen will sort the
# (brief and detailed) documentation of class members so that constructors and
# destructors are listed first. If set to NO the constructors will appear in the
# respective orders defined by SORT_BRIEF_DOCS and SORT_MEMBER_DOCS.
# Note: If SORT_BRIEF_DOCS is set to NO this option is ignored for sorting brief
# member documentation.
# Note: If SORT_MEMBER_DOCS is set to NO this option is ignored for sorting
# detailed member documentation.
# The default value is: NO.
SORT_MEMBERS_CTORS_1ST = NO
# If the SORT_GROUP_NAMES tag is set to YES then doxygen will sort the hierarchy
# of group names into alphabetical order. If set to NO the group names will
# appear in their defined order.
# The default value is: NO.
SORT_GROUP_NAMES = NO
# If the SORT_BY_SCOPE_NAME tag is set to YES, the class list will be sorted by
# fully-qualified names, including namespaces. If set to NO, the class list will
# be sorted only by class name, not including the namespace part.
# Note: This option is not very useful if HIDE_SCOPE_NAMES is set to YES.
# Note: This option applies only to the class list, not to the alphabetical
# list.
# The default value is: NO.
SORT_BY_SCOPE_NAME = NO
# If the STRICT_PROTO_MATCHING option is enabled and doxygen fails to do proper
# type resolution of all parameters of a function it will reject a match between
# the prototype and the implementation of a member function even if there is
# only one candidate or it is obvious which candidate to choose by doing a
# simple string match. By disabling STRICT_PROTO_MATCHING doxygen will still
# accept a match between prototype and implementation in such cases.
# The default value is: NO.
STRICT_PROTO_MATCHING = NO
# The GENERATE_TODOLIST tag can be used to enable (YES) or disable (NO) the todo
# list. This list is created by putting \todo commands in the documentation.
# The default value is: YES.
GENERATE_TODOLIST = YES
# The GENERATE_TESTLIST tag can be used to enable (YES) or disable (NO) the test
# list. This list is created by putting \test commands in the documentation.
# The default value is: YES.
GENERATE_TESTLIST = YES
# The GENERATE_BUGLIST tag can be used to enable (YES) or disable (NO) the bug
# list. This list is created by putting \bug commands in the documentation.
# The default value is: YES.
GENERATE_BUGLIST = YES
# The GENERATE_DEPRECATEDLIST tag can be used to enable (YES) or disable (NO)
# the deprecated list. This list is created by putting \deprecated commands in
# the documentation.
# The default value is: YES.
GENERATE_DEPRECATEDLIST= YES
# The ENABLED_SECTIONS tag can be used to enable conditional documentation
# sections, marked by \if <section_label> ... \endif and \cond <section_label>
# ... \endcond blocks.
ENABLED_SECTIONS =
# The MAX_INITIALIZER_LINES tag determines the maximum number of lines that the
# initial value of a variable or macro / define can have for it to appear in the
# documentation. If the initializer consists of more lines than specified here
# it will be hidden. Use a value of 0 to hide initializers completely. The
# appearance of the value of individual variables and macros / defines can be
# controlled using \showinitializer or \hideinitializer command in the
# documentation regardless of this setting.
# Minimum value: 0, maximum value: 10000, default value: 30.
MAX_INITIALIZER_LINES = 30
# Set the SHOW_USED_FILES tag to NO to disable the list of files generated at
# the bottom of the documentation of classes and structs. If set to YES, the
# list will mention the files that were used to generate the documentation.
# The default value is: YES.
SHOW_USED_FILES = YES
# Set the SHOW_FILES tag to NO to disable the generation of the Files page. This
# will remove the Files entry from the Quick Index and from the Folder Tree View
# (if specified).
# The default value is: YES.
SHOW_FILES = YES
# Set the SHOW_NAMESPACES tag to NO to disable the generation of the Namespaces
# page. This will remove the Namespaces entry from the Quick Index and from the
# Folder Tree View (if specified).
# The default value is: YES.
SHOW_NAMESPACES = YES
# The FILE_VERSION_FILTER tag can be used to specify a program or script that
# doxygen should invoke to get the current version for each file (typically from
# the version control system). Doxygen will invoke the program by executing (via
# popen()) the command command input-file, where command is the value of the
# FILE_VERSION_FILTER tag, and input-file is the name of an input file provided
# by doxygen. Whatever the program writes to standard output is used as the file
# version. For an example see the documentation.
FILE_VERSION_FILTER =
# The LAYOUT_FILE tag can be used to specify a layout file which will be parsed
# by doxygen. The layout file controls the global structure of the generated
# output files in an output format independent way. To create the layout file
# that represents doxygen's defaults, run doxygen with the -l option. You can
# optionally specify a file name after the option, if omitted DoxygenLayout.xml
# will be used as the name of the layout file.
#
# Note that if you run doxygen from a directory containing a file called
# DoxygenLayout.xml, doxygen will parse it automatically even if the LAYOUT_FILE
# tag is left empty.
LAYOUT_FILE =
# The CITE_BIB_FILES tag can be used to specify one or more bib files containing
# the reference definitions. This must be a list of .bib files. The .bib
# extension is automatically appended if omitted. This requires the bibtex tool
# to be installed. See also http://en.wikipedia.org/wiki/BibTeX for more info.
# For LaTeX the style of the bibliography can be controlled using
# LATEX_BIB_STYLE. To use this feature you need bibtex and perl available in the
# search path. See also \cite for info how to create references.
CITE_BIB_FILES =
#---------------------------------------------------------------------------
# Configuration options related to warning and progress messages
#---------------------------------------------------------------------------
# The QUIET tag can be used to turn on/off the messages that are generated to
# standard output by doxygen. If QUIET is set to YES this implies that the
# messages are off.
# The default value is: NO.
QUIET = NO
# The WARNINGS tag can be used to turn on/off the warning messages that are
# generated to standard error (stderr) by doxygen. If WARNINGS is set to YES
# this implies that the warnings are on.
#
# Tip: Turn warnings on while writing the documentation.
# The default value is: YES.
WARNINGS = YES
# If the WARN_IF_UNDOCUMENTED tag is set to YES then doxygen will generate
# warnings for undocumented members. If EXTRACT_ALL is set to YES then this flag
# will automatically be disabled.
# The default value is: YES.
WARN_IF_UNDOCUMENTED = YES
# If the WARN_IF_DOC_ERROR tag is set to YES, doxygen will generate warnings for
# potential errors in the documentation, such as not documenting some parameters
# in a documented function, or documenting parameters that don't exist or using
# markup commands wrongly.
# The default value is: YES.
WARN_IF_DOC_ERROR = YES
# This WARN_NO_PARAMDOC option can be enabled to get warnings for functions that
# are documented, but have no documentation for their parameters or return
# value. If set to NO, doxygen will only warn about wrong or incomplete
# parameter documentation, but not about the absence of documentation.
# The default value is: NO.
WARN_NO_PARAMDOC = NO
# The WARN_FORMAT tag determines the format of the warning messages that doxygen
# can produce. The string should contain the $file, $line, and $text tags, which
# will be replaced by the file and line number from which the warning originated
# and the warning text. Optionally the format may contain $version, which will
# be replaced by the version of the file (if it could be obtained via
# FILE_VERSION_FILTER)
# The default value is: $file:$line: $text.
WARN_FORMAT = "$file:$line: $text"
# The WARN_LOGFILE tag can be used to specify a file to which warning and error
# messages should be written. If left blank the output is written to standard
# error (stderr).
WARN_LOGFILE =
#---------------------------------------------------------------------------
# Configuration options related to the input files
#---------------------------------------------------------------------------
# The INPUT tag is used to specify the files and/or directories that contain
# documented source files. You may enter file names like myfile.cpp or
# directories like /usr/src/myproject. Separate the files or directories with
# spaces. See also FILE_PATTERNS and EXTENSION_MAPPING
# Note: If this tag is empty the current directory is searched.
INPUT = ../library/include \
../library/include/internal
# This tag can be used to specify the character encoding of the source files
# that doxygen parses. Internally doxygen uses the UTF-8 encoding. Doxygen uses
# libiconv (or the iconv built into libc) for the transcoding. See the libiconv
# documentation (see: http://www.gnu.org/software/libiconv) for the list of
# possible encodings.
# The default value is: UTF-8.
INPUT_ENCODING = UTF-8
# If the value of the INPUT tag contains directories, you can use the
# FILE_PATTERNS tag to specify one or more wildcard patterns (like *.cpp and
# *.h) to filter out the source-files in the directories.
#
# Note that for custom extensions or not directly supported extensions you also
# need to set EXTENSION_MAPPING for the extension otherwise the files are not
# read by doxygen.
#
# If left blank the following patterns are tested:*.c, *.cc, *.cxx, *.cpp,
# *.c++, *.java, *.ii, *.ixx, *.ipp, *.i++, *.inl, *.idl, *.ddl, *.odl, *.h,
# *.hh, *.hxx, *.hpp, *.h++, *.cs, *.d, *.php, *.php4, *.php5, *.phtml, *.inc,
# *.m, *.markdown, *.md, *.mm, *.dox, *.py, *.f90, *.f, *.for, *.tcl, *.vhd,
# *.vhdl, *.ucf, *.qsf, *.as and *.js.
FILE_PATTERNS = *.c \
*.cc \
*.cxx \
*.cpp \
*.c++ \
*.java \
*.ii \
*.ixx \
*.ipp \
*.i++ \
*.inl \
*.idl \
*.ddl \
*.odl \
*.h \
*.hh \
*.hxx \
*.hpp \
*.h++ \
*.cs \
*.d \
*.php \
*.php4 \
*.php5 \
*.phtml \
*.inc \
*.m \
*.markdown \
*.md \
*.mm \
*.dox \
*.py \
*.tcl \
*.vhd \
*.vhdl \
*.ucf \
*.qsf \
*.as \
*.js
# The RECURSIVE tag can be used to specify whether or not subdirectories should
# be searched for input files as well.
# The default value is: NO.
RECURSIVE = NO
# The EXCLUDE tag can be used to specify files and/or directories that should be
# excluded from the INPUT source files. This way you can easily exclude a
# subdirectory from a directory tree whose root is specified with the INPUT tag.
#
# Note that relative paths are relative to the directory from which doxygen is
# run.
EXCLUDE =
# The EXCLUDE_SYMLINKS tag can be used to select whether or not files or
# directories that are symbolic links (a Unix file system feature) are excluded
# from the input.
# The default value is: NO.
EXCLUDE_SYMLINKS = NO
# If the value of the INPUT tag contains directories, you can use the
# EXCLUDE_PATTERNS tag to specify one or more wildcard patterns to exclude
# certain files from those directories.
#
# Note that the wildcards are matched against the file with absolute path, so to
# exclude all test directories for example use the pattern */test/*
EXCLUDE_PATTERNS =
# The EXCLUDE_SYMBOLS tag can be used to specify one or more symbol names
# (namespaces, classes, functions, etc.) that should be excluded from the
# output. The symbol name can be a fully qualified name, a word, or if the
# wildcard * is used, a substring. Examples: ANamespace, AClass,
# AClass::ANamespace, ANamespace::*Test
#
# Note that the wildcards are matched against the file with absolute path, so to
# exclude all test directories use the pattern */test/*
EXCLUDE_SYMBOLS =
# The EXAMPLE_PATH tag can be used to specify one or more files or directories
# that contain example code fragments that are included (see the \include
# command).
EXAMPLE_PATH =
# If the value of the EXAMPLE_PATH tag contains directories, you can use the
# EXAMPLE_PATTERNS tag to specify one or more wildcard pattern (like *.cpp and
# *.h) to filter out the source-files in the directories. If left blank all
# files are included.
EXAMPLE_PATTERNS = *
# If the EXAMPLE_RECURSIVE tag is set to YES then subdirectories will be
# searched for input files to be used with the \include or \dontinclude commands
# irrespective of the value of the RECURSIVE tag.
# The default value is: NO.
EXAMPLE_RECURSIVE = NO
# The IMAGE_PATH tag can be used to specify one or more files or directories
# that contain images that are to be included in the documentation (see the
# \image command).
IMAGE_PATH =
# The INPUT_FILTER tag can be used to specify a program that doxygen should
# invoke to filter for each input file. Doxygen will invoke the filter program
# by executing (via popen()) the command:
#
# <filter> <input-file>
#
# where <filter> is the value of the INPUT_FILTER tag, and <input-file> is the
# name of an input file. Doxygen will then use the output that the filter
# program writes to standard output. If FILTER_PATTERNS is specified, this tag
# will be ignored.
#
# Note that the filter must not add or remove lines; it is applied before the
# code is scanned, but not when the output code is generated. If lines are added
# or removed, the anchors will not be placed correctly.
INPUT_FILTER =
# The FILTER_PATTERNS tag can be used to specify filters on a per file pattern
# basis. Doxygen will compare the file name with each pattern and apply the
# filter if there is a match. The filters are a list of the form: pattern=filter
# (like *.cpp=my_cpp_filter). See INPUT_FILTER for further information on how
# filters are used. If the FILTER_PATTERNS tag is empty or if none of the
# patterns match the file name, INPUT_FILTER is applied.
FILTER_PATTERNS =
# If the FILTER_SOURCE_FILES tag is set to YES, the input filter (if set using
# INPUT_FILTER) will also be used to filter the input files that are used for
# producing the source files to browse (i.e. when SOURCE_BROWSER is set to YES).
# The default value is: NO.
FILTER_SOURCE_FILES = NO
# The FILTER_SOURCE_PATTERNS tag can be used to specify source filters per file
# pattern. A pattern will override the setting for FILTER_PATTERN (if any) and
# it is also possible to disable source filtering for a specific pattern using
# *.ext= (so without naming a filter).
# This tag requires that the tag FILTER_SOURCE_FILES is set to YES.
FILTER_SOURCE_PATTERNS =
# If the USE_MDFILE_AS_MAINPAGE tag refers to the name of a markdown file that
# is part of the input, its contents will be placed on the main page
# (index.html). This can be useful if you have a project on for instance GitHub
# and want to reuse the introduction page also for the doxygen output.
USE_MDFILE_AS_MAINPAGE = ../README.md
#---------------------------------------------------------------------------
# Configuration options related to source browsing
#---------------------------------------------------------------------------
# If the SOURCE_BROWSER tag is set to YES then a list of source files will be
# generated. Documented entities will be cross-referenced with these sources.
#
# Note: To get rid of all source code in the generated output, make sure that
# also VERBATIM_HEADERS is set to NO.
# The default value is: NO.
SOURCE_BROWSER = NO
# Setting the INLINE_SOURCES tag to YES will include the body of functions,
# classes and enums directly into the documentation.
# The default value is: NO.
INLINE_SOURCES = NO
# Setting the STRIP_CODE_COMMENTS tag to YES will instruct doxygen to hide any
# special comment blocks from generated source code fragments. Normal C, C++ and
# Fortran comments will always remain visible.
# The default value is: YES.
STRIP_CODE_COMMENTS = YES
# If the REFERENCED_BY_RELATION tag is set to YES then for each documented
# function all documented functions referencing it will be listed.
# The default value is: NO.
REFERENCED_BY_RELATION = NO
# If the REFERENCES_RELATION tag is set to YES then for each documented function
# all documented entities called/used by that function will be listed.
# The default value is: NO.
REFERENCES_RELATION = NO
# If the REFERENCES_LINK_SOURCE tag is set to YES and SOURCE_BROWSER tag is set
# to YES then the hyperlinks from functions in REFERENCES_RELATION and
# REFERENCED_BY_RELATION lists will link to the source code. Otherwise they will
# link to the documentation.
# The default value is: YES.
REFERENCES_LINK_SOURCE = YES
# If SOURCE_TOOLTIPS is enabled (the default) then hovering a hyperlink in the
# source code will show a tooltip with additional information such as prototype,
# brief description and links to the definition and documentation. Since this
# will make the HTML file larger and loading of large files a bit slower, you
# can opt to disable this feature.
# The default value is: YES.
# This tag requires that the tag SOURCE_BROWSER is set to YES.
SOURCE_TOOLTIPS = YES
# If the USE_HTAGS tag is set to YES then the references to source code will
# point to the HTML generated by the htags(1) tool instead of doxygen built-in
# source browser. The htags tool is part of GNU's global source tagging system
# (see http://www.gnu.org/software/global/global.html). You will need version
# 4.8.6 or higher.
#
# To use it do the following:
# - Install the latest version of global
# - Enable SOURCE_BROWSER and USE_HTAGS in the config file
# - Make sure the INPUT points to the root of the source tree
# - Run doxygen as normal
#
# Doxygen will invoke htags (and that will in turn invoke gtags), so these
# tools must be available from the command line (i.e. in the search path).
#
# The result: instead of the source browser generated by doxygen, the links to
# source code will now point to the output of htags.
# The default value is: NO.
# This tag requires that the tag SOURCE_BROWSER is set to YES.
USE_HTAGS = NO
# If the VERBATIM_HEADERS tag is set the YES then doxygen will generate a
# verbatim copy of the header file for each class for which an include is
# specified. Set to NO to disable this.
# See also: Section \class.
# The default value is: YES.
VERBATIM_HEADERS = YES
# If the CLANG_ASSISTED_PARSING tag is set to YES then doxygen will use the
# clang parser (see: http://clang.llvm.org/) for more accurate parsing at the
# cost of reduced performance. This can be particularly helpful with template
# rich C++ code for which doxygen's built-in parser lacks the necessary type
# information.
# Note: The availability of this option depends on whether or not doxygen was
# compiled with the --with-libclang option.
# The default value is: NO.
CLANG_ASSISTED_PARSING = NO
# If clang assisted parsing is enabled you can provide the compiler with command
# line options that you would normally use when invoking the compiler. Note that
# the include paths will already be set by doxygen for the files and directories
# specified with INPUT and INCLUDE_PATH.
# This tag requires that the tag CLANG_ASSISTED_PARSING is set to YES.
CLANG_OPTIONS =
#---------------------------------------------------------------------------
# Configuration options related to the alphabetical class index
#---------------------------------------------------------------------------
# If the ALPHABETICAL_INDEX tag is set to YES, an alphabetical index of all
# compounds will be generated. Enable this if the project contains a lot of
# classes, structs, unions or interfaces.
# The default value is: YES.
ALPHABETICAL_INDEX = YES
# The COLS_IN_ALPHA_INDEX tag can be used to specify the number of columns in
# which the alphabetical index list will be split.
# Minimum value: 1, maximum value: 20, default value: 5.
# This tag requires that the tag ALPHABETICAL_INDEX is set to YES.
COLS_IN_ALPHA_INDEX = 5
# In case all classes in a project start with a common prefix, all classes will
# be put under the same header in the alphabetical index. The IGNORE_PREFIX tag
# can be used to specify a prefix (or a list of prefixes) that should be ignored
# while generating the index headers.
# This tag requires that the tag ALPHABETICAL_INDEX is set to YES.
IGNORE_PREFIX =
#---------------------------------------------------------------------------
# Configuration options related to the HTML output
#---------------------------------------------------------------------------
# If the GENERATE_HTML tag is set to YES, doxygen will generate HTML output
# The default value is: YES.
GENERATE_HTML = YES
# The HTML_OUTPUT tag is used to specify where the HTML docs will be put. If a
# relative path is entered the value of OUTPUT_DIRECTORY will be put in front of
# it.
# The default directory is: html.
# This tag requires that the tag GENERATE_HTML is set to YES.
HTML_OUTPUT = html
# The HTML_FILE_EXTENSION tag can be used to specify the file extension for each
# generated HTML page (for example: .htm, .php, .asp).
# The default value is: .html.
# This tag requires that the tag GENERATE_HTML is set to YES.
HTML_FILE_EXTENSION = .html
# The HTML_HEADER tag can be used to specify a user-defined HTML header file for
# each generated HTML page. If the tag is left blank doxygen will generate a
# standard header.
#
# To get valid HTML the header file that includes any scripts and style sheets
# that doxygen needs, which is dependent on the configuration options used (e.g.
# the setting GENERATE_TREEVIEW). It is highly recommended to start with a
# default header using
# doxygen -w html new_header.html new_footer.html new_stylesheet.css
# YourConfigFile
# and then modify the file new_header.html. See also section "Doxygen usage"
# for information on how to generate the default header that doxygen normally
# uses.
# Note: The header is subject to change so you typically have to regenerate the
# default header when upgrading to a newer version of doxygen. For a description
# of the possible markers and block names see the documentation.
# This tag requires that the tag GENERATE_HTML is set to YES.
HTML_HEADER =
# The HTML_FOOTER tag can be used to specify a user-defined HTML footer for each
# generated HTML page. If the tag is left blank doxygen will generate a standard
# footer. See HTML_HEADER for more information on how to generate a default
# footer and what special commands can be used inside the footer. See also
# section "Doxygen usage" for information on how to generate the default footer
# that doxygen normally uses.
# This tag requires that the tag GENERATE_HTML is set to YES.
HTML_FOOTER =
# The HTML_STYLESHEET tag can be used to specify a user-defined cascading style
# sheet that is used by each HTML page. It can be used to fine-tune the look of
# the HTML output. If left blank doxygen will generate a default style sheet.
# See also section "Doxygen usage" for information on how to generate the style
# sheet that doxygen normally uses.
# Note: It is recommended to use HTML_EXTRA_STYLESHEET instead of this tag, as
# it is more robust and this tag (HTML_STYLESHEET) will in the future become
# obsolete.
# This tag requires that the tag GENERATE_HTML is set to YES.
HTML_STYLESHEET =
# The HTML_EXTRA_STYLESHEET tag can be used to specify additional user-defined
# cascading style sheets that are included after the standard style sheets
# created by doxygen. Using this option one can overrule certain style aspects.
# This is preferred over using HTML_STYLESHEET since it does not replace the
# standard style sheet and is therefore more robust against future updates.
# Doxygen will copy the style sheet files to the output directory.
# Note: The order of the extra style sheet files is of importance (e.g. the last
# style sheet in the list overrules the setting of the previous ones in the
# list). For an example see the documentation.
# This tag requires that the tag GENERATE_HTML is set to YES.
HTML_EXTRA_STYLESHEET =
# The HTML_EXTRA_FILES tag can be used to specify one or more extra images or
# other source files which should be copied to the HTML output directory. Note
# that these files will be copied to the base HTML output directory. Use the
# $relpath^ marker in the HTML_HEADER and/or HTML_FOOTER files to load these
# files. In the HTML_STYLESHEET file, use the file name only. Also note that the
# files will be copied as-is; there are no commands or markers available.
# This tag requires that the tag GENERATE_HTML is set to YES.
HTML_EXTRA_FILES =
# The HTML_COLORSTYLE_HUE tag controls the color of the HTML output. Doxygen
# will adjust the colors in the style sheet and background images according to
# this color. Hue is specified as an angle on a colorwheel, see
# http://en.wikipedia.org/wiki/Hue for more information. For instance the value
# 0 represents red, 60 is yellow, 120 is green, 180 is cyan, 240 is blue, 300
# purple, and 360 is red again.
# Minimum value: 0, maximum value: 359, default value: 220.
# This tag requires that the tag GENERATE_HTML is set to YES.
HTML_COLORSTYLE_HUE = 220
# The HTML_COLORSTYLE_SAT tag controls the purity (or saturation) of the colors
# in the HTML output. For a value of 0 the output will use grayscales only. A
# value of 255 will produce the most vivid colors.
# Minimum value: 0, maximum value: 255, default value: 100.
# This tag requires that the tag GENERATE_HTML is set to YES.
HTML_COLORSTYLE_SAT = 100
# The HTML_COLORSTYLE_GAMMA tag controls the gamma correction applied to the
# luminance component of the colors in the HTML output. Values below 100
# gradually make the output lighter, whereas values above 100 make the output
# darker. The value divided by 100 is the actual gamma applied, so 80 represents
# a gamma of 0.8, The value 220 represents a gamma of 2.2, and 100 does not
# change the gamma.
# Minimum value: 40, maximum value: 240, default value: 80.
# This tag requires that the tag GENERATE_HTML is set to YES.
HTML_COLORSTYLE_GAMMA = 80
# If the HTML_TIMESTAMP tag is set to YES then the footer of each generated HTML
# page will contain the date and time when the page was generated. Setting this
# to YES can help to show when doxygen was last run and thus if the
# documentation is up to date.
# The default value is: NO.
# This tag requires that the tag GENERATE_HTML is set to YES.
HTML_TIMESTAMP = NO
# If the HTML_DYNAMIC_SECTIONS tag is set to YES then the generated HTML
# documentation will contain sections that can be hidden and shown after the
# page has loaded.
# The default value is: NO.
# This tag requires that the tag GENERATE_HTML is set to YES.
HTML_DYNAMIC_SECTIONS = NO
# With HTML_INDEX_NUM_ENTRIES one can control the preferred number of entries
# shown in the various tree structured indices initially; the user can expand
# and collapse entries dynamically later on. Doxygen will expand the tree to
# such a level that at most the specified number of entries are visible (unless
# a fully collapsed tree already exceeds this amount). So setting the number of
# entries 1 will produce a full collapsed tree by default. 0 is a special value
# representing an infinite number of entries and will result in a full expanded
# tree by default.
# Minimum value: 0, maximum value: 9999, default value: 100.
# This tag requires that the tag GENERATE_HTML is set to YES.
HTML_INDEX_NUM_ENTRIES = 100
# If the GENERATE_DOCSET tag is set to YES, additional index files will be
# generated that can be used as input for Apple's Xcode 3 integrated development
# environment (see: http://developer.apple.com/tools/xcode/), introduced with
# OSX 10.5 (Leopard). To create a documentation set, doxygen will generate a
# Makefile in the HTML output directory. Running make will produce the docset in
# that directory and running make install will install the docset in
# ~/Library/Developer/Shared/Documentation/DocSets so that Xcode will find it at
# startup. See http://developer.apple.com/tools/creatingdocsetswithdoxygen.html
# for more information.
# The default value is: NO.
# This tag requires that the tag GENERATE_HTML is set to YES.
GENERATE_DOCSET = NO
# This tag determines the name of the docset feed. A documentation feed provides
# an umbrella under which multiple documentation sets from a single provider
# (such as a company or product suite) can be grouped.
# The default value is: Doxygen generated docs.
# This tag requires that the tag GENERATE_DOCSET is set to YES.
DOCSET_FEEDNAME = "Doxygen generated docs"
# This tag specifies a string that should uniquely identify the documentation
# set bundle. This should be a reverse domain-name style string, e.g.
# com.mycompany.MyDocSet. Doxygen will append .docset to the name.
# The default value is: org.doxygen.Project.
# This tag requires that the tag GENERATE_DOCSET is set to YES.
DOCSET_BUNDLE_ID = org.doxygen.Project
# The DOCSET_PUBLISHER_ID tag specifies a string that should uniquely identify
# the documentation publisher. This should be a reverse domain-name style
# string, e.g. com.mycompany.MyDocSet.documentation.
# The default value is: org.doxygen.Publisher.
# This tag requires that the tag GENERATE_DOCSET is set to YES.
DOCSET_PUBLISHER_ID = org.doxygen.Publisher
# The DOCSET_PUBLISHER_NAME tag identifies the documentation publisher.
# The default value is: Publisher.
# This tag requires that the tag GENERATE_DOCSET is set to YES.
DOCSET_PUBLISHER_NAME = Publisher
# If the GENERATE_HTMLHELP tag is set to YES then doxygen generates three
# additional HTML index files: index.hhp, index.hhc, and index.hhk. The
# index.hhp is a project file that can be read by Microsoft's HTML Help Workshop
# (see: http://www.microsoft.com/en-us/download/details.aspx?id=21138) on
# Windows.
#
# The HTML Help Workshop contains a compiler that can convert all HTML output
# generated by doxygen into a single compiled HTML file (.chm). Compiled HTML
# files are now used as the Windows 98 help format, and will replace the old
# Windows help format (.hlp) on all Windows platforms in the future. Compressed
# HTML files also contain an index, a table of contents, and you can search for
# words in the documentation. The HTML workshop also contains a viewer for
# compressed HTML files.
# The default value is: NO.
# This tag requires that the tag GENERATE_HTML is set to YES.
GENERATE_HTMLHELP = NO
# The CHM_FILE tag can be used to specify the file name of the resulting .chm
# file. You can add a path in front of the file if the result should not be
# written to the html output directory.
# This tag requires that the tag GENERATE_HTMLHELP is set to YES.
CHM_FILE =
# The HHC_LOCATION tag can be used to specify the location (absolute path
# including file name) of the HTML help compiler (hhc.exe). If non-empty,
# doxygen will try to run the HTML help compiler on the generated index.hhp.
# The file has to be specified with full path.
# This tag requires that the tag GENERATE_HTMLHELP is set to YES.
HHC_LOCATION =
# The GENERATE_CHI flag controls if a separate .chi index file is generated
# (YES) or that it should be included in the master .chm file (NO).
# The default value is: NO.
# This tag requires that the tag GENERATE_HTMLHELP is set to YES.
GENERATE_CHI = NO
# The CHM_INDEX_ENCODING is used to encode HtmlHelp index (hhk), content (hhc)
# and project file content.
# This tag requires that the tag GENERATE_HTMLHELP is set to YES.
CHM_INDEX_ENCODING =
# The BINARY_TOC flag controls whether a binary table of contents is generated
# (YES) or a normal table of contents (NO) in the .chm file. Furthermore it
# enables the Previous and Next buttons.
# The default value is: NO.
# This tag requires that the tag GENERATE_HTMLHELP is set to YES.
BINARY_TOC = NO
# The TOC_EXPAND flag can be set to YES to add extra items for group members to
# the table of contents of the HTML help documentation and to the tree view.
# The default value is: NO.
# This tag requires that the tag GENERATE_HTMLHELP is set to YES.
TOC_EXPAND = NO
# If the GENERATE_QHP tag is set to YES and both QHP_NAMESPACE and
# QHP_VIRTUAL_FOLDER are set, an additional index file will be generated that
# can be used as input for Qt's qhelpgenerator to generate a Qt Compressed Help
# (.qch) of the generated HTML documentation.
# The default value is: NO.
# This tag requires that the tag GENERATE_HTML is set to YES.
GENERATE_QHP = NO
# If the QHG_LOCATION tag is specified, the QCH_FILE tag can be used to specify
# the file name of the resulting .qch file. The path specified is relative to
# the HTML output folder.
# This tag requires that the tag GENERATE_QHP is set to YES.
QCH_FILE =
# The QHP_NAMESPACE tag specifies the namespace to use when generating Qt Help
# Project output. For more information please see Qt Help Project / Namespace
# (see: http://qt-project.org/doc/qt-4.8/qthelpproject.html#namespace).
# The default value is: org.doxygen.Project.
# This tag requires that the tag GENERATE_QHP is set to YES.
QHP_NAMESPACE = org.doxygen.Project
# The QHP_VIRTUAL_FOLDER tag specifies the namespace to use when generating Qt
# Help Project output. For more information please see Qt Help Project / Virtual
# Folders (see: http://qt-project.org/doc/qt-4.8/qthelpproject.html#virtual-
# folders).
# The default value is: doc.
# This tag requires that the tag GENERATE_QHP is set to YES.
QHP_VIRTUAL_FOLDER = doc
# If the QHP_CUST_FILTER_NAME tag is set, it specifies the name of a custom
# filter to add. For more information please see Qt Help Project / Custom
# Filters (see: http://qt-project.org/doc/qt-4.8/qthelpproject.html#custom-
# filters).
# This tag requires that the tag GENERATE_QHP is set to YES.
QHP_CUST_FILTER_NAME =
# The QHP_CUST_FILTER_ATTRS tag specifies the list of the attributes of the
# custom filter to add. For more information please see Qt Help Project / Custom
# Filters (see: http://qt-project.org/doc/qt-4.8/qthelpproject.html#custom-
# filters).
# This tag requires that the tag GENERATE_QHP is set to YES.
QHP_CUST_FILTER_ATTRS =
# The QHP_SECT_FILTER_ATTRS tag specifies the list of the attributes this
# project's filter section matches. Qt Help Project / Filter Attributes (see:
# http://qt-project.org/doc/qt-4.8/qthelpproject.html#filter-attributes).
# This tag requires that the tag GENERATE_QHP is set to YES.
QHP_SECT_FILTER_ATTRS =
# The QHG_LOCATION tag can be used to specify the location of Qt's
# qhelpgenerator. If non-empty doxygen will try to run qhelpgenerator on the
# generated .qhp file.
# This tag requires that the tag GENERATE_QHP is set to YES.
QHG_LOCATION =
# If the GENERATE_ECLIPSEHELP tag is set to YES, additional index files will be
# generated, together with the HTML files, they form an Eclipse help plugin. To
# install this plugin and make it available under the help contents menu in
# Eclipse, the contents of the directory containing the HTML and XML files needs
# to be copied into the plugins directory of eclipse. The name of the directory
# within the plugins directory should be the same as the ECLIPSE_DOC_ID value.
# After copying Eclipse needs to be restarted before the help appears.
# The default value is: NO.
# This tag requires that the tag GENERATE_HTML is set to YES.
GENERATE_ECLIPSEHELP = NO
# A unique identifier for the Eclipse help plugin. When installing the plugin
# the directory name containing the HTML and XML files should also have this
# name. Each documentation set should have its own identifier.
# The default value is: org.doxygen.Project.
# This tag requires that the tag GENERATE_ECLIPSEHELP is set to YES.
ECLIPSE_DOC_ID = org.doxygen.Project
# If you want full control over the layout of the generated HTML pages it might
# be necessary to disable the index and replace it with your own. The
# DISABLE_INDEX tag can be used to turn on/off the condensed index (tabs) at top
# of each HTML page. A value of NO enables the index and the value YES disables
# it. Since the tabs in the index contain the same information as the navigation
# tree, you can set this option to YES if you also set GENERATE_TREEVIEW to YES.
# The default value is: NO.
# This tag requires that the tag GENERATE_HTML is set to YES.
DISABLE_INDEX = NO
# The GENERATE_TREEVIEW tag is used to specify whether a tree-like index
# structure should be generated to display hierarchical information. If the tag
# value is set to YES, a side panel will be generated containing a tree-like
# index structure (just like the one that is generated for HTML Help). For this
# to work a browser that supports JavaScript, DHTML, CSS and frames is required
# (i.e. any modern browser). Windows users are probably better off using the
# HTML help feature. Via custom style sheets (see HTML_EXTRA_STYLESHEET) one can
# further fine-tune the look of the index. As an example, the default style
# sheet generated by doxygen has an example that shows how to put an image at
# the root of the tree instead of the PROJECT_NAME. Since the tree basically has
# the same information as the tab index, you could consider setting
# DISABLE_INDEX to YES when enabling this option.
# The default value is: NO.
# This tag requires that the tag GENERATE_HTML is set to YES.
GENERATE_TREEVIEW = NO
# The ENUM_VALUES_PER_LINE tag can be used to set the number of enum values that
# doxygen will group on one line in the generated HTML documentation.
#
# Note that a value of 0 will completely suppress the enum values from appearing
# in the overview section.
# Minimum value: 0, maximum value: 20, default value: 4.
# This tag requires that the tag GENERATE_HTML is set to YES.
ENUM_VALUES_PER_LINE = 1
# If the treeview is enabled (see GENERATE_TREEVIEW) then this tag can be used
# to set the initial width (in pixels) of the frame in which the tree is shown.
# Minimum value: 0, maximum value: 1500, default value: 250.
# This tag requires that the tag GENERATE_HTML is set to YES.
TREEVIEW_WIDTH = 250
# If the EXT_LINKS_IN_WINDOW option is set to YES, doxygen will open links to
# external symbols imported via tag files in a separate window.
# The default value is: NO.
# This tag requires that the tag GENERATE_HTML is set to YES.
EXT_LINKS_IN_WINDOW = NO
# Use this tag to change the font size of LaTeX formulas included as images in
# the HTML documentation. When you change the font size after a successful
# doxygen run you need to manually remove any form_*.png images from the HTML
# output directory to force them to be regenerated.
# Minimum value: 8, maximum value: 50, default value: 10.
# This tag requires that the tag GENERATE_HTML is set to YES.
FORMULA_FONTSIZE = 10
# Use the FORMULA_TRANPARENT tag to determine whether or not the images
# generated for formulas are transparent PNGs. Transparent PNGs are not
# supported properly for IE 6.0, but are supported on all modern browsers.
#
# Note that when changing this option you need to delete any form_*.png files in
# the HTML output directory before the changes have effect.
# The default value is: YES.
# This tag requires that the tag GENERATE_HTML is set to YES.
FORMULA_TRANSPARENT = YES
# Enable the USE_MATHJAX option to render LaTeX formulas using MathJax (see
# http://www.mathjax.org) which uses client side Javascript for the rendering
# instead of using pre-rendered bitmaps. Use this if you do not have LaTeX
# installed or if you want to formulas look prettier in the HTML output. When
# enabled you may also need to install MathJax separately and configure the path
# to it using the MATHJAX_RELPATH option.
# The default value is: NO.
# This tag requires that the tag GENERATE_HTML is set to YES.
USE_MATHJAX = YES
# When MathJax is enabled you can set the default output format to be used for
# the MathJax output. See the MathJax site (see:
# http://docs.mathjax.org/en/latest/output.html) for more details.
# Possible values are: HTML-CSS (which is slower, but has the best
# compatibility), NativeMML (i.e. MathML) and SVG.
# The default value is: HTML-CSS.
# This tag requires that the tag USE_MATHJAX is set to YES.
MATHJAX_FORMAT = HTML-CSS
# When MathJax is enabled you need to specify the location relative to the HTML
# output directory using the MATHJAX_RELPATH option. The destination directory
# should contain the MathJax.js script. For instance, if the mathjax directory
# is located at the same level as the HTML output directory, then
# MATHJAX_RELPATH should be ../mathjax. The default value points to the MathJax
# Content Delivery Network so you can quickly see the result without installing
# MathJax. However, it is strongly recommended to install a local copy of
# MathJax from http://www.mathjax.org before deployment.
# The default value is: http://cdn.mathjax.org/mathjax/latest.
# This tag requires that the tag USE_MATHJAX is set to YES.
MATHJAX_RELPATH = http://cdn.mathjax.org/mathjax/latest
# The MATHJAX_EXTENSIONS tag can be used to specify one or more MathJax
# extension names that should be enabled during MathJax rendering. For example
# MATHJAX_EXTENSIONS = TeX/AMSmath TeX/AMSsymbols
# This tag requires that the tag USE_MATHJAX is set to YES.
MATHJAX_EXTENSIONS =
# The MATHJAX_CODEFILE tag can be used to specify a file with javascript pieces
# of code that will be used on startup of the MathJax code. See the MathJax site
# (see: http://docs.mathjax.org/en/latest/output.html) for more details. For an
# example see the documentation.
# This tag requires that the tag USE_MATHJAX is set to YES.
MATHJAX_CODEFILE =
# When the SEARCHENGINE tag is enabled doxygen will generate a search box for
# the HTML output. The underlying search engine uses javascript and DHTML and
# should work on any modern browser. Note that when using HTML help
# (GENERATE_HTMLHELP), Qt help (GENERATE_QHP), or docsets (GENERATE_DOCSET)
# there is already a search function so this one should typically be disabled.
# For large projects the javascript based search engine can be slow, then
# enabling SERVER_BASED_SEARCH may provide a better solution. It is possible to
# search using the keyboard; to jump to the search box use <access key> + S
# (what the <access key> is depends on the OS and browser, but it is typically
# <CTRL>, <ALT>/<option>, or both). Inside the search box use the <cursor down
# key> to jump into the search results window, the results can be navigated
# using the <cursor keys>. Press <Enter> to select an item or <escape> to cancel
# the search. The filter options can be selected when the cursor is inside the
# search box by pressing <Shift>+<cursor down>. Also here use the <cursor keys>
# to select a filter and <Enter> or <escape> to activate or cancel the filter
# option.
# The default value is: YES.
# This tag requires that the tag GENERATE_HTML is set to YES.
SEARCHENGINE = YES
# When the SERVER_BASED_SEARCH tag is enabled the search engine will be
# implemented using a web server instead of a web client using Javascript. There
# are two flavors of web server based searching depending on the EXTERNAL_SEARCH
# setting. When disabled, doxygen will generate a PHP script for searching and
# an index file used by the script. When EXTERNAL_SEARCH is enabled the indexing
# and searching needs to be provided by external tools. See the section
# "External Indexing and Searching" for details.
# The default value is: NO.
# This tag requires that the tag SEARCHENGINE is set to YES.
SERVER_BASED_SEARCH = NO
# When EXTERNAL_SEARCH tag is enabled doxygen will no longer generate the PHP
# script for searching. Instead the search results are written to an XML file
# which needs to be processed by an external indexer. Doxygen will invoke an
# external search engine pointed to by the SEARCHENGINE_URL option to obtain the
# search results.
#
# Doxygen ships with an example indexer (doxyindexer) and search engine
# (doxysearch.cgi) which are based on the open source search engine library
# Xapian (see: http://xapian.org/).
#
# See the section "External Indexing and Searching" for details.
# The default value is: NO.
# This tag requires that the tag SEARCHENGINE is set to YES.
EXTERNAL_SEARCH = NO
# The SEARCHENGINE_URL should point to a search engine hosted by a web server
# which will return the search results when EXTERNAL_SEARCH is enabled.
#
# Doxygen ships with an example indexer (doxyindexer) and search engine
# (doxysearch.cgi) which are based on the open source search engine library
# Xapian (see: http://xapian.org/). See the section "External Indexing and
# Searching" for details.
# This tag requires that the tag SEARCHENGINE is set to YES.
SEARCHENGINE_URL =
# When SERVER_BASED_SEARCH and EXTERNAL_SEARCH are both enabled the unindexed
# search data is written to a file for indexing by an external tool. With the
# SEARCHDATA_FILE tag the name of this file can be specified.
# The default file is: searchdata.xml.
# This tag requires that the tag SEARCHENGINE is set to YES.
SEARCHDATA_FILE = searchdata.xml
# When SERVER_BASED_SEARCH and EXTERNAL_SEARCH are both enabled the
# EXTERNAL_SEARCH_ID tag can be used as an identifier for the project. This is
# useful in combination with EXTRA_SEARCH_MAPPINGS to search through multiple
# projects and redirect the results back to the right project.
# This tag requires that the tag SEARCHENGINE is set to YES.
EXTERNAL_SEARCH_ID =
# The EXTRA_SEARCH_MAPPINGS tag can be used to enable searching through doxygen
# projects other than the one defined by this configuration file, but that are
# all added to the same external search index. Each project needs to have a
# unique id set via EXTERNAL_SEARCH_ID. The search mapping then maps the id of
# to a relative location where the documentation can be found. The format is:
# EXTRA_SEARCH_MAPPINGS = tagname1=loc1 tagname2=loc2 ...
# This tag requires that the tag SEARCHENGINE is set to YES.
EXTRA_SEARCH_MAPPINGS =
#---------------------------------------------------------------------------
# Configuration options related to the LaTeX output
#---------------------------------------------------------------------------
# If the GENERATE_LATEX tag is set to YES, doxygen will generate LaTeX output.
# The default value is: YES.
GENERATE_LATEX = NO
# The LATEX_OUTPUT tag is used to specify where the LaTeX docs will be put. If a
# relative path is entered the value of OUTPUT_DIRECTORY will be put in front of
# it.
# The default directory is: latex.
# This tag requires that the tag GENERATE_LATEX is set to YES.
LATEX_OUTPUT = latex
# The LATEX_CMD_NAME tag can be used to specify the LaTeX command name to be
# invoked.
#
# Note that when enabling USE_PDFLATEX this option is only used for generating
# bitmaps for formulas in the HTML output, but not in the Makefile that is
# written to the output directory.
# The default file is: latex.
# This tag requires that the tag GENERATE_LATEX is set to YES.
LATEX_CMD_NAME = latex
# The MAKEINDEX_CMD_NAME tag can be used to specify the command name to generate
# index for LaTeX.
# The default file is: makeindex.
# This tag requires that the tag GENERATE_LATEX is set to YES.
MAKEINDEX_CMD_NAME = makeindex
# If the COMPACT_LATEX tag is set to YES, doxygen generates more compact LaTeX
# documents. This may be useful for small projects and may help to save some
# trees in general.
# The default value is: NO.
# This tag requires that the tag GENERATE_LATEX is set to YES.
COMPACT_LATEX = NO
# The PAPER_TYPE tag can be used to set the paper type that is used by the
# printer.
# Possible values are: a4 (210 x 297 mm), letter (8.5 x 11 inches), legal (8.5 x
# 14 inches) and executive (7.25 x 10.5 inches).
# The default value is: a4.
# This tag requires that the tag GENERATE_LATEX is set to YES.
PAPER_TYPE = a4
# The EXTRA_PACKAGES tag can be used to specify one or more LaTeX package names
# that should be included in the LaTeX output. The package can be specified just
# by its name or with the correct syntax as to be used with the LaTeX
# \usepackage command. To get the times font for instance you can specify :
# EXTRA_PACKAGES=times or EXTRA_PACKAGES={times}
# To use the option intlimits with the amsmath package you can specify:
# EXTRA_PACKAGES=[intlimits]{amsmath}
# If left blank no extra packages will be included.
# This tag requires that the tag GENERATE_LATEX is set to YES.
EXTRA_PACKAGES =
# The LATEX_HEADER tag can be used to specify a personal LaTeX header for the
# generated LaTeX document. The header should contain everything until the first
# chapter. If it is left blank doxygen will generate a standard header. See
# section "Doxygen usage" for information on how to let doxygen write the
# default header to a separate file.
#
# Note: Only use a user-defined header if you know what you are doing! The
# following commands have a special meaning inside the header: $title,
# $datetime, $date, $doxygenversion, $projectname, $projectnumber,
# $projectbrief, $projectlogo. Doxygen will replace $title with the empty
# string, for the replacement values of the other commands the user is referred
# to HTML_HEADER.
# This tag requires that the tag GENERATE_LATEX is set to YES.
LATEX_HEADER =
# The LATEX_FOOTER tag can be used to specify a personal LaTeX footer for the
# generated LaTeX document. The footer should contain everything after the last
# chapter. If it is left blank doxygen will generate a standard footer. See
# LATEX_HEADER for more information on how to generate a default footer and what
# special commands can be used inside the footer.
#
# Note: Only use a user-defined footer if you know what you are doing!
# This tag requires that the tag GENERATE_LATEX is set to YES.
LATEX_FOOTER =
# The LATEX_EXTRA_STYLESHEET tag can be used to specify additional user-defined
# LaTeX style sheets that are included after the standard style sheets created
# by doxygen. Using this option one can overrule certain style aspects. Doxygen
# will copy the style sheet files to the output directory.
# Note: The order of the extra style sheet files is of importance (e.g. the last
# style sheet in the list overrules the setting of the previous ones in the
# list).
# This tag requires that the tag GENERATE_LATEX is set to YES.
LATEX_EXTRA_STYLESHEET =
# The LATEX_EXTRA_FILES tag can be used to specify one or more extra images or
# other source files which should be copied to the LATEX_OUTPUT output
# directory. Note that the files will be copied as-is; there are no commands or
# markers available.
# This tag requires that the tag GENERATE_LATEX is set to YES.
LATEX_EXTRA_FILES =
# If the PDF_HYPERLINKS tag is set to YES, the LaTeX that is generated is
# prepared for conversion to PDF (using ps2pdf or pdflatex). The PDF file will
# contain links (just like the HTML output) instead of page references. This
# makes the output suitable for online browsing using a PDF viewer.
# The default value is: YES.
# This tag requires that the tag GENERATE_LATEX is set to YES.
PDF_HYPERLINKS = YES
# If the USE_PDFLATEX tag is set to YES, doxygen will use pdflatex to generate
# the PDF file directly from the LaTeX files. Set this option to YES, to get a
# higher quality PDF documentation.
# The default value is: YES.
# This tag requires that the tag GENERATE_LATEX is set to YES.
USE_PDFLATEX = YES
# If the LATEX_BATCHMODE tag is set to YES, doxygen will add the \batchmode
# command to the generated LaTeX files. This will instruct LaTeX to keep running
# if errors occur, instead of asking the user for help. This option is also used
# when generating formulas in HTML.
# The default value is: NO.
# This tag requires that the tag GENERATE_LATEX is set to YES.
LATEX_BATCHMODE = NO
# If the LATEX_HIDE_INDICES tag is set to YES then doxygen will not include the
# index chapters (such as File Index, Compound Index, etc.) in the output.
# The default value is: NO.
# This tag requires that the tag GENERATE_LATEX is set to YES.
LATEX_HIDE_INDICES = NO
# If the LATEX_SOURCE_CODE tag is set to YES then doxygen will include source
# code with syntax highlighting in the LaTeX output.
#
# Note that which sources are shown also depends on other settings such as
# SOURCE_BROWSER.
# The default value is: NO.
# This tag requires that the tag GENERATE_LATEX is set to YES.
LATEX_SOURCE_CODE = NO
# The LATEX_BIB_STYLE tag can be used to specify the style to use for the
# bibliography, e.g. plainnat, or ieeetr. See
# http://en.wikipedia.org/wiki/BibTeX and \cite for more info.
# The default value is: plain.
# This tag requires that the tag GENERATE_LATEX is set to YES.
LATEX_BIB_STYLE = plain
#---------------------------------------------------------------------------
# Configuration options related to the RTF output
#---------------------------------------------------------------------------
# If the GENERATE_RTF tag is set to YES, doxygen will generate RTF output. The
# RTF output is optimized for Word 97 and may not look too pretty with other RTF
# readers/editors.
# The default value is: NO.
GENERATE_RTF = NO
# The RTF_OUTPUT tag is used to specify where the RTF docs will be put. If a
# relative path is entered the value of OUTPUT_DIRECTORY will be put in front of
# it.
# The default directory is: rtf.
# This tag requires that the tag GENERATE_RTF is set to YES.
RTF_OUTPUT = rtf
# If the COMPACT_RTF tag is set to YES, doxygen generates more compact RTF
# documents. This may be useful for small projects and may help to save some
# trees in general.
# The default value is: NO.
# This tag requires that the tag GENERATE_RTF is set to YES.
COMPACT_RTF = NO
# If the RTF_HYPERLINKS tag is set to YES, the RTF that is generated will
# contain hyperlink fields. The RTF file will contain links (just like the HTML
# output) instead of page references. This makes the output suitable for online
# browsing using Word or some other Word compatible readers that support those
# fields.
#
# Note: WordPad (write) and others do not support links.
# The default value is: NO.
# This tag requires that the tag GENERATE_RTF is set to YES.
RTF_HYPERLINKS = NO
# Load stylesheet definitions from file. Syntax is similar to doxygen's config
# file, i.e. a series of assignments. You only have to provide replacements,
# missing definitions are set to their default value.
#
# See also section "Doxygen usage" for information on how to generate the
# default style sheet that doxygen normally uses.
# This tag requires that the tag GENERATE_RTF is set to YES.
RTF_STYLESHEET_FILE =
# Set optional variables used in the generation of an RTF document. Syntax is
# similar to doxygen's config file. A template extensions file can be generated
# using doxygen -e rtf extensionFile.
# This tag requires that the tag GENERATE_RTF is set to YES.
RTF_EXTENSIONS_FILE =
# If the RTF_SOURCE_CODE tag is set to YES then doxygen will include source code
# with syntax highlighting in the RTF output.
#
# Note that which sources are shown also depends on other settings such as
# SOURCE_BROWSER.
# The default value is: NO.
# This tag requires that the tag GENERATE_RTF is set to YES.
RTF_SOURCE_CODE = NO
#---------------------------------------------------------------------------
# Configuration options related to the man page output
#---------------------------------------------------------------------------
# If the GENERATE_MAN tag is set to YES, doxygen will generate man pages for
# classes and files.
# The default value is: NO.
GENERATE_MAN = NO
# The MAN_OUTPUT tag is used to specify where the man pages will be put. If a
# relative path is entered the value of OUTPUT_DIRECTORY will be put in front of
# it. A directory man3 will be created inside the directory specified by
# MAN_OUTPUT.
# The default directory is: man.
# This tag requires that the tag GENERATE_MAN is set to YES.
MAN_OUTPUT = man
# The MAN_EXTENSION tag determines the extension that is added to the generated
# man pages. In case the manual section does not start with a number, the number
# 3 is prepended. The dot (.) at the beginning of the MAN_EXTENSION tag is
# optional.
# The default value is: .3.
# This tag requires that the tag GENERATE_MAN is set to YES.
MAN_EXTENSION = .3
# The MAN_SUBDIR tag determines the name of the directory created within
# MAN_OUTPUT in which the man pages are placed. If defaults to man followed by
# MAN_EXTENSION with the initial . removed.
# This tag requires that the tag GENERATE_MAN is set to YES.
MAN_SUBDIR =
# If the MAN_LINKS tag is set to YES and doxygen generates man output, then it
# will generate one additional man file for each entity documented in the real
# man page(s). These additional files only source the real man page, but without
# them the man command would be unable to find the correct page.
# The default value is: NO.
# This tag requires that the tag GENERATE_MAN is set to YES.
MAN_LINKS = NO
#---------------------------------------------------------------------------
# Configuration options related to the XML output
#---------------------------------------------------------------------------
# If the GENERATE_XML tag is set to YES, doxygen will generate an XML file that
# captures the structure of the code including all documentation.
# The default value is: NO.
GENERATE_XML = YES
# The XML_OUTPUT tag is used to specify where the XML pages will be put. If a
# relative path is entered the value of OUTPUT_DIRECTORY will be put in front of
# it.
# The default directory is: xml.
# This tag requires that the tag GENERATE_XML is set to YES.
XML_OUTPUT = xml
# If the XML_PROGRAMLISTING tag is set to YES, doxygen will dump the program
# listings (including syntax highlighting and cross-referencing information) to
# the XML output. Note that enabling this will significantly increase the size
# of the XML output.
# The default value is: YES.
# This tag requires that the tag GENERATE_XML is set to YES.
XML_PROGRAMLISTING = YES
#---------------------------------------------------------------------------
# Configuration options related to the DOCBOOK output
#---------------------------------------------------------------------------
# If the GENERATE_DOCBOOK tag is set to YES, doxygen will generate Docbook files
# that can be used to generate PDF.
# The default value is: NO.
GENERATE_DOCBOOK = NO
# The DOCBOOK_OUTPUT tag is used to specify where the Docbook pages will be put.
# If a relative path is entered the value of OUTPUT_DIRECTORY will be put in
# front of it.
# The default directory is: docbook.
# This tag requires that the tag GENERATE_DOCBOOK is set to YES.
DOCBOOK_OUTPUT = docbook
# If the DOCBOOK_PROGRAMLISTING tag is set to YES, doxygen will include the
# program listings (including syntax highlighting and cross-referencing
# information) to the DOCBOOK output. Note that enabling this will significantly
# increase the size of the DOCBOOK output.
# The default value is: NO.
# This tag requires that the tag GENERATE_DOCBOOK is set to YES.
DOCBOOK_PROGRAMLISTING = NO
#---------------------------------------------------------------------------
# Configuration options for the AutoGen Definitions output
#---------------------------------------------------------------------------
# If the GENERATE_AUTOGEN_DEF tag is set to YES, doxygen will generate an
# AutoGen Definitions (see http://autogen.sf.net) file that captures the
# structure of the code including all documentation. Note that this feature is
# still experimental and incomplete at the moment.
# The default value is: NO.
GENERATE_AUTOGEN_DEF = NO
#---------------------------------------------------------------------------
# Configuration options related to the Perl module output
#---------------------------------------------------------------------------
# If the GENERATE_PERLMOD tag is set to YES, doxygen will generate a Perl module
# file that captures the structure of the code including all documentation.
#
# Note that this feature is still experimental and incomplete at the moment.
# The default value is: NO.
GENERATE_PERLMOD = NO
# If the PERLMOD_LATEX tag is set to YES, doxygen will generate the necessary
# Makefile rules, Perl scripts and LaTeX code to be able to generate PDF and DVI
# output from the Perl module output.
# The default value is: NO.
# This tag requires that the tag GENERATE_PERLMOD is set to YES.
PERLMOD_LATEX = NO
# If the PERLMOD_PRETTY tag is set to YES, the Perl module output will be nicely
# formatted so it can be parsed by a human reader. This is useful if you want to
# understand what is going on. On the other hand, if this tag is set to NO, the
# size of the Perl module output will be much smaller and Perl will parse it
# just the same.
# The default value is: YES.
# This tag requires that the tag GENERATE_PERLMOD is set to YES.
PERLMOD_PRETTY = YES
# The names of the make variables in the generated doxyrules.make file are
# prefixed with the string contained in PERLMOD_MAKEVAR_PREFIX. This is useful
# so different doxyrules.make files included by the same Makefile don't
# overwrite each other's variables.
# This tag requires that the tag GENERATE_PERLMOD is set to YES.
PERLMOD_MAKEVAR_PREFIX =
#---------------------------------------------------------------------------
# Configuration options related to the preprocessor
#---------------------------------------------------------------------------
# If the ENABLE_PREPROCESSING tag is set to YES, doxygen will evaluate all
# C-preprocessor directives found in the sources and include files.
# The default value is: YES.
ENABLE_PREPROCESSING = YES
# If the MACRO_EXPANSION tag is set to YES, doxygen will expand all macro names
# in the source code. If set to NO, only conditional compilation will be
# performed. Macro expansion can be done in a controlled way by setting
# EXPAND_ONLY_PREDEF to YES.
# The default value is: NO.
# This tag requires that the tag ENABLE_PREPROCESSING is set to YES.
MACRO_EXPANSION = YES
# If the EXPAND_ONLY_PREDEF and MACRO_EXPANSION tags are both set to YES then
# the macro expansion is limited to the macros specified with the PREDEFINED and
# EXPAND_AS_DEFINED tags.
# The default value is: NO.
# This tag requires that the tag ENABLE_PREPROCESSING is set to YES.
EXPAND_ONLY_PREDEF = YES
# If the SEARCH_INCLUDES tag is set to YES, the include files in the
# INCLUDE_PATH will be searched if a #include is found.
# The default value is: YES.
# This tag requires that the tag ENABLE_PREPROCESSING is set to YES.
SEARCH_INCLUDES = NO
# The INCLUDE_PATH tag can be used to specify one or more directories that
# contain include files that are not input files but should be processed by the
# preprocessor.
# This tag requires that the tag SEARCH_INCLUDES is set to YES.
INCLUDE_PATH =
# You can use the INCLUDE_FILE_PATTERNS tag to specify one or more wildcard
# patterns (like *.h and *.hpp) to filter out the header-files in the
# directories. If left blank, the patterns specified with FILE_PATTERNS will be
# used.
# This tag requires that the tag ENABLE_PREPROCESSING is set to YES.
INCLUDE_FILE_PATTERNS =
# The PREDEFINED tag can be used to specify one or more macro names that are
# defined before the preprocessor is started (similar to the -D option of e.g.
# gcc). The argument of the tag is a list of macros of the form: name or
# name=definition (no spaces). If the definition and the "=" are omitted, "=1"
# is assumed. To prevent a macro definition from being undefined via #undef or
# recursively expanded use the := operator instead of the = operator.
# This tag requires that the tag ENABLE_PREPROCESSING is set to YES.
PREDEFINED = __attribute__(x)= \
__inline=
# If the MACRO_EXPANSION and EXPAND_ONLY_PREDEF tags are set to YES then this
# tag can be used to specify a list of macro names that should be expanded. The
# macro definition that is found in the sources will be used. Use the PREDEFINED
# tag if you want to use a different macro definition that overrules the
# definition found in the source code.
# This tag requires that the tag ENABLE_PREPROCESSING is set to YES.
EXPAND_AS_DEFINED =
# If the SKIP_FUNCTION_MACROS tag is set to YES then doxygen's preprocessor will
# remove all references to function-like macros that are alone on a line, have
# an all uppercase name, and do not end with a semicolon. Such function macros
# are typically used for boiler-plate code, and will confuse the parser if not
# removed.
# The default value is: YES.
# This tag requires that the tag ENABLE_PREPROCESSING is set to YES.
SKIP_FUNCTION_MACROS = YES
#---------------------------------------------------------------------------
# Configuration options related to external references
#---------------------------------------------------------------------------
# The TAGFILES tag can be used to specify one or more tag files. For each tag
# file the location of the external documentation should be added. The format of
# a tag file without this location is as follows:
# TAGFILES = file1 file2 ...
# Adding location for the tag files is done as follows:
# TAGFILES = file1=loc1 "file2 = loc2" ...
# where loc1 and loc2 can be relative or absolute paths or URLs. See the
# section "Linking to external documentation" for more information about the use
# of tag files.
# Note: Each tag file must have a unique name (where the name does NOT include
# the path). If a tag file is not located in the directory in which doxygen is
# run, you must also specify the path to the tagfile here.
TAGFILES =
# When a file name is specified after GENERATE_TAGFILE, doxygen will create a
# tag file that is based on the input files it reads. See section "Linking to
# external documentation" for more information about the usage of tag files.
GENERATE_TAGFILE =
# If the ALLEXTERNALS tag is set to YES, all external class will be listed in
# the class index. If set to NO, only the inherited external classes will be
# listed.
# The default value is: NO.
ALLEXTERNALS = NO
# If the EXTERNAL_GROUPS tag is set to YES, all external groups will be listed
# in the modules index. If set to NO, only the current project's groups will be
# listed.
# The default value is: YES.
EXTERNAL_GROUPS = YES
# If the EXTERNAL_PAGES tag is set to YES, all external pages will be listed in
# the related pages index. If set to NO, only the current project's pages will
# be listed.
# The default value is: YES.
EXTERNAL_PAGES = YES
# The PERL_PATH should be the absolute path and name of the perl script
# interpreter (i.e. the result of 'which perl').
# The default file (with absolute path) is: /usr/bin/perl.
PERL_PATH = /usr/bin/perl
#---------------------------------------------------------------------------
# Configuration options related to the dot tool
#---------------------------------------------------------------------------
# If the CLASS_DIAGRAMS tag is set to YES, doxygen will generate a class diagram
# (in HTML and LaTeX) for classes with base or super classes. Setting the tag to
# NO turns the diagrams off. Note that this option also works with HAVE_DOT
# disabled, but it is recommended to install and use dot, since it yields more
# powerful graphs.
# The default value is: YES.
CLASS_DIAGRAMS = NO
# You can define message sequence charts within doxygen comments using the \msc
# command. Doxygen will then run the mscgen tool (see:
# http://www.mcternan.me.uk/mscgen/)) to produce the chart and insert it in the
# documentation. The MSCGEN_PATH tag allows you to specify the directory where
# the mscgen tool resides. If left empty the tool is assumed to be found in the
# default search path.
MSCGEN_PATH =
# You can include diagrams made with dia in doxygen documentation. Doxygen will
# then run dia to produce the diagram and insert it in the documentation. The
# DIA_PATH tag allows you to specify the directory where the dia binary resides.
# If left empty dia is assumed to be found in the default search path.
DIA_PATH =
# If set to YES the inheritance and collaboration graphs will hide inheritance
# and usage relations if the target is undocumented or is not a class.
# The default value is: YES.
HIDE_UNDOC_RELATIONS = YES
# If you set the HAVE_DOT tag to YES then doxygen will assume the dot tool is
# available from the path. This tool is part of Graphviz (see:
# http://www.graphviz.org/), a graph visualization toolkit from AT&T and Lucent
# Bell Labs. The other options in this section have no effect if this option is
# set to NO
# The default value is: NO.
HAVE_DOT = NO
# The DOT_NUM_THREADS specifies the number of dot invocations doxygen is allowed
# to run in parallel. When set to 0 doxygen will base this on the number of
# processors available in the system. You can set it explicitly to a value
# larger than 0 to get control over the balance between CPU load and processing
# speed.
# Minimum value: 0, maximum value: 32, default value: 0.
# This tag requires that the tag HAVE_DOT is set to YES.
DOT_NUM_THREADS = 0
# When you want a differently looking font in the dot files that doxygen
# generates you can specify the font name using DOT_FONTNAME. You need to make
# sure dot is able to find the font, which can be done by putting it in a
# standard location or by setting the DOTFONTPATH environment variable or by
# setting DOT_FONTPATH to the directory containing the font.
# The default value is: Helvetica.
# This tag requires that the tag HAVE_DOT is set to YES.
DOT_FONTNAME = Helvetica
# The DOT_FONTSIZE tag can be used to set the size (in points) of the font of
# dot graphs.
# Minimum value: 4, maximum value: 24, default value: 10.
# This tag requires that the tag HAVE_DOT is set to YES.
DOT_FONTSIZE = 10
# By default doxygen will tell dot to use the default font as specified with
# DOT_FONTNAME. If you specify a different font using DOT_FONTNAME you can set
# the path where dot can find it using this tag.
# This tag requires that the tag HAVE_DOT is set to YES.
DOT_FONTPATH =
# If the CLASS_GRAPH tag is set to YES then doxygen will generate a graph for
# each documented class showing the direct and indirect inheritance relations.
# Setting this tag to YES will force the CLASS_DIAGRAMS tag to NO.
# The default value is: YES.
# This tag requires that the tag HAVE_DOT is set to YES.
CLASS_GRAPH = YES
# If the COLLABORATION_GRAPH tag is set to YES then doxygen will generate a
# graph for each documented class showing the direct and indirect implementation
# dependencies (inheritance, containment, and class references variables) of the
# class with other documented classes.
# The default value is: YES.
# This tag requires that the tag HAVE_DOT is set to YES.
COLLABORATION_GRAPH = YES
# If the GROUP_GRAPHS tag is set to YES then doxygen will generate a graph for
# groups, showing the direct groups dependencies.
# The default value is: YES.
# This tag requires that the tag HAVE_DOT is set to YES.
GROUP_GRAPHS = YES
# If the UML_LOOK tag is set to YES, doxygen will generate inheritance and
# collaboration diagrams in a style similar to the OMG's Unified Modeling
# Language.
# The default value is: NO.
# This tag requires that the tag HAVE_DOT is set to YES.
UML_LOOK = NO
# If the UML_LOOK tag is enabled, the fields and methods are shown inside the
# class node. If there are many fields or methods and many nodes the graph may
# become too big to be useful. The UML_LIMIT_NUM_FIELDS threshold limits the
# number of items for each type to make the size more manageable. Set this to 0
# for no limit. Note that the threshold may be exceeded by 50% before the limit
# is enforced. So when you set the threshold to 10, up to 15 fields may appear,
# but if the number exceeds 15, the total amount of fields shown is limited to
# 10.
# Minimum value: 0, maximum value: 100, default value: 10.
# This tag requires that the tag HAVE_DOT is set to YES.
UML_LIMIT_NUM_FIELDS = 10
# If the TEMPLATE_RELATIONS tag is set to YES then the inheritance and
# collaboration graphs will show the relations between templates and their
# instances.
# The default value is: NO.
# This tag requires that the tag HAVE_DOT is set to YES.
TEMPLATE_RELATIONS = NO
# If the INCLUDE_GRAPH, ENABLE_PREPROCESSING and SEARCH_INCLUDES tags are set to
# YES then doxygen will generate a graph for each documented file showing the
# direct and indirect include dependencies of the file with other documented
# files.
# The default value is: YES.
# This tag requires that the tag HAVE_DOT is set to YES.
INCLUDE_GRAPH = YES
# If the INCLUDED_BY_GRAPH, ENABLE_PREPROCESSING and SEARCH_INCLUDES tags are
# set to YES then doxygen will generate a graph for each documented file showing
# the direct and indirect include dependencies of the file with other documented
# files.
# The default value is: YES.
# This tag requires that the tag HAVE_DOT is set to YES.
INCLUDED_BY_GRAPH = YES
# If the CALL_GRAPH tag is set to YES then doxygen will generate a call
# dependency graph for every global function or class method.
#
# Note that enabling this option will significantly increase the time of a run.
# So in most cases it will be better to enable call graphs for selected
# functions only using the \callgraph command. Disabling a call graph can be
# accomplished by means of the command \hidecallgraph.
# The default value is: NO.
# This tag requires that the tag HAVE_DOT is set to YES.
CALL_GRAPH = NO
# If the CALLER_GRAPH tag is set to YES then doxygen will generate a caller
# dependency graph for every global function or class method.
#
# Note that enabling this option will significantly increase the time of a run.
# So in most cases it will be better to enable caller graphs for selected
# functions only using the \callergraph command. Disabling a caller graph can be
# accomplished by means of the command \hidecallergraph.
# The default value is: NO.
# This tag requires that the tag HAVE_DOT is set to YES.
CALLER_GRAPH = NO
# If the GRAPHICAL_HIERARCHY tag is set to YES then doxygen will graphical
# hierarchy of all classes instead of a textual one.
# The default value is: YES.
# This tag requires that the tag HAVE_DOT is set to YES.
GRAPHICAL_HIERARCHY = YES
# If the DIRECTORY_GRAPH tag is set to YES then doxygen will show the
# dependencies a directory has on other directories in a graphical way. The
# dependency relations are determined by the #include relations between the
# files in the directories.
# The default value is: YES.
# This tag requires that the tag HAVE_DOT is set to YES.
DIRECTORY_GRAPH = YES
# The DOT_IMAGE_FORMAT tag can be used to set the image format of the images
# generated by dot. For an explanation of the image formats see the section
# output formats in the documentation of the dot tool (Graphviz (see:
# http://www.graphviz.org/)).
# Note: If you choose svg you need to set HTML_FILE_EXTENSION to xhtml in order
# to make the SVG files visible in IE 9+ (other browsers do not have this
# requirement).
# Possible values are: png, jpg, gif, svg, png:gd, png:gd:gd, png:cairo,
# png:cairo:gd, png:cairo:cairo, png:cairo:gdiplus, png:gdiplus and
# png:gdiplus:gdiplus.
# The default value is: png.
# This tag requires that the tag HAVE_DOT is set to YES.
DOT_IMAGE_FORMAT = png
# If DOT_IMAGE_FORMAT is set to svg, then this option can be set to YES to
# enable generation of interactive SVG images that allow zooming and panning.
#
# Note that this requires a modern browser other than Internet Explorer. Tested
# and working are Firefox, Chrome, Safari, and Opera.
# Note: For IE 9+ you need to set HTML_FILE_EXTENSION to xhtml in order to make
# the SVG files visible. Older versions of IE do not have SVG support.
# The default value is: NO.
# This tag requires that the tag HAVE_DOT is set to YES.
INTERACTIVE_SVG = NO
# The DOT_PATH tag can be used to specify the path where the dot tool can be
# found. If left blank, it is assumed the dot tool can be found in the path.
# This tag requires that the tag HAVE_DOT is set to YES.
DOT_PATH =
# The DOTFILE_DIRS tag can be used to specify one or more directories that
# contain dot files that are included in the documentation (see the \dotfile
# command).
# This tag requires that the tag HAVE_DOT is set to YES.
DOTFILE_DIRS =
# The MSCFILE_DIRS tag can be used to specify one or more directories that
# contain msc files that are included in the documentation (see the \mscfile
# command).
MSCFILE_DIRS =
# The DIAFILE_DIRS tag can be used to specify one or more directories that
# contain dia files that are included in the documentation (see the \diafile
# command).
DIAFILE_DIRS =
# When using plantuml, the PLANTUML_JAR_PATH tag should be used to specify the
# path where java can find the plantuml.jar file. If left blank, it is assumed
# PlantUML is not used or called during a preprocessing step. Doxygen will
# generate a warning when it encounters a \startuml command in this case and
# will not generate output for the diagram.
PLANTUML_JAR_PATH =
# When using plantuml, the specified paths are searched for files specified by
# the !include statement in a plantuml block.
PLANTUML_INCLUDE_PATH =
# The DOT_GRAPH_MAX_NODES tag can be used to set the maximum number of nodes
# that will be shown in the graph. If the number of nodes in a graph becomes
# larger than this value, doxygen will truncate the graph, which is visualized
# by representing a node as a red box. Note that doxygen if the number of direct
# children of the root node in a graph is already larger than
# DOT_GRAPH_MAX_NODES then the graph will not be shown at all. Also note that
# the size of a graph can be further restricted by MAX_DOT_GRAPH_DEPTH.
# Minimum value: 0, maximum value: 10000, default value: 50.
# This tag requires that the tag HAVE_DOT is set to YES.
DOT_GRAPH_MAX_NODES = 50
# The MAX_DOT_GRAPH_DEPTH tag can be used to set the maximum depth of the graphs
# generated by dot. A depth value of 3 means that only nodes reachable from the
# root by following a path via at most 3 edges will be shown. Nodes that lay
# further from the root node will be omitted. Note that setting this option to 1
# or 2 may greatly reduce the computation time needed for large code bases. Also
# note that the size of a graph can be further restricted by
# DOT_GRAPH_MAX_NODES. Using a depth of 0 means no depth restriction.
# Minimum value: 0, maximum value: 1000, default value: 0.
# This tag requires that the tag HAVE_DOT is set to YES.
MAX_DOT_GRAPH_DEPTH = 0
# Set the DOT_TRANSPARENT tag to YES to generate images with a transparent
# background. This is disabled by default, because dot on Windows does not seem
# to support this out of the box.
#
# Warning: Depending on the platform used, enabling this option may lead to
# badly anti-aliased labels on the edges of a graph (i.e. they become hard to
# read).
# The default value is: NO.
# This tag requires that the tag HAVE_DOT is set to YES.
DOT_TRANSPARENT = NO
# Set the DOT_MULTI_TARGETS tag to YES to allow dot to generate multiple output
# files in one run (i.e. multiple -o and -T options on the command line). This
# makes dot run faster, but since only newer versions of dot (>1.8.10) support
# this, this feature is disabled by default.
# The default value is: NO.
# This tag requires that the tag HAVE_DOT is set to YES.
DOT_MULTI_TARGETS = NO
# If the GENERATE_LEGEND tag is set to YES doxygen will generate a legend page
# explaining the meaning of the various boxes and arrows in the dot generated
# graphs.
# The default value is: YES.
# This tag requires that the tag HAVE_DOT is set to YES.
GENERATE_LEGEND = YES
# If the DOT_CLEANUP tag is set to YES, doxygen will remove the intermediate dot
# files that are used to generate the various graphs.
# The default value is: YES.
# This tag requires that the tag HAVE_DOT is set to YES.
DOT_CLEANUP = YES
#!/bin/bash
set -eu
# Make this directory the PWD
cd "$(dirname "${BASH_SOURCE[0]}")"
# Build doxygen info
bash run_doxygen.sh
# Build sphinx docs
cd source
make clean
make -e SPHINXOPTS="-t html" html
make latexpdf
#!/bin/bash
set -eu
# Make this directory the PWD
cd "$(dirname "${BASH_SOURCE[0]}")"
# Build the doxygen info
rm -rf docBin
doxygen Doxyfile
===================
API Reference Guide
===================
------------
Introduction
------------
This document contains details of the APIs for the Composable Kernel (CK) library and introduces some of the key design
principles that are used to write new classes that extend CK functionality.
=================
Using CK API
=================
This section describes how to use the CK library API.
-----------------
CK Datatypes
-----------------
[TODO]
\ No newline at end of file
===================
Contributor's Guide
===================
Pull-request guidelines
=======================
[TODO]
************
Disclaimer
************
-------------------------------
AMD's standard legal Disclaimer
-------------------------------
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes. THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. AMD, the AMD Arrow logo, Radeon, Ryzen, Epyc, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. Google(R) is a registered trademark of Google LLC. PCIe(R) is a registered trademark of PCI-SIG Corporation. Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries. Ubuntu(R) and the Ubuntu logo are registered trademarks of Canonical Ltd. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. (C)2023 Advanced Micro Devices, Inc. All rights reserved.
----------------------
Third Party Disclaimer
----------------------
Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS PROVIDED "AS IS" WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment