Unverified Commit b4032629 authored by Adam Osewski's avatar Adam Osewski Committed by GitHub
Browse files

Grouped GEMM Multiple D tile loop. (#1247)

* Overload output stream operator for LoopScheduler and PiplineVersion

* Add Run overload accepting grid descriptors MK.

* Add __device__ keyword for CalculateGridSize

* Create device op GroupedGemmMultipleD

* Add GroupedGemm MultipleD Tile Loop implementation.

* Add an example for GroupedGemm MultipleD tile loop.

* Device Op GroupedGEMMTileLoop.

* Bunch of small changes in exmaple.

* CkProfiler

* Remove unused tparam.

* Fix include statement.

* Fix output stream overloads.

* Do not make descriptors and check validity untill we find group.

* Fix gemm desc initialization.

* Revert device op

* Fix compilation for DTYPES=FP16

* Validate tensor transfers paramters.

* Validate on host only NK dims if M is not known.

* Fix bug.

* A convenient debug func for selecting threads.

* Fix has main k block loop bug.

* Make sure that b2c has up to date tile offset.

* Output stream operator for Sequence type.

* Cmake file formatting.
parent f448d179
...@@ -26,6 +26,9 @@ add_example_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_int8) ...@@ -26,6 +26,9 @@ add_example_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_int8)
add_example_executable(example_grouped_gemm_xdl_fixed_nk_fp16_fp8 grouped_gemm_xdl_fixed_nk_fp16_fp8.cpp) add_example_executable(example_grouped_gemm_xdl_fixed_nk_fp16_fp8 grouped_gemm_xdl_fixed_nk_fp16_fp8.cpp)
add_example_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_fixed_nk_fp16_fp8) add_example_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_fixed_nk_fp16_fp8)
add_example_executable(example_grouped_gemm_multiple_d_xdl_fp16 grouped_gemm_multiple_d_xdl_fp16.cpp)
add_example_dependencies(example_grouped_gemm_xdl example_grouped_gemm_multiple_d_xdl_fp16)
if(USE_BITINT_EXTENSION_INT4) if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_grouped_gemm_xdl_int4 grouped_gemm_xdl_int4.cpp) add_example_executable(example_grouped_gemm_xdl_int4 grouped_gemm_xdl_int4.cpp)
add_example_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_int4) add_example_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_int4)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multiple_d_xdl_cshuffle_tile_loop.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_tile_loop.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include <ck/utility/data_type.hpp>
#include <ck/utility/tuple.hpp>
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_multiple_d.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddAdd = ck::tensor_operation::element_wise::AddAdd;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using DDataType = F16;
using DsDataType = ck::Tuple<DDataType, DDataType>;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using DLayout = Row;
using DsLayout = ck::Tuple<DLayout, DLayout>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddAdd;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
static constexpr int NumDs = 2;
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
// clang-format off
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 4>;
// clang-format on
struct ProblemSize final
{
std::vector<ck::index_t> Ms;
std::vector<ck::index_t> Ns;
std::vector<ck::index_t> Ks;
std::vector<ck::index_t> stride_As;
std::vector<ck::index_t> stride_Bs;
std::vector<std::vector<ck::index_t>> stride_Ds;
std::vector<ck::index_t> stride_Cs;
ck::index_t group_count;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = true;
};
bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
auto group_count = problem_size.group_count;
using KernelArguments = ck::tensor_operation::device::GroupedGemmTileLoopKernelArguments<NumDs>;
// GEMM shape
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
std::vector<KernelArguments> ggemm_kargs;
std::vector<void*> p_Cs;
std::vector<const void*> p_As;
std::vector<const void*> p_Bs;
std::vector<std::array<const void*, NumDs>> p_Ds = {};
gemm_descs.reserve(group_count);
ggemm_kargs.reserve(group_count);
p_As.reserve(group_count);
p_Bs.reserve(group_count);
p_Ds.reserve(group_count);
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
std::vector<Tensor<ADataType>> a_tensors;
std::vector<Tensor<BDataType>> b_tensors;
std::vector<std::array<Tensor<DDataType>, NumDs>> d_tensors;
std::vector<Tensor<EDataType>> c_host_tensors;
std::vector<Tensor<EDataType>> c_device_result_tensors;
a_tensors.reserve(group_count);
b_tensors.reserve(group_count);
d_tensors.reserve(group_count);
c_host_tensors.reserve(group_count);
c_device_result_tensors.reserve(group_count);
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
std::vector<DeviceMemPtr> a_tensors_device, b_tensors_device, c_tensors_device;
std::vector<std::vector<DeviceMemPtr>> d_tensors_device;
a_tensors_device.reserve(group_count);
b_tensors_device.reserve(group_count);
d_tensors_device.reserve(group_count);
c_tensors_device.reserve(group_count);
std::size_t flop = 0, num_btype = 0;
for(int i = 0; i < group_count; i++)
{
a_tensors.push_back(Tensor<ADataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ks[i], problem_size.stride_As[i], ALayout{})));
b_tensors.push_back(Tensor<BDataType>(f_host_tensor_descriptor(
problem_size.Ks[i], problem_size.Ns[i], problem_size.stride_Bs[i], BLayout{})));
auto d0_tensor = Tensor<DDataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], DLayout{}));
auto d1_tensor = Tensor<DDataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], DLayout{}));
std::array<Tensor<DDataType>, NumDs> d_tens = {d0_tensor, d1_tensor};
d_tensors.push_back(d_tens);
c_host_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], ELayout{})));
c_device_result_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], ELayout{})));
std::cout << "gemm[" << i << "] a_m_k: " << a_tensors[i].mDesc
<< " b_k_n: " << b_tensors[i].mDesc
<< " c_m_n: " << c_device_result_tensors[i].mDesc << std::endl;
flop += std::size_t(2) * problem_size.Ms[i] * problem_size.Ks[i] * problem_size.Ns[i];
num_btype += sizeof(ADataType) * a_tensors[i].GetElementSize() +
sizeof(BDataType) * b_tensors[i].GetElementSize() +
sizeof(DDataType) * d_tensors[i][0].GetElementSize() * NumDs +
sizeof(EDataType) * c_device_result_tensors[i].GetElementSize();
switch(config.init_method)
{
case 0: break;
case 1:
a_tensors[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_tensors[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
for(int j = 0; j < NumDs; ++j)
{
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_2<DDataType>{-5, 5});
}
break;
case 2:
a_tensors[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
for(int j = 0; j < NumDs; ++j)
{
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
}
break;
default:
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
for(int j = 0; j < NumDs; ++j)
{
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
}
}
}
for(int i = 0; i < group_count; i++)
{
a_tensors_device.emplace_back(
std::make_unique<DeviceMem>(a_tensors[i].GetElementSpaceSize() * sizeof(ADataType)));
b_tensors_device.emplace_back(
std::make_unique<DeviceMem>(b_tensors[i].GetElementSpaceSize() * sizeof(BDataType)));
c_tensors_device.emplace_back(std::make_unique<DeviceMem>(
c_device_result_tensors[i].GetElementSpaceSize() * sizeof(EDataType)));
for(int j = 0; j < NumDs; ++j)
{
d_tensors_device[i].emplace_back(std::make_unique<DeviceMem>(
d_tensors[i][j].GetElementSpaceSize() * sizeof(DDataType)));
}
a_tensors_device[i]->ToDevice(a_tensors[i].mData.data());
b_tensors_device[i]->ToDevice(b_tensors[i].mData.data());
for(int j = 0; j < NumDs; ++j)
{
d_tensors_device[i][j]->ToDevice(d_tensors[i][j].mData.data());
}
c_tensors_device[i]->SetZero();
p_As.push_back(a_tensors_device[i]->GetDeviceBuffer());
p_Bs.push_back(b_tensors_device[i]->GetDeviceBuffer());
p_Ds.push_back(
{d_tensors_device[i][0]->GetDeviceBuffer(), d_tensors_device[i][1]->GetDeviceBuffer()});
p_Cs.push_back(c_tensors_device[i]->GetDeviceBuffer());
// The device op does not have to know M problem size at lunch time.
gemm_descs.push_back({0,
problem_size.Ns[i],
problem_size.Ks[i],
problem_size.stride_As[i],
problem_size.stride_Bs[i],
problem_size.stride_Cs[i],
{problem_size.stride_Cs[i], problem_size.stride_Cs[i]}});
ggemm_kargs.push_back(
{a_tensors_device[i]->GetDeviceBuffer(),
b_tensors_device[i]->GetDeviceBuffer(),
{d_tensors_device[i][0]->GetDeviceBuffer(), d_tensors_device[i][1]->GetDeviceBuffer()},
c_tensors_device[i]->GetDeviceBuffer(),
problem_size.Ms[i],
problem_size.Ns[i],
problem_size.Ks[i],
problem_size.stride_As[i],
problem_size.stride_Bs[i],
{problem_size.stride_Cs[i], problem_size.stride_Cs[i]},
problem_size.stride_Cs[i]});
}
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
// do GEMM
auto argument = gemm.MakeArgument(
p_As, p_Bs, p_Ds, p_Cs, gemm_descs, a_element_op, b_element_op, cde_element_op);
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
DeviceMem gemm_arg_dev_mem(gemm.GetDeviceKernelArgSize(&argument));
hip_check_error(hipMemcpy(gemm_arg_dev_mem.GetDeviceBuffer(),
ggemm_kargs.data(),
gemm.GetDeviceKernelArgSize(&argument),
hipMemcpyHostToDevice));
gemm.SetDeviceKernelArgs(argument, gemm_arg_dev_mem.GetDeviceBuffer());
invoker.Run(argument, StreamConfig{nullptr, false, 1});
bool pass = true;
if(config.do_verification)
{
using ReferenceGemmInstance =
ck::tensor_operation::host::ReferenceGemmMultipleD<ADataType,
BDataType,
DsDataType,
EDataType,
AccDataType,
AElementOp,
BElementOp,
CDEElementOp>;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
auto karg = ggemm_kargs[i];
auto dev_res_tensor =
Tensor<float>(f_host_tensor_descriptor(karg.M, karg.N, karg.StrideE, ELayout{}));
c_tensors_device[i]->FromDevice(c_device_result_tensors[i].mData.data());
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_tensors[i],
b_tensors[i],
d_tensors[i],
c_host_tensors[i],
a_element_op,
b_element_op,
cde_element_op);
ref_invoker.Run(ref_argument);
pass &= ck::utils::check_err(c_device_result_tensors[i], c_host_tensors[i]);
}
std::cout << "Verification: " << (pass ? "SUCCESS" : "FAILURE") << "!" << std::endl;
}
if(config.time_kernel)
{
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
}
return pass;
}
std::vector<int> argToIntArray(char* input)
{
std::vector<int> out;
std::istringstream in(input);
std::string item;
while(std::getline(in, item, ','))
{
out.push_back(std::stoi(item));
}
return out;
}
int main(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
if(argc < 10)
{
std::vector<ck::index_t> Ms{64, 127, 255, 129, 260, 190, 77};
problem_size.group_count = Ms.size();
for(int i = 0; i < problem_size.group_count; i++)
{
problem_size.Ms.push_back(Ms[i]);
problem_size.Ns.push_back(252);
problem_size.Ks.push_back(4608);
problem_size.stride_As.push_back(problem_size.Ks[i]);
problem_size.stride_Bs.push_back(problem_size.Ks[i]);
problem_size.stride_Cs.push_back(problem_size.Ns[i]);
problem_size.stride_Ds.push_back({});
for(int j = 0; j < NumDs; ++j)
{
problem_size.stride_Ds[i].push_back(problem_size.Ns[i]);
}
}
std::cout
<< "Usage:\n"
<< "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: time kernel (0=n0, 1=yes)\n"
<< "arg4 to 9: Ms, Ns, Ks, StrideAs, StrideBs, StrideCs (e.g., 256,256 128,128 64,64 "
"64,64 64,64 128,128)\n"
<< "... setting default values." << std::endl;
}
else
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
problem_size.Ms = argToIntArray(argv[4]);
problem_size.Ns = argToIntArray(argv[5]);
problem_size.Ks = argToIntArray(argv[6]);
problem_size.stride_As = argToIntArray(argv[7]);
problem_size.stride_Bs = argToIntArray(argv[8]);
problem_size.stride_Cs = argToIntArray(argv[9]);
for(int j = 0; j < NumDs; ++j)
{
problem_size.stride_Ds.push_back(problem_size.stride_Cs);
}
problem_size.group_count = problem_size.Ms.size();
}
return !run_grouped_gemm(problem_size, config);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include <iostream>
#include <vector>
#include <sstream>
#include "device_grouped_gemm.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
///
/// @brief Structure representing single GEMM problem arguments.
///
/// The pointer to the vector of those structures is passed to the GroupedGEMM entry
/// point kernel.
///
/// @tparam NumDTensor The number of D input tensors.
///
template <index_t NumDTensor = 0>
struct GroupedGemmTileLoopKernelArguments
{
__host__ __device__
GroupedGemmTileLoopKernelArguments(const void* p_a_grid_,
const void* p_b_grid_,
std::array<const void*, NumDTensor> p_ds_grid_,
void* p_e_grid_,
index_t M_,
index_t N_,
index_t K_,
index_t StrideA_,
index_t StrideB_,
std::array<index_t, NumDTensor> StrideDs_,
index_t StrideE_)
: p_a_grid{p_a_grid_},
p_b_grid{p_b_grid_},
p_ds_grid{p_ds_grid_},
p_e_grid{p_e_grid_},
M{M_},
N{N_},
K{K_},
StrideA{StrideA_},
StrideB{StrideB_},
StrideDs{StrideDs_},
StrideE{StrideE_}
{
}
const void* p_a_grid;
const void* p_b_grid;
std::array<const void*, NumDTensor> p_ds_grid;
void* p_e_grid;
index_t M;
index_t N;
index_t K;
index_t StrideA;
index_t StrideB;
std::array<index_t, NumDTensor> StrideDs;
index_t StrideE;
void Print() const
{
std::stringstream str;
for(auto sd : StrideDs)
str << sd << ",";
std::cout << "arg {"
<< "M:" << M << ", "
<< "N:" << N << ", "
<< "K:" << K << ", "
<< "SA:" << StrideA << ", "
<< "SB:" << StrideB << ", "
<< "SE:" << StrideE << ", "
<< "SDs: {" << str.str() << "}"
<< "}" << std::endl;
}
};
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation>
struct DeviceGroupedGemmTileLoop : public DeviceGroupedGemm<ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>
{
//----------------------------------------------------------------------------------------------
/// @brief Sets the device kernel arguments pointer.
///
/// @param p_arg The pointer to the Argument we're going to update.
/// @param[in] p_dev_kernel_args The pointer to the device memory which contains kernel
/// arguments.
///
virtual void SetDeviceKernelArgs(BaseArgument* p_arg, void* p_dev_kernel_args) const = 0;
//----------------------------------------------------------------------------------------------
/// @brief Gets the device kernel argument size.
///
/// @param[in] p_arg The pointer to the Device op Argument.
///
/// @return The device kernel argument size.
///
virtual size_t GetDeviceKernelArgSize(const BaseArgument* p_arg) const = 0;
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include <tuple>
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/hip_check_error.hpp"
#include "ck/host_utility/stream_utility.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/utility/loop_scheduler.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_tile_loop.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include <ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp>
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
///
/// @brief Entry point kernel for device-wide Grouped GEMM operation.
///
/// @param[in] gemm_descs_const The pointer to the array of GEMM descriptor structures.
/// @param[in] group_count The number of together processed GEMMs.
///
/// @tparam GridwiseGemm The specific GridwiseGEMM algorithm implementation.
/// @tparam GemmDesc The structure holding all necessary descriptors and
/// other data needed for grouped gemm calculation and work
/// distribution.
/// @tparam LocalBlock2ETileMap The structure providing mapping between workgroup ids,
/// the data tiles to process and the output tiles.
///
template <typename GridwiseGemm,
typename GemmDesc,
GemmSpecialization GemmSpec,
typename DsDataType,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename OffsettedBlockToCTileMap,
typename LocalBlock2ETileMap,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_grouped_gemm_multiple_d_xdl(const void CK_CONSTANT_ADDRESS_SPACE* gemm_descs_const,
const index_t group_count,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
constexpr index_t shared_size = GridwiseGemm::GetSharedMemoryNumberOfByte();
__shared__ uint8_t p_shared[shared_size];
const auto gemm_desc_ptr =
reinterpret_cast<const GemmDesc*>(cast_pointer_to_generic_address_space(gemm_descs_const));
constexpr auto NumDTensor = DsDataType::Size();
index_t tile_id = get_block_1d_id();
index_t tile_offset = 0;
index_t group_id = -1;
index_t group_offset = 0;
index_t grid_size_grp = 0;
index_t gemm_tile_id_start = 0;
index_t gemm_tile_id_end = 0;
using AGridDescMK =
remove_cvref_t<decltype(GridwiseGemm::template MakeAGridDescriptor_M_K<ALayout, GemmSpec>(
1, 1, 1))>;
using BGridDescNK =
remove_cvref_t<decltype(GridwiseGemm::template MakeBGridDescriptor_N_K<BLayout, GemmSpec>(
1, 1, 1))>;
using EGridDescMN =
remove_cvref_t<decltype(GridwiseGemm::template MakeEGridDescriptor_M_N<ELayout, GemmSpec>(
1, 1, 1))>;
using DsGridDescMN =
remove_cvref_t<decltype(GridwiseGemm::template MakeDsGridDescriptor_M_N<DsLayout, GemmSpec>(
{}, {}, {}))>;
index_t M = 0, N = 0, K = 0;
index_t StrideA, StrideB, StrideE;
std::array<index_t, NumDTensor> StrideDs;
AGridDescMK a_grid_desc_mk;
BGridDescNK b_grid_desc_nk;
EGridDescMN e_grid_desc_mn;
DsGridDescMN ds_grid_desc_mn;
auto b2c_tile_map = OffsettedBlockToCTileMap(LocalBlock2ETileMap(1, 1), 1, 1);
do
{
// Find corresponding GEMM group for our tile
while(!(tile_id >= gemm_tile_id_start && tile_id < gemm_tile_id_end) &&
group_id < group_count)
{
group_offset += grid_size_grp;
group_id++;
if(group_id >= group_count)
return;
M = gemm_desc_ptr[group_id].M;
N = gemm_desc_ptr[group_id].N;
K = gemm_desc_ptr[group_id].K;
if(M * N * K == 0)
{
grid_size_grp = 0;
continue;
}
b2c_tile_map =
OffsettedBlockToCTileMap(LocalBlock2ETileMap(M, N), group_offset, tile_offset);
grid_size_grp = b2c_tile_map.CalculateGridSize(M, N);
gemm_tile_id_start = group_offset;
gemm_tile_id_end = group_offset + grid_size_grp;
}
StrideA = gemm_desc_ptr[group_id].StrideA;
StrideB = gemm_desc_ptr[group_id].StrideB;
StrideDs = gemm_desc_ptr[group_id].StrideDs;
StrideE = gemm_desc_ptr[group_id].StrideE;
a_grid_desc_mk =
GridwiseGemm::template MakeAGridDescriptor_M_K<ALayout, GemmSpec>(M, K, StrideA);
b_grid_desc_nk =
GridwiseGemm::template MakeBGridDescriptor_N_K<BLayout, GemmSpec>(K, N, StrideB);
e_grid_desc_mn =
GridwiseGemm::template MakeEGridDescriptor_M_N<ELayout, GemmSpec>(M, N, StrideE);
static_for<0, NumDTensor, 1>{}([&](auto j) {
using DLayout = remove_cvref_t<tuple_element_t<j.value, DsLayout>>;
ds_grid_desc_mn(j) = GridwiseGemm::template MakeEGridDescriptor_M_N<DLayout, GemmSpec>(
M, N, StrideDs[j]);
});
using DsGridPointer = decltype(GridwiseGemm::MakeDsGridPointer());
DsGridPointer p_ds_grid;
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
p_ds_grid(i) = static_cast<const DDataType*>(gemm_desc_ptr[group_id].p_ds_grid[i]);
});
bool has_main_kblock_loop =
GridwiseGemm::CalculateHasMainKBlockLoop(a_grid_desc_mk.GetLength(Number<1>{}));
// Update tile offset if we have moved within group
b2c_tile_map.UpdateTileOffset(tile_offset);
if(has_main_kblock_loop)
{
GridwiseGemm::template Run<true>(gemm_desc_ptr[group_id].p_a_grid,
gemm_desc_ptr[group_id].p_b_grid,
p_ds_grid,
gemm_desc_ptr[group_id].p_e_grid,
static_cast<void*>(p_shared),
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_mk,
b_grid_desc_nk,
ds_grid_desc_mn,
e_grid_desc_mn,
b2c_tile_map);
}
else
{
GridwiseGemm::template Run<false>(gemm_desc_ptr[group_id].p_a_grid,
gemm_desc_ptr[group_id].p_b_grid,
p_ds_grid,
gemm_desc_ptr[group_id].p_e_grid,
static_cast<void*>(p_shared),
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_mk,
b_grid_desc_nk,
ds_grid_desc_mn,
e_grid_desc_mn,
b2c_tile_map);
}
tile_id += get_grid_size();
tile_offset += get_grid_size();
} while(group_id < group_count);
#else
ignore = gemm_descs_const;
ignore = group_count;
ignore = a_element_op;
ignore = b_element_op;
ignore = cde_element_op;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
GemmSpecialization GemmSpec,
ck::index_t NumGemmKPrefetchStage,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t KPerBlock,
ck::index_t AK1,
ck::index_t BK1,
ck::index_t MPerXDL,
ck::index_t NPerXDL,
ck::index_t MXdlPerWave,
ck::index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
index_t ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
index_t BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEShuffleBlockTransferScalarPerVector_NPerBlock,
PipelineVersion PipelineVer = PipelineVersion::v1,
LoopScheduler LoopSched = make_default_loop_scheduler(),
typename ComputeDataType = EDataType>
struct DeviceGroupedGemmMultipleDXdlCShuffleTileLoop
: public DeviceGroupedGemmTileLoop<ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>
{
using DeviceOp = DeviceGroupedGemmMultipleDXdlCShuffleTileLoop;
static constexpr index_t NumDTensor = DsDataType::Size();
using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle<
ADataType,
BDataType,
ComputeDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
InMemoryDataOperationEnum::Set,
NumGemmKPrefetchStage,
BlockSize,
MPerBlock,
NPerBlock,
KPerBlock,
AK1,
BK1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CDEShuffleBlockTransferScalarPerVector_NPerBlock,
LoopSched,
PipelineVer>;
template <typename UnderlyingBlockToCTileMap>
struct OffsettedBlockToCTileMap
{
using underlying_type = UnderlyingBlockToCTileMap;
__host__ __device__ OffsettedBlockToCTileMap(UnderlyingBlockToCTileMap block_to_ctile_map,
index_t group_offset,
index_t tile_offset)
: block_to_ctile_map_{block_to_ctile_map},
group_offset_{group_offset},
tile_offset_{tile_offset}
{
}
template <typename TopIdx>
__host__ __device__ constexpr auto CalculateBottomIndex(const TopIdx& idx_top) const
{
return block_to_ctile_map_.CalculateBottomIndex(
make_multi_index(idx_top[Number<0>{}] + tile_offset_ - group_offset_));
}
template <typename CTileIdx, typename CTileDim>
__host__ __device__ bool ValidCTileIndex(const CTileIdx& c_tile_idx,
const CTileDim& c_tile_dim) const
{
return block_to_ctile_map_.ValidCTileIndex(c_tile_idx, c_tile_dim);
}
template <typename CGridDesc_M_N>
__host__ constexpr bool CheckValidity(const CGridDesc_M_N& c_grid_desc_m_n) const
{
return block_to_ctile_map_.CheckValidity(c_grid_desc_m_n);
}
__host__ __device__ constexpr index_t CalculateGridSize(index_t M, index_t N) const
{
return block_to_ctile_map_.CalculateGridSize(M, N);
}
__device__ void UpdateTileOffset(index_t offset) { tile_offset_ = offset; }
UnderlyingBlockToCTileMap block_to_ctile_map_;
index_t group_offset_;
index_t tile_offset_;
};
using KernelArguments = GroupedGemmTileLoopKernelArguments<NumDTensor>;
using Block2ETileMap = BlockToCTileMap_N00_M0_N01Adapt<MPerBlock, NPerBlock>;
using OffsetedLocalBlock2ETileMap = OffsettedBlockToCTileMap<Block2ETileMap>;
// Argument
struct Argument : public BaseArgument
{
Argument(std::vector<const void*>& /* p_As */,
std::vector<const void*>& /* p_Bs */,
std::vector<std::array<const void*, NumDTensor>>& /* p_Ds */,
std::vector<void*>& /* p_Es */,
std::vector<GemmDesc>& gemm_descs,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op,
int occupancy_num_blocks,
int gpu_cu_count)
: group_count_{static_cast<index_t>(gemm_descs.size())},
occupancy_num_blocks_{occupancy_num_blocks},
gpu_cu_count_{gpu_cu_count},
gemm_descs_{gemm_descs},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op},
tile_count_{0}
{
for(const auto& desc : gemm_descs)
{
const auto M = desc.M_;
const auto N = desc.N_;
const auto b2c_tile_map = Block2ETileMap(M, N);
tile_count_ += b2c_tile_map.CalculateGridSize(M, N);
}
}
index_t group_count_;
const void* p_dev_gemm_args_;
int occupancy_num_blocks_;
int gpu_cu_count_;
const std::vector<GemmDesc>& gemm_descs_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
index_t tile_count_;
};
struct KernelConfig
{
// The oversubscription factor for the number of blocks that can simultaneously reside on
// GPU.
static constexpr int BLOCK_SUBSCRIPTION_FACTOR = 1;
static constexpr int BLOCK_WAVES = BlockSize / get_warp_size();
static constexpr int CU_SIMDS = 4;
// Assume we want to have at most 2 waves per SIMD
static constexpr int CU_BLOCKS = math::integer_divide_floor(2 * CU_SIMDS, BLOCK_WAVES);
};
// Invoker
struct Invoker : public BaseInvoker
{
///
/// @brief Launch Grouped Gemm kernel.
///
/// @note This function overload is using user provided device buffer for kernel
/// arguments.
///
/// @param[in] arg The structure containing kernel arguments (in host
/// memory).
/// @param[in] dev_gemm_args The pointer to device memory with kernel arguments.
/// @param[in] stream_config The device stream configuration.
///
/// @return The average kernel execution time (if time measurement is enabled.)
///
float Run(const Argument& arg,
const void* dev_gemm_args,
const StreamConfig& stream_config = StreamConfig{})
{
if(dev_gemm_args == nullptr)
{
std::ostringstream err;
err << "The gemm arguments device buffer is not allocated!"
<< " In " << __FILE__ << ":" << __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
float ave_time = 0;
ave_time = DispatchKernel(arg, dev_gemm_args, stream_config);
return ave_time;
}
///
/// @brief Launch Grouped Gemm kernel.
///
/// @note This function overload is using device buffers (for kernel arguments and
/// for kernel auxiliary workspace) provided with an argument. The user should
/// call @see GetDeviceKernelArgSize, and @see SetDeviceKernelArgs, on arg
/// parameter to properly allocate those buffers.
///
/// @param[in] arg The structure containing kernel arguments (in host memory).
/// @param[in] stream_config The device stream configuration.
///
/// @return The average kernel execution time (if time measurement is enabled.)
///
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(arg.p_dev_gemm_args_ == nullptr)
{
std::ostringstream err;
err << "The gemm arguments device buffer is not allocated!"
<< " In " << __FILE__ << ":" << __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
return Run(arg, arg.p_dev_gemm_args_, stream_config);
}
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
private:
float DispatchKernel(const Argument& arg,
const void* dev_gemm_args,
const StreamConfig& stream_config) const
{
const auto kernel = kernel_grouped_gemm_multiple_d_xdl<GridwiseGemm,
KernelArguments,
GemmSpec,
DsDataType,
ALayout,
BLayout,
DsLayout,
ELayout,
OffsetedLocalBlock2ETileMap,
Block2ETileMap,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>;
return LaunchKernel(kernel, arg, dev_gemm_args, stream_config);
}
template <typename KernelFunction>
int CalculateMaxOccupancyGridSize(const KernelFunction& kernel,
const StreamConfig& stream_config) const
{
// Calculate max number of workgroups that can simultaneously reside on the CU.
int occ_num_blocks = 0;
size_t dyn_shared_mem_per_blk = 0;
hip_check_error(hipOccupancyMaxActiveBlocksPerMultiprocessor(
&occ_num_blocks, kernel, BlockSize, dyn_shared_mem_per_blk));
int cu_count = getAvailableComputeUnitCount(stream_config);
if(stream_config.log_level_ > 0)
{
std::cout << "MaxActiveBlocksPerCU: " << occ_num_blocks
<< ", available CUs count: " << cu_count << ", occup. grid size: "
<< ck::math::min(occ_num_blocks, KernelConfig::CU_BLOCKS) * cu_count
<< std::endl;
}
return cu_count * ck::math::min(occ_num_blocks, KernelConfig::CU_BLOCKS);
}
template <typename KernelFunction>
float LaunchKernel(const KernelFunction& kernel,
const Argument& arg,
const void* dev_gemm_args,
const StreamConfig& stream_config) const
{
int grid_size = CalculateMaxOccupancyGridSize(kernel, stream_config);
if(stream_config.log_level_ > 0)
{
std::cout << "grid_size: " << grid_size << " tile_count: " << arg.tile_count_
<< std::endl;
}
return launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
cast_pointer_to_constant_address_space(dev_gemm_args),
arg.group_count_,
arg.a_element_op_,
arg.b_element_op_,
arg.cde_element_op_);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
if(!ck::is_xdl_supported())
{
return false;
}
using DsGridDescMN = remove_cvref_t<
decltype(GridwiseGemm::template MakeDsGridDescriptor_M_N<DsLayout, GemmSpec>(
{}, {}, {}))>;
bool supported = true;
for(const auto& gdesc : arg.gemm_descs_)
{
const auto M = gdesc.M_;
const auto N = gdesc.N_;
const auto K = gdesc.K_;
const auto StrideA = gdesc.stride_A_;
const auto StrideB = gdesc.stride_B_;
const auto StrideE = gdesc.stride_C_;
const auto& StrideDs = gdesc.stride_Ds_;
// If M dimension is unknown at launch time then validate just NK.
// If N or K dim is zero (or unknown) then the vector loads responsibility lies on
// the user.
if(N * K == 0)
continue;
const auto a_grid_desc_mk =
GridwiseGemm::template MakeAGridDescriptor_M_K<ALayout, GemmSpec>(M, K, StrideA);
const auto b_grid_desc_nk =
GridwiseGemm::template MakeBGridDescriptor_N_K<BLayout, GemmSpec>(K, N, StrideB);
const auto e_grid_desc_mn =
GridwiseGemm::template MakeEGridDescriptor_M_N<ELayout, GemmSpec>(M, N, StrideE);
DsGridDescMN ds_grid_desc_mn;
static_for<0, NumDTensor, 1>{}([&](auto j) {
using DLayout = remove_cvref_t<tuple_element_t<j.value, DsLayout>>;
ds_grid_desc_mn(j) =
GridwiseGemm::template MakeEGridDescriptor_M_N<DLayout, GemmSpec>(
M, N, StrideDs[j]);
});
const auto b2c_tile_map = Block2ETileMap(M, N);
if(!(GridwiseGemm::template CheckValidity(a_grid_desc_mk,
b_grid_desc_nk,
ds_grid_desc_mn,
e_grid_desc_mn,
b2c_tile_map) &&
GridwiseGemm::template CheckTensorTransfersValidity<ALayout, BLayout, ELayout>(
M, N, K)))
{
#if DEBUG_LOG
std::cout << "The provided GEMM problem size (M,N,K) [" << M << "," << N << "," << K
<< "] are not supported by current template parameters!"
<< " In " << __FILE__ << ":" << __LINE__ << ", in function: " << __func__;
#endif
supported = false;
}
}
return supported;
}
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(std::vector<const void*>& p_As,
std::vector<const void*>& p_Bs,
std::vector<std::array<const void*, NumDTensor>>& p_Ds,
std::vector<void*>& p_Es,
std::vector<GemmDesc> gemm_descs,
AElementwiseOperation a_elementwise_op,
BElementwiseOperation b_elementwise_op,
CDEElementwiseOperation cde_elementwise_op)
{
const auto kernel = kernel_grouped_gemm_multiple_d_xdl<GridwiseGemm,
KernelArguments,
GemmSpec,
DsDataType,
ALayout,
BLayout,
DsLayout,
ELayout,
OffsetedLocalBlock2ETileMap,
Block2ETileMap,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>;
int occupancy, num_cu;
hip_check_error(
hipOccupancyMaxActiveBlocksPerMultiprocessor(&occupancy, kernel, BlockSize, 0));
hipDeviceProp_t dev_prop;
hipDevice_t dev;
hip_check_error(hipGetDevice(&dev));
hip_check_error(hipGetDeviceProperties(&dev_prop, dev));
num_cu = dev_prop.multiProcessorCount;
return Argument{p_As,
p_Bs,
p_Ds,
p_Es,
gemm_descs,
a_elementwise_op,
b_elementwise_op,
cde_elementwise_op,
occupancy,
num_cu};
}
std::unique_ptr<BaseArgument>
MakeArgumentPointer(std::vector<const void*>& p_As,
std::vector<const void*>& p_Bs,
std::vector<std::array<const void*, NumDTensor>>& p_Ds,
std::vector<void*>& p_Es,
std::vector<GemmDesc>& gemm_descs,
AElementwiseOperation a_elementwise_op,
BElementwiseOperation b_elementwise_op,
CDEElementwiseOperation cde_elementwise_op) override
{
const auto kernel = kernel_grouped_gemm_multiple_d_xdl<GridwiseGemm,
KernelArguments,
GemmSpec,
DsDataType,
ALayout,
BLayout,
DsLayout,
ELayout,
OffsetedLocalBlock2ETileMap,
Block2ETileMap,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>;
int occupancy, num_cu;
hip_check_error(
hipOccupancyMaxActiveBlocksPerMultiprocessor(&occupancy, kernel, BlockSize, 0));
hipDeviceProp_t dev_prop;
hipDevice_t dev;
hip_check_error(hipGetDevice(&dev));
hip_check_error(hipGetDeviceProperties(&dev_prop, dev));
num_cu = dev_prop.multiProcessorCount;
return std::make_unique<Argument>(p_As,
p_Bs,
p_Ds,
p_Es,
gemm_descs,
a_elementwise_op,
b_elementwise_op,
cde_elementwise_op,
occupancy,
num_cu);
}
static auto MakeInvoker() { return Invoker{}; }
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::ostringstream();
// clang-format off
str << "DeviceGroupedGemmMultipleDXdlCShuffleTileLoop"
<< "<"
<< std::string(ALayout::name)[0] << ","
<< std::string(BLayout::name)[0] << ","
<< std::string(ELayout::name)[0] << ","
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1 << ", "
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle << ", "
<< getGemmSpecializationString(GemmSpec) << ", "
<< PipelineVer << ", "
<< LoopSched
<< ">";
// clang-format on
return str.str();
}
void SetDeviceKernelArgs(Argument& arg, void* p_dev_kernel_args) const
{
arg.p_dev_gemm_args_ = p_dev_kernel_args;
}
void SetDeviceKernelArgs(BaseArgument* p_arg, void* p_dev_kernel_args) const override
{
return SetDeviceKernelArgs(*dynamic_cast<Argument*>(p_arg), p_dev_kernel_args);
}
size_t GetDeviceKernelArgSize(const BaseArgument* p_arg) const override
{
return dynamic_cast<const Argument*>(p_arg)->group_count_ * sizeof(KernelArguments);
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -151,7 +151,7 @@ struct BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, void> ...@@ -151,7 +151,7 @@ struct BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, void>
{ {
} }
__host__ static constexpr index_t CalculateGridSize(index_t M, index_t N) __host__ __device__ static constexpr index_t CalculateGridSize(index_t M, index_t N)
{ {
const auto M0 = math::integer_divide_ceil(M, MPerBlock); const auto M0 = math::integer_divide_ceil(M, MPerBlock);
const auto N0 = math::integer_divide_ceil(N, NPerBlock); const auto N0 = math::integer_divide_ceil(N, NPerBlock);
...@@ -275,7 +275,7 @@ struct BlockToCTileMap_Grouped_M00_N0_M01Adapt ...@@ -275,7 +275,7 @@ struct BlockToCTileMap_Grouped_M00_N0_M01Adapt
{ {
} }
__host__ static constexpr index_t CalculateGridSize(index_t M, index_t N) __host__ __device__ static constexpr index_t CalculateGridSize(index_t M, index_t N)
{ {
const auto M0 = math::integer_divide_ceil(M, MPerBlock); const auto M0 = math::integer_divide_ceil(M, MPerBlock);
const auto N0 = math::integer_divide_ceil(N, NPerBlock); const auto N0 = math::integer_divide_ceil(N, NPerBlock);
...@@ -428,7 +428,7 @@ struct BlockToCTileMap_N00_M0_N01Adapt<MPerBlock, NPerBlock, void> ...@@ -428,7 +428,7 @@ struct BlockToCTileMap_N00_M0_N01Adapt<MPerBlock, NPerBlock, void>
{ {
} }
__host__ static constexpr index_t CalculateGridSize(index_t M, index_t N) __host__ __device__ static constexpr index_t CalculateGridSize(index_t M, index_t N)
{ {
const auto M0 = math::integer_divide_ceil(M, MPerBlock); const auto M0 = math::integer_divide_ceil(M, MPerBlock);
const auto N0 = math::integer_divide_ceil(N, NPerBlock); const auto N0 = math::integer_divide_ceil(N, NPerBlock);
...@@ -900,6 +900,11 @@ struct OffsettedBlockToCTileMap ...@@ -900,6 +900,11 @@ struct OffsettedBlockToCTileMap
return block_to_ctile_map_.CalculateGridSize(c_grid_desc_m_n); return block_to_ctile_map_.CalculateGridSize(c_grid_desc_m_n);
} }
__host__ __device__ constexpr index_t CalculateGridSize(index_t M, index_t N) const
{
return block_to_ctile_map_.CalculateGridSize(M, N);
}
UnderlyingBlockToCTileMap block_to_ctile_map_; UnderlyingBlockToCTileMap block_to_ctile_map_;
index_t block_start_; index_t block_start_;
}; };
......
...@@ -257,7 +257,70 @@ struct GridwiseGemmMultipleD_xdl_cshuffle ...@@ -257,7 +257,70 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
e_grid_desc_m_n); e_grid_desc_m_n);
} }
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01} template <typename ALayout, typename BLayout, typename ELayout>
__host__ __device__ static bool
CheckTensorTransfersValidity(index_t MRaw, index_t NRaw, index_t KRaw)
{
// Check if the vector dim is K1 or M|N
const auto A_vector_dim_size = ABlockTransferSrcVectorDim == 2 ? KRaw : MRaw;
const auto B_vector_dim_size = BBlockTransferSrcVectorDim == 2 ? KRaw : NRaw;
const auto E_vector_dim_size = NRaw;
// check vector load for A tensor
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{
if(!(A_vector_dim_size == KRaw &&
A_vector_dim_size % ABlockTransferSrcScalarPerVector == 0))
return false;
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
if(!(A_vector_dim_size == MRaw &&
A_vector_dim_size % ABlockTransferSrcScalarPerVector == 0))
return false;
}
else
{
return false;
}
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, BLayout>)
{
if(!(B_vector_dim_size == NRaw &&
B_vector_dim_size % BBlockTransferSrcScalarPerVector == 0))
return false;
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, BLayout>)
{
if(!(B_vector_dim_size == KRaw &&
B_vector_dim_size % BBlockTransferSrcScalarPerVector == 0))
return false;
}
else
{
return false;
}
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ELayout>)
{
if(!(E_vector_dim_size == NRaw &&
E_vector_dim_size % CDEShuffleBlockTransferScalarPerVector_NPerBlock == 0))
return false;
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ELayout>)
{
if(!(E_vector_dim_size == NRaw &&
CDEShuffleBlockTransferScalarPerVector_NPerBlock == 1))
return false;
}
else
{
return false;
}
return true;
}
template <typename AGridDesc_M_K, template <typename AGridDesc_M_K,
typename BGridDesc_N_K, typename BGridDesc_N_K,
typename DsGridDesc_M_N, typename DsGridDesc_M_N,
...@@ -267,7 +330,7 @@ struct GridwiseGemmMultipleD_xdl_cshuffle ...@@ -267,7 +330,7 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
const BGridDesc_N_K& b_grid_desc_n_k, const BGridDesc_N_K& b_grid_desc_n_k,
const DsGridDesc_M_N& ds_grid_desc_m_n, const DsGridDesc_M_N& ds_grid_desc_m_n,
const EGridDesc_M_N& e_grid_desc_m_n, const EGridDesc_M_N& e_grid_desc_m_n,
const Block2ETileMap&) [[maybe_unused]] const Block2ETileMap&)
{ {
static_assert((MPerBlock % (MPerXdl * MXdlPerWave) == 0) && static_assert((MPerBlock % (MPerXdl * MXdlPerWave) == 0) &&
(NPerBlock % (NXdlPerWave * NPerXdl)) == 0, (NPerBlock % (NXdlPerWave * NPerXdl)) == 0,
...@@ -285,7 +348,6 @@ struct GridwiseGemmMultipleD_xdl_cshuffle ...@@ -285,7 +348,6 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
{ {
return false; return false;
} }
bool valid = true; bool valid = true;
static_for<0, NumDTensor, 1>{}([&](auto i) { static_for<0, NumDTensor, 1>{}([&](auto i) {
...@@ -306,7 +368,6 @@ struct GridwiseGemmMultipleD_xdl_cshuffle ...@@ -306,7 +368,6 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
// check gridwise gemm pipeline // check gridwise gemm pipeline
const auto num_k_loop = AK / KPerBlock; const auto num_k_loop = AK / KPerBlock;
if(!GridwiseGemmPipe::IsSupported(num_k_loop)) if(!GridwiseGemmPipe::IsSupported(num_k_loop))
{ {
return false; return false;
...@@ -938,6 +999,63 @@ struct GridwiseGemmMultipleD_xdl_cshuffle ...@@ -938,6 +999,63 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
e_grid_desc_mblock_mperblock_nblock_nperblock, e_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_etile_map); block_2_etile_map);
} }
template <bool HasMainKBlockLoop,
typename AGridDesc_MK,
typename BGridDesc_NK,
typename DsGridDesc_MN,
typename EGridDesc_MN,
typename Block2ETileMap>
__device__ static void Run(const void* __restrict__ p_a_grid_,
const void* __restrict__ p_b_grid_,
DsGridPointer p_ds_grid,
void* __restrict__ p_e_grid_,
void* __restrict__ p_shared,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op,
const AGridDesc_MK& a_grid_desc_m_k,
const BGridDesc_NK& b_grid_desc_n_k,
const DsGridDesc_MN& ds_grid_desc_m_n,
const EGridDesc_MN& e_grid_desc_m_n,
const Block2ETileMap& block_2_etile_map)
{
const auto p_a_grid = reinterpret_cast<const ADataType*>(p_a_grid_);
const auto p_b_grid = reinterpret_cast<const BDataType*>(p_b_grid_);
const auto p_e_grid = reinterpret_cast<EDataType*>(p_e_grid_);
// tensor descriptors for block/thread-wise copy
const auto a_grid_desc_ak0_m_ak1 = MakeDefaultAGridDescriptor_AK0_M_AK1(a_grid_desc_m_k);
const auto b_grid_desc_bk0_n_bk1 = MakeDefaultBGridDescriptor_BK0_N_BK1(b_grid_desc_n_k);
using DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
remove_cvref_t<decltype(MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
DsGridDesc_MN{}))>;
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock ds_grid_desc_mblock_mperblock_nblock_nperblock;
static_for<0, NumDTensor, 1>{}([&](auto j) {
ds_grid_desc_mblock_mperblock_nblock_nperblock(j) =
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(ds_grid_desc_m_n[j]);
});
const auto e_grid_desc_mblock_mperblock_nblock_nperblock =
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(e_grid_desc_m_n);
Run<HasMainKBlockLoop>(p_a_grid,
p_b_grid,
p_ds_grid,
p_e_grid,
p_shared,
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_etile_map);
}
}; };
} // namespace ck } // namespace ck
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
#include <iostream> #include <iostream>
#include <ostream>
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v2.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v2.hpp"
...@@ -57,3 +58,16 @@ constexpr auto GridwiseGemmPipeline_Selector() ...@@ -57,3 +58,16 @@ constexpr auto GridwiseGemmPipeline_Selector()
} }
} // namespace ck } // namespace ck
inline std::ostream& operator<<(std::ostream& os, const ck::PipelineVersion& p)
{
switch(p)
{
case ck::PipelineVersion::v1: os << "PipelineVersion::v1"; break;
case ck::PipelineVersion::v2: os << "PipelineVersion::v2"; break;
case ck::PipelineVersion::v4: os << "PipelineVersion::v4"; break;
case ck::PipelineVersion::weight_only: os << "PipelineVersion::weight_only"; break;
default: os << "";
}
return os;
}
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#ifndef UTILITY_DEBUG_HPP #ifndef UTILITY_DEBUG_HPP
#define UTILITY_DEBUG_HPP #define UTILITY_DEBUG_HPP
...@@ -79,6 +79,13 @@ __device__ void print_shared(T const* p_shared, index_t num_elements) ...@@ -79,6 +79,13 @@ __device__ void print_shared(T const* p_shared, index_t num_elements)
__syncthreads(); __syncthreads();
} }
template <index_t... Ids>
__device__ static bool is_thread_local_1d_id_idx()
{
const auto tid = get_thread_local_1d_id();
return ((tid == Ids) || ...);
}
} // namespace debug } // namespace debug
} // namespace ck } // namespace ck
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <ostream>
#pragma once #pragma once
...@@ -24,3 +25,14 @@ constexpr LoopScheduler make_default_loop_scheduler() ...@@ -24,3 +25,14 @@ constexpr LoopScheduler make_default_loop_scheduler()
} }
} // namespace ck } // namespace ck
inline std::ostream& operator<<(std::ostream& os, const ck::LoopScheduler& s)
{
switch(s)
{
case ck::LoopScheduler::Default: os << "Default"; break;
case ck::LoopScheduler::Interwave: os << "Interwave"; break;
default: os << "";
}
return os;
}
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
#include <ostream>
#include "ck/utility/integral_constant.hpp" #include "ck/utility/integral_constant.hpp"
#include "ck/utility/type.hpp" #include "ck/utility/type.hpp"
#include "ck/utility/functional.hpp" #include "ck/utility/functional.hpp"
...@@ -897,3 +899,14 @@ template <index_t NSize, index_t I> ...@@ -897,3 +899,14 @@ template <index_t NSize, index_t I>
using uniform_sequence_gen_t = typename uniform_sequence_gen<NSize, I>::type; using uniform_sequence_gen_t = typename uniform_sequence_gen<NSize, I>::type;
} // namespace ck } // namespace ck
template <ck::index_t... Is>
std::ostream& operator<<(std::ostream& os, const ck::Sequence<Is...>)
{
using S = ck::Sequence<Is...>;
os << "{";
ck::static_for<0, S::Size() - ck::Number<1>{}, 1>{}(
[&](auto i) { os << S::At(i).value << ", "; });
os << S::At(S::Size() - ck::Number<1>{}).value << "}";
return os;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_tile_loop.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
#ifdef CK_ENABLE_FP16
// fp16_output
void add_device_grouped_gemm_xdl_tile_loop_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmTileLoop<Row,
Row,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_gemm_xdl_tile_loop_f16_f16_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmTileLoop<Row,
Col,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
template <typename ALayout,
typename BLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename EDataType>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceGroupedGemmTileLoop<ALayout,
BLayout,
Empty_Tuple,
ELayout,
ADataType,
BDataType,
Empty_Tuple,
EDataType,
PassThrough,
PassThrough,
PassThrough>>
{
using DeviceOp = DeviceGroupedGemmTileLoop<ALayout,
BLayout,
Empty_Tuple,
ELayout,
ADataType,
BDataType,
Empty_Tuple,
EDataType,
PassThrough,
PassThrough,
PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
#ifdef CK_ENABLE_FP16
// fp16_output
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_tile_loop_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
}
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_tile_loop_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
}
}
#endif
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
# ONLY XDL_KERNELS
set(GROUPED_GEMM_TILE_LOOP_INSTANCES)
list(APPEND GROUPED_GEMM_TILE_LOOP_INSTANCES
device_grouped_gemm_xdl_tile_loop_f16_f16_f16_mk_kn_mn_instance.cpp
device_grouped_gemm_xdl_tile_loop_f16_f16_f16_mk_nk_mn_instance.cpp
)
add_instance_library(device_grouped_gemm_tile_loop_instance ${GROUPED_GEMM_TILE_LOOP_INSTANCES})
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multiple_d_xdl_cshuffle_tile_loop.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using DsDataType = ck::Tuple<>;
using DsLayout = ck::Tuple<>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_grouped_gemm_xdl_tile_loop_f16_f16_f16_mk_kn_mn_irregular_tile_instances = std::tuple<
// clang-format off
//###########################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//###########################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//###########################################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//###########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 2, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 2, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>
// clang-format on
>;
void add_device_grouped_gemm_xdl_tile_loop_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmTileLoop<Row,
Row,
DsLayout,
Row,
F16,
F16,
DsDataType,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_f16_f16_f16_mk_kn_mn_irregular_tile_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multiple_d_xdl_cshuffle_tile_loop.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using DsDataType = ck::Tuple<>;
using DsLayout = ck::Tuple<>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_grouped_gemm_xdl_tile_loop_f16_f16_f16_mk_nk_mn_irregular_tile_instances = std::tuple<
// clang-format off
//###########################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//###########################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//###########################################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//###########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 256, 64, 8, 8, 32, 32, 2, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 8, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 64, 64, 8, 8, 32, 32, 2, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 128, 64, 8, 8, 32, 32, 1, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 128, 64, 8, 8, 32, 32, 4, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 64, 64, 8, 8, 32, 32, 2, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 128, 64, 8, 8, 32, 32, 2, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 32, 64, 8, 8, 32, 32, 2, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 128, 64, 8, 8, 32, 32, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 256, 64, 8, 8, 32, 32, 1, 4, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 64, 64, 8, 8, 32, 32, 2, 2, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 64, 8, 8, 32, 32, 2, 1, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedGemmMultipleDXdlCShuffleTileLoop< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 64, 8, 8, 32, 32, 1, 2, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 8, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>
// clang-format on
>;
void add_device_grouped_gemm_xdl_tile_loop_f16_f16_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmTileLoop<Row,
Col,
DsLayout,
Row,
F16,
F16,
DsDataType,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_tile_loop_f16_f16_f16_mk_nk_mn_irregular_tile_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -73,9 +73,11 @@ bool profile_grouped_gemm_fixed_nk_impl(int do_verification, ...@@ -73,9 +73,11 @@ bool profile_grouped_gemm_fixed_nk_impl(int do_verification,
std::vector<Tensor<BDataType>> b_k_n; std::vector<Tensor<BDataType>> b_k_n;
std::vector<Tensor<CDataType>> c_m_n_host_results; std::vector<Tensor<CDataType>> c_m_n_host_results;
std::vector<Tensor<CDataType>> c_m_n_device_results; std::vector<Tensor<CDataType>> c_m_n_device_results;
int sum_of_m = 0;
for(std::size_t i = 0; i < group_count; i++) for(std::size_t i = 0; i < group_count; i++)
{ {
sum_of_m += Ms[i];
a_m_k.push_back( a_m_k.push_back(
Tensor<ADataType>(f_host_tensor_descriptor(Ms[i], Ks[i], StrideAs[i], ALayout{}))); Tensor<ADataType>(f_host_tensor_descriptor(Ms[i], Ks[i], StrideAs[i], ALayout{})));
b_k_n.push_back( b_k_n.push_back(
...@@ -146,7 +148,7 @@ bool profile_grouped_gemm_fixed_nk_impl(int do_verification, ...@@ -146,7 +148,7 @@ bool profile_grouped_gemm_fixed_nk_impl(int do_verification,
a_device_buf[i]->ToDevice(a_m_k[i].mData.data()); a_device_buf[i]->ToDevice(a_m_k[i].mData.data());
b_device_buf[i]->ToDevice(b_k_n[i].mData.data()); b_device_buf[i]->ToDevice(b_k_n[i].mData.data());
gemm_descs.push_back({Ms[i], Ns[i], Ks[i], StrideAs[i], StrideBs[i], StrideCs[i], {}}); gemm_descs.push_back({sum_of_m, Ns[i], Ks[i], StrideAs[i], StrideBs[i], StrideCs[i], {}});
p_a.push_back(a_device_buf[i]->GetDeviceBuffer()); p_a.push_back(a_device_buf[i]->GetDeviceBuffer());
p_b.push_back(b_device_buf[i]->GetDeviceBuffer()); p_b.push_back(b_device_buf[i]->GetDeviceBuffer());
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/host_utility/hip_check_error.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_tile_loop.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_tile_loop.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename ALayout,
typename BLayout,
typename CLayout>
bool profile_grouped_gemm_tile_loop_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
const std::vector<int>& Ms,
const std::vector<int>& Ns,
const std::vector<int>& Ks,
const std::vector<int>& StrideAs,
const std::vector<int>& StrideBs,
const std::vector<int>& StrideCs,
int n_warmup = 10,
int n_iter = 50)
{
bool pass = true;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
std::size_t group_count = Ms.size();
if(!(group_count == Ns.size() && group_count == Ks.size() && group_count == StrideAs.size() &&
group_count == StrideBs.size() && group_count == StrideCs.size()))
{
throw std::runtime_error("wrong! inconsistent M/N/Ks, StrideA/B/Cs size\n");
}
std::vector<Tensor<ADataType>> a_m_k;
std::vector<Tensor<BDataType>> b_k_n;
std::vector<Tensor<CDataType>> c_m_n_host_results;
std::vector<Tensor<CDataType>> c_m_n_device_results;
for(std::size_t i = 0; i < group_count; i++)
{
a_m_k.push_back(
Tensor<ADataType>(f_host_tensor_descriptor(Ms[i], Ks[i], StrideAs[i], ALayout{})));
b_k_n.push_back(
Tensor<BDataType>(f_host_tensor_descriptor(Ks[i], Ns[i], StrideBs[i], BLayout{})));
c_m_n_device_results.push_back(
Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{})));
c_m_n_host_results.push_back(
Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{})));
#if DEBUG_LOG
std::cout << "group: " << i << " a_m_k[" << i << "]:" << a_m_k[i].mDesc << ", b_k_n[" << i
<< "]:" << b_k_n[i].mDesc << ", c_m_n_device_results[" << i
<< "]:" << c_m_n_device_results[i].mDesc << std::endl;
#endif // DEBUG_LOG
switch(init_method)
{
case 0: break;
case 1:
ck::utils::FillUniformDistributionIntegerValue<ADataType>{-5, 5}(a_m_k[i]);
ck::utils::FillUniformDistributionIntegerValue<BDataType>{-5, 5}(b_k_n[i]);
break;
case 2:
ck::utils::FillUniformDistribution<ADataType>{.0, 1.}(a_m_k[i]);
ck::utils::FillUniformDistribution<BDataType>{-0.5, 0.5}(b_k_n[i]);
break;
default:
ck::utils::FillConstant<ADataType>{1}(a_m_k[i]);
ck::utils::FillConstant<BDataType>{1}(b_k_n[i]);
}
}
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
std::vector<DeviceMemPtr> a_device_buf, b_device_buf, c_device_buf;
a_device_buf.reserve(group_count);
b_device_buf.reserve(group_count);
c_device_buf.reserve(group_count);
std::vector<const void*> p_a, p_b;
std::vector<void*> p_c;
p_a.reserve(group_count);
p_b.reserve(group_count);
p_c.reserve(group_count);
using KernelArguments = ck::tensor_operation::device::GroupedGemmTileLoopKernelArguments<>;
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
std::vector<KernelArguments> gemm_kargs;
gemm_descs.reserve(group_count);
gemm_kargs.reserve(group_count);
for(std::size_t i = 0; i < group_count; i++)
{
a_device_buf.emplace_back(
std::make_unique<DeviceMem>(sizeof(ADataType) * a_m_k[i].mDesc.GetElementSpaceSize()));
b_device_buf.emplace_back(
std::make_unique<DeviceMem>(sizeof(BDataType) * b_k_n[i].mDesc.GetElementSpaceSize()));
c_device_buf.emplace_back(std::make_unique<DeviceMem>(
sizeof(CDataType) * c_m_n_device_results[i].mDesc.GetElementSpaceSize()));
a_device_buf[i]->ToDevice(a_m_k[i].mData.data());
b_device_buf[i]->ToDevice(b_k_n[i].mData.data());
c_device_buf[i]->SetZero();
p_a.push_back(a_device_buf[i]->GetDeviceBuffer());
p_b.push_back(b_device_buf[i]->GetDeviceBuffer());
p_c.push_back(c_device_buf[i]->GetDeviceBuffer());
gemm_descs.push_back({0, Ns[i], Ks[i], StrideAs[i], StrideBs[i], StrideCs[i], {}});
gemm_kargs.push_back({a_device_buf[i]->GetDeviceBuffer(),
b_device_buf[i]->GetDeviceBuffer(),
{},
c_device_buf[i]->GetDeviceBuffer(),
Ms[i],
Ns[i],
Ks[i],
StrideAs[i],
StrideBs[i],
{},
StrideCs[i]});
}
using DeviceOp = ck::tensor_operation::device::DeviceGroupedGemmTileLoop<ALayout,
BLayout,
ck::Tuple<>,
CLayout,
ADataType,
BDataType,
ck::Tuple<>,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
if(op_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device GEMM instance found");
}
std::string best_gemm_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
auto p_ds = std::vector<std::array<const void*, 0>>{};
if(do_verification)
{
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_m_k[i],
b_k_n[i],
c_m_n_host_results[i],
a_element_op,
b_element_op,
c_element_op);
ref_invoker.Run(ref_argument);
}
}
// profile device GEMM instances
for(auto& gemm_ptr : op_ptrs)
{
auto argument_ptr =
gemm_ptr->MakeArgumentPointer(p_a,
p_b,
p_ds,
p_c,
gemm_descs,
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{});
auto invoker_ptr = gemm_ptr->MakeInvokerPointer();
std::string gemm_name = gemm_ptr->GetTypeString();
DeviceMem gemm_arg_dev_mem(gemm_ptr->GetDeviceKernelArgSize(argument_ptr.get()));
hip_check_error(hipMemcpy(gemm_arg_dev_mem.GetDeviceBuffer(),
gemm_kargs.data(),
gemm_ptr->GetDeviceKernelArgSize(argument_ptr.get()),
hipMemcpyHostToDevice));
gemm_ptr->SetDeviceKernelArgs(argument_ptr.get(), gemm_arg_dev_mem.GetDeviceBuffer());
if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false, 0, n_warmup, n_iter});
if(do_verification)
{
bool instance_pass = true;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
c_device_buf[i]->FromDevice(c_m_n_device_results[i].mData.data());
instance_pass = instance_pass && ck::utils::check_err(c_m_n_device_results[i],
c_m_n_host_results[i]);
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k[i].mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n[i].mData, ",") << std::endl;
LogRangeAsType<float>(
std::cout << "c_device: ", c_m_n_device_results[i].mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_host : ", c_m_n_host_results[i].mData, ",")
<< std::endl;
}
}
std::cout << "Instance: " << gemm_name << " verification "
<< (instance_pass ? "SUCCEED" : "FAILED") << std::endl;
pass = pass && instance_pass;
}
if(time_kernel)
{
float ave_time = invoker_ptr->Run(
argument_ptr.get(), StreamConfig{nullptr, time_kernel, 0, n_warmup, n_iter});
std::size_t flop = 0, num_btype = 0;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
flop += std::size_t(2) * Ms[i] * Ns[i] * Ks[i];
num_btype += sizeof(ADataType) * Ms[i] * Ks[i] +
sizeof(BDataType) * Ks[i] * Ns[i] +
sizeof(CDataType) * Ms[i] * Ns[i];
}
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops
<< " TFlops, " << gb_per_sec << " GB/s, " << gemm_name << std::endl;
if(tflops > best_tflops)
{
best_gemm_name = gemm_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
}
else
{
std::cout << "Instance: " << gemm_name << ", does not support this GEMM problem"
<< std::endl;
}
}
if(time_kernel)
{
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
}
return pass;
}
} // namespace profiler
} // namespace ck
...@@ -42,6 +42,7 @@ if(GPU_TARGETS MATCHES "gfx9") ...@@ -42,6 +42,7 @@ if(GPU_TARGETS MATCHES "gfx9")
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fixed_nk.cpp) list(APPEND PROFILER_SOURCES profile_grouped_gemm_fixed_nk.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_two_stage.cpp) list(APPEND PROFILER_SOURCES profile_grouped_gemm_two_stage.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp) list(APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_tile_loop.cpp)
endif() endif()
list(APPEND PROFILER_SOURCES profile_gemm_multiply_add.cpp) list(APPEND PROFILER_SOURCES profile_gemm_multiply_add.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm.cpp) list(APPEND PROFILER_SOURCES profile_batched_gemm.cpp)
...@@ -111,6 +112,7 @@ if(GPU_TARGETS MATCHES "gfx9") ...@@ -111,6 +112,7 @@ if(GPU_TARGETS MATCHES "gfx9")
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_add_layernorm_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_add_layernorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fixed_nk_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fixed_nk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fastgelu_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_tile_loop_instance)
endif() endif()
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_reduce_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_reduce_instance)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#include "profiler/profile_grouped_gemm_tile_loop_impl.hpp"
#include "profiler_operation_registry.hpp"
enum struct GemmMatrixLayout
{
MK_KN_MN, // 0
MK_NK_MN, // 0
};
enum struct GemmDataType
{
F16_F16_F16, // 0
};
#define OP_NAME "grouped_gemm_tile_loop"
#define OP_DESC "Grouped GEMM Multiple D Tile Loop"
namespace {
std::vector<int> argToIntArray(char* input)
{
std::vector<int> out;
std::istringstream in(input);
std::string item;
while(std::getline(in, item, ','))
{
out.push_back(std::stoi(item));
}
return out;
}
int profile_grouped_gemm_tile_loop(int argc, char* argv[])
{
if(argc < 14)
{
std::cout
<< "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: fp16)\n"
<< "arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n]);\n"
<< " 1: A[m, k] * B[n, k] = C[m, n];\n"
<< "arg4: verification (0: no; 1: yes)\n"
<< "arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n"
<< "arg6: print tensor value (0: no; 1: yes)\n"
<< "arg7: time kernel (0=n0, 1=yes)\n"
<< "arg8 to 13: Ms, Ns, Ks, StrideAs, StrideBs, StrideCs (e.g., 256,256 128,128 64,64 "
"64,64 64,64 128,128)\n"
<< "optional:\n"
<< "arg14: number of warm-up cycles (default 1)\n"
<< "arg15: number of iterations (default 10)\n"
<< std::endl;
exit(1);
}
const auto data_type = static_cast<GemmDataType>(std::stoi(argv[2]));
const auto layout = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const bool time_kernel = std::stoi(argv[7]);
const auto Ms = argToIntArray(argv[8]);
const auto Ns = argToIntArray(argv[9]);
const auto Ks = argToIntArray(argv[10]);
auto StrideAs = argToIntArray(argv[11]);
auto StrideBs = argToIntArray(argv[12]);
auto StrideCs = argToIntArray(argv[13]);
const int DefaultStrideA = Ks[0];
const int DefaultStrideB = Ns[0];
const int DefaultStrideC = Ns[0];
for(size_t i = 0; i < Ms.size(); ++i)
{
StrideAs[i] = StrideAs[i] == -1 ? DefaultStrideA : StrideAs[i];
StrideBs[i] = StrideBs[i] == -1 ? DefaultStrideB : StrideBs[i];
StrideCs[i] = StrideCs[i] == -1 ? DefaultStrideC : StrideCs[i];
}
int n_warmup = 10;
int n_iter = 50;
if(argc == 16)
{
n_warmup = std::stoi(argv[14]);
n_iter = std::stoi(argv[15]);
}
if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_grouped_gemm_tile_loop_impl<ck::half_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
time_kernel,
Ms,
Ns,
Ks,
StrideAs,
StrideBs,
StrideCs,
n_warmup,
n_iter);
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
ck::profiler::profile_grouped_gemm_tile_loop_impl<ck::half_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
time_kernel,
Ms,
Ns,
Ks,
StrideAs,
StrideBs,
StrideCs,
n_warmup,
n_iter);
}
else
{
throw std::runtime_error("wrong! this GEMM data_type & layout is not implemented");
}
return 0;
}
} // anonymous namespace
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_grouped_gemm_tile_loop);
add_custom_target(test_normalization_bwd_data) add_custom_target(test_normalization_bwd_data)
add_gtest_executable(test_layernorm2d_bwd_data_fp32 test_layernorm2d_bwd_data_fp32.cpp) add_gtest_executable(test_layernorm2d_bwd_data_fp32 test_layernorm2d_bwd_data_fp32.cpp)
target_link_libraries(test_layernorm2d_bwd_data_fp32 PRIVATE utility device_normalization_bwd_data_instance) if (result EQUAL 0)
add_dependencies(test_normalization_bwd_data test_layernorm2d_bwd_data_fp32) target_link_libraries(test_layernorm2d_bwd_data_fp32 PRIVATE utility device_normalization_bwd_data_instance)
add_dependencies(test_normalization_bwd_data test_layernorm2d_bwd_data_fp32)
endif()
add_gtest_executable(test_groupnorm_bwd_data_fp32 test_groupnorm_bwd_data_fp32.cpp) add_gtest_executable(test_groupnorm_bwd_data_fp32 test_groupnorm_bwd_data_fp32.cpp)
target_link_libraries(test_groupnorm_bwd_data_fp32 PRIVATE utility device_normalization_bwd_data_instance) if (result EQUAL 0)
add_dependencies(test_normalization_bwd_data test_groupnorm_bwd_data_fp32) target_link_libraries(test_groupnorm_bwd_data_fp32 PRIVATE utility device_normalization_bwd_data_instance)
add_dependencies(test_normalization_bwd_data test_groupnorm_bwd_data_fp32)
endif()
add_custom_target(test_normalization_bwd_gamma_beta) add_custom_target(test_normalization_bwd_gamma_beta)
add_gtest_executable(test_layernorm2d_bwd_gamma_beta_fp32 test_layernorm2d_bwd_gamma_beta_fp32.cpp) add_gtest_executable(test_layernorm2d_bwd_gamma_beta_fp32 test_layernorm2d_bwd_gamma_beta_fp32.cpp)
target_link_libraries(test_layernorm2d_bwd_gamma_beta_fp32 PRIVATE utility device_normalization_bwd_gamma_beta_instance) if (result EQUAL 0)
add_dependencies(test_normalization_bwd_gamma_beta test_layernorm2d_bwd_gamma_beta_fp32) target_link_libraries(test_layernorm2d_bwd_gamma_beta_fp32 PRIVATE utility device_normalization_bwd_gamma_beta_instance)
add_dependencies(test_normalization_bwd_gamma_beta test_layernorm2d_bwd_gamma_beta_fp32)
endif()
add_gtest_executable(test_groupnorm_bwd_gamma_beta_fp32 test_groupnorm_bwd_gamma_beta_fp32.cpp) add_gtest_executable(test_groupnorm_bwd_gamma_beta_fp32 test_groupnorm_bwd_gamma_beta_fp32.cpp)
target_link_libraries(test_groupnorm_bwd_gamma_beta_fp32 PRIVATE utility device_normalization_bwd_gamma_beta_instance) if (result EQUAL 0)
add_dependencies(test_normalization_bwd_gamma_beta test_groupnorm_bwd_gamma_beta_fp32) target_link_libraries(test_groupnorm_bwd_gamma_beta_fp32 PRIVATE utility device_normalization_bwd_gamma_beta_instance)
add_dependencies(test_normalization_bwd_gamma_beta test_groupnorm_bwd_gamma_beta_fp32)
endif()
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment