Commit b74918bc authored by ThomasNing's avatar ThomasNing
Browse files

compiled version of cross gpu connection

parents 3fcad951 1c45ca35
......@@ -9,7 +9,7 @@
#include "ck/utility/array.hpp"
namespace ck {
// Define the common macro for gfx94x models
// Define the common macro for MI300 models
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
#define __gfx94__
#endif
......@@ -100,6 +100,18 @@ inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, int8_t>(int8_
return type_convert<bhalf_t>(x_fp32);
}
template <>
inline __host__ __device__ constexpr f8_ocp_t type_convert<f8_ocp_t, int>(int x)
{
return f8_ocp_t{type_convert<f8_ocp_t::data_type>(x)};
}
template <>
inline __host__ __device__ constexpr bf8_ocp_t type_convert<bf8_ocp_t, int>(int x)
{
return bf8_ocp_t{type_convert<bf8_ocp_t::data_type>(x)};
}
// Convert X to Y
template <typename Y, typename X>
__host__ __device__ constexpr Y type_convert_sp(X x)
......@@ -163,7 +175,7 @@ __host__ __device__ constexpr Y f8_convert_sr(X x);
// convert fp32 to fp8 with stochastic rounding
template <>
inline __host__ __device__ f8_t f8_convert_sr<f8_t, float>(float x)
inline __host__ __device__ f8_fnuz_t f8_convert_sr<f8_fnuz_t, float>(float x)
{
constexpr int seed = 1254739;
uint32_t rng = prand_generator<float, seed>(reinterpret_cast<uintptr_t>(&x), x);
......@@ -189,33 +201,35 @@ inline __host__ __device__ f8_t f8_convert_sr<f8_t, float>(float x)
constexpr bool clip = true;
constexpr f8_rounding_mode rm = f8_rounding_mode::stochastic;
return utils::
cast_to_f8<float, f8_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(x,
rng);
cast_to_f8<float, f8_fnuz_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(
x, rng);
#endif
}
// convert fp16 to fp8 with stochastic rounding
template <>
inline __host__ __device__ f8_t f8_convert_sr<f8_t, half_t>(half_t x)
inline __host__ __device__ f8_fnuz_t f8_convert_sr<f8_fnuz_t, half_t>(half_t x)
{
#if defined(__gfx94__)
// convert to float and use native converion
return f8_convert_sr<f8_t>(type_convert<float>(x));
return f8_convert_sr<f8_fnuz_t>(type_convert<float>(x));
#else
constexpr bool negative_zero_nan = true;
constexpr bool clip = true;
constexpr f8_rounding_mode rm = f8_rounding_mode::stochastic;
constexpr int seed = 1254739;
uint32_t rng = prand_generator<half_t, seed>(reinterpret_cast<uintptr_t>(&x), x);
return utils::
cast_to_f8<half_t, f8_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(
x, rng);
return utils::cast_to_f8<half_t,
f8_fnuz_t,
negative_zero_nan,
clip,
(rm == f8_rounding_mode::stochastic)>(x, rng);
#endif
}
// convert fp32 to bf8 with stochastic rounding
template <>
inline __host__ __device__ bf8_t f8_convert_sr<bf8_t, float>(float x)
inline __host__ __device__ bf8_fnuz_t f8_convert_sr<bf8_fnuz_t, float>(float x)
{
constexpr int seed = 1254739;
uint32_t rng = prand_generator<float, seed>(reinterpret_cast<uintptr_t>(&x), x);
......@@ -240,28 +254,32 @@ inline __host__ __device__ bf8_t f8_convert_sr<bf8_t, float>(float x)
constexpr bool negative_zero_nan = true;
constexpr bool clip = true;
constexpr f8_rounding_mode rm = f8_rounding_mode::stochastic;
return utils::
cast_to_f8<float, bf8_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(
x, rng);
return utils::cast_to_f8<float,
bf8_fnuz_t,
negative_zero_nan,
clip,
(rm == f8_rounding_mode::stochastic)>(x, rng);
#endif
}
// convert fp16 to bf8 with stochastic rounding
template <>
inline __host__ __device__ bf8_t f8_convert_sr<bf8_t, half_t>(half_t x)
inline __host__ __device__ bf8_fnuz_t f8_convert_sr<bf8_fnuz_t, half_t>(half_t x)
{
#if defined(__gfx94__)
// convert to float and use native converion
return f8_convert_sr<bf8_t>(type_convert<float>(x));
return f8_convert_sr<bf8_fnuz_t>(type_convert<float>(x));
#else
constexpr bool negative_zero_nan = true;
constexpr bool clip = true;
constexpr f8_rounding_mode rm = f8_rounding_mode::stochastic;
constexpr int seed = 1254739;
uint32_t rng = prand_generator<half_t, seed>(reinterpret_cast<uintptr_t>(&x), x);
return utils::
cast_to_f8<half_t, bf8_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(
x, rng);
return utils::cast_to_f8<half_t,
bf8_fnuz_t,
negative_zero_nan,
clip,
(rm == f8_rounding_mode::stochastic)>(x, rng);
#endif
}
......@@ -271,7 +289,7 @@ __host__ __device__ constexpr Y f8_convert_rne(X x);
// convert fp32 to fp8 with rounding to nearest even
template <>
inline __host__ __device__ f8_t f8_convert_rne<f8_t, float>(float x)
inline __host__ __device__ f8_fnuz_t f8_convert_rne<f8_fnuz_t, float>(float x)
{
#if defined(__gfx94__)
union
......@@ -296,32 +314,34 @@ inline __host__ __device__ f8_t f8_convert_rne<f8_t, float>(float x)
constexpr f8_rounding_mode rm = f8_rounding_mode::standard;
constexpr uint32_t rng = 0;
return utils::
cast_to_f8<float, f8_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(x,
rng);
cast_to_f8<float, f8_fnuz_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(
x, rng);
#endif
}
// convert fp16 to fp8 with rounding to nearest even
template <>
inline __host__ __device__ f8_t f8_convert_rne<f8_t, half_t>(half_t x)
inline __host__ __device__ f8_fnuz_t f8_convert_rne<f8_fnuz_t, half_t>(half_t x)
{
#if defined(__gfx94__)
// convert to float and use native converion
return f8_convert_rne<f8_t>(type_convert<float>(x));
return f8_convert_rne<f8_fnuz_t>(type_convert<float>(x));
#else
constexpr bool negative_zero_nan = true;
constexpr bool clip = true;
constexpr f8_rounding_mode rm = f8_rounding_mode::standard;
constexpr uint32_t rng = 0;
return utils::
cast_to_f8<half_t, f8_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(
x, rng);
return utils::cast_to_f8<half_t,
f8_fnuz_t,
negative_zero_nan,
clip,
(rm == f8_rounding_mode::stochastic)>(x, rng);
#endif
}
// convert fp32 to bf8 with rounding to nearest even
template <>
inline __host__ __device__ bf8_t f8_convert_rne<bf8_t, float>(float x)
inline __host__ __device__ bf8_fnuz_t f8_convert_rne<bf8_fnuz_t, float>(float x)
{
#if defined(__gfx94__)
union
......@@ -345,44 +365,59 @@ inline __host__ __device__ bf8_t f8_convert_rne<bf8_t, float>(float x)
constexpr bool clip = true;
constexpr f8_rounding_mode rm = f8_rounding_mode::standard;
constexpr uint32_t rng = 0;
return utils::
cast_to_f8<float, bf8_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(
x, rng);
return utils::cast_to_f8<float,
bf8_fnuz_t,
negative_zero_nan,
clip,
(rm == f8_rounding_mode::stochastic)>(x, rng);
#endif
}
// convert fp16 to bf8 with rounding to nearest even
template <>
inline __host__ __device__ bf8_t f8_convert_rne<bf8_t, half_t>(half_t x)
inline __host__ __device__ bf8_fnuz_t f8_convert_rne<bf8_fnuz_t, half_t>(half_t x)
{
#if defined(__gfx94__)
// convert to float and use native converion
return f8_convert_rne<bf8_t>(type_convert<float>(x));
return f8_convert_rne<bf8_fnuz_t>(type_convert<float>(x));
#else
constexpr bool negative_zero_nan = true;
constexpr bool clip = true;
constexpr f8_rounding_mode rm = f8_rounding_mode::standard;
constexpr uint32_t rng = 0;
return utils::
cast_to_f8<half_t, bf8_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(
x, rng);
return utils::cast_to_f8<half_t,
bf8_fnuz_t,
negative_zero_nan,
clip,
(rm == f8_rounding_mode::stochastic)>(x, rng);
#endif
}
// convert fp32 to fp8
template <>
inline __host__ __device__ f8_fnuz_t type_convert<f8_fnuz_t, float>(float x)
{
#if CK_USE_SR_F8_CONVERSION
return f8_convert_sr<f8_fnuz_t>(x);
#else
return f8_convert_rne<f8_fnuz_t>(x);
#endif
}
// convert fp32 to fp8
template <>
inline __host__ __device__ f8_t type_convert<f8_t, float>(float x)
inline __host__ __device__ f8_ocp_t type_convert<f8_ocp_t, float>(float x)
{
#if CK_USE_SR_F8_CONVERSION
return f8_convert_sr<f8_t>(x);
return f8_convert_sr<f8_ocp_t>(x);
#else
return f8_convert_rne<f8_t>(x);
return f8_convert_rne<f8_ocp_t>(x);
#endif
}
// convert fp8 to fp32
template <>
inline __host__ __device__ float type_convert<float, f8_t>(f8_t x)
inline __host__ __device__ float type_convert<float, f8_fnuz_t>(f8_fnuz_t x)
{
#if defined(__gfx94__)
float fval;
......@@ -392,30 +427,44 @@ inline __host__ __device__ float type_convert<float, f8_t>(f8_t x)
return fval;
#else
constexpr bool negative_zero_nan = true;
return utils::cast_from_f8<f8_t, float, negative_zero_nan>(x);
return utils::cast_from_f8<f8_fnuz_t, float, negative_zero_nan>(x);
#endif
}
template <>
inline __host__ __device__ float2_t type_convert<float2_t, f8x2_t>(f8x2_t x)
inline __host__ __device__ float2_t type_convert<float2_t, f8x2_fnuz_t>(f8x2_fnuz_t x)
{
#if defined(__gfx94__)
const auto i16val = bit_cast<uint16_t>(x);
return __builtin_amdgcn_cvt_pk_f32_fp8(i16val, 0);
#else
constexpr bool negative_zero_nan = true;
const auto f8x2_v = vector_type<f8_t, 2>(x);
const auto f8x2_v = vector_type<f8_fnuz_t, 2>(x);
vector_type<float, 2> f32x2_v;
f32x2_v.template AsType<float>()(Number<0>{}) =
utils::cast_from_f8<f8_t, float, negative_zero_nan>(
f8x2_v.template AsType<f8_t>()[Number<0>{}]);
utils::cast_from_f8<f8_fnuz_t, float, negative_zero_nan>(
f8x2_v.template AsType<f8_fnuz_t>()[Number<0>{}]);
f32x2_v.template AsType<float>()(Number<1>{}) =
utils::cast_from_f8<f8_t, float, negative_zero_nan>(
f8x2_v.template AsType<f8_t>()[Number<1>{}]);
utils::cast_from_f8<f8_fnuz_t, float, negative_zero_nan>(
f8x2_v.template AsType<f8_fnuz_t>()[Number<1>{}]);
return f32x2_v.template AsType<float2_t>()[Number<0>{}];
#endif
}
template <>
inline __host__ __device__ float2_t type_convert<float2_t, f8x2_ocp_t>(f8x2_ocp_t x)
{
#if CK_OCP_FP8_CVT_FAST_PATH
return fp8_impl::cast_to_f32x2_from_f8x2<f8_ocp_t::default_interpret>(
x.AsType<fp8_impl::fp8x2_storage_t>()[Number<0>{}]);
#else
return float2_t{fp8_impl::cast_from_f8<float, f8_ocp_t::wm, f8_ocp_t::we, false>(
x.AsType<fp8_storage_t>()[Number<0>{}]),
fp8_impl::cast_from_f8<float, f8_ocp_t::wm, f8_ocp_t::we, false>(
x.AsType<fp8_storage_t>()[Number<1>{}])};
#endif
}
template <>
inline __host__ __device__ half2_t type_convert<half2_t, float2_t>(float2_t x)
{
......@@ -428,42 +477,64 @@ inline __host__ __device__ half2_t type_convert<half2_t, float2_t>(float2_t x)
// convert fp16 to fp8
template <>
inline __host__ __device__ f8_t type_convert<f8_t, half_t>(half_t x)
inline __host__ __device__ f8_fnuz_t type_convert<f8_fnuz_t, half_t>(half_t x)
{
#if CK_USE_SR_F8_CONVERSION
return f8_convert_sr<f8_t>(x);
return f8_convert_sr<f8_fnuz_t>(x);
#else
return f8_convert_rne<f8_t>(x);
return f8_convert_rne<f8_fnuz_t>(x);
#endif
}
// convert fp16 to fp8
template <>
inline __host__ __device__ f8_ocp_t type_convert<f8_ocp_t, half_t>(half_t x)
{
#if CK_USE_SR_F8_CONVERSION
return f8_convert_sr<f8_ocp_t>(x);
#else
return f8_convert_rne<f8_ocp_t>(x);
#endif
}
// convert fp8 to fp16
template <>
inline __host__ __device__ half_t type_convert<half_t, f8_t>(f8_t x)
inline __host__ __device__ half_t type_convert<half_t, f8_fnuz_t>(f8_fnuz_t x)
{
#if defined(__gfx94__)
// use native conversion to float and convert to fp16
return type_convert<half_t>(type_convert<float>(x));
#else
constexpr bool negative_zero_nan = true;
return utils::cast_from_f8<f8_t, half_t, negative_zero_nan>(x);
return utils::cast_from_f8<f8_fnuz_t, half_t, negative_zero_nan>(x);
#endif
}
// convert fp32 to bf8
template <>
inline __host__ __device__ bf8_fnuz_t type_convert<bf8_fnuz_t, float>(float x)
{
#if CK_USE_SR_F8_CONVERSION
return f8_convert_sr<bf8_fnuz_t>(x);
#else
return f8_convert_rne<bf8_fnuz_t>(x);
#endif
}
// convert fp32 to bf8
template <>
inline __host__ __device__ bf8_t type_convert<bf8_t, float>(float x)
inline __host__ __device__ bf8_ocp_t type_convert<bf8_ocp_t, float>(float x)
{
#if CK_USE_SR_F8_CONVERSION
return f8_convert_sr<bf8_t>(x);
return f8_convert_sr<bf8_ocp_t>(x);
#else
return f8_convert_rne<bf8_t>(x);
return f8_convert_rne<bf8_ocp_t>(x);
#endif
}
// convert bf8 to fp32
template <>
inline __host__ __device__ float type_convert<float, bf8_t>(bf8_t x)
inline __host__ __device__ float type_convert<float, bf8_fnuz_t>(bf8_fnuz_t x)
{
#if defined(__gfx94__)
float fval;
......@@ -473,31 +544,42 @@ inline __host__ __device__ float type_convert<float, bf8_t>(bf8_t x)
return fval;
#else
constexpr bool negative_zero_nan = true;
return utils::cast_from_f8<bf8_t, float, negative_zero_nan>(x);
return utils::cast_from_f8<bf8_fnuz_t, float, negative_zero_nan>(x);
#endif
}
// convert fp16 to bf8
template <>
inline __host__ __device__ bf8_fnuz_t type_convert<bf8_fnuz_t, half_t>(half_t x)
{
#if CK_USE_SR_F8_CONVERSION
return f8_convert_sr<bf8_fnuz_t>(x);
#else
return f8_convert_rne<bf8_fnuz_t>(x);
#endif
}
// convert fp16 to bf8
template <>
inline __host__ __device__ bf8_t type_convert<bf8_t, half_t>(half_t x)
inline __host__ __device__ bf8_ocp_t type_convert<bf8_ocp_t, half_t>(half_t x)
{
#if CK_USE_SR_F8_CONVERSION
return f8_convert_sr<bf8_t>(x);
return f8_convert_sr<bf8_ocp_t>(x);
#else
return f8_convert_rne<bf8_t>(x);
return f8_convert_rne<bf8_ocp_t>(x);
#endif
}
// convert bf8 to fp16
template <>
inline __host__ __device__ half_t type_convert<half_t, bf8_t>(bf8_t x)
inline __host__ __device__ half_t type_convert<half_t, bf8_fnuz_t>(bf8_fnuz_t x)
{
#if defined(__gfx94__)
// use native conversion to float and convert to fp16
return type_convert<half_t>(type_convert<float>(x));
#else
constexpr bool negative_zero_nan = true;
return utils::cast_from_f8<bf8_t, half_t, negative_zero_nan>(x);
return utils::cast_from_f8<bf8_fnuz_t, half_t, negative_zero_nan>(x);
#endif
}
......
# ck_tile
[Back to the main page](../../README.md)
# Composable Kernel Tile
## concept
`ck_tile` provides a programming model with templated abstractions to enable users to implement performance-critical kernels for machine learning workloads. introduces following basic concepts to help users building your own operator
- tensor coordinate transformation, this is the core concept of layout/index transform abstraction in both compiler time and run time.
......@@ -44,5 +45,8 @@ our implementation of different device operators.
**[ops/epilogue]**
epilogue part of our kernel. We may extend this epilogue part to let users to build their own cutomized epilogues.
**[ref]**
reference implementation of cpu or gpu. This folder is supposed to include a specific header on demand.
## examples
currently we put all ck_tile related example under [/example/ck_tile](/example/ck_tile/) folder. Please check each example's subfolder.
......@@ -52,7 +52,9 @@
#include "ck_tile/core/tensor/tile_elementwise.hpp"
#include "ck_tile/core/tensor/tile_window.hpp"
#include "ck_tile/core/tensor/tile_window_linear.hpp"
#include "ck_tile/core/tensor/tile_window_utils.hpp"
#include "ck_tile/core/tensor/update_tile.hpp"
#include "ck_tile/core/utility/amd_address_space.hpp"
#include "ck_tile/core/utility/bit_cast.hpp"
#include "ck_tile/core/utility/functional.hpp"
#include "ck_tile/core/utility/functional_with_tuple.hpp"
......@@ -62,6 +64,7 @@
#include "ck_tile/core/utility/philox_rand.hpp"
#include "ck_tile/core/utility/random.hpp"
#include "ck_tile/core/utility/reduce_operator.hpp"
#include "ck_tile/core/utility/static_counter.hpp"
#include "ck_tile/core/utility/to_sequence.hpp"
#include "ck_tile/core/utility/transpose_vectors.hpp"
#include "ck_tile/core/utility/type_traits.hpp"
......
......@@ -621,6 +621,65 @@ CK_TILE_DEVICE void buffer_load_fence(index_t cnt = 0)
asm volatile("s_waitcnt vmcnt(%0)" : : "n"(cnt) : "memory");
}
CK_TILE_DEVICE void lds_load_fence(index_t cnt = 0)
{
asm volatile("s_waitcnt lgkmcnt(%0)" : : "n"(cnt) : "memory");
}
template <typename scalar_type, index_t N, bool pre_nop = false>
struct buffer_atomic_add_if;
template <bool pre_nop>
struct buffer_atomic_add_if<bf16_t, 2, pre_nop>
{
template <typename T>
CK_TILE_DEVICE void operator()(const T& value,
int32x4_t res /*buffer resource*/,
index_t v_offset,
index_t /*s_offset*/,
index_t i_offset /*max 0xFFF*/,
index_t flag = 1)
{
static_assert(sizeof(T) == 4);
auto save_exec = __builtin_amdgcn_read_exec();
using mbuf_t = float;
asm volatile("v_cmpx_le_u32 exec, 1, %4\n"
"global_atomic_pk_add_bf16 %0, %1, %2 offset:%3\n"
"s_mov_b64 exec %5"
:
: "v"(v_offset),
"v"(bit_cast<mbuf_t>(value)),
"s"(res.xy),
"n"(i_offset),
"v"(flag),
"s"(save_exec)
: "memory");
}
};
template <typename scalar_type, index_t N, bool pre_nop = false>
struct buffer_atomic_add;
template <bool pre_nop>
struct buffer_atomic_add<bf16_t, 2, pre_nop>
{
template <typename T>
CK_TILE_DEVICE void operator()(const T& value,
int32x4_t res /*buffer resource*/,
index_t v_offset,
index_t /*s_offset*/,
index_t i_offset /*max 0xFFF*/,
index_t /*flag = 1*/)
{
static_assert(sizeof(T) == 4);
using mbuf_t = float;
asm volatile("global_atomic_pk_add_bf16 %0, %1, %2 offset:%3"
:
: "v"(v_offset), "v"(bit_cast<mbuf_t>(value)), "s"(res.xy), "n"(i_offset)
: "memory");
}
};
namespace impl {
// below type indicate the data type used for buffer load inline asm
// clang-format off
......@@ -810,6 +869,11 @@ CK_TILE_DEVICE void buffer_store_fence(index_t cnt = 0)
asm volatile("s_waitcnt vmcnt(%0)" : : "n"(cnt) : "memory");
}
CK_TILE_DEVICE auto async_load_fence_raw(index_t cnt = 0)
{
asm volatile("s_waitcnt vmcnt(%0)" : : "n"(cnt) : "memory");
}
// buffer load i8
CK_TILE_DEVICE_EXTERN int8_t
llvm_amdgcn_raw_buffer_load_i8(int32x4_t srsrc,
......@@ -1239,8 +1303,8 @@ CK_TILE_DEVICE thread_buffer<T, N> amd_buffer_load_impl(int32x4_t src_wave_buffe
static_assert(
(std::is_same<T, double>::value && (N == 1 || N == 2 || N == 4 || N == 8)) ||
(std::is_same<T, float>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(std::is_same<T, fp16_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(std::is_same<T, bf16_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(std::is_same<T, fp16_t>::value && (N == 1 || N == 2 || N == 4 || N == 8)) ||
(std::is_same<T, bf16_t>::value && (N == 1 || N == 2 || N == 4 || N == 8)) ||
(std::is_same<T, int32_t>::value &&
(N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(std::is_same<T, fp8_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
......@@ -2378,6 +2442,45 @@ CK_TILE_DEVICE void amd_buffer_atomic_add(const thread_buffer<T, N>& src_thread_
#endif
}
template <typename T,
index_t N,
amd_buffer_coherence_enum coherence = amd_buffer_coherence_enum::coherence_default,
bool oob_conditional_check = true,
bool pre_nop = false>
CK_TILE_DEVICE void amd_buffer_atomic_add_raw(const thread_buffer<T, N>& src_thread_data,
T* p_dst_wave,
const index_t dst_thread_element_offset,
const index_t dst_linear_element_offset,
const bool dst_thread_element_valid,
const index_t dst_element_space_size,
bool_constant<pre_nop> = {})
{
const int32x4_t dst_wave_buffer_resource =
make_wave_buffer_resource(p_dst_wave, dst_element_space_size * sizeof(T));
index_t dst_thread_addr_offset = dst_thread_element_offset * sizeof(T);
index_t dst_linear_addr_offset = dst_linear_element_offset * sizeof(T);
if constexpr(oob_conditional_check)
{
buffer_atomic_add_if<T, N, pre_nop>{}(src_thread_data,
dst_wave_buffer_resource,
dst_thread_addr_offset,
0,
dst_linear_addr_offset,
dst_thread_element_valid);
}
else
{
buffer_atomic_add<T, N, pre_nop>{}(src_thread_data,
dst_wave_buffer_resource,
dst_thread_addr_offset,
0,
dst_linear_addr_offset,
1);
}
}
// buffer_atomic_max requires:
// 1) p_dst_wave must point to global memory
// 2) p_dst_wave must be a wavewise pointer.
......
......@@ -73,6 +73,24 @@ CK_TILE_DEVICE void block_sync_lds()
#endif
}
CK_TILE_DEVICE void block_sync_load_raw(index_t cnt = 0)
{
#ifdef __gfx12__
asm volatile("s_wait_loadcnt %0 \n"
"s_barrier_signal -1 \n"
"s_barrier_wait -1"
:
: "n"(cnt)
: "memory");
#else
asm volatile("s_waitcnt vmcnt(%0) \n"
"s_barrier"
:
: "n"(cnt)
: "memory");
#endif
}
CK_TILE_DEVICE void block_sync_lds_direct_load()
{
asm volatile("\
......
......@@ -102,4 +102,28 @@ CK_TILE_DEVICE T warp_shuffle(const T& v_local, uint32_t src_lane)
#endif
}
template <typename T>
CK_TILE_DEVICE auto flag_to_exec(const T& v_flag)
{
static_assert(sizeof(T) == 4);
// per-thread v_flag store into 2x sgpr
uint32x2_t exec_flag;
asm volatile("v_cmp_ge_u32 %[s_exec_flag], %[v_flag], 1"
: [s_exec_flag] "=s"(exec_flag)
: [v_flag] "v"(v_flag));
return exec_flag;
}
template <typename X, typename Y>
CK_TILE_DEVICE auto cmp_lt_to_exec(const X& x, const Y& y)
{
static_assert(sizeof(X) == 4 && sizeof(Y) == 4);
// per-thread cmp store into 2x sgpr
uint32x2_t exec_flag;
asm volatile("v_cmp_lt_u32 %[s_exec_flag], %[v_x], %[v_y]"
: [s_exec_flag] "=s"(exec_flag)
: [v_x] "v"(x), [v_y] "v"(y));
return exec_flag;
}
} // namespace ck_tile
......@@ -64,6 +64,7 @@
#define CK_TILE_FLOAT_TO_BFLOAT16_TRUNCATE_WITH_NAN 1
#define CK_TILE_FLOAT_TO_BFLOAT16_TRUNCATE 2
#define CK_TILE_FLOAT_TO_BFLOAT16_STANDARD_ASM 3
#define CK_TILE_FLOAT_TO_BFLOAT16_RTA_ASM 4
#ifndef CK_TILE_FLOAT_TO_BFLOAT16_DEFAULT
#define CK_TILE_FLOAT_TO_BFLOAT16_DEFAULT CK_TILE_FLOAT_TO_BFLOAT16_TRUNCATE
......@@ -225,3 +226,7 @@
#ifndef CK_TILE_WORKAROUND_SWDEV_383542
#define CK_TILE_WORKAROUND_SWDEV_383542 1
#endif
#ifndef CK_TILE_REFERENCE_MOE_SORTING_MOCK_ID
#define CK_TILE_REFERENCE_MOE_SORTING_MOCK_ID 1
#endif
......@@ -30,7 +30,7 @@ struct meta_data_buffer
{
constexpr index_t size = sizeof(T);
auto tmp = bit_cast<array<std::byte, size>>(data);
auto tmp = ck_tile::bit_cast<array<std::byte, size>>(data);
for(int i = 0; i < size; i++)
{
......@@ -66,7 +66,7 @@ struct meta_data_buffer
pos++;
}
data = bit_cast<T>(tmp);
data = ck_tile::bit_cast<T>(tmp);
}
return data;
......@@ -86,7 +86,7 @@ struct meta_data_buffer
pos++;
}
auto data = bit_cast<T>(tmp);
auto data = ck_tile::bit_cast<T>(tmp);
return data;
}
......
......@@ -18,6 +18,7 @@ enum class bf16_rounding_mode
truncate_with_nan,
truncate,
standard_asm,
rta_asm, // round to nearest away
};
template <bf16_rounding_mode rounding =
......@@ -180,6 +181,39 @@ uint16_t float_to_bf16_rtn_asm(float f)
return uint16_t(u.int32);
}
// TODO: do we need this on host?
CK_TILE_HOST
uint16_t float_to_bf16_rta_asm(float f) { return float_to_bf16_rtn_raw(f); }
CK_TILE_DEVICE
uint16_t float_to_bf16_rta_asm(float f)
{
union
{
float fp32;
struct
{
uint16_t lo;
uint16_t hi;
};
} u = {f};
const uint32_t low_nan = 0x7fff;
const uint32_t hi_nan = 0x7fff0000;
using uint32x2_t = uint32_t __attribute__((ext_vector_type(2)));
uint32x2_t check_nan;
asm volatile("v_cmp_u_f32 %[s_cnan], %[v_x], %[v_x] \n"
"v_add3_u32 %[v_x], %[v_x], %[v_blo], 1 \n"
"v_cndmask_b32 %[v_x], %[v_x], %[v_bhi], %[s_cnan]"
: [s_cnan] "+s"(check_nan), [v_x] "+v"(u.fp32)
: [v_blo] "v"(low_nan), [v_bhi] "v"(hi_nan));
// Note: in above code snipet, we use hi 16 bit
return u.hi;
}
// Truncate instead of rounding, preserving SNaN
CK_TILE_HOST_DEVICE
constexpr uint16_t float_to_bf16_truc_nan_raw(float f)
......@@ -213,6 +247,8 @@ CK_TILE_HOST_DEVICE constexpr uint16_t float_to_bf16_raw(float f, constant<round
return float_to_bf16_rtn_asm(f);
else if constexpr(rounding == bf16_rounding_mode::truncate_with_nan)
return float_to_bf16_truc_nan_raw(f);
else if constexpr(rounding == bf16_rounding_mode::rta_asm)
return float_to_bf16_rta_asm(f);
else
return float_to_bf16_truc_raw(f);
}
......
......@@ -437,34 +437,74 @@ struct buffer_view<address_space_enum::global,
// i is offset of T, not X. i should be aligned to X
template <memory_operation_enum Op,
typename X,
bool oob_conditional_check = true,
typename std::enable_if<
std::is_same<typename vector_traits<remove_cvref_t<X>>::scalar_type,
typename vector_traits<remove_cvref_t<T>>::scalar_type>::value,
bool>::type = false>
CK_TILE_DEVICE void update(index_t i, index_t linear_offset, bool is_valid_element, const X& x)
CK_TILE_DEVICE void update(index_t i,
index_t linear_offset,
bool is_valid_element,
const X& x,
bool_constant<oob_conditional_check> = {})
{
if constexpr(Op == memory_operation_enum::set)
{
this->template set<X>(i, linear_offset, is_valid_element, x);
this->template set<X, oob_conditional_check>(i, linear_offset, is_valid_element, x);
}
else if constexpr(Op == memory_operation_enum::atomic_add)
{
this->template atomic_add<X>(i, linear_offset, is_valid_element, x);
this->template atomic_add<X, oob_conditional_check>(
i, linear_offset, is_valid_element, x);
}
else if constexpr(Op == memory_operation_enum::atomic_max)
{
this->template atomic_max<X>(i, linear_offset, is_valid_element, x);
this->template atomic_max<X, oob_conditional_check>(
i, linear_offset, is_valid_element, x);
}
// FIXME: remove memory_operation_enum::add
else if constexpr(Op == memory_operation_enum::add)
{
auto tmp = this->template get<X>(i, linear_offset, is_valid_element);
this->template set<X>(i, linear_offset, is_valid_element, x + tmp);
auto tmp =
this->template get<X, oob_conditional_check>(i, linear_offset, is_valid_element);
this->template set<X, oob_conditional_check>(
i, linear_offset, is_valid_element, x + tmp);
// tmp += x;
// this->template set<X>(i, is_valid_element, tmp);
}
}
// i is offset of T, not X. i should be aligned to X
template <memory_operation_enum Op,
typename X,
bool oob_conditional_check = true,
bool pre_nop = false,
typename std::enable_if<
std::is_same<typename vector_traits<remove_cvref_t<X>>::scalar_type,
typename vector_traits<remove_cvref_t<T>>::scalar_type>::value,
bool>::type = false>
CK_TILE_DEVICE void update_raw(index_t i,
index_t linear_offset,
bool is_valid_element,
const X& x,
bool_constant<oob_conditional_check> = {},
bool_constant<pre_nop> = {})
{
if constexpr(Op == memory_operation_enum::set)
{
this->template set_raw<X, oob_conditional_check>(i, linear_offset, is_valid_element, x);
}
else if constexpr(Op == memory_operation_enum::atomic_add)
{
this->template atomic_add_raw<X, oob_conditional_check, pre_nop>(
i, linear_offset, is_valid_element, x);
}
else if constexpr(Op == memory_operation_enum::atomic_max)
{
// this->template atomic_max_raw<X>(i, linear_offset, is_valid_element, x);
}
}
// i is offset of T, not X. i should be aligned to X
template <typename X,
bool oob_conditional_check = true,
......@@ -533,6 +573,7 @@ struct buffer_view<address_space_enum::global,
}
template <typename X,
bool oob_conditional_check = true,
typename std::enable_if<
std::is_same<typename vector_traits<remove_cvref_t<X>>::scalar_type,
typename vector_traits<remove_cvref_t<T>>::scalar_type>::value,
......@@ -585,6 +626,39 @@ struct buffer_view<address_space_enum::global,
}
template <typename X,
bool oob_conditional_check = true,
bool pre_nop = true,
typename std::enable_if<
std::is_same<typename vector_traits<remove_cvref_t<X>>::scalar_type,
typename vector_traits<remove_cvref_t<T>>::scalar_type>::value,
bool>::type = false>
CK_TILE_DEVICE void
atomic_add_raw(index_t i, index_t linear_offset, bool is_valid_element, const X& x)
{
// using scalar_t = typename vector_traits<remove_cvref_t<T>>::scalar_type;
// X contains multiple T
constexpr index_t scalar_per_t_vector = vector_traits<remove_cvref_t<T>>::vector_size;
constexpr index_t scalar_per_x_vector = vector_traits<remove_cvref_t<X>>::vector_size;
static_assert(scalar_per_x_vector % scalar_per_t_vector == 0,
"wrong! X should contain multiple T");
static_assert(get_address_space() == address_space_enum::global, "only support global mem");
constexpr index_t t_per_x = scalar_per_x_vector / scalar_per_t_vector;
amd_buffer_atomic_add_raw<remove_cvref_t<T>,
t_per_x,
Coherence,
oob_conditional_check,
pre_nop>(
x, p_data_, i, linear_offset, is_valid_element, buffer_size_);
}
template <typename X,
bool oob_conditional_check = true,
typename std::enable_if<
std::is_same<typename vector_traits<remove_cvref_t<X>>::scalar_type,
typename vector_traits<remove_cvref_t<T>>::scalar_type>::value,
......
......@@ -22,28 +22,32 @@ template <typename BottomTensorView_,
typename WindowLengths_,
typename TileDistribution_,
index_t NumCoord,
index_t i_access = -1,
bool oob_conditional_check = true>
CK_TILE_DEVICE auto load_tile(const tile_window_with_static_distribution<BottomTensorView_,
WindowLengths_,
TileDistribution_,
NumCoord>& tile_window,
number<i_access> = {},
bool_constant<oob_conditional_check> = {})
{
return tile_window.load(number<-1>{}, bool_constant<oob_conditional_check>{});
return tile_window.load(number<i_access>{}, bool_constant<oob_conditional_check>{});
}
template <typename BottomTensorView_,
typename WindowLengths_,
typename TileDistribution_,
typename LinearBottomDims_,
index_t i_access = -1,
bool oob_conditional_check = true>
CK_TILE_DEVICE auto load_tile(const tile_window_linear<BottomTensorView_,
WindowLengths_,
TileDistribution_,
LinearBottomDims_>& tile_window,
number<i_access> = {},
bool_constant<oob_conditional_check> = {})
{
return tile_window.load(number<-1>{}, bool_constant<oob_conditional_check>{});
return tile_window.load(number<i_access>{}, bool_constant<oob_conditional_check>{});
}
template <typename DistributedTensor_,
......@@ -51,15 +55,35 @@ template <typename DistributedTensor_,
typename WindowLengths_,
typename TileDistribution_,
index_t NumCoord,
index_t i_access = -1,
bool oob_conditional_check = true>
CK_TILE_DEVICE auto load_tile(DistributedTensor_& dst_tile,
const tile_window_with_static_distribution<BottomTensorView_,
WindowLengths_,
TileDistribution_,
NumCoord>& tile_window,
number<i_access> = {},
bool_constant<oob_conditional_check> = {})
{
return tile_window.load(dst_tile, bool_constant<oob_conditional_check>{});
return tile_window.load(dst_tile, number<i_access>{}, bool_constant<oob_conditional_check>{});
}
template <typename DistributedTensor_,
typename BottomTensorView_,
typename WindowLengths_,
typename TileDistribution_,
typename LinearBottomDims_,
index_t i_access = -1,
bool oob_conditional_check = true>
CK_TILE_DEVICE auto load_tile(DistributedTensor_& dst_tile,
const tile_window_linear<BottomTensorView_,
WindowLengths_,
TileDistribution_,
LinearBottomDims_>& tile_window,
number<i_access> = {},
bool_constant<oob_conditional_check> = {})
{
return tile_window.load(dst_tile, number<i_access>{}, bool_constant<oob_conditional_check>{});
}
/**
......@@ -76,6 +100,7 @@ template <typename T,
typename WindowLengths_,
typename TileDistribution_,
index_t NumCoord,
index_t i_access = -1,
bool oob_conditional_check = true,
bool pre_nop = false>
CK_TILE_DEVICE auto load_tile_raw(T& tile,
......@@ -83,11 +108,12 @@ CK_TILE_DEVICE auto load_tile_raw(T& tile,
WindowLengths_,
TileDistribution_,
NumCoord>& tile_window,
number<i_access> = {},
bool_constant<oob_conditional_check> = {},
bool_constant<pre_nop> = {})
{
tile_window.load_raw(
tile, number<-1>{}, bool_constant<oob_conditional_check>{}, bool_constant<pre_nop>{});
tile, number<i_access>{}, bool_constant<oob_conditional_check>{}, bool_constant<pre_nop>{});
}
template <typename T,
......@@ -95,6 +121,7 @@ template <typename T,
typename WindowLengths_,
typename TileDistribution_,
typename LinearBottomDims_,
index_t i_access = -1,
bool oob_conditional_check = true,
bool pre_nop = false>
CK_TILE_DEVICE auto load_tile_raw(T& tile,
......@@ -102,11 +129,12 @@ CK_TILE_DEVICE auto load_tile_raw(T& tile,
WindowLengths_,
TileDistribution_,
LinearBottomDims_>& tile_window,
number<i_access> = {},
bool_constant<oob_conditional_check> = {},
bool_constant<pre_nop> = {})
{
tile_window.load_raw(
tile, number<-1>{}, bool_constant<oob_conditional_check>{}, bool_constant<pre_nop>{});
tile, number<i_access>{}, bool_constant<oob_conditional_check>{}, bool_constant<pre_nop>{});
}
template <typename LdsTileWindow_,
......@@ -114,6 +142,7 @@ template <typename LdsTileWindow_,
typename WindowLengths_,
typename TileDistribution_,
index_t NumCoord,
index_t i_access = -1,
bool oob_conditional_check = true,
bool pre_nop = false>
CK_TILE_DEVICE auto
......@@ -122,11 +151,14 @@ async_load_tile_raw(LdsTileWindow_&& lds_tile,
WindowLengths_,
TileDistribution_,
NumCoord>& tile_window,
number<i_access> = {},
bool_constant<oob_conditional_check> = {},
bool_constant<pre_nop> = {})
{
return tile_window.async_load_raw(
lds_tile, number<-1>{}, bool_constant<oob_conditional_check>{}, bool_constant<pre_nop>{});
return tile_window.async_load_raw(lds_tile,
number<i_access>{},
bool_constant<oob_conditional_check>{},
bool_constant<pre_nop>{});
}
template <typename LdsTileWindow_,
......@@ -134,6 +166,7 @@ template <typename LdsTileWindow_,
typename WindowLengths_,
typename TileDistribution_,
typename LinearBottomDims_,
index_t i_access = -1,
bool oob_conditional_check = true,
bool pre_nop = false>
CK_TILE_DEVICE auto async_load_tile_raw(LdsTileWindow_&& lds_tile,
......@@ -141,11 +174,14 @@ CK_TILE_DEVICE auto async_load_tile_raw(LdsTileWindow_&& lds_tile,
WindowLengths_,
TileDistribution_,
LinearBottomDims_>& tile_window,
number<i_access> = {},
bool_constant<oob_conditional_check> = {},
bool_constant<pre_nop> = {})
{
return tile_window.async_load_raw(
lds_tile, number<-1>{}, bool_constant<oob_conditional_check>{}, bool_constant<pre_nop>{});
return tile_window.async_load_raw(lds_tile,
number<i_access>{},
bool_constant<oob_conditional_check>{},
bool_constant<pre_nop>{});
}
CK_TILE_DEVICE auto async_load_fence(index_t cnt = 0)
......
......@@ -170,7 +170,7 @@ CK_TILE_DEVICE void shuffle_tile(OutTensor& out, const InTensor& in)
}
else
{
// NOT implemented
static_assert(false, "The shuffle should always happen!");
}
}
......
......@@ -29,6 +29,7 @@ struct static_distributed_tensor
remove_cvref_t<decltype(StaticTileDistribution{}.get_ys_to_d_descriptor())>;
static constexpr index_t kThreadElementSpaceSize = ThreadTensorDesc{}.get_element_space_size();
static_assert(0 < kThreadElementSpaceSize, "Make sure tile distribution is valid");
CK_TILE_HOST_DEVICE static constexpr auto get_num_of_dimension()
{
......@@ -201,4 +202,30 @@ CK_TILE_HOST_DEVICE constexpr auto get_y_unpacks_from_x_unpacks(YLengths, number
return unpacks;
}
namespace detail {
// check if 2 static_distributed_tensor has same data type and size of element
// but only difference in distribution
template <typename X, typename Y>
struct is_similiar_distributed_tensor
{
static constexpr bool value = false;
};
template <typename TypeX, typename DistX, typename TypeY, typename DistY>
struct is_similiar_distributed_tensor<static_distributed_tensor<TypeX, DistX>,
static_distributed_tensor<TypeY, DistY>>
{
using Tx = static_distributed_tensor<TypeX, DistX>;
using Ty = static_distributed_tensor<TypeY, DistY>;
static constexpr bool value = std::is_same_v<typename Tx::DataType, typename Ty::DataType> &&
Tx::get_thread_buffer_size() == Ty::get_thread_buffer_size();
};
template <typename X, typename Y>
inline constexpr bool is_similiar_distributed_tensor_v =
is_similiar_distributed_tensor<X, Y>::value;
} // namespace detail
} // namespace ck_tile
......@@ -333,6 +333,48 @@ struct tensor_view
coord.get_offset(), linear_offset, is_valid_element, x);
}
// X is vector of DataType.
// "coord" is coordinate of DataType, not X. "coord" should be aligned to X
template <typename X,
bool oob_conditional_check = true,
bool pre_nop = false,
typename std::enable_if<
std::is_same_v<typename vector_traits<remove_cvref_t<X>>::scalar_type,
typename vector_traits<remove_cvref_t<DataType>>::scalar_type>,
bool>::type = false>
CK_TILE_HOST_DEVICE constexpr void
update_vectorized_elements_raw(const TensorCoord& coord,
index_t linear_offset,
const X& x,
bool_constant<oob_conditional_check> = {},
bool_constant<pre_nop> = {})
{
buf_.template update_raw<DstInMemOp, X, oob_conditional_check, pre_nop>(
coord.get_offset(),
linear_offset,
coordinate_has_valid_offset_assuming_top_index_is_valid(desc_, coord),
x);
}
template <typename X,
bool oob_conditional_check = true,
bool pre_nop = false,
typename std::enable_if<
std::is_same_v<typename vector_traits<remove_cvref_t<X>>::scalar_type,
typename vector_traits<remove_cvref_t<DataType>>::scalar_type>,
bool>::type = false>
CK_TILE_HOST_DEVICE constexpr void
update_vectorized_elements_raw(const TensorCoord& coord,
index_t linear_offset,
bool is_valid_element,
const X& x,
bool_constant<oob_conditional_check> = {},
bool_constant<pre_nop> = {})
{
buf_.template update_raw<DstInMemOp, X, oob_conditional_check, pre_nop>(
coord.get_offset(), linear_offset, is_valid_element, x);
}
CK_TILE_HOST_DEVICE void print() const
{
printf("tensor_view{");
......
......@@ -292,12 +292,15 @@ struct tile_window_with_static_distribution
{
constexpr auto tile_dstr = TileDstr{};
auto dst_tensor = make_static_distributed_tensor<DataType>(tile_dstr);
load(dst_tensor, bool_constant<oob_conditional_check>{});
load(dst_tensor, number<i_access_unsupport_>{}, bool_constant<oob_conditional_check>{});
return dst_tensor;
}
template <typename DistributedTensor, bool oob_conditional_check = true>
template <typename DistributedTensor,
index_t i_access_unsupport_ = -1,
bool oob_conditional_check = true>
CK_TILE_DEVICE auto load(DistributedTensor& dst_tensor,
number<i_access_unsupport_> = {},
bool_constant<oob_conditional_check> = {}) const
{
using Traits = load_store_traits;
......@@ -785,6 +788,73 @@ struct tile_window_with_static_distribution
});
}
template <index_t i_access_unsupport_ = -1, bool oob_conditional_check = true, bool pre_nop>
CK_TILE_DEVICE void update_raw(const static_distributed_tensor<DataType, TileDstr>& dstr_tensor,
number<i_access_unsupport_> = {},
bool_constant<oob_conditional_check> = {},
bool_constant<pre_nop> = {}) const
{
using Traits = load_store_traits;
using vector_t = typename Traits::vector_t;
using SFC_Ys = typename Traits::SFC_Ys;
constexpr auto tile_dstr = TileDstr{};
// loop over thread tensor space [y0, y1, ...]
static_for<0, NumCoord, 1>{}([&](auto iCoord) {
/// TODO: use structure binding (to be captured later) if compiled in C++20
auto window_adaptor_thread_coord = pre_computed_coords_[iCoord][I0];
auto bottom_tensor_thread_coord = pre_computed_coords_[iCoord][I1];
static_for<0, NumAccessPerCoord, 1>{}([&](auto iCoordAccess) {
constexpr auto iAccess = number<iCoord * NumAccessPerCoord + iCoordAccess>{};
// data index [y0, y1, ...]
constexpr auto idx_ys_start = SFC_Ys::get_index(iAccess);
// read from distributed tensor
vector_t vec_value;
static_for<0, Traits::ScalarPerVector, 1>{}([&](auto j) {
constexpr auto idx_ys = generate_tuple(
[&](auto jj) {
return jj == Traits::VectorDimY ? (idx_ys_start[jj] + j)
: idx_ys_start[jj];
},
number<NDimY>{});
constexpr index_t d =
tile_dstr.get_ys_to_d_descriptor().calculate_offset(idx_ys);
vec_value.template get_as<DataType>()(j) =
dstr_tensor.get_thread_buffer().template at<d>();
});
// write into bottom tensor
get_bottom_tensor_view().template update_vectorized_elements_raw<vector_t>(
bottom_tensor_thread_coord,
0,
vec_value,
bool_constant<oob_conditional_check>{},
bool_constant<pre_nop>{});
// move thread coordinate
if constexpr(iCoordAccess != (NumAccessPerCoord - 1))
{
constexpr auto idx_diff_ys = SFC_Ys::get_forward_step(iAccess);
constexpr auto idx_diff_ps_ys = container_concat(
generate_tuple([&](auto) { return number<0>{}; }, number<NDimP>{}),
idx_diff_ys);
move_window_adaptor_and_bottom_tensor_thread_coordinate(
window_adaptor_thread_coord, bottom_tensor_thread_coord, idx_diff_ps_ys);
}
});
});
}
// move thread's botom tensor coordiante
// [x0', x1', ... ] ==> [offset]
// also move window-origin
......
......@@ -432,23 +432,38 @@ struct tile_window_linear
CK_TILE_DEVICE static constexpr index_t get_bottom_linear_offset(number<i_access>)
{
constexpr auto linear_coord = get_bottom_linear_coordinate(number<i_access>{});
// since this is linear offset, we assum bottom X tensor is always linear
constexpr index_t linear_offset = [&]() {
constexpr auto x_idx_ = linear_coord;
constexpr auto x_len_ = TileDstr{}.get_lengths();
static_assert(x_idx_.size() == x_len_.size());
constexpr index_t x_dims_ = x_idx_.size();
index_t cu_stride_ = 1;
index_t cu_offset_ = 0;
static_for<0, x_dims_, 1>{}([&](auto i_) {
auto r_i_ = number<x_dims_ - i_ - 1>{};
cu_offset_ += x_idx_[r_i_] * cu_stride_;
cu_stride_ *= x_len_[r_i_];
});
return cu_offset_;
}();
return linear_offset;
constexpr auto is_pure_linear_tensor =
reduce_on_sequence(LinearBottomDims{}, multiplies{}, number<1>{});
if constexpr(is_pure_linear_tensor)
{
// this case usually is a LDS window, everything is known at compile tile.
// we directly use BottomTensorView transform to compute the offset, in case padding
auto bottom_tensor_coord =
make_tensor_coordinate(BottomTensorView{}.get_tensor_descriptor(), linear_coord);
return bottom_tensor_coord.get_offset();
}
else
{
// this case usually is a global window, where last dim can be linear
// we hack here, that use the original TileDstr to compute the linear offset
// ... hoping that there is no extra padding between other dims, which make sense
// since that would introduce runtime length (so can't use linear offset)
constexpr index_t linear_offset = [&]() {
constexpr auto x_idx_ = linear_coord;
constexpr auto x_len_ = TileDstr{}.get_lengths();
static_assert(x_idx_.size() == x_len_.size());
constexpr index_t x_dims_ = x_idx_.size();
index_t cu_stride_ = 1;
index_t cu_offset_ = 0;
static_for<0, x_dims_, 1>{}([&](auto i_) {
auto r_i_ = number<x_dims_ - i_ - 1>{};
cu_offset_ += x_idx_[r_i_] * cu_stride_;
cu_stride_ *= x_len_[r_i_];
});
return cu_offset_;
}();
return linear_offset;
}
}
CK_TILE_DEVICE constexpr auto get_num_of_access() const { return traits::NumAccess; }
......@@ -509,6 +524,64 @@ struct tile_window_linear
return dst_tensor;
}
template <typename DstTile, index_t i_access = -1, bool oob_conditional_check = true>
CK_TILE_DEVICE auto load(DstTile& dst_tensor,
number<i_access> = {},
bool_constant<oob_conditional_check> = {}) const
{
using vector_t = typename traits::vector_t;
using SFC_Ys = typename traits::SFC_Ys;
constexpr auto tile_dstr = TileDstr{};
// auto dst_tensor = make_static_distributed_tensor<DataType>(tile_dstr);
auto issue = [&](auto i_access_) {
constexpr auto IAccess = number<i_access_>{};
constexpr auto non_linear_id = number<AccessMap_NonLinear{}[IAccess]>{};
auto bottom_tensor_thread_coord = cached_coords_[non_linear_id];
auto bottom_tensor_flag = cached_flags_[IAccess];
constexpr auto linear_offset = get_bottom_linear_offset(IAccess);
// read from bottom tensor
const vector_t vec_value =
get_bottom_tensor_view().template get_vectorized_elements<vector_t>(
bottom_tensor_thread_coord,
linear_offset,
bottom_tensor_flag,
bool_constant<oob_conditional_check>{});
#if 1
// data index [y0, y1, ...]
constexpr auto idx_diff_ys = SFC_Ys::get_index(IAccess);
// write into distributed tensor
static_for<0, traits::ScalarPerVector, 1>{}([&](auto j) {
constexpr auto idx_ys = generate_tuple(
[&](auto jj) {
return jj == traits::VectorDimY ? (idx_diff_ys[jj] + j) : idx_diff_ys[jj];
},
number<NDimY>{});
constexpr index_t d = tile_dstr.get_ys_to_d_descriptor().calculate_offset(idx_ys);
dst_tensor.get_thread_buffer().template at<d>() =
vec_value.template get_as<DataType>()[j];
});
#else
constexpr index_t d = tile_dstr.get_ys_to_d_descriptor().calculate_offset(idx_ys_start);
static_assert(d % traits::ScalarPerVector == 0);
dst_tensor.get_thread_buffer().template get_as<vector_t>()(
number<d / traits::ScalarPerVector>{}) = bit_cast<vector_t>(vec_value);
#endif
};
WINDOW_DISPATCH_ISSUE();
return dst_tensor;
}
template <typename DstTile,
index_t i_access = -1,
bool oob_conditional_check = true,
......@@ -849,6 +922,58 @@ struct tile_window_linear
WINDOW_DISPATCH_ISSUE();
}
template <index_t i_access = -1, bool oob_conditional_check = true, bool pre_nop = false>
CK_TILE_DEVICE void update_raw(const static_distributed_tensor<DataType, TileDstr>& dstr_tensor,
number<i_access> = {},
bool_constant<oob_conditional_check> = {},
bool_constant<pre_nop> = {}) const
{
using vector_t = typename traits::vector_t;
using SFC_Ys = typename traits::SFC_Ys;
constexpr auto tile_dstr = TileDstr{};
// loop over thread tensor space [y0, y1, ...]
auto issue = [&](auto i_access_) {
constexpr auto IAccess = number<i_access_>{};
constexpr auto non_linear_id = number<AccessMap_NonLinear{}[IAccess]>{};
auto bottom_tensor_thread_coord = cached_coords_[non_linear_id];
constexpr auto linear_offset = get_bottom_linear_offset(IAccess);
auto bottom_tensor_flag = cached_flags_[IAccess];
// data index [y0, y1, ...]
constexpr auto idx_ys_start = SFC_Ys::get_index(IAccess);
// read from distributed tensor
vector_t vec_value;
static_for<0, traits::ScalarPerVector, 1>{}([&](auto j) {
constexpr auto idx_ys = generate_tuple(
[&](auto jj) {
return jj == traits::VectorDimY ? (idx_ys_start[jj] + j) : idx_ys_start[jj];
},
number<NDimY>{});
constexpr index_t d = tile_dstr.get_ys_to_d_descriptor().calculate_offset(idx_ys);
vec_value.template get_as<DataType>()(j) =
dstr_tensor.get_thread_buffer().template at<d>();
});
// write into bottom tensor
get_bottom_tensor_view().template update_vectorized_elements_raw<vector_t>(
bottom_tensor_thread_coord,
linear_offset,
bottom_tensor_flag,
vec_value,
bool_constant<oob_conditional_check>{},
bool_constant<pre_nop>{});
};
WINDOW_DISPATCH_ISSUE();
}
// move thread's botom tensor coordiante
// [x0', x1', ... ] ==> [offset]
// also move window-origin
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck_tile/core/arch/arch.hpp"
#include "ck_tile/core/arch/utility.hpp"
#include "ck_tile/core/algorithm/space_filling_curve.hpp"
#include "ck_tile/core/config.hpp"
#include "ck_tile/core/container/array.hpp"
#include "ck_tile/core/container/sequence.hpp"
#include "ck_tile/core/container/tuple.hpp"
#include "ck_tile/core/container/container_helper.hpp"
#include "ck_tile/core/tensor/static_distributed_tensor.hpp"
#include "ck_tile/core/tensor/tensor_adaptor.hpp"
#include "ck_tile/core/tensor/tile_distribution.hpp"
#include "ck_tile/core/utility/functional.hpp"
#include "ck_tile/core/utility/type_traits.hpp"
#pragma once
namespace ck_tile {
// input a lds store tile, extract some information from it
// used to set m0 value for gfx9 serious
template <typename LdsTileWindow_>
CK_TILE_DEVICE auto get_async_store_smem_info(LdsTileWindow_&& lds_tile)
{
using LdsTileWindow = remove_cvref_t<LdsTileWindow_>;
using LdsDataType = typename LdsTileWindow::DataType;
// issues * warps * lanes
static_assert(LdsTileWindow::get_num_of_dimension() == 3); // TODO: hard coded
const index_t size_per_buf =
lds_tile.get_bottom_tensor_view().get_tensor_descriptor().calculate_offset(
make_tuple(number<0>{}, number<0>{}, number<0>{})) *
sizeof(LdsDataType);
const index_t size_per_wave =
lds_tile.get_bottom_tensor_view().get_tensor_descriptor().calculate_offset(
make_tuple(number<0>{}, number<1>{}, number<0>{})) *
sizeof(LdsDataType) -
size_per_buf;
const index_t size_per_issue =
lds_tile.get_bottom_tensor_view().get_tensor_descriptor().calculate_offset(
make_tuple(number<1>{}, number<0>{}, number<0>{})) *
sizeof(LdsDataType) -
size_per_buf;
const index_t m0_init_value = size_per_buf + size_per_wave * get_warp_id();
return make_tuple(m0_init_value, size_per_issue);
}
} // namespace ck_tile
......@@ -41,15 +41,65 @@ template <typename BottomTensorView_,
typename WindowLengths_,
typename TileDistribution_,
index_t NumCoord,
typename DataType_>
typename DataType_,
index_t i_access = -1,
bool oob_conditional_check = true>
CK_TILE_DEVICE void
update_tile(tile_window_with_static_distribution<BottomTensorView_,
WindowLengths_,
TileDistribution_,
NumCoord>& tile_window,
const static_distributed_tensor<DataType_, TileDistribution_>& dstr_tensor)
const static_distributed_tensor<DataType_, TileDistribution_>& dstr_tensor,
number<i_access> = {},
bool_constant<oob_conditional_check> = {})
{
tile_window.update(dstr_tensor);
tile_window.update(dstr_tensor, number<i_access>{}, bool_constant<oob_conditional_check>{});
}
template <typename BottomTensorView_,
typename WindowLengths_,
typename TileDistribution_,
index_t NumCoord,
typename DataType_,
index_t i_access = -1,
bool oob_conditional_check = true,
bool pre_nop = false>
CK_TILE_DEVICE void
update_tile_raw(tile_window_with_static_distribution<BottomTensorView_,
WindowLengths_,
TileDistribution_,
NumCoord>& tile_window,
const static_distributed_tensor<DataType_, TileDistribution_>& dstr_tensor,
number<i_access> = {},
bool_constant<oob_conditional_check> = {},
bool_constant<pre_nop> = {})
{
tile_window.update_raw(dstr_tensor,
number<i_access>{},
bool_constant<oob_conditional_check>{},
bool_constant<pre_nop>{});
}
template <typename BottomTensorView_,
typename WindowLengths_,
typename TileDistribution_,
typename LinearBottomDims_,
typename DataType_,
index_t i_access = -1,
bool oob_conditional_check = true,
bool pre_nop = false>
CK_TILE_DEVICE auto update_tile_raw(
tile_window_linear<BottomTensorView_, WindowLengths_, TileDistribution_, LinearBottomDims_>&
tile_window,
const static_distributed_tensor<DataType_, TileDistribution_>& dstr_tensor,
number<i_access> = {},
bool_constant<oob_conditional_check> = {},
bool_constant<pre_nop> = {})
{
tile_window.update_raw(dstr_tensor,
number<i_access>{},
bool_constant<oob_conditional_check>{},
bool_constant<pre_nop>{});
}
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core/config.hpp"
// Address Space for AMDGCN
// https://llvm.org/docs/AMDGPUUsage.html#address-space
namespace ck_tile {
#define CK_CONSTANT_ADDRESS_SPACE __attribute__((address_space(4)))
template <typename T>
__device__ T* cast_pointer_to_generic_address_space(T CK_CONSTANT_ADDRESS_SPACE* p)
{
// cast a pointer in "Constant" address space (4) to "Generic" address space (0)
// only c-style pointer cast seems be able to be compiled
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wold-style-cast"
return (T*)p; // NOLINT(old-style-cast)
#pragma clang diagnostic pop
}
template <typename T>
__host__ __device__ T CK_CONSTANT_ADDRESS_SPACE* cast_pointer_to_constant_address_space(T* p)
{
// cast a pointer in "Generic" address space (0) to "Constant" address space (4)
// only c-style pointer cast seems be able to be compiled
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wold-style-cast"
return (T CK_CONSTANT_ADDRESS_SPACE*)p; // NOLINT(old-style-cast)
#pragma clang diagnostic pop
}
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core/config.hpp"
namespace ck_tile {
template <typename Context, index_t Start = 0, index_t Step = 1>
struct static_counter
{
public:
template <typename Unique>
static constexpr index_t next()
{
return next<Unique>(0) * Step + Start;
}
template <unsigned long long>
static constexpr index_t next()
{
struct Unique
{
};
return next<Unique>(0) * Step + Start;
}
template <typename Unique>
static constexpr index_t current()
{
return current<Unique>(0) * Step + Start;
}
template <unsigned long long>
static constexpr index_t current()
{
struct Unique
{
};
return current<Unique>(0) * Step + Start;
}
private:
template <index_t I>
struct slot
{
_Pragma("GCC diagnostic push");
_Pragma("GCC diagnostic ignored \"-Wundefined-internal\"");
friend constexpr bool slot_allocated(slot<I>);
_Pragma("GCC diagnostic pop");
};
template <index_t I>
struct allocate_slot
{
friend constexpr bool slot_allocated(slot<I>) { return true; }
enum
{
value = I
};
};
// If slot_allocated(slot<I>) has NOT been defined, then SFINAE will keep this function out of
// the overload set...
template <typename Unique, index_t I = 0, bool = slot_allocated(slot<I>())>
static constexpr index_t next(index_t)
{
return next<Unique, I + 1>(0);
}
// ...And this function will be used, instead, which will define slot_allocated(slot<I>) via
// allocate_slot<I>.
template <typename Unique, index_t I = 0>
static constexpr index_t next(double)
{
return allocate_slot<I>::value;
}
// If slot_allocated(slot<I>) has NOT been defined, then SFINAE will keep this function out of
// the overload set...
template <typename Unique, index_t I = Start, bool = slot_allocated(slot<I>())>
static constexpr index_t current(index_t)
{
return current<Unique, I + 1>(0);
}
// ...And this function will be used, instead, which will return the current counter, or assert
// in case next() hasn't been called yet.
template <typename Unique, index_t I = Start>
static constexpr index_t current(double)
{
static_assert(I != 0, "You must invoke next() first");
return I - 1;
}
};
namespace impl {
template <int I>
struct static_counter_uniq_;
}
#define MAKE_SC() \
ck_tile::static_counter<ck_tile::impl::static_counter_uniq_<__COUNTER__>> {}
#define MAKE_SC_WITH(start_, step_) \
ck_tile::static_counter<ck_tile::impl::static_counter_uniq_<__COUNTER__>, start_, step_> {}
#define NEXT_SC(c_) c_.next<__COUNTER__>()
#define NEXT_SCI(c_, static_i_) c_.next<__COUNTER__ + static_i_>()
// Usage:
// constexpr auto c = MAKE_SC()
// NEXT_SC(c) // -> constexpr 0
// NEXT_SC(c) // -> constexpr 1
// NEXT_SC(c) // -> constexpr 2
} // namespace ck_tile
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment