Commit b30d416c authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents 2fd6c6d4 94fbaac0
...@@ -55,7 +55,7 @@ __global__ void ...@@ -55,7 +55,7 @@ __global__ void
const Block2CTileMap block_2_ctile_map) const Block2CTileMap block_2_ctile_map)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \ #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940) || defined(__gfx941__) || defined(__gfx942__)) defined(__gfx94__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()]; __shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid, GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
......
...@@ -49,8 +49,7 @@ __global__ void ...@@ -49,8 +49,7 @@ __global__ void
const CElementwiseOperation c_element_op, const CElementwiseOperation c_element_op,
const Block2CTileMap block_2_ctile_map) const Block2CTileMap block_2_ctile_map)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx1100__) || defined(__gfx1101__) || \ #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
defined(__gfx1102__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()]; __shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid, GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
...@@ -75,7 +74,7 @@ __global__ void ...@@ -75,7 +74,7 @@ __global__ void
ignore = b_element_op; ignore = b_element_op;
ignore = c_element_op; ignore = c_element_op;
ignore = block_2_ctile_map; ignore = block_2_ctile_map;
#endif // end of if (defined(__gfx1100__)) #endif // end of if (defined(__gfx11__))
} }
template <index_t BlockSize, template <index_t BlockSize,
......
...@@ -25,7 +25,7 @@ __global__ void ...@@ -25,7 +25,7 @@ __global__ void
kernel_gemm_xdl_cshuffle_v1(typename GridwiseGemm::Argument karg) kernel_gemm_xdl_cshuffle_v1(typename GridwiseGemm::Argument karg)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \ #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)) defined(__gfx94__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()]; __shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>( GridwiseGemm::template Run<HasMainKBlockLoop>(
...@@ -50,7 +50,7 @@ __global__ void ...@@ -50,7 +50,7 @@ __global__ void
typename GridwiseGemm::Problem problem) typename GridwiseGemm::Problem problem)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \ #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)) defined(__gfx94__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()]; __shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid, p_b_grid, p_c_grid, p_shared, problem); GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid, p_b_grid, p_c_grid, p_shared, problem);
......
...@@ -26,7 +26,7 @@ __global__ void ...@@ -26,7 +26,7 @@ __global__ void
kernel_gemm_xdl_cshuffle_v2(typename GridwiseGemm::Argument karg) kernel_gemm_xdl_cshuffle_v2(typename GridwiseGemm::Argument karg)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \ #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)) defined(__gfx94__))
// Pass two lds pointer is the key to tell compiler that ds_read/write // Pass two lds pointer is the key to tell compiler that ds_read/write
// operate on different lds chunk at same time without order dependecy // operate on different lds chunk at same time without order dependecy
__shared__ char p_shared_0[GridwiseGemm::GetSharedMemoryNumberOfByte()]; __shared__ char p_shared_0[GridwiseGemm::GetSharedMemoryNumberOfByte()];
...@@ -54,7 +54,7 @@ __global__ void ...@@ -54,7 +54,7 @@ __global__ void
typename GridwiseGemm::Problem problem) typename GridwiseGemm::Problem problem)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \ #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)) defined(__gfx94__))
__shared__ char p_shared_0[GridwiseGemm::GetSharedMemoryNumberOfByte()]; __shared__ char p_shared_0[GridwiseGemm::GetSharedMemoryNumberOfByte()];
__shared__ char p_shared_1[GridwiseGemm::GetSharedMemoryNumberOfByte()]; __shared__ char p_shared_1[GridwiseGemm::GetSharedMemoryNumberOfByte()];
......
...@@ -58,7 +58,7 @@ __global__ void ...@@ -58,7 +58,7 @@ __global__ void
const Block2CTileMap block_2_ctile_map) const Block2CTileMap block_2_ctile_map)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \ #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)) defined(__gfx94__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()]; __shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
// TODO ANT: separate into MMA + Epilogue // TODO ANT: separate into MMA + Epilogue
......
...@@ -167,7 +167,7 @@ __global__ void ...@@ -167,7 +167,7 @@ __global__ void
const CBlockClusterAdaptor c_block_cluster_adaptor) const CBlockClusterAdaptor c_block_cluster_adaptor)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \ #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)) defined(__gfx94__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()]; __shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid, GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
......
...@@ -45,7 +45,7 @@ __global__ void ...@@ -45,7 +45,7 @@ __global__ void
const Block2CTileMap block_2_ctile_map) const Block2CTileMap block_2_ctile_map)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \ #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)) defined(__gfx94__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()]; __shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainK0BlockLoop>(p_a_grid, GridwiseGemm::template Run<HasMainK0BlockLoop>(p_a_grid,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/amd_lds.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_direct_load.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
namespace ck {
template <typename GridwiseGemm,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
typename Block2CTileMap,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_xdlops_splitk_lds_direct_load(typename GridwiseGemm::Argument karg,
const Block2CTileMap& b2c_map,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CElementwiseOperation c_element_op)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
constexpr index_t shared_size = GridwiseGemm::GetSharedMemoryNumberOfByte();
__shared__ uint8_t p_shared[shared_size];
GridwiseGemm::template Run<HasMainKBlockLoop, CGlobalMemoryDataOperation>(
karg, static_cast<void*>(p_shared), b2c_map, a_element_op, b_element_op, c_element_op);
#else
ignore = karg;
ignore = b2c_map;
ignore = a_element_op;
ignore = b_element_op;
ignore = c_element_op;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template <index_t BlockSize,
typename FloatA,
typename FloatB,
typename FloatAcc,
typename FloatC,
typename ALayout,
typename BLayout,
typename CLayout,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
tensor_operation::device::GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t K1Value,
index_t MRepeat,
index_t NRepeat,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
bool BBlockLdsExtraN,
index_t CShuffleMRepeatPerShuffle,
index_t CShuffleNRepeatPerShuffle,
index_t CBlockTransferScalarPerVector_NWaveNPerXDL,
typename CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
LoopScheduler LoopSched = make_default_loop_scheduler(),
PipelineVersion PipelineVer = PipelineVersion::v4,
typename ComputeType = FloatC>
struct GridwiseGemm_xdlops_splitk_lds_direct_load
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
static constexpr auto I7 = Number<7>{};
// K1 should be Number<...>
static constexpr auto K1 = Number<K1Value>{};
static constexpr auto M01 = 1;
static constexpr auto N01 = 1;
static constexpr auto gemm_padder =
tensor_operation::device::GemmPadder<GemmSpec, index_t, index_t, index_t>{
MPerBlock, NPerBlock, K1* K0PerBlock};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
using GridwiseGemmPipe = remove_cvref_t<
decltype(GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>())>;
struct Argument : public ck::tensor_operation::device::BaseArgument
{
const FloatA* p_a_grid;
const FloatB* p_b_grid;
FloatC* p_c_grid;
index_t M;
index_t N;
index_t K;
index_t StrideA;
index_t StrideB;
index_t StrideC;
index_t MPadded;
index_t NPadded;
index_t KPadded;
index_t K0Padded;
index_t k_batch;
Argument(const FloatA* p_a_grid_,
const FloatB* p_b_grid_,
FloatC* p_c_grid_,
index_t M_,
index_t N_,
index_t K_,
index_t StrideA_,
index_t StrideB_,
index_t StrideC_,
index_t MPadded_,
index_t NPadded_,
index_t KPadded_,
index_t K0Padded_,
index_t k_batch_)
: p_a_grid(p_a_grid_),
p_b_grid(p_b_grid_),
p_c_grid(p_c_grid_),
M(M_),
N(N_),
K(K_),
StrideA(StrideA_),
StrideB(StrideB_),
StrideC(StrideC_),
MPadded(MPadded_),
NPadded(NPadded_),
KPadded(KPadded_),
K0Padded(K0Padded_),
k_batch(k_batch_)
{
}
void Print() const
{
std::cout << "arg {"
<< "M:" << M << ", "
<< "N:" << N << ", "
<< "K:" << K << ", "
<< "SA:" << StrideA << ", "
<< "SB:" << StrideB << ", "
<< "SC:" << StrideC << ", "
<< "MP:" << MPadded << ", "
<< "NP:" << NPadded << ", "
<< "KP:" << KPadded << ", "
<< "K0Padded:" << K0Padded << ", "
<< "KB:" << k_batch << "}" << std::endl;
}
};
__host__ __device__ static auto CalculateGridSize(const Argument& karg)
{
return std::make_tuple(math::integer_divide_ceil(karg.N, NPerBlock),
math::integer_divide_ceil(karg.M, MPerBlock),
karg.k_batch);
}
// prefer this to be called on host
__host__ __device__ static auto CalculateMPadded(index_t M)
{
return math::integer_least_multiple(M, MPerBlock);
}
__host__ __device__ static auto CalculateNPadded(index_t N)
{
return math::integer_least_multiple(N, NPerBlock);
}
__host__ __device__ static auto CalculateK0Padded(index_t K, index_t K_Batch = 1)
{
// k_batch * k0 * k0_per_block * k1
auto K_t = K_Batch * K0PerBlock * K1;
return (K + K_t - 1) / K_t * K0PerBlock;
}
__host__ __device__ static auto CalculateKPadded(index_t K, index_t K_Batch = 1)
{
auto K0Padded = CalculateK0Padded(K, K_Batch);
return K_Batch * K0Padded * K1;
}
__host__ __device__ static auto MakeAGridDescriptor_KBatch_K0_M_K1(index_t M,
index_t MPad,
index_t K,
index_t StrideA,
index_t KBatch,
index_t K0Padded,
index_t KPad)
{
const auto a_grid_desc_m_k = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
}
}();
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding)
{
const auto a_grid_desc_m_kpad = transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_pass_through_transform(M), make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
// const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return transform_tensor_descriptor(
a_grid_desc_m_kpad,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0Padded, K1)),
make_right_pad_transform(M, MPad - M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding)
{
// const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0Padded, K1)),
make_right_pad_transform(M, MPad - M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else
{
return transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0Padded, K1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
}
__host__ __device__ static auto MakeBGridDescriptor_KBatch_K0_N_K1(index_t K,
index_t NPad,
index_t N,
index_t StrideB,
index_t KBatch,
index_t K0Padded,
index_t KPad)
{
const auto b_grid_desc_k_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
}
}();
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::NPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::NKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding)
{
const auto b_grid_desc_kpad_n = transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_right_pad_transform(K, KPad - K), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
// const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
b_grid_desc_kpad_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0Padded, K1)),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::NPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding)
{
// const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0Padded, K1)),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else
{
return transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, K0Padded, K1)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
}
__host__ __device__ static auto MakeCGridDescriptor_M_N(index_t M, index_t N, index_t StrideC)
{
const auto c_grid_desc_m_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC));
}
}();
return gemm_padder.PadCDescriptor_M_N(c_grid_desc_m_n);
}
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_k0_m_k1_block_desc = [&]() {
if constexpr(ABlockLdsExtraM)
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1),
make_tuple(Number<MPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
}
}();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_k0_n_k1_block_desc = [&]() {
if constexpr(BBlockLdsExtraN)
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1),
make_tuple(Number<NPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
}
}();
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size =
math::integer_least_multiple(a_k0_m_k1_block_desc.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size =
math::integer_least_multiple(b_k0_n_k1_block_desc.GetElementSpaceSize(), max_lds_align);
constexpr auto c_block_size =
GetCBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock().GetElementSpaceSize();
return math::max(NumGemmKPrefetchStage * (a_block_space_size + b_block_space_size) *
sizeof(ComputeType),
c_block_size * sizeof(FloatC));
}
__host__ __device__ static constexpr bool CheckValidity(const Argument& karg)
{
if constexpr(!(GemmSpec == tensor_operation::device::GemmSpecialization::MPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding))
{
if(!(karg.M % MPerBlock == 0))
{
return false;
}
}
if constexpr(!(GemmSpec == tensor_operation::device::GemmSpecialization::NPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::NKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding))
{
if(!(karg.N % NPerBlock == 0))
{
return false;
}
}
if constexpr(!(GemmSpec == tensor_operation::device::GemmSpecialization::KPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::NKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding))
{
auto K_t = karg.k_batch * K0PerBlock * K1;
if(!(karg.K % K_t == 0))
{
return false;
}
}
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
if(karg.K % ABlockTransferSrcScalarPerVector != 0)
{
return false;
}
}
else
{
if(karg.M % ABlockTransferSrcScalarPerVector != 0)
{
return false;
}
}
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
if(karg.N % BBlockTransferSrcScalarPerVector != 0)
{
return false;
}
}
else
{
if(karg.K % BBlockTransferSrcScalarPerVector != 0)
{
return false;
}
}
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
if(karg.N % CBlockTransferScalarPerVector_NWaveNPerXDL != 0)
{
return false;
}
}
else
{
if(karg.M % CBlockTransferScalarPerVector_NWaveNPerXDL != 0)
{
return false;
}
}
const auto num_k_loop = karg.K0Padded / K0PerBlock;
if(!GridwiseGemmPipe::IsSupported(num_k_loop))
{
return false;
}
return true;
}
__host__ __device__ static auto GetKPad(index_t K, index_t KBatch)
{
const index_t K0Padded =
math::integer_divide_ceil(K, K1 * K0PerBlock * KBatch) * K0PerBlock;
const index_t KPad = KBatch * K0Padded * K1;
return KPad;
}
__host__ __device__ static constexpr bool CalculateHasMainK0BlockLoop(index_t K0Padded)
{
const index_t num_loop = K0Padded / K0PerBlock;
return GridwiseGemmPipe::CalculateHasMainLoop(num_loop);
}
template <typename CGridDesc>
__host__ __device__ static constexpr auto
MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(const CGridDesc& c_m_n_grid_desc)
{
const auto M = c_m_n_grid_desc.GetLength(I0);
const auto N = c_m_n_grid_desc.GetLength(I1);
const auto MBlock = M / MPerBlock;
const auto NBlock = N / NPerBlock;
return transform_tensor_descriptor(
c_m_n_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(MBlock, Number<MPerBlock>{})),
make_unmerge_transform(make_tuple(NBlock, Number<NPerBlock>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2, 3>{}));
}
__host__ __device__ static constexpr auto
GetCBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock()
{
constexpr index_t MWave = MPerBlock / (MRepeat * MPerXDL);
constexpr index_t NWave = NPerBlock / (NRepeat * NPerXDL);
return make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<CShuffleMRepeatPerShuffle * MWave * MPerXDL>{},
I1,
Number<CShuffleNRepeatPerShuffle * NWave * NPerXDL>{}));
}
// return block_id to C matrix tile idx (m0, n0, k_split) mapping
__host__ __device__ static constexpr auto MakeDefaultBlock2CTileMap()
{
return BlockToCTileMap_3DGrid_KSplit<MPerBlock, NPerBlock>();
}
using CGridDesc_M_N = remove_cvref_t<decltype(MakeCGridDescriptor_M_N(1, 1, 1))>;
using DefaultBlock2CTileMap = remove_cvref_t<decltype(MakeDefaultBlock2CTileMap())>;
template <bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
typename Block2CTileMap>
__device__ static void Run(const Argument& karg,
void* __restrict__ p_shared_block,
const Block2CTileMap& block_2_ctile_map,
const AElementwiseOperation a_element_op = AElementwiseOperation{},
const BElementwiseOperation b_element_op = BElementwiseOperation{},
const CElementwiseOperation c_element_op = CElementwiseOperation{})
{
// Elementwise operations are not supported for A and B, arguments left only for the API
// consistency.
(void)a_element_op;
(void)b_element_op;
const FloatA* p_a_grid = karg.p_a_grid;
const FloatB* p_b_grid = karg.p_b_grid;
FloatC* p_c_grid = karg.p_c_grid;
const auto a_b_k0_m_k1_grid_desc = MakeAGridDescriptor_KBatch_K0_M_K1(
karg.M, karg.MPadded, karg.K, karg.StrideA, karg.k_batch, karg.K0Padded, karg.KPadded);
const auto b_b_k0_n_k1_grid_desc = MakeBGridDescriptor_KBatch_K0_N_K1(
karg.K, karg.NPadded, karg.N, karg.StrideB, karg.k_batch, karg.K0Padded, karg.KPadded);
const auto c_grid_desc_m_n = MakeCGridDescriptor_M_N(karg.M, karg.N, karg.StrideC);
const auto c_grid_desc_mblock_mperblock_nblock_nperblock =
MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(c_grid_desc_m_n);
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_b_k0_m_k1_grid_desc.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_b_k0_n_k1_grid_desc.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_grid, c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
// divide block work by [KBatch, M, N]
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
make_tuple(c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I0),
c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I2))))
{
return;
}
const index_t block_m_id = __builtin_amdgcn_readfirstlane(block_work_idx[I1]);
const index_t block_n_id = __builtin_amdgcn_readfirstlane(block_work_idx[I2]);
const index_t k_batch_id = __builtin_amdgcn_readfirstlane(block_work_idx[I0]);
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_m_id * MPerBlock);
const index_t n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_n_id * NPerBlock);
// lds max alignment
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_k0_m_k1_block_desc = [&]() {
if constexpr(ABlockLdsExtraM)
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1),
make_tuple(Number<MPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
}
}();
constexpr auto a_b_k0_m_k1_block_desc = [&]() {
if constexpr(ABlockLdsExtraM)
{
return make_naive_tensor_descriptor(
make_tuple(Number<1>{}, Number<K0PerBlock>{}, Number<MPerBlock>{}, K1),
make_tuple(Number<K0PerBlock>{} * Number<MPerBlock + 1>{} * K1,
Number<MPerBlock + 1>{} * K1,
K1,
I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<1>{}, Number<K0PerBlock>{}, Number<MPerBlock>{}, K1),
max_lds_align);
}
}();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_k0_n_k1_block_desc = [&]() {
if constexpr(BBlockLdsExtraN)
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1),
make_tuple(Number<NPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
}
}();
constexpr auto b_b_k0_n_k1_block_desc = [&]() {
if constexpr(BBlockLdsExtraN)
{
return make_naive_tensor_descriptor(
make_tuple(Number<1>{}, Number<K0PerBlock>{}, Number<NPerBlock>{}, K1),
make_tuple(Number<K0PerBlock>{} * Number<NPerBlock + 1>{} * K1,
Number<NPerBlock + 1>{} * K1,
K1,
I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<1>{}, Number<K0PerBlock>{}, Number<NPerBlock>{}, K1),
max_lds_align);
}
}();
auto a_blockwise_copy =
ThreadGroupTensorSliceTransfer_DirectLoad<ThisThreadBlock,
Sequence<1, K0PerBlock, MPerBlock, K1>,
ABlockTransferThreadClusterLengths_K0_M_K1,
FloatA,
ComputeType,
decltype(a_b_k0_m_k1_grid_desc),
decltype(a_b_k0_m_k1_block_desc),
ABlockTransferSrcVectorDim,
3,
ABlockTransferSrcScalarPerVector>(
a_b_k0_m_k1_grid_desc,
make_multi_index(k_batch_id, 0, m_block_data_idx_on_grid, 0),
a_b_k0_m_k1_block_desc,
make_multi_index(0, 0, 0, 0));
auto b_blockwise_copy =
ThreadGroupTensorSliceTransfer_DirectLoad<ThisThreadBlock,
Sequence<1, K0PerBlock, NPerBlock, K1>,
BBlockTransferThreadClusterLengths_K0_N_K1,
FloatB,
ComputeType,
decltype(b_b_k0_n_k1_grid_desc),
decltype(b_b_k0_n_k1_block_desc),
BBlockTransferSrcVectorDim,
3,
BBlockTransferSrcScalarPerVector>(
b_b_k0_n_k1_grid_desc,
make_multi_index(k_batch_id, 0, n_block_data_idx_on_grid, 0),
b_b_k0_n_k1_block_desc,
make_multi_index(0, 0, 0, 0));
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
BlockSize,
ComputeType, // ComputeType A
ComputeType, // ComputeType B
FloatAcc,
decltype(a_k0_m_k1_block_desc),
decltype(b_k0_n_k1_block_desc),
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
K1,
LoopSched>();
auto c_thread_buf = blockwise_gemm.GetCThreadBuffer();
constexpr auto a_block_space_size =
math::integer_least_multiple(a_k0_m_k1_block_desc.GetElementSpaceSize(), max_lds_align);
constexpr auto a_block_slice_copy_step = make_multi_index(0, K0PerBlock, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(0, K0PerBlock, 0, 0);
const auto a_buffers_offset = 0;
auto a_block_buffers =
ck::lds_utils::AllocateLdsBuffers<ComputeType, NumGemmKPrefetchStage>(
p_shared_block,
a_b_k0_m_k1_block_desc.GetElementSpaceSize(),
a_buffers_offset,
max_lds_align);
const auto b_buffers_offset = a_block_space_size * NumGemmKPrefetchStage;
auto b_block_buffers =
ck::lds_utils::AllocateLdsBuffers<ComputeType, NumGemmKPrefetchStage>(
p_shared_block,
b_b_k0_n_k1_block_desc.GetElementSpaceSize(),
b_buffers_offset,
max_lds_align);
// gridwise GEMM pipeline
const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane(
(a_b_k0_m_k1_grid_desc.GetLength(I1) * a_b_k0_m_k1_grid_desc.GetLength(I3)) /
(K0PerBlock * K1));
const auto gridwise_gemm_pipeline = GridwiseGemmPipe{};
gridwise_gemm_pipeline.template Run<HasMainKBlockLoop>(a_b_k0_m_k1_grid_desc,
a_b_k0_m_k1_block_desc,
a_blockwise_copy,
a_grid_buf,
a_block_buffers,
a_block_slice_copy_step,
b_b_k0_n_k1_grid_desc,
b_b_k0_n_k1_block_desc,
b_blockwise_copy,
b_grid_buf,
b_block_buffers,
b_block_slice_copy_step,
blockwise_gemm,
c_thread_buf,
num_k_block_main_loop);
// output: register to global memory
{
constexpr index_t MWave = MPerBlock / (MRepeat * MPerXDL);
constexpr index_t NWave = NPerBlock / (NRepeat * NPerXDL);
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc =
blockwise_gemm.GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc =
blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
constexpr auto M0 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I0);
constexpr auto N0 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I1);
constexpr auto M1 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I2);
constexpr auto N1 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I3);
constexpr auto M2 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I4);
constexpr auto M3 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I5);
constexpr auto M4 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I6);
constexpr auto N2 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I7);
constexpr auto c_block_desc_mblock_mperblock_nblock_nperblock =
GetCBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
auto c_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<FloatC*>(p_shared_block),
c_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2 = transform_tensor_descriptor(
c_block_desc_mblock_mperblock_nblock_nperblock,
make_tuple(
make_freeze_transform(I0), // freeze mblock
make_unmerge_transform(make_tuple(CShuffleMRepeatPerShuffle,
M1,
M2,
M3,
M4)), // M1 = MWave, M2 * M3 * M4 = MPerXDL
make_freeze_transform(I0), // freeze nblock
make_unmerge_transform(make_tuple(CShuffleNRepeatPerShuffle,
N1,
N2))), // M1 = MWave, M2 * M3 * M4 = MPerXDL
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(
Sequence<>{}, Sequence<0, 2, 4, 5, 6>{}, Sequence<>{}, Sequence<1, 3, 7>{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const index_t m_thread_data_on_block = c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_block = c_thread_mtx_on_block[I1];
const auto m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M0, M1, M2, M3, M4))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto m_thread_data_on_block_idx =
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor.CalculateBottomIndex(
make_multi_index(m_thread_data_on_block));
const auto n_thread_data_on_block_to_n0_n1_n2_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(N0, N1, N2))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
const auto n_thread_data_on_block_idx =
n_thread_data_on_block_to_n0_n1_n2_adaptor.CalculateBottomIndex(
make_multi_index(n_thread_data_on_block));
// VGPR to LDS
auto c_thread_copy_vgpr_to_lds =
ThreadwiseTensorSliceTransfer_v1r3<FloatAcc,
FloatC,
decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc),
decltype(c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2),
ck::tensor_operation::element_wise::PassThrough,
Sequence<CShuffleMRepeatPerShuffle,
CShuffleNRepeatPerShuffle,
I1,
I1,
M2,
I1,
M4,
I1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
7,
1,
InMemoryDataOperationEnum::Set,
1,
true>{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
make_multi_index(0,
0,
m_thread_data_on_block_idx[I1],
n_thread_data_on_block_idx[I1],
m_thread_data_on_block_idx[I2],
m_thread_data_on_block_idx[I3],
m_thread_data_on_block_idx[I4],
n_thread_data_on_block_idx[I2]),
ck::tensor_operation::element_wise::PassThrough{}};
// LDS to global
auto c_block_copy_lds_to_global = ThreadGroupTensorSliceTransfer_v6r1<
ThisThreadBlock, // index_t BlockSize,
CElementwiseOperation, // ElementwiseOperation,
CGlobalMemoryDataOperation, // DstInMemOp,
Sequence<1,
CShuffleMRepeatPerShuffle * MWave * MPerXDL,
1,
CShuffleNRepeatPerShuffle * NWave * NPerXDL>, // BlockSliceLengths,
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
Sequence<0, 1, 2, 3>, // typename ThreadClusterArrangeOrder,
FloatC, // typename SrcData,
FloatC, // typename DstData,
decltype(c_block_desc_mblock_mperblock_nblock_nperblock),
decltype(c_grid_desc_mblock_mperblock_nblock_nperblock),
Sequence<0, 1, 2, 3>, // typename DimAccessOrder,
3, // index_t VectorDim,
CBlockTransferScalarPerVector_NWaveNPerXDL, // index_t ScalarPerVector,
true, // bool ThreadTransferSrcResetCoordinateAfterRun,
false> // bool ThreadTransferDstResetCoordinateAfterRun
{c_block_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(0, 0, 0, 0),
c_grid_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(block_m_id, 0, block_n_id, 0),
c_element_op};
constexpr auto mxdlperwave_forward_step =
make_multi_index(0, CShuffleMRepeatPerShuffle * MWave * MPerXDL, 0, 0);
constexpr auto nxdlperwave_forward_step =
make_multi_index(0, 0, 0, CShuffleNRepeatPerShuffle * NWave * NPerXDL);
constexpr auto nxdlperwave_backward_step =
make_multi_index(0, 0, 0, -CShuffleNRepeatPerShuffle * NWave * NPerXDL);
static_for<0, MRepeat, CShuffleMRepeatPerShuffle>{}([&](auto mxdlperwave_iter) {
constexpr auto mxdlperwave = mxdlperwave_iter;
static_for<0, NRepeat, CShuffleNRepeatPerShuffle>{}([&](auto nxdlperwave_iter) {
constexpr bool nxdlperwave_forward_sweep =
(mxdlperwave % (2 * CShuffleMRepeatPerShuffle) == 0);
constexpr index_t nxdlperwave_value =
nxdlperwave_forward_sweep
? nxdlperwave_iter
: (NRepeat - nxdlperwave_iter - CShuffleNRepeatPerShuffle);
constexpr auto nxdlperwave = Number<nxdlperwave_value>{};
// make sure it's safe to do ds_write
block_sync_lds();
// VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(
c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc,
make_tuple(mxdlperwave, nxdlperwave, I0, I0, I0, I0, I0, I0),
c_thread_buf,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
c_block_buf);
// make sure it's safe to do ds_read
block_sync_lds();
// LDS to global
c_block_copy_lds_to_global.Run(c_block_desc_mblock_mperblock_nblock_nperblock,
c_block_buf,
c_grid_desc_mblock_mperblock_nblock_nperblock,
c_grid_buf);
// move on nxdlperwave dimension
if constexpr(nxdlperwave_forward_sweep &&
(nxdlperwave < NRepeat - CShuffleNRepeatPerShuffle))
{
c_block_copy_lds_to_global.MoveDstSliceWindow(
c_grid_desc_mblock_mperblock_nblock_nperblock,
nxdlperwave_forward_step);
}
else if constexpr((!nxdlperwave_forward_sweep) && (nxdlperwave > 0))
{
c_block_copy_lds_to_global.MoveDstSliceWindow(
c_grid_desc_mblock_mperblock_nblock_nperblock,
nxdlperwave_backward_step);
}
});
// move on mxdlperwave dimension
if constexpr(mxdlperwave < MRepeat - CShuffleMRepeatPerShuffle)
{
c_block_copy_lds_to_global.MoveDstSliceWindow(
c_grid_desc_mblock_mperblock_nblock_nperblock, mxdlperwave_forward_step);
}
});
}
}
};
} // namespace ck
...@@ -38,7 +38,7 @@ __global__ void ...@@ -38,7 +38,7 @@ __global__ void
typename GridwiseGemm::Block2CTileMap block_mapping) typename GridwiseGemm::Block2CTileMap block_mapping)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \ #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)) defined(__gfx94__))
constexpr index_t shared_size = GridwiseGemm::GetSharedMemoryNumberOfByte(); constexpr index_t shared_size = GridwiseGemm::GetSharedMemoryNumberOfByte();
__shared__ uint8_t p_shared[shared_size]; __shared__ uint8_t p_shared[shared_size];
......
...@@ -39,7 +39,7 @@ __global__ void ...@@ -39,7 +39,7 @@ __global__ void
const CGridDesc_M_N c_grid_desc_m_n) const CGridDesc_M_N c_grid_desc_m_n)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \ #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)) defined(__gfx94__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()]; __shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid, GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
...@@ -70,7 +70,7 @@ __global__ void ...@@ -70,7 +70,7 @@ __global__ void
kernel_gemm_xdlops_v2r3(const typename GridwiseGemm::Argument karg) kernel_gemm_xdlops_v2r3(const typename GridwiseGemm::Argument karg)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \ #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)) defined(__gfx94__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()]; __shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
const auto a_grid_desc_k0_m_k1 = const auto a_grid_desc_k0_m_k1 =
......
...@@ -43,7 +43,7 @@ __global__ void ...@@ -43,7 +43,7 @@ __global__ void
const CBlockClusterAdaptor c_block_cluster_adaptor) const CBlockClusterAdaptor c_block_cluster_adaptor)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \ #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)) defined(__gfx94__))
constexpr index_t shared_block_size = constexpr index_t shared_block_size =
GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(FloatAB); GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(FloatAB);
......
...@@ -37,7 +37,7 @@ __global__ void ...@@ -37,7 +37,7 @@ __global__ void
const CElementwiseOperation c_element_op) const CElementwiseOperation c_element_op)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \ #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)) defined(__gfx94__))
constexpr index_t shared_size = GridwiseGemm::GetSharedMemoryNumberOfByte(); constexpr index_t shared_size = GridwiseGemm::GetSharedMemoryNumberOfByte();
__shared__ uint8_t p_shared[shared_size]; __shared__ uint8_t p_shared[shared_size];
......
...@@ -47,7 +47,7 @@ __global__ void ...@@ -47,7 +47,7 @@ __global__ void
const Block2CTileMap block_2_ctile_map) const Block2CTileMap block_2_ctile_map)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \ #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)) defined(__gfx94__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()]; __shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainK0BlockLoop>( GridwiseGemm::template Run<HasMainK0BlockLoop>(
......
...@@ -50,7 +50,7 @@ __global__ void ...@@ -50,7 +50,7 @@ __global__ void
const Block2CTileMap block_2_ctile_map) const Block2CTileMap block_2_ctile_map)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \ #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)) defined(__gfx94__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()]; __shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>( GridwiseGemm::template Run<HasMainKBlockLoop>(
......
...@@ -54,7 +54,7 @@ __global__ void ...@@ -54,7 +54,7 @@ __global__ void
const Block2CTileMap block_2_ctile_map) const Block2CTileMap block_2_ctile_map)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \ #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)) defined(__gfx94__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()]; __shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>( GridwiseGemm::template Run<HasMainKBlockLoop>(
......
...@@ -35,9 +35,8 @@ __global__ void ...@@ -35,9 +35,8 @@ __global__ void
const Block2ETileMap block_2_tile_map, const Block2ETileMap block_2_tile_map,
const ComputePtrOffsetOfStridedBatch compute_ptr_offset_of_batch) const ComputePtrOffsetOfStridedBatch compute_ptr_offset_of_batch)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \ #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx1030__) || defined(__gfx1100__) || \ defined(__gfx90a__) || defined(__gfx94__) || defined(__gfx103__) || defined(__gfx11__))
defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx941__) || defined(__gfx942__))
GridwiseTensorRearrangeKernel::Run(in_grid_desc, GridwiseTensorRearrangeKernel::Run(in_grid_desc,
p_in_global, p_in_global,
out_grid_desc, out_grid_desc,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/amd_address_space.hpp"
#include "ck/utility/dynamic_buffer.hpp"
#include "ck/utility/math.hpp"
namespace ck {
namespace lds_utils {
/** \brief Allocate a given number of buffers in LDS and return them as a tuple.
*
* \tparam DataType Data type of elements to be stored in LDS.
* \tparam NumBuffers Number of buffers to be allocated.
* \param lds_ptr Address of the beginning of LDS space.
* \param num_elems_per_buffer Number of elements to allocate per single buffer.
* \param start_offset_elems Number of elements to move from the start of LDS for the allocation of
* the first buffer. \param lds_alignment Alignment of every buffer allocation given as a number of
* elements. \return Tuple of dynamic buffers representing memory allocated in LDS.
*/
template <typename DataType, index_t NumBuffers>
__device__ static auto AllocateLdsBuffers(void* lds_ptr,
int32_t num_elems_per_buffer,
int32_t start_offset_elems,
int32_t lds_alignment)
{
const DataType* lds_start = static_cast<DataType*>(lds_ptr) + start_offset_elems;
const int32_t single_buffer_offset =
math::integer_least_multiple(num_elems_per_buffer, lds_alignment);
return generate_tuple(
[&](auto i) {
const int32_t local_offset = i * single_buffer_offset;
return make_dynamic_buffer<AddressSpaceEnum::Lds>(lds_start + local_offset,
num_elems_per_buffer);
},
Number<NumBuffers>{});
}
} // namespace lds_utils
} // namespace ck
...@@ -9,6 +9,9 @@ ...@@ -9,6 +9,9 @@
// TODO: Add arch limitation // TODO: Add arch limitation
namespace ck { namespace ck {
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__)
#define __gfx11__
#endif
/********************************WAVE32 MODE***********************************************/ /********************************WAVE32 MODE***********************************************/
// src: fp16, dst: fp32 // src: fp16, dst: fp32
...@@ -25,7 +28,7 @@ struct intrin_wmma_f32_16x16x16_f16_w32<16, 16> ...@@ -25,7 +28,7 @@ struct intrin_wmma_f32_16x16x16_f16_w32<16, 16>
// delete them. // delete them.
// amd_assembly_wmma_f32_16x16x16_f16_w32( // amd_assembly_wmma_f32_16x16x16_f16_w32(
// reg_a, reg_b, reg_c.template AsType<float8_t>()(Number<0>{})); // reg_a, reg_b, reg_c.template AsType<float8_t>()(Number<0>{}));
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) #if defined(__gfx11__)
reg_c.template AsType<float8_t>()(Number<0>{}) = __builtin_amdgcn_wmma_f32_16x16x16_f16_w32( reg_c.template AsType<float8_t>()(Number<0>{}) = __builtin_amdgcn_wmma_f32_16x16x16_f16_w32(
reg_a, reg_b, reg_c.template AsType<float8_t>()[Number<0>{}]); reg_a, reg_b, reg_c.template AsType<float8_t>()[Number<0>{}]);
#else #else
...@@ -46,7 +49,7 @@ struct intrin_wmma_f32_16x16x16_bf16_w32<16, 16> ...@@ -46,7 +49,7 @@ struct intrin_wmma_f32_16x16x16_bf16_w32<16, 16>
template <class FloatC> template <class FloatC>
__device__ static void Run(const bhalf16_t& reg_a, const bhalf16_t& reg_b, FloatC& reg_c) __device__ static void Run(const bhalf16_t& reg_a, const bhalf16_t& reg_b, FloatC& reg_c)
{ {
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) #if defined(__gfx11__)
reg_c.template AsType<float8_t>()(Number<0>{}) = reg_c.template AsType<float8_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32( __builtin_amdgcn_wmma_f32_16x16x16_bf16_w32(
reg_a, reg_b, reg_c.template AsType<float8_t>()[Number<0>{}]); reg_a, reg_b, reg_c.template AsType<float8_t>()[Number<0>{}]);
...@@ -71,7 +74,7 @@ struct intrin_wmma_f16_16x16x16_f16_w32<16, 16, Opsel> ...@@ -71,7 +74,7 @@ struct intrin_wmma_f16_16x16x16_f16_w32<16, 16, Opsel>
// opsel usage // opsel usage
// false: D0.[0:15] = result // false: D0.[0:15] = result
// true : D0.[16:31]= result // true : D0.[16:31]= result
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) #if defined(__gfx11__)
reg_c.template AsType<half16_t>()(Number<0>{}) = __builtin_amdgcn_wmma_f16_16x16x16_f16_w32( reg_c.template AsType<half16_t>()(Number<0>{}) = __builtin_amdgcn_wmma_f16_16x16x16_f16_w32(
reg_a, reg_b, reg_c.template AsType<half16_t>()[Number<0>{}], Opsel); reg_a, reg_b, reg_c.template AsType<half16_t>()[Number<0>{}], Opsel);
#else #else
...@@ -95,7 +98,7 @@ struct intrin_wmma_bf16_16x16x16_bf16_w32<16, 16, Opsel> ...@@ -95,7 +98,7 @@ struct intrin_wmma_bf16_16x16x16_bf16_w32<16, 16, Opsel>
// opsel usage // opsel usage
// false: D0.[0:15] = result // false: D0.[0:15] = result
// true : D0.[16:31]= result // true : D0.[16:31]= result
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) #if defined(__gfx11__)
reg_c.template AsType<bhalf16_t>()(Number<0>{}) = reg_c.template AsType<bhalf16_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32( __builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32(
reg_a, reg_b, reg_c.template AsType<bhalf16_t>()[Number<0>{}], Opsel); reg_a, reg_b, reg_c.template AsType<bhalf16_t>()[Number<0>{}], Opsel);
...@@ -117,7 +120,7 @@ struct intrin_wmma_i32_16x16x16_iu8_w32<16, 16, neg_a, neg_b, clamp> ...@@ -117,7 +120,7 @@ struct intrin_wmma_i32_16x16x16_iu8_w32<16, 16, neg_a, neg_b, clamp>
template <class FloatC> template <class FloatC>
__device__ static void Run(const int8x16_t& reg_a, const int8x16_t& reg_b, FloatC& reg_c) __device__ static void Run(const int8x16_t& reg_a, const int8x16_t& reg_b, FloatC& reg_c)
{ {
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) #if defined(__gfx11__)
reg_c.template AsType<int32x8_t>()(Number<0>{}) = reg_c.template AsType<int32x8_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32( __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32(
neg_a, neg_a,
...@@ -145,7 +148,7 @@ struct intrin_wmma_f32_16x16x16_f16_w64<16, 16> ...@@ -145,7 +148,7 @@ struct intrin_wmma_f32_16x16x16_f16_w64<16, 16>
template <class FloatC> template <class FloatC>
__device__ static void Run(const half16_t& reg_a, const half16_t& reg_b, FloatC& reg_c) __device__ static void Run(const half16_t& reg_a, const half16_t& reg_b, FloatC& reg_c)
{ {
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) #if defined(__gfx11__)
reg_c.template AsType<float4_t>()(Number<0>{}) = __builtin_amdgcn_wmma_f32_16x16x16_f16_w64( reg_c.template AsType<float4_t>()(Number<0>{}) = __builtin_amdgcn_wmma_f32_16x16x16_f16_w64(
reg_a, reg_b, reg_c.template AsType<float4_t>()[Number<0>{}]); reg_a, reg_b, reg_c.template AsType<float4_t>()[Number<0>{}]);
#else #else
...@@ -166,7 +169,7 @@ struct intrin_wmma_f32_16x16x16_bf16_w64<16, 16> ...@@ -166,7 +169,7 @@ struct intrin_wmma_f32_16x16x16_bf16_w64<16, 16>
template <class FloatC> template <class FloatC>
__device__ static void Run(const bhalf16_t& reg_a, const bhalf16_t& reg_b, FloatC& reg_c) __device__ static void Run(const bhalf16_t& reg_a, const bhalf16_t& reg_b, FloatC& reg_c)
{ {
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) #if defined(__gfx11__)
reg_c.template AsType<float4_t>()(Number<0>{}) = reg_c.template AsType<float4_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64( __builtin_amdgcn_wmma_f32_16x16x16_bf16_w64(
reg_a, reg_b, reg_c.template AsType<float4_t>()[Number<0>{}]); reg_a, reg_b, reg_c.template AsType<float4_t>()[Number<0>{}]);
...@@ -191,7 +194,7 @@ struct intrin_wmma_f16_16x16x16_f16_w64<16, 16, Opsel> ...@@ -191,7 +194,7 @@ struct intrin_wmma_f16_16x16x16_f16_w64<16, 16, Opsel>
// opsel usage // opsel usage
// false: D0.[0:15] = result // false: D0.[0:15] = result
// true : D0.[16:31]= result // true : D0.[16:31]= result
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) #if defined(__gfx11__)
reg_c.template AsType<half8_t>()(Number<0>{}) = __builtin_amdgcn_wmma_f16_16x16x16_f16_w64( reg_c.template AsType<half8_t>()(Number<0>{}) = __builtin_amdgcn_wmma_f16_16x16x16_f16_w64(
reg_a, reg_b, reg_c.template AsType<half8_t>()[Number<0>{}], Opsel); reg_a, reg_b, reg_c.template AsType<half8_t>()[Number<0>{}], Opsel);
#else #else
...@@ -215,7 +218,7 @@ struct intrin_wmma_bf16_16x16x16_bf16_w64<16, 16, Opsel> ...@@ -215,7 +218,7 @@ struct intrin_wmma_bf16_16x16x16_bf16_w64<16, 16, Opsel>
// opsel usage // opsel usage
// false: D0.[0:15] = result // false: D0.[0:15] = result
// true : D0.[16:31]= result // true : D0.[16:31]= result
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) #if defined(__gfx11__)
reg_c.template AsType<bhalf8_t>()(Number<0>{}) = reg_c.template AsType<bhalf8_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64( __builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64(
reg_a, reg_b, reg_c.template AsType<bhalf8_t>()[Number<0>{}], Opsel); reg_a, reg_b, reg_c.template AsType<bhalf8_t>()[Number<0>{}], Opsel);
...@@ -237,7 +240,7 @@ struct intrin_wmma_i32_16x16x16_iu8_w64<16, 16, neg_a, neg_b, clamp> ...@@ -237,7 +240,7 @@ struct intrin_wmma_i32_16x16x16_iu8_w64<16, 16, neg_a, neg_b, clamp>
template <class FloatC> template <class FloatC>
__device__ static void Run(const int8x16_t& reg_a, const int8x16_t& reg_b, FloatC& reg_c) __device__ static void Run(const int8x16_t& reg_a, const int8x16_t& reg_b, FloatC& reg_c)
{ {
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) #if defined(__gfx11__)
reg_c.template AsType<int32x4_t>()(Number<0>{}) = reg_c.template AsType<int32x4_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64( __builtin_amdgcn_wmma_i32_16x16x16_iu8_w64(
neg_a, neg_a,
......
...@@ -4,6 +4,10 @@ ...@@ -4,6 +4,10 @@
#pragma once #pragma once
namespace ck { namespace ck {
// Define the common macro for MI300 models
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
#define __gfx94__
#endif
// fp32 // fp32
template <index_t MPerWave, index_t NPerWave> template <index_t MPerWave, index_t NPerWave>
...@@ -341,7 +345,7 @@ struct intrin_mfma_f64_16x16x4f64<16, 16> ...@@ -341,7 +345,7 @@ struct intrin_mfma_f64_16x16x4f64<16, 16>
template <class FloatC> template <class FloatC>
__device__ static void Run(const double& reg_a, const double& reg_b, FloatC& reg_c) __device__ static void Run(const double& reg_a, const double& reg_b, FloatC& reg_c)
{ {
#if defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx90a__) || defined(__gfx94__)
reg_c.template AsType<double4_t>()(Number<0>{}) = __builtin_amdgcn_mfma_f64_16x16x4f64( reg_c.template AsType<double4_t>()(Number<0>{}) = __builtin_amdgcn_mfma_f64_16x16x4f64(
reg_a, reg_b, reg_c.template AsType<double4_t>()[Number<0>{}], 0, 0, 0); reg_a, reg_b, reg_c.template AsType<double4_t>()[Number<0>{}], 0, 0, 0);
#else #else
...@@ -361,7 +365,7 @@ struct intrin_mfma_f32_32x32x16f8f8<32, 32> ...@@ -361,7 +365,7 @@ struct intrin_mfma_f32_32x32x16f8f8<32, 32>
template <class FloatC> template <class FloatC>
__device__ static void Run(const f8x8_t& reg_a, const f8x8_t& reg_b, FloatC& reg_c) __device__ static void Run(const f8x8_t& reg_a, const f8x8_t& reg_b, FloatC& reg_c)
{ {
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx94__)
reg_c.template AsType<float16_t>()(Number<0>{}) = reg_c.template AsType<float16_t>()(Number<0>{}) =
__builtin_amdgcn_mfma_f32_32x32x16_fp8_fp8( __builtin_amdgcn_mfma_f32_32x32x16_fp8_fp8(
bit_cast<long>(reg_a), bit_cast<long>(reg_a),
...@@ -393,7 +397,7 @@ struct intrin_mfma_f32_16x16x32f8f8<16, 16> ...@@ -393,7 +397,7 @@ struct intrin_mfma_f32_16x16x32f8f8<16, 16>
template <class FloatC> template <class FloatC>
__device__ static void Run(const f8x8_t& reg_a, const f8x8_t& reg_b, FloatC& reg_c) __device__ static void Run(const f8x8_t& reg_a, const f8x8_t& reg_b, FloatC& reg_c)
{ {
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx94__)
reg_c.template AsType<float4_t>()(Number<0>{}) = __builtin_amdgcn_mfma_f32_16x16x32_fp8_fp8( reg_c.template AsType<float4_t>()(Number<0>{}) = __builtin_amdgcn_mfma_f32_16x16x32_fp8_fp8(
bit_cast<long>(reg_a), bit_cast<long>(reg_a),
bit_cast<long>(reg_b), bit_cast<long>(reg_b),
...@@ -424,7 +428,7 @@ struct intrin_mfma_f32_32x32x16bf8bf8<32, 32> ...@@ -424,7 +428,7 @@ struct intrin_mfma_f32_32x32x16bf8bf8<32, 32>
template <class FloatC> template <class FloatC>
__device__ static void Run(const bf8x8_t& reg_a, const bf8x8_t& reg_b, FloatC& reg_c) __device__ static void Run(const bf8x8_t& reg_a, const bf8x8_t& reg_b, FloatC& reg_c)
{ {
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx94__)
reg_c.template AsType<float16_t>()(Number<0>{}) = reg_c.template AsType<float16_t>()(Number<0>{}) =
__builtin_amdgcn_mfma_f32_32x32x16_bf8_bf8( __builtin_amdgcn_mfma_f32_32x32x16_bf8_bf8(
bit_cast<long>(reg_a), bit_cast<long>(reg_a),
...@@ -456,7 +460,7 @@ struct intrin_mfma_f32_16x16x32bf8bf8<16, 16> ...@@ -456,7 +460,7 @@ struct intrin_mfma_f32_16x16x32bf8bf8<16, 16>
template <class FloatC> template <class FloatC>
__device__ static void Run(const bf8x8_t& reg_a, const bf8x8_t& reg_b, FloatC& reg_c) __device__ static void Run(const bf8x8_t& reg_a, const bf8x8_t& reg_b, FloatC& reg_c)
{ {
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx94__)
reg_c.template AsType<float4_t>()(Number<0>{}) = __builtin_amdgcn_mfma_f32_16x16x32_bf8_bf8( reg_c.template AsType<float4_t>()(Number<0>{}) = __builtin_amdgcn_mfma_f32_16x16x32_bf8_bf8(
bit_cast<long>(reg_a), bit_cast<long>(reg_a),
bit_cast<long>(reg_b), bit_cast<long>(reg_b),
...@@ -487,7 +491,7 @@ struct intrin_mfma_f32_32x32x16f8bf8<32, 32> ...@@ -487,7 +491,7 @@ struct intrin_mfma_f32_32x32x16f8bf8<32, 32>
template <class FloatC> template <class FloatC>
__device__ static void Run(const f8x8_t& reg_a, const bf8x8_t& reg_b, FloatC& reg_c) __device__ static void Run(const f8x8_t& reg_a, const bf8x8_t& reg_b, FloatC& reg_c)
{ {
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx94__)
reg_c.template AsType<float16_t>()(Number<0>{}) = reg_c.template AsType<float16_t>()(Number<0>{}) =
__builtin_amdgcn_mfma_f32_32x32x16_fp8_bf8( __builtin_amdgcn_mfma_f32_32x32x16_fp8_bf8(
bit_cast<long>(reg_a), bit_cast<long>(reg_a),
...@@ -519,7 +523,7 @@ struct intrin_mfma_f32_16x16x32f8bf8<16, 16> ...@@ -519,7 +523,7 @@ struct intrin_mfma_f32_16x16x32f8bf8<16, 16>
template <class FloatC> template <class FloatC>
__device__ static void Run(const f8x8_t& reg_a, const bf8x8_t& reg_b, FloatC& reg_c) __device__ static void Run(const f8x8_t& reg_a, const bf8x8_t& reg_b, FloatC& reg_c)
{ {
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx94__)
reg_c.template AsType<float4_t>()(Number<0>{}) = __builtin_amdgcn_mfma_f32_16x16x32_fp8_bf8( reg_c.template AsType<float4_t>()(Number<0>{}) = __builtin_amdgcn_mfma_f32_16x16x32_fp8_bf8(
bit_cast<long>(reg_a), bit_cast<long>(reg_a),
bit_cast<long>(reg_b), bit_cast<long>(reg_b),
...@@ -550,7 +554,7 @@ struct intrin_mfma_f32_32x32x16bf8f8<32, 32> ...@@ -550,7 +554,7 @@ struct intrin_mfma_f32_32x32x16bf8f8<32, 32>
template <class FloatC> template <class FloatC>
__device__ static void Run(const bf8x8_t& reg_a, const f8x8_t& reg_b, FloatC& reg_c) __device__ static void Run(const bf8x8_t& reg_a, const f8x8_t& reg_b, FloatC& reg_c)
{ {
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx94__)
reg_c.template AsType<float16_t>()(Number<0>{}) = reg_c.template AsType<float16_t>()(Number<0>{}) =
__builtin_amdgcn_mfma_f32_32x32x16_bf8_fp8( __builtin_amdgcn_mfma_f32_32x32x16_bf8_fp8(
bit_cast<long>(reg_a), bit_cast<long>(reg_a),
...@@ -582,7 +586,7 @@ struct intrin_mfma_f32_16x16x32bf8f8<16, 16> ...@@ -582,7 +586,7 @@ struct intrin_mfma_f32_16x16x32bf8f8<16, 16>
template <class FloatC> template <class FloatC>
__device__ static void Run(const bf8x8_t& reg_a, const f8x8_t& reg_b, FloatC& reg_c) __device__ static void Run(const bf8x8_t& reg_a, const f8x8_t& reg_b, FloatC& reg_c)
{ {
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx94__)
reg_c.template AsType<float4_t>()(Number<0>{}) = __builtin_amdgcn_mfma_f32_16x16x32_bf8_fp8( reg_c.template AsType<float4_t>()(Number<0>{}) = __builtin_amdgcn_mfma_f32_16x16x32_bf8_fp8(
bit_cast<long>(reg_a), bit_cast<long>(reg_a),
bit_cast<long>(reg_b), bit_cast<long>(reg_b),
......
...@@ -8,6 +8,10 @@ ...@@ -8,6 +8,10 @@
#include "ck/utility/random_gen.hpp" #include "ck/utility/random_gen.hpp"
namespace ck { namespace ck {
// Define the common macro for MI300 models
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
#define __gfx94__
#endif
// Convert X to Y, both X and Y are non-const data types. // Convert X to Y, both X and Y are non-const data types.
template <typename Y, template <typename Y,
...@@ -105,7 +109,7 @@ inline __host__ __device__ f8_t f8_convert_sr<f8_t, float>(float x) ...@@ -105,7 +109,7 @@ inline __host__ __device__ f8_t f8_convert_sr<f8_t, float>(float x)
{ {
constexpr int seed = 42; constexpr int seed = 42;
uint32_t rng = prand_generator<float, seed>(reinterpret_cast<uintptr_t>(&x), x); uint32_t rng = prand_generator<float, seed>(reinterpret_cast<uintptr_t>(&x), x);
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx94__)
float max_fp8 = 240.0f; float max_fp8 = 240.0f;
x = x > max_fp8 ? max_fp8 : (x < -max_fp8 ? -max_fp8 : x); x = x > max_fp8 ? max_fp8 : (x < -max_fp8 ? -max_fp8 : x);
union union
...@@ -133,7 +137,7 @@ inline __host__ __device__ f8_t f8_convert_sr<f8_t, float>(float x) ...@@ -133,7 +137,7 @@ inline __host__ __device__ f8_t f8_convert_sr<f8_t, float>(float x)
template <> template <>
inline __host__ __device__ f8_t f8_convert_sr<f8_t, half_t>(half_t x) inline __host__ __device__ f8_t f8_convert_sr<f8_t, half_t>(half_t x)
{ {
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx94__)
// convert to float and use native converion // convert to float and use native converion
return f8_convert_sr<f8_t>(type_convert<float>(x)); return f8_convert_sr<f8_t>(type_convert<float>(x));
#else #else
...@@ -154,7 +158,7 @@ inline __host__ __device__ bf8_t f8_convert_sr<bf8_t, float>(float x) ...@@ -154,7 +158,7 @@ inline __host__ __device__ bf8_t f8_convert_sr<bf8_t, float>(float x)
{ {
constexpr int seed = 42; constexpr int seed = 42;
uint32_t rng = prand_generator<float, seed>(reinterpret_cast<uintptr_t>(&x), x); uint32_t rng = prand_generator<float, seed>(reinterpret_cast<uintptr_t>(&x), x);
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx94__)
union union
{ {
float fval; float fval;
...@@ -180,7 +184,7 @@ inline __host__ __device__ bf8_t f8_convert_sr<bf8_t, float>(float x) ...@@ -180,7 +184,7 @@ inline __host__ __device__ bf8_t f8_convert_sr<bf8_t, float>(float x)
template <> template <>
inline __host__ __device__ bf8_t f8_convert_sr<bf8_t, half_t>(half_t x) inline __host__ __device__ bf8_t f8_convert_sr<bf8_t, half_t>(half_t x)
{ {
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx94__)
// convert to float and use native converion // convert to float and use native converion
return f8_convert_sr<bf8_t>(type_convert<float>(x)); return f8_convert_sr<bf8_t>(type_convert<float>(x));
#else #else
...@@ -203,7 +207,7 @@ __host__ __device__ constexpr Y f8_convert_rne(X x); ...@@ -203,7 +207,7 @@ __host__ __device__ constexpr Y f8_convert_rne(X x);
template <> template <>
inline __host__ __device__ f8_t f8_convert_rne<f8_t, float>(float x) inline __host__ __device__ f8_t f8_convert_rne<f8_t, float>(float x)
{ {
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx94__)
float max_fp8 = 240.0f; float max_fp8 = 240.0f;
x = x > max_fp8 ? max_fp8 : (x < -max_fp8 ? -max_fp8 : x); x = x > max_fp8 ? max_fp8 : (x < -max_fp8 ? -max_fp8 : x);
union union
...@@ -232,7 +236,7 @@ inline __host__ __device__ f8_t f8_convert_rne<f8_t, float>(float x) ...@@ -232,7 +236,7 @@ inline __host__ __device__ f8_t f8_convert_rne<f8_t, float>(float x)
template <> template <>
inline __host__ __device__ f8_t f8_convert_rne<f8_t, half_t>(half_t x) inline __host__ __device__ f8_t f8_convert_rne<f8_t, half_t>(half_t x)
{ {
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx94__)
// convert to float and use native converion // convert to float and use native converion
return f8_convert_rne<f8_t>(type_convert<float>(x)); return f8_convert_rne<f8_t>(type_convert<float>(x));
#else #else
...@@ -250,7 +254,7 @@ inline __host__ __device__ f8_t f8_convert_rne<f8_t, half_t>(half_t x) ...@@ -250,7 +254,7 @@ inline __host__ __device__ f8_t f8_convert_rne<f8_t, half_t>(half_t x)
template <> template <>
inline __host__ __device__ bf8_t f8_convert_rne<bf8_t, float>(float x) inline __host__ __device__ bf8_t f8_convert_rne<bf8_t, float>(float x)
{ {
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx94__)
union union
{ {
float fval; float fval;
...@@ -277,7 +281,7 @@ inline __host__ __device__ bf8_t f8_convert_rne<bf8_t, float>(float x) ...@@ -277,7 +281,7 @@ inline __host__ __device__ bf8_t f8_convert_rne<bf8_t, float>(float x)
template <> template <>
inline __host__ __device__ bf8_t f8_convert_rne<bf8_t, half_t>(half_t x) inline __host__ __device__ bf8_t f8_convert_rne<bf8_t, half_t>(half_t x)
{ {
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx94__)
// convert to float and use native converion // convert to float and use native converion
return f8_convert_rne<bf8_t>(type_convert<float>(x)); return f8_convert_rne<bf8_t>(type_convert<float>(x));
#else #else
...@@ -306,7 +310,7 @@ inline __host__ __device__ f8_t type_convert<f8_t, float>(float x) ...@@ -306,7 +310,7 @@ inline __host__ __device__ f8_t type_convert<f8_t, float>(float x)
template <> template <>
inline __host__ __device__ float type_convert<float, f8_t>(f8_t x) inline __host__ __device__ float type_convert<float, f8_t>(f8_t x)
{ {
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx94__)
float fval; float fval;
uint32_t i32val = static_cast<uint32_t>(x); uint32_t i32val = static_cast<uint32_t>(x);
fval = __builtin_amdgcn_cvt_f32_fp8(i32val, 0); fval = __builtin_amdgcn_cvt_f32_fp8(i32val, 0);
...@@ -321,7 +325,7 @@ inline __host__ __device__ float type_convert<float, f8_t>(f8_t x) ...@@ -321,7 +325,7 @@ inline __host__ __device__ float type_convert<float, f8_t>(f8_t x)
template <> template <>
inline __host__ __device__ float2_t type_convert<float2_t, f8x2_t>(f8x2_t x) inline __host__ __device__ float2_t type_convert<float2_t, f8x2_t>(f8x2_t x)
{ {
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx94__)
const auto i16val = bit_cast<uint16_t>(x); const auto i16val = bit_cast<uint16_t>(x);
return __builtin_amdgcn_cvt_pk_f32_fp8(i16val, 0); return __builtin_amdgcn_cvt_pk_f32_fp8(i16val, 0);
#else #else
...@@ -363,7 +367,7 @@ inline __host__ __device__ f8_t type_convert<f8_t, half_t>(half_t x) ...@@ -363,7 +367,7 @@ inline __host__ __device__ f8_t type_convert<f8_t, half_t>(half_t x)
template <> template <>
inline __host__ __device__ half_t type_convert<half_t, f8_t>(f8_t x) inline __host__ __device__ half_t type_convert<half_t, f8_t>(f8_t x)
{ {
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx94__)
// use native conversion to float and convert to fp16 // use native conversion to float and convert to fp16
return type_convert<half_t>(type_convert<float>(x)); return type_convert<half_t>(type_convert<float>(x));
#else #else
...@@ -387,7 +391,7 @@ inline __host__ __device__ bf8_t type_convert<bf8_t, float>(float x) ...@@ -387,7 +391,7 @@ inline __host__ __device__ bf8_t type_convert<bf8_t, float>(float x)
template <> template <>
inline __host__ __device__ float type_convert<float, bf8_t>(bf8_t x) inline __host__ __device__ float type_convert<float, bf8_t>(bf8_t x)
{ {
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx94__)
float fval; float fval;
uint32_t i32val = static_cast<uint32_t>(x); uint32_t i32val = static_cast<uint32_t>(x);
fval = __builtin_amdgcn_cvt_f32_bf8(i32val, 0); fval = __builtin_amdgcn_cvt_f32_bf8(i32val, 0);
...@@ -414,7 +418,7 @@ inline __host__ __device__ bf8_t type_convert<bf8_t, half_t>(half_t x) ...@@ -414,7 +418,7 @@ inline __host__ __device__ bf8_t type_convert<bf8_t, half_t>(half_t x)
template <> template <>
inline __host__ __device__ half_t type_convert<half_t, bf8_t>(bf8_t x) inline __host__ __device__ half_t type_convert<half_t, bf8_t>(bf8_t x)
{ {
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) #if defined(__gfx94__)
// use native conversion to float and convert to fp16 // use native conversion to float and convert to fp16
return type_convert<half_t>(type_convert<float>(x)); return type_convert<half_t>(type_convert<float>(x));
#else #else
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment