"vscode:/vscode.git/clone" did not exist on "f89dff64a2a6a34ba11507a446885571ecaee513"
Unverified Commit aebd211c authored by Chao Liu's avatar Chao Liu Committed by GitHub
Browse files

External Interface (#304)

* add client example

* clean

* clean

* reorg

* clean up profiler

* reorg

* clea

* fix profiler

* function for getinstances

* update client example

* update client example

* update client example

* update

* update example

* update Jenkins file

* update cmake

* update Jenkins
parent b653c5eb
...@@ -67,9 +67,11 @@ using device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_in ...@@ -67,9 +67,11 @@ using device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_in
>; >;
void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instances( void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instances(
std::vector< std::vector<DeviceBatchedGemmReducePtr<PassThrough,
DeviceGemmReducePtr<PassThrough, PassThrough, PassThrough, DInElementOps, DOutElementOps>>& PassThrough,
instances) PassThrough,
DInElementOps,
DOutElementOps>>& instances)
{ {
add_device_operation_instances( add_device_operation_instances(
instances, instances,
......
...@@ -67,9 +67,11 @@ using device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_in ...@@ -67,9 +67,11 @@ using device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_in
>; >;
void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances( void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances(
std::vector< std::vector<DeviceBatchedGemmReducePtr<PassThrough,
DeviceGemmReducePtr<PassThrough, PassThrough, PassThrough, DInElementOps, DOutElementOps>>& PassThrough,
instances) PassThrough,
DInElementOps,
DOutElementOps>>& instances)
{ {
add_device_operation_instances( add_device_operation_instances(
instances, instances,
......
...@@ -64,9 +64,11 @@ using device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_in ...@@ -64,9 +64,11 @@ using device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_in
>; >;
void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instances( void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instances(
std::vector< std::vector<DeviceBatchedGemmReducePtr<PassThrough,
DeviceGemmReducePtr<PassThrough, PassThrough, PassThrough, DInElementOps, DOutElementOps>>& PassThrough,
instances) PassThrough,
DInElementOps,
DOutElementOps>>& instances)
{ {
add_device_operation_instances( add_device_operation_instances(
instances, instances,
......
...@@ -28,14 +28,6 @@ set(DEVICE_GEMM_INSTANCE_SOURCE ...@@ -28,14 +28,6 @@ set(DEVICE_GEMM_INSTANCE_SOURCE
device_gemm_xdl_c_shuffle_f32_f32_f32_km_kn_mn_instance.cpp; device_gemm_xdl_c_shuffle_f32_f32_f32_km_kn_mn_instance.cpp;
device_gemm_xdl_c_shuffle_f32_f32_f32_km_nk_mn_instance.cpp; device_gemm_xdl_c_shuffle_f32_f32_f32_km_nk_mn_instance.cpp;
device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instance.cpp; device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instance.cpp;
device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instance.cpp;
device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instance.cpp;
device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instance.cpp;
device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instance.cpp;
device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instance.cpp;
device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instance.cpp;
device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instance.cpp;
device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instance.cpp;
device_gemm_dl_f32_f32_f32_mk_kn_mn_instance.cpp; device_gemm_dl_f32_f32_f32_mk_kn_mn_instance.cpp;
device_gemm_dl_f32_f32_f32_mk_nk_mn_instance.cpp; device_gemm_dl_f32_f32_f32_mk_nk_mn_instance.cpp;
device_gemm_dl_f32_f32_f32_km_kn_mn_instance.cpp; device_gemm_dl_f32_f32_f32_km_kn_mn_instance.cpp;
......
set(DEVICE_GEMM_SPLITK_INSTANCE_SOURCE
device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instance.cpp;
device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instance.cpp;
device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instance.cpp;
device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instance.cpp;
device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instance.cpp;
device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instance.cpp;
device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instance.cpp;
device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instance.cpp;
)
add_library(device_gemm_splitk_instance OBJECT ${DEVICE_GEMM_SPLITK_INSTANCE_SOURCE})
target_compile_features(device_gemm_splitk_instance PUBLIC)
set_target_properties(device_gemm_splitk_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
...@@ -46,7 +46,7 @@ using device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instances = std::tuple< ...@@ -46,7 +46,7 @@ using device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instances = std::tuple<
>; >;
void add_device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instances( void add_device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances) std::vector<DeviceGemmSplitKPtr<PassThrough, PassThrough, PassThrough>>& instances)
{ {
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instances{}); device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instances{});
......
...@@ -46,7 +46,7 @@ using device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instances = std::tuple< ...@@ -46,7 +46,7 @@ using device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instances = std::tuple<
>; >;
void add_device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instances( void add_device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances) std::vector<DeviceGemmSplitKPtr<PassThrough, PassThrough, PassThrough>>& instances)
{ {
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instances{}); device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instances{});
......
...@@ -46,7 +46,7 @@ using device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances = std::tuple< ...@@ -46,7 +46,7 @@ using device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances = std::tuple<
>; >;
void add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances( void add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances) std::vector<DeviceGemmSplitKPtr<PassThrough, PassThrough, PassThrough>>& instances)
{ {
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances{}); device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances{});
......
...@@ -83,7 +83,7 @@ using device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances = std::tuple< ...@@ -83,7 +83,7 @@ using device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances = std::tuple<
// >; // >;
void add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances( void add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances) std::vector<DeviceGemmSplitKPtr<PassThrough, PassThrough, PassThrough>>& instances)
{ {
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances{}); device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances{});
......
...@@ -46,7 +46,7 @@ using device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances = std::tuple< ...@@ -46,7 +46,7 @@ using device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances = std::tuple<
>; >;
void add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances( void add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances) std::vector<DeviceGemmSplitKPtr<PassThrough, PassThrough, PassThrough>>& instances)
{ {
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances{}); device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances{});
......
...@@ -46,7 +46,7 @@ using device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances = std::tuple< ...@@ -46,7 +46,7 @@ using device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances = std::tuple<
>; >;
void add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances( void add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances) std::vector<DeviceGemmSplitKPtr<PassThrough, PassThrough, PassThrough>>& instances)
{ {
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances{}); device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances{});
......
...@@ -51,7 +51,7 @@ using device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances = std::tuple< ...@@ -51,7 +51,7 @@ using device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances = std::tuple<
>; >;
void add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances( void add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances) std::vector<DeviceGemmSplitKPtr<PassThrough, PassThrough, PassThrough>>& instances)
{ {
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances{}); device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances{});
......
...@@ -51,7 +51,7 @@ using device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances = std::tuple< ...@@ -51,7 +51,7 @@ using device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances = std::tuple<
>; >;
void add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances( void add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances) std::vector<DeviceGemmSplitKPtr<PassThrough, PassThrough, PassThrough>>& instances)
{ {
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances{}); device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances{});
......
...@@ -6,6 +6,7 @@ include_directories(BEFORE ...@@ -6,6 +6,7 @@ include_directories(BEFORE
set(PROFILER_SOURCE set(PROFILER_SOURCE
src/profiler.cpp src/profiler.cpp
src/profile_gemm.cpp src/profile_gemm.cpp
src/profile_gemm_splitk.cpp
src/profile_gemm_bias_2d.cpp src/profile_gemm_bias_2d.cpp
src/profile_gemm_bias_relu.cpp src/profile_gemm_bias_relu.cpp
src/profile_gemm_bias_relu_add.cpp src/profile_gemm_bias_relu_add.cpp
...@@ -27,21 +28,22 @@ add_executable(ckProfiler ${PROFILER_SOURCE}) ...@@ -27,21 +28,22 @@ add_executable(ckProfiler ${PROFILER_SOURCE})
target_link_libraries(ckProfiler PRIVATE host_tensor) target_link_libraries(ckProfiler PRIVATE host_tensor)
target_link_libraries(ckProfiler PRIVATE conv_util) target_link_libraries(ckProfiler PRIVATE conv_util)
target_link_libraries(ckProfiler PRIVATE device_gemm_reduce_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_bias_add_reduce_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_instance) target_link_libraries(ckProfiler PRIVATE device_gemm_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_splitk_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_bias2d_instance) target_link_libraries(ckProfiler PRIVATE device_gemm_bias2d_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_bias_relu_instance) target_link_libraries(ckProfiler PRIVATE device_gemm_bias_relu_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_bias_relu_add_instance) target_link_libraries(ckProfiler PRIVATE device_gemm_bias_relu_add_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_reduce_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_bias_add_reduce_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_add_add_fastgelu_instance)
target_link_libraries(ckProfiler PRIVATE device_batched_gemm_instance) target_link_libraries(ckProfiler PRIVATE device_batched_gemm_instance)
target_link_libraries(ckProfiler PRIVATE device_batched_gemm_reduce_instance)
target_link_libraries(ckProfiler PRIVATE device_grouped_gemm_instance)
target_link_libraries(ckProfiler PRIVATE device_conv1d_fwd_instance) target_link_libraries(ckProfiler PRIVATE device_conv1d_fwd_instance)
target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_instance) target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_instance)
target_link_libraries(ckProfiler PRIVATE device_conv3d_fwd_instance) target_link_libraries(ckProfiler PRIVATE device_conv3d_fwd_instance)
target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_bias_relu_instance) target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_bias_relu_instance)
target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_bias_relu_add_instance) target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_bias_relu_add_instance)
target_link_libraries(ckProfiler PRIVATE device_convnd_bwd_data_instance) target_link_libraries(ckProfiler PRIVATE device_convnd_bwd_data_instance)
target_link_libraries(ckProfiler PRIVATE device_reduce_instance)
target_link_libraries(ckProfiler PRIVATE device_grouped_gemm_instance)
target_link_libraries(ckProfiler PRIVATE device_conv2d_bwd_weight_instance) target_link_libraries(ckProfiler PRIVATE device_conv2d_bwd_weight_instance)
target_link_libraries(ckProfiler PRIVATE device_batched_gemm_reduce_instance) target_link_libraries(ckProfiler PRIVATE device_reduce_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_add_add_fastgelu_instance)
...@@ -7,56 +7,17 @@ ...@@ -7,56 +7,17 @@
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp" #include "ck/tensor_operation/gpu/device/device_batched_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/device_batched_gemm_instance.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp" #include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp" #include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp" #include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_batched_gemm_instance {
using DeviceGemmNoOpPtr =
ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gkn_gmn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gnk_gmn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gkn_gmn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gnk_gmn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f16_f16_f16_gmk_gnk_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f16_f16_f16_gkm_gkn_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f16_f16_f16_gkm_gnk_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f32_f32_f32_gmk_gkn_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f32_f32_f32_gmk_gnk_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f32_f32_f32_gkm_gkn_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f32_f32_f32_gkm_gnk_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_int8_int8_int8_gmk_gkn_gmn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_int8_int8_int8_gmk_gnk_gmn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_int8_int8_int8_gkm_gkn_gmn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_int8_int8_int8_gkm_gnk_gmn_instances(
std::vector<DeviceGemmNoOpPtr>&);
} // namespace device_batched_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace ck { namespace ck {
namespace profiler { namespace profiler {
...@@ -103,27 +64,22 @@ bool profile_batched_gemm_impl(int do_verification, ...@@ -103,27 +64,22 @@ bool profile_batched_gemm_impl(int do_verification,
f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{})); f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
Tensor<CDataType> c_g_m_n_device_result( Tensor<CDataType> c_g_m_n_device_result(
f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{})); f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
std::unique_ptr<Tensor<float>> c_f32_g_m_n_host_result = nullptr;
std::unique_ptr<Tensor<float>> c_f32_g_m_n_device_result = nullptr;
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl; std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b_g_k_n: " << b_g_k_n.mDesc << std::endl; std::cout << "b_g_k_n: " << b_g_k_n.mDesc << std::endl;
std::cout << "c_g_m_n: " << c_g_m_n_host_result.mDesc << std::endl; std::cout << "c_g_m_n: " << c_g_m_n_host_result.mDesc << std::endl;
std::size_t num_thread = 1;
switch(init_method) switch(init_method)
{ {
case 0: break; case 0: break;
case 1: case 1:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread); a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_g_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread); b_g_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break; break;
default: default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread); a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_g_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread); b_g_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
} }
// set zero to c_device_buf
c_g_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);
using AElementOp = ck::tensor_operation::element_wise::PassThrough; using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough; using BElementOp = ck::tensor_operation::element_wise::PassThrough;
...@@ -135,40 +91,6 @@ bool profile_batched_gemm_impl(int do_verification, ...@@ -135,40 +91,6 @@ bool profile_batched_gemm_impl(int do_verification,
if(do_verification) if(do_verification)
{ {
if constexpr(is_same<ADataType, ck::bhalf_t>::value &&
is_same<BDataType, ck::bhalf_t>::value &&
is_same<CDataType, ck::bhalf_t>::value)
{
Tensor<float> a_f32_g_m_k(
f_host_tensor_descriptor(BatchCount, M, K, StrideA, ALayout{}));
Tensor<float> b_f32_g_k_n(
f_host_tensor_descriptor(BatchCount, K, N, StrideB, BLayout{}));
c_f32_g_m_n_host_result = std::make_unique<Tensor<float>>(
f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
c_f32_g_m_n_device_result = std::make_unique<Tensor<float>>(
f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
bf16_to_f32_(a_g_m_k, a_f32_g_m_k);
bf16_to_f32_(b_g_k_n, b_f32_g_k_n);
using ReferenceBatchedGemmInstance = ck::tensor_operation::host::
ReferenceBatchedGemm<float, float, float, AElementOp, BElementOp, CElementOp>;
auto ref_batched_gemm = ReferenceBatchedGemmInstance{};
auto ref_invoker = ref_batched_gemm.MakeInvoker();
auto ref_argument = ref_batched_gemm.MakeArgument(a_f32_g_m_k,
b_f32_g_k_n,
*c_f32_g_m_n_host_result,
a_element_op,
b_element_op,
c_element_op);
ref_invoker.Run(ref_argument);
}
else
{
using ReferenceBatchedGemmInstance = using ReferenceBatchedGemmInstance =
ck::tensor_operation::host::ReferenceBatchedGemm<ADataType, ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
BDataType, BDataType,
...@@ -185,7 +107,6 @@ bool profile_batched_gemm_impl(int do_verification, ...@@ -185,7 +107,6 @@ bool profile_batched_gemm_impl(int do_verification,
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
} }
}
DeviceMem a_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpace()); DeviceMem a_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_g_k_n.mDesc.GetElementSpace()); DeviceMem b_device_buf(sizeof(BDataType) * b_g_k_n.mDesc.GetElementSpace());
...@@ -195,154 +116,30 @@ bool profile_batched_gemm_impl(int do_verification, ...@@ -195,154 +116,30 @@ bool profile_batched_gemm_impl(int do_verification,
b_device_buf.ToDevice(b_g_k_n.mData.data()); b_device_buf.ToDevice(b_g_k_n.mData.data());
c_device_buf.ToDevice(c_g_m_n_device_result.mData.data()); c_device_buf.ToDevice(c_g_m_n_device_result.mData.data());
// add device GEMM instances // add device op instances
std::vector<ck::tensor_operation::device::device_batched_gemm_instance::DeviceGemmNoOpPtr> const auto op_ptrs = ck::tensor_operation::device::device_batched_gemm_instance::
gemm_ptrs; get_device_batched_gemm_instances<ADataType,
BDataType,
if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value && CDataType,
is_same<CDataType, half_t>::value) ALayout,
{ BLayout,
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value && CLayout>();
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f16_f16_f16_gmk_gnk_gmn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f16_f16_f16_gkm_gkn_gmn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f16_f16_f16_gkm_gnk_gmn_instances(gemm_ptrs);
}
}
else if constexpr(is_same<ADataType, bhalf_t>::value && is_same<BDataType, bhalf_t>::value &&
is_same<CDataType, bhalf_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gkn_gmn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gnk_gmn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gkn_gmn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gnk_gmn_instances(gemm_ptrs);
}
}
else if constexpr(is_same<ADataType, float>::value && is_same<BDataType, float>::value &&
is_same<CDataType, float>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f32_f32_f32_gmk_gkn_gmn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f32_f32_f32_gmk_gnk_gmn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f32_f32_f32_gkm_gkn_gmn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f32_f32_f32_gkm_gnk_gmn_instances(gemm_ptrs);
}
}
else if constexpr(is_same<ADataType, int8_t>::value && is_same<BDataType, int8_t>::value &&
is_same<CDataType, int8_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_int8_int8_int8_gmk_gkn_gmn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_int8_int8_int8_gmk_gnk_gmn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_int8_int8_int8_gkm_gkn_gmn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_int8_int8_int8_gkm_gnk_gmn_instances(gemm_ptrs);
}
}
if(gemm_ptrs.size() <= 0) if(op_ptrs.size() <= 0)
{ {
throw std::runtime_error("wrong! no device GEMM instance found"); throw std::runtime_error("wrong! no device GEMM instance found");
} }
std::string best_gemm_name; std::string best_op_name;
float best_ave_time = 0; float best_ave_time = 0;
float best_tflops = 0; float best_tflops = 0;
float best_gb_per_sec = 0; float best_gb_per_sec = 0;
// profile device GEMM instances // profile device op instances
for(auto& gemm_ptr : gemm_ptrs) for(auto& op_ptr : op_ptrs)
{ {
auto argument_ptr = auto argument_ptr =
gemm_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()), op_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()), static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()), static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
M, M,
...@@ -356,11 +153,14 @@ bool profile_batched_gemm_impl(int do_verification, ...@@ -356,11 +153,14 @@ bool profile_batched_gemm_impl(int do_verification,
ck::tensor_operation::element_wise::PassThrough{}, ck::tensor_operation::element_wise::PassThrough{},
BatchCount); BatchCount);
auto invoker_ptr = gemm_ptr->MakeInvokerPointer(); auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(gemm_ptr->IsSupportedArgument(argument_ptr.get())) if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{ {
std::string gemm_name = gemm_ptr->GetTypeString(); // re-init C to zero before profiling next kernel
c_device_buf.SetZero();
std::string op_name = op_ptr->GetTypeString();
float ave_time = float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel}); invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
...@@ -376,11 +176,11 @@ bool profile_batched_gemm_impl(int do_verification, ...@@ -376,11 +176,11 @@ bool profile_batched_gemm_impl(int do_verification,
float gb_per_sec = num_btype / 1.E6 / ave_time; float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm_name << std::endl; << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops) if(tflops > best_tflops)
{ {
best_gemm_name = gemm_name; best_op_name = op_name;
best_tflops = tflops; best_tflops = tflops;
best_ave_time = ave_time; best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec; best_gb_per_sec = gb_per_sec;
...@@ -390,20 +190,8 @@ bool profile_batched_gemm_impl(int do_verification, ...@@ -390,20 +190,8 @@ bool profile_batched_gemm_impl(int do_verification,
{ {
c_device_buf.FromDevice(c_g_m_n_device_result.mData.data()); c_device_buf.FromDevice(c_g_m_n_device_result.mData.data());
if constexpr(is_same<ADataType, ck::bhalf_t>::value && pass = pass &
is_same<BDataType, ck::bhalf_t>::value && ck::utils::check_err(c_g_m_n_device_result.mData, c_g_m_n_host_result.mData);
is_same<CDataType, ck::bhalf_t>::value)
{
bf16_to_f32_(c_g_m_n_device_result, *c_f32_g_m_n_device_result);
float err = check_error(*c_f32_g_m_n_host_result, *c_f32_g_m_n_device_result);
pass = pass && (err < 1E-6);
}
else
{
float err = check_error(c_g_m_n_host_result, c_g_m_n_device_result);
pass = pass && (err < 1E-6);
}
if(do_log) if(do_log)
{ {
...@@ -419,13 +207,12 @@ bool profile_batched_gemm_impl(int do_verification, ...@@ -419,13 +207,12 @@ bool profile_batched_gemm_impl(int do_verification,
} }
else else
{ {
std::cout << "this device GEMM instance does not support this GEMM problem" std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
<< std::endl;
} }
} }
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, " std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl; << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return pass; return pass;
} }
......
...@@ -6,7 +6,7 @@ ...@@ -6,7 +6,7 @@
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/utility/reduction_operator.hpp" #include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_reduce.hpp" #include "ck/tensor_operation/gpu/device/device_batched_gemm_reduce.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
...@@ -29,7 +29,7 @@ using Square = ck::tensor_operation::element_wise::UnarySquare; ...@@ -29,7 +29,7 @@ using Square = ck::tensor_operation::element_wise::UnarySquare;
using DInElementOps = ck::Tuple<Identity, Square>; using DInElementOps = ck::Tuple<Identity, Square>;
using DOutElementOps = ck::Tuple<Identity, Identity>; using DOutElementOps = ck::Tuple<Identity, Identity>;
using DeviceGemmReduceNoOpPtr = ck::tensor_operation::device::DeviceGemmReducePtr< using DeviceBatchedGemmReduceNoOpPtr = ck::tensor_operation::device::DeviceBatchedGemmReducePtr<
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough, ck::tensor_operation::element_wise::PassThrough,
...@@ -37,16 +37,16 @@ using DeviceGemmReduceNoOpPtr = ck::tensor_operation::device::DeviceGemmReducePt ...@@ -37,16 +37,16 @@ using DeviceGemmReduceNoOpPtr = ck::tensor_operation::device::DeviceGemmReducePt
DOutElementOps>; DOutElementOps>;
void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances( void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances(
std::vector<DeviceGemmReduceNoOpPtr>&); std::vector<DeviceBatchedGemmReduceNoOpPtr>&);
void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instances( void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instances(
std::vector<DeviceGemmReduceNoOpPtr>&); std::vector<DeviceBatchedGemmReduceNoOpPtr>&);
void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instances( void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instances(
std::vector<DeviceGemmReduceNoOpPtr>&); std::vector<DeviceBatchedGemmReduceNoOpPtr>&);
void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instances( void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instances(
std::vector<DeviceGemmReduceNoOpPtr>&); std::vector<DeviceBatchedGemmReduceNoOpPtr>&);
} // namespace device_gemm_instance } // namespace device_gemm_instance
} // namespace device } // namespace device
...@@ -204,7 +204,7 @@ bool profile_batched_gemm_reduce_impl(int do_verification, ...@@ -204,7 +204,7 @@ bool profile_batched_gemm_reduce_impl(int do_verification,
b_device_buf.ToDevice(b_g_k_n.mData.data()); b_device_buf.ToDevice(b_g_k_n.mData.data());
// add device GEMM instances // add device GEMM instances
std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmReduceNoOpPtr> std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceBatchedGemmReduceNoOpPtr>
gemm_ptrs; gemm_ptrs;
if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value && if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
namespace ck {
namespace profiler {
int profile_convnd_fwd(int argc, char* argv[]);
} // namespace profiler
} // namespace ck
...@@ -9,6 +9,9 @@ ...@@ -9,6 +9,9 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp" #include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/device_gemm_add_add_fastgelu_instance.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp" #include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp" #include "ck/library/host_tensor/host_tensor.hpp"
...@@ -16,31 +19,6 @@ ...@@ -16,31 +19,6 @@
#include "ck/library/host_tensor/host_conv.hpp" #include "ck/library/host_tensor/host_conv.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using DeviceGemmAddAddFastGeluPtr = ck::tensor_operation::device::DeviceGemmMultipleDPtr<
2,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::AddAddFastGelu>;
void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(
std::vector<DeviceGemmAddAddFastGeluPtr>&);
void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
std::vector<DeviceGemmAddAddFastGeluPtr>&);
void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(
std::vector<DeviceGemmAddAddFastGeluPtr>&);
void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(
std::vector<DeviceGemmAddAddFastGeluPtr>&);
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace ck { namespace ck {
namespace profiler { namespace profiler {
...@@ -55,7 +33,7 @@ template <typename ADataType, ...@@ -55,7 +33,7 @@ template <typename ADataType,
typename D0Layout, typename D0Layout,
typename D1Layout, typename D1Layout,
typename ELayout> typename ELayout>
int profile_gemm_add_add_fastgelu_impl(int do_verification, bool profile_gemm_add_add_fastgelu_impl(int do_verification,
int init_method, int init_method,
bool /*do_log*/, bool /*do_log*/,
bool time_kernel, bool time_kernel,
...@@ -122,48 +100,21 @@ int profile_gemm_add_add_fastgelu_impl(int do_verification, ...@@ -122,48 +100,21 @@ int profile_gemm_add_add_fastgelu_impl(int do_verification,
const auto b_element_op = BElementOp{}; const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{}; const auto cde_element_op = CDEElementOp{};
// add device GEMM instances // add device op instances
std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmAddAddFastGeluPtr> const auto op_ptrs = ck::tensor_operation::device::device_gemm_instance::
device_op_ptrs; get_device_gemm_add_add_fastgelu_instances<ADataType,
BDataType,
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> && AccDataType,
is_same_v<EDataType, half_t>) D0DataType,
{ D1DataType,
if constexpr(is_same_v<ALayout, tensor_layout::gemm::RowMajor> && EDataType,
is_same_v<BLayout, tensor_layout::gemm::RowMajor> && ALayout,
is_same_v<ELayout, tensor_layout::gemm::RowMajor>) BLayout,
{ D0Layout,
ck::tensor_operation::device::device_gemm_instance:: D1Layout,
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances( ELayout>();
device_op_ptrs);
}
else if constexpr(is_same_v<ALayout, tensor_layout::gemm::RowMajor> &&
is_same_v<BLayout, tensor_layout::gemm::ColumnMajor> &&
is_same_v<ELayout, tensor_layout::gemm::RowMajor>)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
device_op_ptrs);
}
else if constexpr(is_same_v<ALayout, tensor_layout::gemm::ColumnMajor> &&
is_same_v<BLayout, tensor_layout::gemm::RowMajor> &&
is_same_v<ELayout, tensor_layout::gemm::RowMajor>)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(
device_op_ptrs);
}
else if constexpr(is_same_v<ALayout, tensor_layout::gemm::ColumnMajor> &&
is_same_v<BLayout, tensor_layout::gemm::ColumnMajor> &&
is_same_v<ELayout, tensor_layout::gemm::RowMajor>)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(
device_op_ptrs);
}
}
std::cout << "found " << device_op_ptrs.size() << " instances" << std::endl; std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
// run reference // run reference
if(do_verification) if(do_verification)
...@@ -207,7 +158,7 @@ int profile_gemm_add_add_fastgelu_impl(int do_verification, ...@@ -207,7 +158,7 @@ int profile_gemm_add_add_fastgelu_impl(int do_verification,
d0_m_n_device_buf.ToDevice(d0_m_n.mData.data()); d0_m_n_device_buf.ToDevice(d0_m_n.mData.data());
d1_m_n_device_buf.ToDevice(d1_m_n.mData.data()); d1_m_n_device_buf.ToDevice(d1_m_n.mData.data());
std::string best_device_op_name; std::string best_op_name;
float best_ave_time = 0; float best_ave_time = 0;
float best_tflops = 0; float best_tflops = 0;
float best_gb_per_sec = 0; float best_gb_per_sec = 0;
...@@ -215,14 +166,14 @@ int profile_gemm_add_add_fastgelu_impl(int do_verification, ...@@ -215,14 +166,14 @@ int profile_gemm_add_add_fastgelu_impl(int do_verification,
bool pass = true; bool pass = true;
// profile device operation instances // profile device operation instances
for(auto& device_op_ptr : device_op_ptrs) for(auto& op_ptr : op_ptrs)
{ {
auto argument_ptr = device_op_ptr->MakeArgumentPointer( auto argument_ptr = op_ptr->MakeArgumentPointer(
a_device_buf.GetDeviceBuffer(), a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(), b_device_buf.GetDeviceBuffer(),
std::array<const void*, 2>{d0_m_n_device_buf.GetDeviceBuffer(), std::array<const void*, 2>{d0_m_n_device_buf.GetDeviceBuffer(),
d1_m_n_device_buf.GetDeviceBuffer()}, d1_m_n_device_buf.GetDeviceBuffer()},
static_cast<EDataType*>(e_device_buf.GetDeviceBuffer()), e_device_buf.GetDeviceBuffer(),
M, M,
N, N,
K, K,
...@@ -234,11 +185,11 @@ int profile_gemm_add_add_fastgelu_impl(int do_verification, ...@@ -234,11 +185,11 @@ int profile_gemm_add_add_fastgelu_impl(int do_verification,
b_element_op, b_element_op,
cde_element_op); cde_element_op);
auto invoker_ptr = device_op_ptr->MakeInvokerPointer(); auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string device_op_name = device_op_ptr->GetTypeString(); std::string op_name = op_ptr->GetTypeString();
if(device_op_ptr->IsSupportedArgument(argument_ptr.get())) if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{ {
// re-init E to zero before profiling a kernel // re-init E to zero before profiling a kernel
e_device_buf.SetZero(); e_device_buf.SetZero();
...@@ -256,11 +207,11 @@ int profile_gemm_add_add_fastgelu_impl(int do_verification, ...@@ -256,11 +207,11 @@ int profile_gemm_add_add_fastgelu_impl(int do_verification,
float gb_per_sec = num_btype / 1.E6 / ave_time; float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, " std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << device_op_name << std::endl; << gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops) if(tflops > best_tflops)
{ {
best_device_op_name = device_op_name; best_op_name = op_name;
best_tflops = tflops; best_tflops = tflops;
best_ave_time = ave_time; best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec; best_gb_per_sec = gb_per_sec;
...@@ -276,14 +227,14 @@ int profile_gemm_add_add_fastgelu_impl(int do_verification, ...@@ -276,14 +227,14 @@ int profile_gemm_add_add_fastgelu_impl(int do_verification,
} }
else else
{ {
std::cout << device_op_name << " does not support this problem" << std::endl; std::cout << op_name << " does not support this problem" << std::endl;
} }
} }
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, " std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_device_op_name << std::endl; << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return pass ? 0 : 1; return pass;
} }
} // namespace profiler } // namespace profiler
......
This diff is collapsed.
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_splitk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/device_gemm_splitk_instance.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout>
bool profile_gemm_splitk_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideC,
int KBatch)
{
bool pass = true;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_device_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
}
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
c_device_buf.ToDevice(c_m_n_device_result.mData.data());
// add device op instances
const auto op_ptrs =
ck::tensor_operation::device::device_gemm_instance::get_device_gemm_splitk_instances<
ADataType,
BDataType,
CDataType,
ALayout,
BLayout,
CLayout>();
if(op_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device operation instance found");
}
// Run reference GEMM
if(do_verification)
{
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
}
std::string best_op_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device GEMM instances
for(auto& op_ptr : op_ptrs)
{
auto argument_ptr =
op_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op,
KBatch);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
// re-init C to zero before profiling next kernel
c_device_buf.SetZero();
std::string op_name = op_ptr->GetTypeString();
float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass =
pass & ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "c_host : ", c_m_n_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
<< std::endl;
}
}
}
else
{
std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
}
}
if constexpr(is_same<CDataType, float>::value)
{
std::cout << "Best Perf for datatype = f32";
}
else if constexpr(is_same<CDataType, half_t>::value)
{
std::cout << "Best Perf for datatype = f16";
}
else if constexpr(is_same<CDataType, bhalf_t>::value)
{
std::cout << "Best Perf for datatype = bf16";
}
else if constexpr(is_same<CDataType, int8_t>::value)
{
std::cout << "Best Perf for datatype = int8";
}
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value)
{
std::cout << " ALayout = RowMajor";
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value)
{
std::cout << " ALayout = ColumnMajor";
}
if constexpr(is_same<BLayout, tensor_layout::gemm::RowMajor>::value)
{
std::cout << " BLayout = RowMajor";
}
else if constexpr(is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value)
{
std::cout << " BLayout = ColumnMajor";
}
std::cout << " M = " << M << " N = " << N << " K = " << K << " StrideA = " << StrideA
<< " StrideB = " << StrideB << " StrideC = " << StrideC << " : " << best_ave_time
<< " ms, " << best_tflops << " TFlops, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
return pass;
}
} // namespace profiler
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment