Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
b74918bc
Commit
b74918bc
authored
Jan 06, 2025
by
ThomasNing
Browse files
compiled version of cross gpu connection
parents
3fcad951
1c45ca35
Changes
486
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
380 additions
and
54 deletions
+380
-54
docs/sphinx/requirements.in
docs/sphinx/requirements.in
+1
-1
docs/sphinx/requirements.txt
docs/sphinx/requirements.txt
+1
-1
example/01_gemm/CMakeLists.txt
example/01_gemm/CMakeLists.txt
+7
-0
example/01_gemm/common.hpp
example/01_gemm/common.hpp
+2
-2
example/01_gemm/gemm_wmma_bf16.cpp
example/01_gemm/gemm_wmma_bf16.cpp
+84
-0
example/01_gemm/gemm_wmma_int8.cpp
example/01_gemm/gemm_wmma_int8.cpp
+84
-0
example/01_gemm/gemm_xdl_fp16_streamk_v3.cpp
example/01_gemm/gemm_xdl_fp16_streamk_v3.cpp
+12
-1
example/01_gemm/gemm_xdl_fp8_streamk_v3.cpp
example/01_gemm/gemm_xdl_fp8_streamk_v3.cpp
+58
-0
example/01_gemm/run_gemm_example.inc
example/01_gemm/run_gemm_example.inc
+2
-2
example/01_gemm/run_gemm_example_streamk_v2.inc
example/01_gemm/run_gemm_example_streamk_v2.inc
+40
-0
example/01_gemm/run_gemm_example_v2.inc
example/01_gemm/run_gemm_example_v2.inc
+1
-1
example/10_convnd_fwd_multiple_d_multiple_reduce/common.hpp
example/10_convnd_fwd_multiple_d_multiple_reduce/common.hpp
+1
-1
example/10_convnd_fwd_multiple_d_multiple_reduce/run_convnd_fwd_max_example.inc
...multiple_d_multiple_reduce/run_convnd_fwd_max_example.inc
+41
-16
example/15_grouped_gemm/grouped_gemm_multiple_d_splitk_xdl_fp16.cpp
..._grouped_gemm/grouped_gemm_multiple_d_splitk_xdl_fp16.cpp
+6
-6
example/15_grouped_gemm/grouped_gemm_multiple_d_xdl_fp16.cpp
example/15_grouped_gemm/grouped_gemm_multiple_d_xdl_fp16.cpp
+5
-5
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_bias_fp16.cpp
...e/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_bias_fp16.cpp
+5
-5
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16.cpp
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16.cpp
+4
-4
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16_fp8.cpp
...le/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16_fp8.cpp
+4
-4
example/15_grouped_gemm/run_grouped_gemm_example.inc
example/15_grouped_gemm/run_grouped_gemm_example.inc
+21
-4
example/16_gemm_multi_d_multi_reduces/gemm_add_add_mean_meansquare_xdl_fp16.cpp
...d_multi_reduces/gemm_add_add_mean_meansquare_xdl_fp16.cpp
+1
-1
No files found.
docs/sphinx/requirements.in
View file @
b74918bc
rocm-docs-core==1.
8.3
rocm-docs-core==1.
12.0
sphinxcontrib-bibtex==2.6.3
docs/sphinx/requirements.txt
View file @
b74918bc
...
...
@@ -103,7 +103,7 @@ requests==2.32.3
# via
# pygithub
# sphinx
rocm-docs-core==1.
8.3
rocm-docs-core==1.
12.0
# via -r requirements.in
six==1.16.0
# via pybtex
...
...
example/01_gemm/CMakeLists.txt
View file @
b74918bc
...
...
@@ -77,9 +77,16 @@ add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp8)
add_example_executable
(
example_gemm_xdl_fp8_bf8 gemm_xdl_fp8_bf8.cpp
)
add_example_dependencies
(
example_gemm_xdl example_gemm_xdl_fp8_bf8
)
add_example_executable
(
example_gemm_xdl_fp8_streamk_v3 gemm_xdl_fp8_streamk_v3.cpp
)
add_example_dependencies
(
example_gemm_xdl example_gemm_xdl_fp8_streamk_v3
)
add_example_executable
(
example_gemm_xdl_fp16_fp8 gemm_xdl_fp16_fp8.cpp
)
add_example_dependencies
(
example_gemm_xdl example_gemm_xdl_fp16_fp8
)
add_custom_target
(
example_gemm_wmma
)
add_example_executable
(
example_gemm_wmma_fp16 gemm_wmma_fp16.cpp
)
add_example_dependencies
(
example_gemm_wmma example_gemm_wmma_fp16
)
add_example_executable
(
example_gemm_wmma_bf16 gemm_wmma_bf16.cpp
)
add_example_dependencies
(
example_gemm_wmma example_gemm_wmma_bf16
)
add_example_executable
(
example_gemm_wmma_int8 gemm_wmma_int8.cpp
)
add_example_dependencies
(
example_gemm_wmma example_gemm_wmma_int8
)
example/01_gemm/common.hpp
View file @
b74918bc
...
...
@@ -44,7 +44,7 @@ struct ProblemSizeStreamK final
ck
::
index_t
StrideB
=
-
1
;
ck
::
index_t
StrideC
=
-
1
;
ck
::
index_t
NumSKBlocks
=
-
1
;
ck
::
index_t
NumSKBlocks
=
-
1
;
// number of stream-k blocks
};
struct
ProblemSizeStreamK_universal
final
{
...
...
@@ -76,7 +76,7 @@ struct ProblemSizeSplitK final
struct
ExecutionConfig
final
{
// 0 - no verification, 1 - CPU, 2 - GPU, 3 - CPU + GPU
int
do_verification
=
3
;
int
do_verification
=
1
;
int
init_method
=
2
;
bool
time_kernel
=
false
;
};
...
...
example/01_gemm/gemm_wmma_bf16.cpp
0 → 100644
View file @
b74918bc
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp"
using
ADataType
=
ck
::
bhalf_t
;
using
BDataType
=
ck
::
bhalf_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
float
;
using
CDataType
=
ck
::
bhalf_t
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmWmma_CShuffle
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
1
,
// Prefetch stage
128
,
// BlockSize
64
,
// MPerBlock
128
,
// NPerBlock
64
,
// KPerBlock
2
,
// K1
16
,
// MPerWmma
16
,
// NPerWmma
2
,
// M-Repeat // M-PerWmma / M-Repeat = M-Wave
4
,
// N-Repeat // N-PerWmma / N-Repeat = N-Wave
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
1
,
// C shuffle (M Repeat) Per store
1
,
// C shuffle (N Repeat) Per store
S
<
1
,
32
,
1
,
4
>
,
8
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
using
ReferenceGemmInstanceGPU
=
ck
::
tensor_operation
::
device
::
ReferenceGemm
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
#include "run_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_example
(
argc
,
argv
);
}
example/01_gemm/gemm_wmma_int8.cpp
0 → 100644
View file @
b74918bc
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp"
using
ADataType
=
int8_t
;
using
BDataType
=
int8_t
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
int32_t
;
using
CDataType
=
int8_t
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmWmma_CShuffle
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
1
,
// Prefetch stage
128
,
// BlockSize
64
,
// MPerBlock
128
,
// NPerBlock
64
,
// KPerBlock
2
,
// K1
16
,
// MPerWmma
16
,
// NPerWmma
2
,
// M-Repeat // M-PerWmma / M-Repeat = M-Wave
4
,
// N-Repeat // N-PerWmma / N-Repeat = N-Wave
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
1
,
// C shuffle (M Repeat) Per store
1
,
// C shuffle (N Repeat) Per store
S
<
1
,
32
,
1
,
4
>
,
8
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
using
ReferenceGemmInstanceGPU
=
ck
::
tensor_operation
::
device
::
ReferenceGemm
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
#include "run_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_example
(
argc
,
argv
);
}
example/01_gemm/gemm_xdl_fp16_streamk_v3.cpp
View file @
b74918bc
...
...
@@ -8,7 +8,7 @@
using
ADataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
half_
t
;
using
CShuffleDataType
=
floa
t
;
using
CDataType
=
ck
::
half_t
;
using
ALayout
=
Row
;
...
...
@@ -43,6 +43,17 @@ using DeviceGemmV2_Streamk_Instance =
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
using
ReferenceGemmInstanceGPU
=
ck
::
tensor_operation
::
device
::
ReferenceGemm
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
#include "run_gemm_example_streamk_v2.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_universal_streamk_example
(
argc
,
argv
);
}
example/01_gemm/gemm_xdl_fp8_streamk_v3.cpp
0 → 100755
View file @
b74918bc
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_streamk_v3.hpp"
using
ADataType
=
ck
::
f8_t
;
using
BDataType
=
ck
::
f8_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmV2_Streamk_Instance
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffle_Streamk_V3
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
256
,
128
,
16
,
16
,
16
,
16
,
4
,
8
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v3
,
ck
::
f8_t
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
using
ReferenceGemmInstanceGPU
=
ck
::
tensor_operation
::
device
::
ReferenceGemm
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
#include "run_gemm_example_streamk_v2.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_universal_streamk_example
(
argc
,
argv
);
}
example/01_gemm/run_gemm_example.inc
View file @
b74918bc
...
...
@@ -143,8 +143,8 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
switch
(
config
.
init_method
)
{
case
0
:
ck
::
utils
::
FillConstant
<
ADataType
>
{
static_cas
t
<
ADataType
>
(
1.
f
)}(
a_m_k
);
ck
::
utils
::
FillConstant
<
BDataType
>
{
static_cas
t
<
BDataType
>
(
1.
f
)}(
b_k_n
);
ck
::
utils
::
FillConstant
<
ADataType
>
{
ck
::
type_conver
t
<
ADataType
>
(
1.
f
)}(
a_m_k
);
ck
::
utils
::
FillConstant
<
BDataType
>
{
ck
::
type_conver
t
<
BDataType
>
(
1.
f
)}(
b_k_n
);
break
;
case
1
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
5.
f
,
5.
f
}(
a_m_k
);
...
...
example/01_gemm/run_gemm_example_streamk_v2.inc
100644 → 100755
View file @
b74918bc
...
...
@@ -176,6 +176,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_ref_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
...
...
@@ -196,6 +197,8 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_device_ref_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_ref_result
.
mDesc
.
GetElementSpaceSize
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
...
...
@@ -240,6 +243,13 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
return
true
;
}
std
::
size_t
workspace_size
=
gemm
.
GetWorkSpaceSize
(
&
argument
);
if
(
workspace_size
!=
0
)
{
workspace
.
Realloc
(
workspace_size
);
gemm
.
SetWorkSpacePointer
(
&
argument
,
workspace
.
GetDeviceBuffer
());
}
bool
pass
=
true
;
if
((
config
.
do_verification
==
1
)
||
(
config
.
do_verification
==
3
))
{
...
...
@@ -271,6 +281,36 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
#endif
}
if
((
config
.
do_verification
==
2
)
||
(
config
.
do_verification
==
3
))
{
// GPU verification
auto
ref_gemm_gpu
=
ReferenceGemmInstanceGPU
{};
auto
ref_invoker_gpu
=
ref_gemm_gpu
.
MakeInvoker
();
auto
ref_argument_gpu
=
ref_gemm_gpu
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_device_ref_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
a_element_op
,
b_element_op
,
c_element_op
);
std
::
cout
<<
"Running verification on GPU."
<<
std
::
endl
;
ref_invoker_gpu
.
Run
(
ref_argument_gpu
,
StreamConfig
{});
c_m_n_device_ref_buf
.
FromDevice
(
c_m_n_device_ref_result
.
mData
.
data
());
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_device_ref_result
,
"Error: Incorrect results!"
,
get_rtol
<
CDataType
>
(),
get_atol
<
CDataType
>
());
}
if
(
config
.
time_kernel
)
{
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
...
...
example/01_gemm/run_gemm_example_v2.inc
View file @
b74918bc
...
...
@@ -261,7 +261,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
if
(
config
.
time_kernel
)
{
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
,
0
,
5
,
10
,
true
,
4
});
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
,
0
,
5
0
,
10
0
,
true
,
4
});
std
::
size_t
flop
=
2_
uz
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
...
...
example/10_convnd_fwd_multiple_d_multiple_reduce/common.hpp
View file @
b74918bc
...
...
@@ -80,7 +80,7 @@ using RLayout = typename LayoutSettingSelector<NDimSpatial>::RLayout;
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
int
init_method
=
2
;
bool
time_kernel
=
false
;
};
...
...
example/10_convnd_fwd_multiple_d_multiple_reduce/run_convnd_fwd_max_example.inc
View file @
b74918bc
...
...
@@ -73,16 +73,25 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
Tensor
<
EDataType
>
conv_output_device
(
conv_output_g_n_k_wos_desc
);
Tensor
<
R0DataType
>
r0_device
(
r0_desc
);
std
::
cout
<<
"input: "
<<
conv_input
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"weight: "
<<
conv_weight
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
conv_output_device
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"reduction: "
<<
r0_device
.
mDesc
<<
std
::
endl
<<
std
::
endl
;
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
8
,
7
}(
conv_input
);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
8
,
7
}(
conv_weight
);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
1
,
1
}(
conv_weight
);
break
;
case
2
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
8
,
7
}(
conv_input
);
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
1
,
1
}(
conv_weight
);
break
;
default
:
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
5
,
5
}(
conv_input
);
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
5
,
5
}(
conv_weight
);
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
8
,
7
}(
conv_input
);
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
1
,
1
}(
conv_weight
);
}
DeviceMem
conv_input_device_buf
(
sizeof
(
ADataType
)
*
conv_input
.
mDesc
.
GetElementSpaceSize
());
...
...
@@ -161,15 +170,25 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
return
false
;
}
// XXX: DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle will not initialize r0.
r0_device_buf
.
SetValue
(
ck
::
NumericLimits
<
R0DataType
>::
Lowest
());
const
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
const
std
::
size_t
flop
=
problem_size
.
GetFlops
();
const
std
::
size_t
num_btype
=
problem_size
.
GetByte
<
ADataType
,
BDataType
,
EDataType
>
();
if
(
config
.
time_kernel
)
{
const
std
::
size_t
flop
=
problem_size
.
GetFlops
();
const
std
::
size_t
num_btype
=
problem_size
.
GetByte
<
ADataType
,
BDataType
,
EDataType
>
();
const
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
const
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
const
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
const
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
}
else
{
std
::
cout
<<
"FINISHED: "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
}
if
(
config
.
do_verification
)
{
...
...
@@ -189,6 +208,7 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
BElementOp
{},
PassThrough
{});
std
::
cout
<<
"
\n
Running verification on CPU."
<<
std
::
endl
;
ref_invoker
.
Run
(
ref_argument
);
Tensor
<
R0DataType
>
r0_host
(
r0_device
.
mDesc
);
...
...
@@ -273,13 +293,18 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
conv_output_device_buf
.
FromDevice
(
conv_output_device
.
mData
.
data
());
r0_device_buf
.
FromDevice
(
r0_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
conv_output_device
,
conv_output_host
,
"Error: incorrect results! (Matrix E)"
,
1
e
-
5
f
,
1
e
-
4
f
)
&&
ck
::
utils
::
check_err
(
r0_device
,
r0_host
,
"Error: incorrect results! (Matrix R0)"
,
1
e
-
5
f
,
1
e
-
4
f
);
auto
pass
=
ck
::
utils
::
check_err
(
conv_output_device
,
conv_output_host
,
"Error: incorrect results! (Matrix E)"
,
1
e
-
3
f
,
1
e
-
3
f
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
r0_device
,
r0_host
,
"Error: incorrect results! (Matrix R0)"
,
1
e
-
3
f
,
1
e
-
3
f
);
if
(
pass
)
std
::
cout
<<
"Verification on CPU: PASS"
<<
std
::
endl
;
return
pass
;
}
return
true
;
...
...
example/15_grouped_gemm/grouped_gemm_multiple_d_splitk_xdl_fp16.cpp
View file @
b74918bc
...
...
@@ -186,15 +186,15 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
for
(
int
j
=
0
;
j
<
NumDMatrices
;
++
j
)
{
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_3
<
A
DataType
>
{
0.0
,
1.0
});
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_3
<
D
DataType
>
{
0.0
,
1.0
});
}
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
BDataType
,
1
>
{});
for
(
int
j
=
0
;
j
<
NumDMatrices
;
++
j
)
{
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
DDataType
,
0
>
{});
}
}
}
...
...
@@ -246,7 +246,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
a_element_op
,
b_element_op
,
cde_element_op
);
gemm
.
SetKBatchSize
(
argument
,
config
.
k_batch
);
gemm
.
SetKBatchSize
(
&
argument
,
config
.
k_batch
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
...
...
@@ -257,7 +257,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_workspace_dev
.
GetDeviceBuffer
());
DeviceMem
gemm_arg_dev_mem
(
gemm
.
GetDeviceKernelArgSize
(
&
argument
));
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
gemm
.
SetDeviceKernelArgs
(
&
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
,
1
});
...
...
example/15_grouped_gemm/grouped_gemm_multiple_d_xdl_fp16.cpp
View file @
b74918bc
...
...
@@ -91,7 +91,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
{
auto
group_count
=
problem_size
.
group_count
;
using
KernelArguments
=
ck
::
tensor_operation
::
device
::
GroupedGemm
TileLoop
KernelArgument
s
<
NumDs
>
;
using
KernelArguments
=
ck
::
tensor_operation
::
device
::
GroupedGemmKernelArgument
<
NumDs
>
;
using
GemmDesc
=
ck
::
tensor_operation
::
device
::
GemmDesc
;
// GEMM shape
...
...
@@ -190,15 +190,15 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
for
(
int
j
=
0
;
j
<
NumDs
;
++
j
)
{
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_3
<
A
DataType
>
{
0.0
,
1.0
});
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_3
<
D
DataType
>
{
0.0
,
1.0
});
}
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
BDataType
,
1
>
{});
for
(
int
j
=
0
;
j
<
NumDs
;
++
j
)
{
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
DDataType
,
0
>
{});
}
}
}
...
...
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_bias_fp16.cpp
View file @
b74918bc
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
@@ -167,11 +167,11 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
BDataType
,
1
>
{});
}
d0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
d0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
D0DataType
,
1
>
{});
}
using
GroupedGemmKernelArgument
=
ck
::
tensor_operation
::
device
::
GroupedGemmKernelArgument
<
1
>
;
...
...
@@ -254,7 +254,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
gemm
.
GetDeviceKernelArgSize
(
&
argument
),
hipMemcpyHostToDevice
));
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_kernel_args_dev
.
GetDeviceBuffer
());
gemm
.
SetDeviceKernelArgs
(
&
argument
,
gemm_kernel_args_dev
.
GetDeviceBuffer
());
gemm
.
SetKBatch
(
argument
,
config
.
k_batch
);
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
...
...
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16.cpp
View file @
b74918bc
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
@@ -157,8 +157,8 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
BDataType
,
1
>
{});
}
}
...
...
@@ -239,7 +239,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
"not support this GEMM problem"
);
}
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
gemm
.
SetDeviceKernelArgs
(
&
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
gemm
.
SetKBatch
(
argument
,
config
.
k_batch
);
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
...
...
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16_fp8.cpp
View file @
b74918bc
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
@@ -158,8 +158,8 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
BDataType
,
1
>
{});
}
}
...
...
@@ -240,7 +240,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
"not support this GEMM problem"
);
}
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
gemm
.
SetDeviceKernelArgs
(
&
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
gemm
.
SetKBatch
(
argument
,
config
.
k_batch
);
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
...
...
example/15_grouped_gemm/run_grouped_gemm_example.inc
View file @
b74918bc
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
struct
ProblemSize
final
...
...
@@ -124,8 +127,8 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors
[
i
]
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default
:
a_tensors
[
i
]
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
]
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
a_tensors
[
i
]
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
0
>
{});
b_tensors
[
i
]
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
BDataType
,
1
>
{});
}
}
...
...
@@ -168,9 +171,23 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
auto
argument
=
gemm
.
MakeArgument
(
p_a
,
p_b
,
p_Ds
,
p_c
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
);
DeviceMem
gemm_desc_workspace
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
std
::
size_t
workspace_size
=
gemm
.
GetWorkSpaceSize
(
&
argument
);
std
::
size_t
kargs_size
=
gemm
.
GetDeviceKernelArgSize
(
&
argument
);
DeviceMem
gemm_workspace
,
gemm_kargs
;
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_desc_workspace
.
GetDeviceBuffer
());
// The following is necessary since TwoStage kernel is using additional memory both
// for Workspace and kernel arguments.
if
(
kargs_size
>
0
)
{
gemm_kargs
.
Realloc
(
kargs_size
);
gemm
.
SetDeviceKernelArgs
(
&
argument
,
gemm_kargs
.
GetDeviceBuffer
());
}
if
(
workspace_size
>
0
&&
workspace_size
!=
kargs_size
)
{
gemm_workspace
.
Realloc
(
workspace_size
);
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_workspace
.
GetDeviceBuffer
());
}
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
...
...
example/16_gemm_multi_d_multi_reduces/gemm_add_add_mean_meansquare_xdl_fp16.cpp
View file @
b74918bc
...
...
@@ -198,7 +198,7 @@ int main()
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
// init reduc
e
tion buffer to 0
// init reduction buffer to 0
r0_device_buf
.
SetZero
();
r1_device_buf
.
SetZero
();
...
...
Prev
1
2
3
4
5
6
…
25
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment