Commit b30d416c authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents 2fd6c6d4 94fbaac0
...@@ -101,8 +101,12 @@ list(APPEND GEMM_INSTANCES ...@@ -101,8 +101,12 @@ list(APPEND GEMM_INSTANCES
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_nk_mn_instance.cpp) device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_nk_mn_instance.cpp)
list(APPEND GEMM_INSTANCES list(APPEND GEMM_INSTANCES
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_default_instance.cpp device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_default_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_padded_instance.cpp device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_interwave_default_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_default_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_padded_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_interwave_padded_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_padded_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_nk_mn_instance.cpp device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_km_kn_mn_instance.cpp device_gemm_xdl_c_shuffle_fp8_fp8_fp8_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_km_nk_mn_instance.cpp) device_gemm_xdl_c_shuffle_fp8_fp8_fp8_km_nk_mn_instance.cpp)
......
...@@ -34,6 +34,15 @@ static constexpr auto MNPadding = ck::tensor_operation::device::GemmSpecializati ...@@ -34,6 +34,15 @@ static constexpr auto MNPadding = ck::tensor_operation::device::GemmSpecializati
static constexpr auto MNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding; static constexpr auto MNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_generic_instances = std::tuple<
// clang-format off
//#####################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//#####################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//#####################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
DeviceGemm_Xdl_CShuffle< Row, Row, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, MNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 16, 1, 8>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n] // Compilation parameters for a[m, k] * b[k, n] = c[m, n]
template <ck::tensor_operation::device::GemmSpecialization GemmSpec> template <ck::tensor_operation::device::GemmSpecialization GemmSpec>
using device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances = std::tuple< using device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances = std::tuple<
...@@ -108,6 +117,9 @@ void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances( ...@@ -108,6 +117,9 @@ void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(
DeviceGemm<Row, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>& DeviceGemm<Row, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances) instances)
{ {
add_device_operation_instances(
instances, device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_generic_instances{});
add_device_operation_instances( add_device_operation_instances(
instances, device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances<GemmDefault>{}); instances, device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances<GemmDefault>{});
......
...@@ -32,6 +32,17 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa ...@@ -32,6 +32,17 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
static constexpr auto MNPadding = ck::tensor_operation::device::GemmSpecialization::MNPadding; static constexpr auto MNPadding = ck::tensor_operation::device::GemmSpecialization::MNPadding;
static constexpr auto MNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding; static constexpr auto MNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// Compilation parameters for a[m, k] * b[n, k] = c[m, n]
using device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_generic_instances = std::tuple<
// clang-format off
//#####################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//#####################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//#####################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//#####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_CShuffle< Row, Col, Row, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, MNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 8>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
template <ck::tensor_operation::device::GemmSpecialization GemmSpec> template <ck::tensor_operation::device::GemmSpecialization GemmSpec>
// Compilation parameters for a[m, k] * b[n, k] = c[m, n] // Compilation parameters for a[m, k] * b[n, k] = c[m, n]
using device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances = std::tuple< using device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances = std::tuple<
...@@ -97,6 +108,9 @@ void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances( ...@@ -97,6 +108,9 @@ void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
DeviceGemm<Row, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>& DeviceGemm<Row, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances) instances)
{ {
add_device_operation_instances(
instances, device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_generic_instances{});
add_device_operation_instances( add_device_operation_instances(
instances, device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances<GemmDefault>{}); instances, device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances<GemmDefault>{});
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_instance.hpp" #include "ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_instance.hpp"
#ifdef CK_ENABLE_FP8 #ifdef CK_ENABLE_FP8
namespace ck { namespace ck {
...@@ -11,12 +11,12 @@ namespace instance { ...@@ -11,12 +11,12 @@ namespace instance {
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default; static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
void add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_default_instances( void add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_default_instances(
std::vector<std::unique_ptr< std::vector<std::unique_ptr<
DeviceGemm<Row, Row, Row, F8, F8, F8, PassThrough, PassThrough, PassThrough>>>& instances) DeviceGemm<Row, Row, Row, F8, F8, F8, PassThrough, PassThrough, PassThrough>>>& instances)
{ {
add_device_operation_instances( add_device_operation_instances(
instances, device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_instances<GemmDefault>{}); instances, device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_instances<GemmDefault>{});
} }
} // namespace instance } // namespace instance
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_interwave_instance.hpp"
#ifdef CK_ENABLE_FP8
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
void add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_interwave_default_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Row, Row, F8, F8, F8, PassThrough, PassThrough, PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_interwave_instances<GemmDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_interwave_instance.hpp"
#ifdef CK_ENABLE_FP8
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto MNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
void add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_interwave_padded_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Row, Row, F8, F8, F8, PassThrough, PassThrough, PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_interwave_instances<MNKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_instance.hpp" #include "ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_instance.hpp"
#ifdef CK_ENABLE_FP8 #ifdef CK_ENABLE_FP8
namespace ck { namespace ck {
...@@ -11,12 +11,12 @@ namespace instance { ...@@ -11,12 +11,12 @@ namespace instance {
static constexpr auto MNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding; static constexpr auto MNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
void add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_padded_instances( void add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_padded_instances(
std::vector<std::unique_ptr< std::vector<std::unique_ptr<
DeviceGemm<Row, Row, Row, F8, F8, F8, PassThrough, PassThrough, PassThrough>>>& instances) DeviceGemm<Row, Row, Row, F8, F8, F8, PassThrough, PassThrough, PassThrough>>>& instances)
{ {
add_device_operation_instances( add_device_operation_instances(
instances, device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_instances<MNKPadding>{}); instances, device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_instances<MNKPadding>{});
} }
} // namespace instance } // namespace instance
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_instance.hpp"
#ifdef CK_ENABLE_FP8
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
void add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v2_default_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Row, Row, F8, F8, F8, PassThrough, PassThrough, PassThrough>>>& instances)
{
add_device_operation_instances(
instances, device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v2_instances<GemmDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_instance.hpp"
#ifdef CK_ENABLE_FP8
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto MNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
void add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v2_padded_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Row, Row, F8, F8, F8, PassThrough, PassThrough, PassThrough>>>& instances)
{
add_device_operation_instances(
instances, device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v2_instances<MNKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
add_instance_library(device_gemm_add_instance
device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instance.cpp
device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instance.cpp
)
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/utility/sequence.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e = elementwise((a * b), d0, d1)
// outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 1>
// clang-format on
>;
using device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 16, 128, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 64, 16, 16, 64, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
void add_device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
BF16,
I8,
BF16_Tuple,
BF16,
PassThrough,
PassThrough,
Add>>>& instances)
{
add_device_operation_instances(
instances, device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances{});
add_device_operation_instances(
instances, device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/utility/sequence.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e = elementwise((a * b), d0, d1)
// outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_generic_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 1>
// clang-format on
>;
using device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 16, 128, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 64, 16, 16, 64, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
void add_device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
F16,
I8,
F16_Tuple,
F16,
PassThrough,
PassThrough,
Add>>>& instances)
{
add_device_operation_instances(
instances, device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_generic_instances{});
add_device_operation_instances(
instances, device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
add_instance_library(device_gemm_add_fastgelu_instance add_instance_library(device_gemm_add_fastgelu_instance
device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instance.cpp
device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_instance.cpp device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_instance.cpp
device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_instance.cpp device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_instance.cpp
device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_instance.cpp device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_instance.cpp
device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instance.cpp device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instance.cpp
device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instance.cpp
) )
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/utility/sequence.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
// static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e = elementwise((a * b), d0, d1)
// outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances =
std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 1>
// clang-format on
>;
using device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 256, 16, 128, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 64, 16, 16, 64, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
void add_device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
BF16,
I8,
BF16_Tuple,
BF16,
PassThrough,
PassThrough,
AddFastGelu>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances{});
add_device_operation_instances(
instances,
device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/utility/sequence.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
// static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e = elementwise((a * b), d0, d1)
// outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_generic_instances =
std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 1>
// clang-format on
>;
using device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 256, 16, 128, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 64, 16, 16, 64, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
F16,
I8,
F16_Tuple,
F16,
PassThrough,
PassThrough,
AddFastGelu>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_generic_instances{});
add_device_operation_instances(
instances, device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
add_instance_library(device_gemm_add_relu_instance
device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instance.cpp
device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instance.cpp
)
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/utility/sequence.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e = elementwise((a * b), d0, d1)
// outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances =
std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddRelu, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 1>
// clang-format on
>;
using device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddRelu, GemmMNKPadding, 1, 256, 16, 128, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddRelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddRelu, GemmMNKPadding, 1, 64, 16, 16, 64, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
void add_device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
BF16,
I8,
BF16_Tuple,
BF16,
PassThrough,
PassThrough,
AddRelu>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances{});
add_device_operation_instances(
instances, device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/utility/sequence.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e = elementwise((a * b), d0, d1)
// outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_generic_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddRelu, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 1>
// clang-format on
>;
using device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddRelu, GemmMNKPadding, 1, 256, 16, 128, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddRelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddRelu, GemmMNKPadding, 1, 64, 16, 16, 64, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
void add_device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
F16,
I8,
F16_Tuple,
F16,
PassThrough,
PassThrough,
AddRelu>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_generic_instances{});
add_device_operation_instances(
instances, device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
add_instance_library(device_gemm_add_silu_instance
device_gemm_add_silu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instance.cpp
device_gemm_add_silu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instance.cpp
)
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/utility/sequence.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e = elementwise((a * b), d0, d1)
// outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using device_gemm_add_silu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances =
std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddSilu, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 1>
// clang-format on
>;
using device_gemm_add_silu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddSilu, GemmMNKPadding, 1, 256, 16, 128, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddSilu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddSilu, GemmMNKPadding, 1, 64, 16, 16, 64, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
void add_device_gemm_add_silu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
BF16,
I8,
BF16_Tuple,
BF16,
PassThrough,
PassThrough,
AddSilu>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_add_silu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances{});
add_device_operation_instances(
instances, device_gemm_add_silu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment