Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
ae20247a
"csrc/vscode:/vscode.git/clone" did not exist on "667ba3995c013df060657a4cdf3931176c6c5259"
Commit
ae20247a
authored
Feb 29, 2024
by
Adam Osewski
Browse files
Merge remote-tracking branch 'origin' into aosewski/ggemm_multi_d2
parents
d1f7a3cf
a776978c
Changes
277
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1144 additions
and
76 deletions
+1144
-76
library/include/ck/library/tensor_operation_instance/gpu/gemm_streamk.hpp
...ck/library/tensor_operation_instance/gpu/gemm_streamk.hpp
+12
-2
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_data/device_grouped_conv_bwd_data_wmma_f16_instance.hpp
...d_data/device_grouped_conv_bwd_data_wmma_f16_instance.hpp
+0
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_data/device_grouped_conv_bwd_data_wmma_i8_instance.hpp
...wd_data/device_grouped_conv_bwd_data_wmma_i8_instance.hpp
+118
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_data/device_grouped_conv_bwd_data_xdl_bilinear_instance.hpp
...ta/device_grouped_conv_bwd_data_xdl_bilinear_instance.hpp
+132
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_bilinear_instance.hpp
...onv_fwd/device_grouped_conv_fwd_xdl_bilinear_instance.hpp
+131
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data_bilinear.hpp
...stance/gpu/grouped_convolution_backward_data_bilinear.hpp
+150
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_bilinear.hpp
...ion_instance/gpu/grouped_convolution_forward_bilinear.hpp
+177
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_gemm_fixed_nk.hpp
...y/tensor_operation_instance/gpu/grouped_gemm_fixed_nk.hpp
+48
-1
library/include/ck/library/tensor_operation_instance/gpu/permute_scale.hpp
...k/library/tensor_operation_instance/gpu/permute_scale.hpp
+186
-9
library/include/ck/library/tensor_operation_instance/gpu/permute_scale/device_permute_scale_instances.hpp
...ance/gpu/permute_scale/device_permute_scale_instances.hpp
+42
-56
library/src/tensor_operation_instance/gpu/gemm/CMakeLists.txt
...ary/src/tensor_operation_instance/gpu/gemm/CMakeLists.txt
+6
-2
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instance.cpp
...vice_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instance.cpp
+12
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instance.cpp
...vice_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instance.cpp
+14
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_default_instance.cpp
...dl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_default_instance.cpp
+3
-3
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_interwave_default_instance.cpp
...le_fp8_fp8_fp8_mk_kn_mn_v1_interwave_default_instance.cpp
+27
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_interwave_padded_instance.cpp
...fle_fp8_fp8_fp8_mk_kn_mn_v1_interwave_padded_instance.cpp
+27
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_padded_instance.cpp
...xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_padded_instance.cpp
+3
-3
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_default_instance.cpp
...dl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_default_instance.cpp
+26
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_padded_instance.cpp
...xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_padded_instance.cpp
+26
-0
library/src/tensor_operation_instance/gpu/gemm_add/CMakeLists.txt
...src/tensor_operation_instance/gpu/gemm_add/CMakeLists.txt
+4
-0
No files found.
library/include/ck/library/tensor_operation_instance/gpu/gemm_streamk.hpp
View file @
ae20247a
...
@@ -83,12 +83,22 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmSt
...
@@ -83,12 +83,22 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmSt
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
is_same_v<CLayout, Row>)
{
{
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v1_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v1_irregular_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v1_interwave_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v1_interwave_irregular_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v2_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_v2_irregular_instances(op_ptrs);
}
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
is_same_v<CLayout, Row>)
{
{
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v1_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v1_irregular__instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v1_interwave_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v1_interwave_irregular_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v2_instances(op_ptrs);
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_v2_irregular_instances(op_ptrs);
}
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
is_same_v<CLayout, Row>)
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_data/device_grouped_conv_bwd_data_wmma_instance.hpp
→
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_data/device_grouped_conv_bwd_data_wmma_
f16_
instance.hpp
View file @
ae20247a
File moved
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_data/device_grouped_conv_bwd_data_wmma_i8_instance.hpp
0 → 100644
View file @
ae20247a
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_data_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_wmma_cshuffle.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
I8
=
int8_t
;
using
I32
=
int32_t
;
using
Empty_Tuple
=
ck
::
Tuple
<>
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
namespace
ck
::
tensor_layout
::
convolution
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvBwdDataDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
::
Default
;
static
constexpr
auto
ConvBwdData1x1S1P0
=
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
::
Filter1x1Stride1Pad0
;
template
<
index_t
NDSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
DsDatatype
,
typename
CDEElementOp
,
ConvolutionBackwardDataSpecialization
ConvSpec
>
using
device_grouped_conv_bwd_data_wmma_f16_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| ConvForward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
64
,
64
,
4
,
8
,
16
,
16
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
1
>
,
// blocksize=256
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
256
,
128
,
256
,
8
,
8
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
256
,
64
,
256
,
8
,
8
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
256
,
128
,
256
,
8
,
8
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
256
,
128
,
64
,
8
,
8
,
16
,
16
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
// blocksize=128
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
64
,
128
,
8
,
8
,
16
,
16
,
2
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
64
,
128
,
8
,
8
,
16
,
16
,
2
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
128
,
64
,
8
,
8
,
16
,
16
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
128
,
128
,
8
,
8
,
16
,
16
,
4
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
32
,
256
,
8
,
8
,
16
,
16
,
1
,
8
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
// blocksize=64
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
64
,
32
,
64
,
8
,
8
,
16
,
16
,
1
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
64
,
64
,
64
,
8
,
8
,
16
,
16
,
2
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
64
,
32
,
64
,
8
,
8
,
16
,
16
,
1
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
64
,
32
,
128
,
8
,
8
,
16
,
16
,
1
,
8
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
,
// blocksize=32
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
32
,
16
,
64
,
8
,
8
,
16
,
16
,
1
,
4
,
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
32
,
64
,
32
,
8
,
8
,
16
,
16
,
4
,
2
,
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
32
,
32
,
32
,
8
,
8
,
16
,
16
,
2
,
2
,
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
32
,
16
,
32
,
8
,
8
,
16
,
16
,
1
,
2
,
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
>
// clang-format on
>
;
template
<
index_t
NDSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
DsDatatype
,
typename
CDEElementOp
,
ConvolutionBackwardDataSpecialization
ConvSpec
>
using
device_grouped_conv_bwd_data_wmma_i8_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| ConvForward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
64
,
64
,
4
,
16
,
16
,
16
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
1
>
,
// blocksize=256
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
256
,
64
,
256
,
8
,
16
,
16
,
16
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
// blocksize=128
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
64
,
256
,
8
,
16
,
16
,
16
,
2
,
8
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
64
,
128
,
8
,
16
,
16
,
16
,
2
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
128
,
256
,
8
,
16
,
16
,
16
,
4
,
8
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
32
,
256
,
8
,
16
,
16
,
16
,
1
,
8
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
128
,
256
,
128
,
8
,
16
,
16
,
16
,
8
,
4
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
// blocksize=64
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
64
,
32
,
128
,
8
,
16
,
16
,
16
,
1
,
8
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
64
,
64
,
128
,
8
,
16
,
16
,
16
,
2
,
8
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
64
,
32
,
128
,
8
,
16
,
16
,
16
,
1
,
8
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
64
,
32
,
64
,
8
,
16
,
16
,
16
,
1
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
,
// blocksize=32
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
32
,
16
,
64
,
8
,
16
,
16
,
16
,
1
,
4
,
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
32
,
64
,
64
,
8
,
16
,
16
,
16
,
4
,
4
,
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
32
,
32
,
32
,
8
,
16
,
16
,
16
,
2
,
2
,
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
16
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
<
NDSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
I8
,
I8
,
I32
,
I8
,
Empty_Tuple
,
I8
,
PassThrough
,
PassThrough
,
CDEElementOp
,
ConvSpec
,
32
,
16
,
64
,
8
,
16
,
16
,
16
,
1
,
4
,
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
>
// clang-format on
>
;
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_bwd_data/device_grouped_conv_bwd_data_xdl_bilinear_instance.hpp
0 → 100644
View file @
ae20247a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
BF16
=
ck
::
bhalf_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
BF8
=
ck
::
bf8_t
;
using
F8
=
ck
::
f8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
namespace
ck
::
tensor_layout
::
convolution
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
static
constexpr
auto
ConvBwdDataDefault
=
ConvolutionBackwardDataSpecialization
::
Default
;
static
constexpr
auto
ConvBwdDataFilter1x1Stride1Pad0
=
ConvolutionBackwardDataSpecialization
::
Filter1x1Stride1Pad0
;
// f16_f16_f32_f16
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionBackwardDataSpecialization
ConvSpec
>
using
device_grouped_conv_bwd_data_xdl_bilinear_f16_instances
=
std
::
tuple
<
// clang-format off
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
1
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
// bf16_bf16_f32_bf16
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionBackwardDataSpecialization
ConvSpec
>
using
device_grouped_conv_bwd_data_xdl_bilinear_bf16_instances
=
std
::
tuple
<
// clang-format off
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
4
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
1
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
// f32_f32_f32_f32
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionBackwardDataSpecialization
ConvSpec
>
using
device_grouped_conv_bwd_data_xdl_bilinear_f32_instances
=
std
::
tuple
<
// clang-format off
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
1
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
// clang-format on
>
;
// f16_f16_f16_comp_f8
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionBackwardDataSpecialization
ConvSpec
>
using
device_grouped_conv_bwd_data_xdl_bilinear_input_fp16_comp_bf8f8_instances
=
std
::
tuple
<
// clang-format off
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F32
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
BF8
,
F8
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F32
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
,
LoopScheduler
::
Default
,
BF8
,
F8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F32
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
8
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
BF8
,
F8
>
,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<
ELayout
>
,
ELayout
,
F16
,
F16
,
F32
,
F32
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
true
,
true
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
,
LoopScheduler
::
Default
,
BF8
,
F8
>
// clang-format on
>
;
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_bilinear_instance.hpp
0 → 100644
View file @
ae20247a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
BF16
=
ck
::
bhalf_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
namespace
ck
::
tensor_layout
::
convolution
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
ConvFwd1x1P0
=
ConvolutionForwardSpecialization
::
Filter1x1Pad0
;
static
constexpr
auto
ConvFwd1x1S1P0
=
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
;
static
constexpr
auto
ConvFwdOddC
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
OddC
;
static
constexpr
auto
GemmMNKPadding
=
GemmSpecialization
::
MNKPadding
;
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionForwardSpecialization
ConvSpec
>
using
device_grouped_conv_fwd_xdl_bilinear_bf16_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
ck
::
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
ck
::
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
ck
::
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
BF16
,
BF16
,
F32
,
BF16
,
ck
::
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionForwardSpecialization
ConvSpec
>
using
device_grouped_conv_fwd_xdl_bilinear_f16_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionForwardSpecialization
ConvSpec
>
using
device_grouped_conv_fwd_xdl_bilinear_f32_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
ck
::
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
ck
::
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
ck
::
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F32
,
F32
,
F32
,
F32
,
ck
::
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
// clang-format on
>
;
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionForwardSpecialization
ConvSpec
>
using
device_grouped_conv_fwd_xdl_bilinear_int8_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int8_t
,
ck
::
Tuple
<
int8_t
>
,
int8_t
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int8_t
,
ck
::
Tuple
<
int8_t
>
,
int8_t
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int8_t
,
ck
::
Tuple
<
int8_t
>
,
int8_t
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
int8_t
,
int8_t
,
int32_t
,
int8_t
,
ck
::
Tuple
<
int8_t
>
,
int8_t
,
PassThrough
,
PassThrough
,
Bilinear
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data_bilinear.hpp
0 → 100644
View file @
ae20247a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
#ifdef CK_ENABLE_FP16
void
add_device_grouped_conv3d_bwd_data_xdl_bilinear_ndhwgk_gkzyxc_ndhwgc_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
3
,
NDHWGK
,
GKZYXC
,
Tuple
<
NDHWGC
>
,
NDHWGC
,
F16
,
F16
,
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
);
#endif
#ifdef CK_ENABLE_FP32
void
add_device_grouped_conv3d_bwd_data_xdl_bilinear_ndhwgk_gkzyxc_ndhwgc_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
3
,
NDHWGK
,
GKZYXC
,
Tuple
<
NDHWGC
>
,
NDHWGC
,
F32
,
F32
,
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
);
#endif
#ifdef CK_ENABLE_BF16
void
add_device_grouped_conv3d_bwd_data_xdl_bilinear_ndhwgk_gkzyxc_ndhwgc_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
3
,
NDHWGK
,
GKZYXC
,
Tuple
<
NDHWGC
>
,
NDHWGC
,
BF16
,
BF16
,
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
);
#endif
template
<
ck
::
index_t
NumDimSpatial
,
typename
OutLayout
,
typename
WeiLayout
,
typename
InLayout
,
typename
OutDataType
,
typename
WeiDataType
,
typename
InDataType
,
typename
ComputeTypeA
,
typename
ComputeTypeB
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdDataMultipleD
<
NumDimSpatial
,
OutLayout
,
WeiLayout
,
Tuple
<
InLayout
>
,
InLayout
,
OutDataType
,
WeiDataType
,
Tuple
<
InDataType
>
,
InDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
Bilinear
,
ComputeTypeA
,
ComputeTypeB
>>
{
using
DeviceOp
=
DeviceGroupedConvBwdDataMultipleD
<
NumDimSpatial
,
OutLayout
,
WeiLayout
,
Tuple
<
InLayout
>
,
InLayout
,
OutDataType
,
WeiDataType
,
Tuple
<
InDataType
>
,
InDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
Bilinear
,
ComputeTypeA
,
ComputeTypeB
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
if
constexpr
(
NumDimSpatial
==
3
)
{
if
constexpr
(
is_same_v
<
InLayout
,
NDHWGC
>
&&
is_same_v
<
WeiLayout
,
GKZYXC
>
&&
is_same_v
<
OutLayout
,
NDHWGK
>
)
{
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataType
,
F16
>
&&
is_same_v
<
WeiDataType
,
F16
>
&&
is_same_v
<
OutDataType
,
F16
>
&&
is_same_v
<
ComputeTypeA
,
F16
>
&&
is_same_v
<
ComputeTypeB
,
F16
>
)
{
add_device_grouped_conv3d_bwd_data_xdl_bilinear_ndhwgk_gkzyxc_ndhwgc_f16_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_FP32
else
if
constexpr
(
is_same_v
<
InDataType
,
F32
>
&&
is_same_v
<
WeiDataType
,
F32
>
&&
is_same_v
<
OutDataType
,
F32
>
&&
is_same_v
<
ComputeTypeA
,
F32
>
&&
is_same_v
<
ComputeTypeB
,
F32
>
)
{
add_device_grouped_conv3d_bwd_data_xdl_bilinear_ndhwgk_gkzyxc_ndhwgc_f32_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_BF16
else
if
constexpr
(
is_same_v
<
InDataType
,
BF16
>
&&
is_same_v
<
WeiDataType
,
BF16
>
&&
is_same_v
<
OutDataType
,
BF16
>
&&
is_same_v
<
ComputeTypeA
,
BF16
>
&&
is_same_v
<
ComputeTypeB
,
BF16
>
)
{
add_device_grouped_conv3d_bwd_data_xdl_bilinear_ndhwgk_gkzyxc_ndhwgc_bf16_instances
(
op_ptrs
);
}
#endif
}
}
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_bilinear.hpp
0 → 100644
View file @
ae20247a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
#ifdef CK_ENABLE_BF16
// grouped conv3d forward, NDHWGC/GKZYXC/NDHWGK
void
add_device_grouped_conv3d_fwd_xdl_bilinear_ndhwgc_gkzyxc_ndhwgk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<
NDHWGK
>
,
NDHWGK
,
BF16
,
BF16
,
ck
::
Tuple
<
BF16
>
,
BF16
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
);
#endif
#ifdef CK_ENABLE_FP16
void
add_device_grouped_conv3d_fwd_xdl_bilinear_ndhwgc_gkzyxc_ndhwgk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<
NDHWGK
>
,
NDHWGK
,
F16
,
F16
,
ck
::
Tuple
<
F16
>
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
);
#endif
#ifdef CK_ENABLE_FP32
void
add_device_grouped_conv3d_fwd_xdl_bilinear_ndhwgc_gkzyxc_ndhwgk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<
NDHWGK
>
,
NDHWGK
,
F32
,
F32
,
ck
::
Tuple
<
F32
>
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
);
#endif
#ifdef CK_ENABLE_INT8
void
add_device_grouped_conv3d_fwd_xdl_bilinear_ndhwgc_gkzyxc_ndhwgk_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<
NDHWGK
>
,
NDHWGK
,
int8_t
,
int8_t
,
ck
::
Tuple
<
int8_t
>
,
int8_t
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
);
#endif
template
<
ck
::
index_t
NumDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
DLayouts
,
typename
OutLayout
,
typename
InDataType
,
typename
WeiDataType
,
typename
DDataTypes
,
typename
OutDataType
,
typename
ComputeType
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
DLayouts
,
OutLayout
,
InDataType
,
WeiDataType
,
DDataTypes
,
OutDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
Bilinear
,
ComputeType
>>
{
using
DeviceOp
=
DeviceGroupedConvFwdMultipleABD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
DLayouts
,
OutLayout
,
InDataType
,
WeiDataType
,
DDataTypes
,
OutDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
Bilinear
,
ComputeType
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
if
constexpr
(
NumDimSpatial
==
3
&&
is_same_v
<
InLayout
,
NDHWGC
>
&&
is_same_v
<
WeiLayout
,
GKZYXC
>
&&
is_same_v
<
OutLayout
,
NDHWGK
>
&&
DLayouts
::
Size
()
==
1
&&
is_same_v
<
tuple_element_t
<
0
,
DLayouts
>
,
NDHWGK
>
)
{
#ifdef CK_ENABLE_FP32
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
{
add_device_grouped_conv3d_fwd_xdl_bilinear_ndhwgc_gkzyxc_ndhwgk_f32_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
&&
is_same_v
<
ComputeType
,
half_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_bilinear_ndhwgc_gkzyxc_ndhwgk_f16_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_BF16
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_bilinear_ndhwgc_gkzyxc_ndhwgk_bf16_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_INT8
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_bilinear_ndhwgc_gkzyxc_ndhwgk_int8_instances
(
op_ptrs
);
}
#endif
}
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/grouped_gemm_fixed_nk.hpp
View file @
ae20247a
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#pragma once
...
@@ -97,6 +97,35 @@ void add_device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_nk_mn_instances(
...
@@ -97,6 +97,35 @@ void add_device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_nk_mn_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
PassThrough
>>>&
instances
);
// bf16_inputA i8_inputB
#if defined(CK_ENABLE_BF16) && defined(CK_ENABLE_INT8)
void
add_device_grouped_gemm_xdl_fixed_nk_bf16_i8_bf16_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmFixedNK
<
Row
,
Row
,
Empty_Tuple
,
Row
,
BF16
,
I8
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_gemm_xdl_fixed_nk_bf16_i8_bf16_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmFixedNK
<
Row
,
Col
,
Empty_Tuple
,
Row
,
BF16
,
I8
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
template
<
typename
ALayout
,
template
<
typename
ALayout
,
typename
BLayout
,
typename
BLayout
,
typename
ELayout
,
typename
ELayout
,
...
@@ -180,6 +209,24 @@ struct DeviceOperationInstanceFactory<
...
@@ -180,6 +209,24 @@ struct DeviceOperationInstanceFactory<
}
}
}
}
// bf16_i8_input
#if defined(CK_ENABLE_BF16) && defined(CK_ENABLE_INT8)
if
constexpr
(
is_same_v
<
ADataType
,
bhalf_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
EDataType
,
bhalf_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_grouped_gemm_xdl_fixed_nk_bf16_i8_bf16_mk_kn_mn_instances
(
op_ptrs
);
}
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_grouped_gemm_xdl_fixed_nk_bf16_i8_bf16_mk_nk_mn_instances
(
op_ptrs
);
}
}
#endif
return
op_ptrs
;
return
op_ptrs
;
}
}
};
};
...
...
library/include/ck/library/tensor_operation_instance/gpu/permute_scale.hpp
View file @
ae20247a
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#pragma once
...
@@ -17,7 +17,32 @@ namespace tensor_operation {
...
@@ -17,7 +17,32 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
void
add_device_permute_scale_f16_instances
(
#ifdef CK_ENABLE_FP16
void
add_device_permute_scale_1d_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
PassThrough
,
element_wise
::
UnarySquare
,
Scale
,
1
>>>&
);
void
add_device_permute_scale_2d_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
PassThrough
,
element_wise
::
UnarySquare
,
Scale
,
2
>>>&
);
void
add_device_permute_scale_3d_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
PassThrough
,
element_wise
::
UnarySquare
,
Scale
,
3
>>>&
);
void
add_device_permute_scale_4d_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F16
>
,
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
PassThrough
,
PassThrough
,
...
@@ -25,7 +50,50 @@ void add_device_permute_scale_f16_instances(
...
@@ -25,7 +50,50 @@ void add_device_permute_scale_f16_instances(
Scale
,
Scale
,
4
>>>&
);
4
>>>&
);
void
add_device_permute_scale_f32_instances
(
void
add_device_permute_scale_5d_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
PassThrough
,
element_wise
::
UnarySquare
,
Scale
,
5
>>>&
);
void
add_device_permute_scale_6d_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
PassThrough
,
element_wise
::
UnarySquare
,
Scale
,
6
>>>&
);
#endif
#ifdef CK_ENABLE_FP32
void
add_device_permute_scale_1d_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
PassThrough
,
element_wise
::
UnarySquare
,
Scale
,
1
>>>&
);
void
add_device_permute_scale_2d_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
PassThrough
,
element_wise
::
UnarySquare
,
Scale
,
2
>>>&
);
void
add_device_permute_scale_3d_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
PassThrough
,
element_wise
::
UnarySquare
,
Scale
,
3
>>>&
);
void
add_device_permute_scale_4d_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F32
>
,
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
PassThrough
,
PassThrough
,
...
@@ -33,6 +101,23 @@ void add_device_permute_scale_f32_instances(
...
@@ -33,6 +101,23 @@ void add_device_permute_scale_f32_instances(
Scale
,
Scale
,
4
>>>&
);
4
>>>&
);
void
add_device_permute_scale_5d_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
PassThrough
,
element_wise
::
UnarySquare
,
Scale
,
5
>>>&
);
void
add_device_permute_scale_6d_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
PassThrough
,
element_wise
::
UnarySquare
,
Scale
,
6
>>>&
);
#endif
template
<
typename
InDataTypeTuple
,
template
<
typename
InDataTypeTuple
,
typename
OutDataTypeTuple
,
typename
OutDataTypeTuple
,
typename
ElementwiseOperation
,
typename
ElementwiseOperation
,
...
@@ -57,15 +142,107 @@ struct DeviceOperationInstanceFactory<
...
@@ -57,15 +142,107 @@ struct DeviceOperationInstanceFactory<
static
auto
GetInstances
()
static
auto
GetInstances
()
{
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
if
constexpr
(
is_same_v
<
InDataTypeTuple
,
ck
::
Tuple
<
F32
>>
&&
if
constexpr
(
NumDim
==
1
)
is_same_v
<
OutDataTypeTuple
,
ck
::
Tuple
<
F32
>>
)
{
#ifdef CK_ENABLE_FP32
if
constexpr
(
is_same_v
<
InDataTypeTuple
,
ck
::
Tuple
<
F32
>>
&&
is_same_v
<
OutDataTypeTuple
,
ck
::
Tuple
<
F32
>>
)
{
add_device_permute_scale_1d_f32_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataTypeTuple
,
ck
::
Tuple
<
F16
>>
&&
is_same_v
<
OutDataTypeTuple
,
ck
::
Tuple
<
F16
>>
)
{
add_device_permute_scale_1d_f16_instances
(
op_ptrs
);
}
#endif
}
else
if
constexpr
(
NumDim
==
2
)
{
#ifdef CK_ENABLE_FP32
if
constexpr
(
is_same_v
<
InDataTypeTuple
,
ck
::
Tuple
<
F32
>>
&&
is_same_v
<
OutDataTypeTuple
,
ck
::
Tuple
<
F32
>>
)
{
add_device_permute_scale_2d_f32_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataTypeTuple
,
ck
::
Tuple
<
F16
>>
&&
is_same_v
<
OutDataTypeTuple
,
ck
::
Tuple
<
F16
>>
)
{
add_device_permute_scale_2d_f16_instances
(
op_ptrs
);
}
#endif
}
else
if
constexpr
(
NumDim
==
3
)
{
#ifdef CK_ENABLE_FP32
if
constexpr
(
is_same_v
<
InDataTypeTuple
,
ck
::
Tuple
<
F32
>>
&&
is_same_v
<
OutDataTypeTuple
,
ck
::
Tuple
<
F32
>>
)
{
add_device_permute_scale_3d_f32_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataTypeTuple
,
ck
::
Tuple
<
F16
>>
&&
is_same_v
<
OutDataTypeTuple
,
ck
::
Tuple
<
F16
>>
)
{
add_device_permute_scale_3d_f16_instances
(
op_ptrs
);
}
#endif
}
else
if
constexpr
(
NumDim
==
4
)
{
#ifdef CK_ENABLE_FP32
if
constexpr
(
is_same_v
<
InDataTypeTuple
,
ck
::
Tuple
<
F32
>>
&&
is_same_v
<
OutDataTypeTuple
,
ck
::
Tuple
<
F32
>>
)
{
add_device_permute_scale_4d_f32_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataTypeTuple
,
ck
::
Tuple
<
F16
>>
&&
is_same_v
<
OutDataTypeTuple
,
ck
::
Tuple
<
F16
>>
)
{
add_device_permute_scale_4d_f16_instances
(
op_ptrs
);
}
#endif
}
else
if
constexpr
(
NumDim
==
5
)
{
{
add_device_permute_scale_f32_instances
(
op_ptrs
);
#ifdef CK_ENABLE_FP32
if
constexpr
(
is_same_v
<
InDataTypeTuple
,
ck
::
Tuple
<
F32
>>
&&
is_same_v
<
OutDataTypeTuple
,
ck
::
Tuple
<
F32
>>
)
{
add_device_permute_scale_5d_f32_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataTypeTuple
,
ck
::
Tuple
<
F16
>>
&&
is_same_v
<
OutDataTypeTuple
,
ck
::
Tuple
<
F16
>>
)
{
add_device_permute_scale_5d_f16_instances
(
op_ptrs
);
}
#endif
}
}
else
if
constexpr
(
is_same_v
<
InDataTypeTuple
,
ck
::
Tuple
<
F16
>>
&&
else
if
constexpr
(
NumDim
==
6
)
is_same_v
<
OutDataTypeTuple
,
ck
::
Tuple
<
F16
>>
)
{
{
add_device_permute_scale_f16_instances
(
op_ptrs
);
#ifdef CK_ENABLE_FP32
if
constexpr
(
is_same_v
<
InDataTypeTuple
,
ck
::
Tuple
<
F32
>>
&&
is_same_v
<
OutDataTypeTuple
,
ck
::
Tuple
<
F32
>>
)
{
add_device_permute_scale_6d_f32_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataTypeTuple
,
ck
::
Tuple
<
F16
>>
&&
is_same_v
<
OutDataTypeTuple
,
ck
::
Tuple
<
F16
>>
)
{
add_device_permute_scale_6d_f16_instances
(
op_ptrs
);
}
#endif
}
}
return
op_ptrs
;
return
op_ptrs
;
}
}
...
...
library/
src
/tensor_operation_instance/gpu/permute_scale/device_permute_scale_instances.
c
pp
→
library/
include/ck/library
/tensor_operation_instance/gpu/permute_scale/device_permute_scale_instances.
h
pp
View file @
ae20247a
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_scale_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_scale_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
ck
{
namespace
device
{
namespace
tensor_operation
{
namespace
instance
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Pass
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnaryOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Pass
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
UnaryOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
// clang-format off
template
<
index_t
NDims
>
// clang-format off
using
device_permute_scale_f16_instances
=
using
device_permute_scale_f16_instances
=
std
::
tuple
<
std
::
tuple
<
DeviceElementwiseImpl
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
Pass
,
UnaryOp
,
Scale
,
NDims
,
1
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwiseImpl
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
Pass
,
UnaryOp
,
Scale
,
4
,
1
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwiseImpl
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
Pass
,
UnaryOp
,
Scale
,
NDims
,
8
,
ck
::
Sequence
<
8
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwiseImpl
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
Pass
,
UnaryOp
,
Scale
,
4
,
8
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwiseImpl
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
Pass
,
UnaryOp
,
Scale
,
NDims
,
4
,
ck
::
Sequence
<
4
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwiseImpl
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
Pass
,
UnaryOp
,
Scale
,
4
,
4
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwiseImpl
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
Pass
,
UnaryOp
,
Scale
,
NDims
,
2
,
ck
::
Sequence
<
2
>
,
ck
::
Sequence
<
1
>>
DeviceElementwiseImpl
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
Pass
,
UnaryOp
,
Scale
,
4
,
2
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
>
;
>
;
template
<
index_t
NDims
>
using
device_permute_scale_f32_instances
=
std
::
tuple
<
using
device_permute_scale_f32_instances
=
std
::
tuple
<
DeviceElementwiseImpl
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
Pass
,
UnaryOp
,
Scale
,
4
,
1
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwiseImpl
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
Pass
,
UnaryOp
,
Scale
,
NDims
,
1
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwiseImpl
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
Pass
,
UnaryOp
,
Scale
,
4
,
8
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwiseImpl
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
Pass
,
UnaryOp
,
Scale
,
NDims
,
8
,
ck
::
Sequence
<
8
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwiseImpl
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
Pass
,
UnaryOp
,
Scale
,
4
,
4
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwiseImpl
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
Pass
,
UnaryOp
,
Scale
,
NDims
,
4
,
ck
::
Sequence
<
4
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwiseImpl
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
Pass
,
UnaryOp
,
Scale
,
4
,
2
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
DeviceElementwiseImpl
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
Pass
,
UnaryOp
,
Scale
,
NDims
,
2
,
ck
::
Sequence
<
2
>
,
ck
::
Sequence
<
1
>>
>
;
>
;
// clang-format on
// clang-format on
void
add_device_permute_scale_f16_instances
(
}
// namespace instance
std
::
vector
<
std
::
unique_ptr
<
}
// namespace device
DeviceElementwise
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
Pass
,
UnaryOp
,
Scale
,
4
>>>&
instances
)
}
// namespace tensor_operation
{
}
// namespace ck
add_device_operation_instances
(
instances
,
device_permute_scale_f16_instances
{});
}
void
add_device_permute_scale_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
Pass
,
UnaryOp
,
Scale
,
4
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_permute_scale_f32_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm/CMakeLists.txt
View file @
ae20247a
...
@@ -101,8 +101,12 @@ list(APPEND GEMM_INSTANCES
...
@@ -101,8 +101,12 @@ list(APPEND GEMM_INSTANCES
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_nk_mn_instance.cpp
)
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_nk_mn_instance.cpp
)
list
(
APPEND GEMM_INSTANCES
list
(
APPEND GEMM_INSTANCES
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_default_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_default_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_padded_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_interwave_default_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_default_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_padded_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_interwave_padded_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_padded_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_km_nk_mn_instance.cpp
)
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_km_nk_mn_instance.cpp
)
...
...
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instance.cpp
View file @
ae20247a
...
@@ -34,6 +34,15 @@ static constexpr auto MNPadding = ck::tensor_operation::device::GemmSpecializati
...
@@ -34,6 +34,15 @@ static constexpr auto MNPadding = ck::tensor_operation::device::GemmSpecializati
static
constexpr
auto
MNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
static
constexpr
auto
MNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_generic_instances
=
std
::
tuple
<
// clang-format off
//#####################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//#####################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//#####################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
MNKPadding
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
// clang-format on
>
;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
template
<
ck
::
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
>
template
<
ck
::
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
>
using
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances
=
std
::
tuple
<
using
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances
=
std
::
tuple
<
...
@@ -108,6 +117,9 @@ void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(
...
@@ -108,6 +117,9 @@ void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(
DeviceGemm
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
instances
)
{
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_generic_instances
{});
add_device_operation_instances
(
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances
<
GemmDefault
>
{});
instances
,
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances
<
GemmDefault
>
{});
...
...
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instance.cpp
View file @
ae20247a
...
@@ -32,6 +32,17 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
...
@@ -32,6 +32,17 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
static
constexpr
auto
MNPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
static
constexpr
auto
MNPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
static
constexpr
auto
MNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
static
constexpr
auto
MNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// Compilation parameters for a[m, k] * b[n, k] = c[m, n]
using
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_generic_instances
=
std
::
tuple
<
// clang-format off
//#####################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//#####################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//#####################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//#####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
MNKPadding
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
// clang-format on
>
;
template
<
ck
::
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
>
template
<
ck
::
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
>
// Compilation parameters for a[m, k] * b[n, k] = c[m, n]
// Compilation parameters for a[m, k] * b[n, k] = c[m, n]
using
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances
=
std
::
tuple
<
using
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances
=
std
::
tuple
<
...
@@ -97,6 +108,9 @@ void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
...
@@ -97,6 +108,9 @@ void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
DeviceGemm
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
instances
)
{
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_generic_instances
{});
add_device_operation_instances
(
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances
<
GemmDefault
>
{});
instances
,
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances
<
GemmDefault
>
{});
...
...
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_default_instance.cpp
→
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_
v1_
default_instance.cpp
View file @
ae20247a
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_
v1_
instance.hpp"
#ifdef CK_ENABLE_FP8
#ifdef CK_ENABLE_FP8
namespace
ck
{
namespace
ck
{
...
@@ -11,12 +11,12 @@ namespace instance {
...
@@ -11,12 +11,12 @@ namespace instance {
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_default_instances
(
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_
v1_
default_instances
(
std
::
vector
<
std
::
unique_ptr
<
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
{
add_device_operation_instances
(
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_instances
<
GemmDefault
>
{});
instances
,
device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_
v1_
instances
<
GemmDefault
>
{});
}
}
}
// namespace instance
}
// namespace instance
...
...
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_interwave_default_instance.cpp
0 → 100644
View file @
ae20247a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_interwave_instance.hpp"
#ifdef CK_ENABLE_FP8
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_interwave_default_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_interwave_instances
<
GemmDefault
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_interwave_padded_instance.cpp
0 → 100644
View file @
ae20247a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_interwave_instance.hpp"
#ifdef CK_ENABLE_FP8
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
static
constexpr
auto
MNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_interwave_padded_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v1_interwave_instances
<
MNKPadding
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_padded_instance.cpp
→
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_
v1_
padded_instance.cpp
View file @
ae20247a
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_
v1_
instance.hpp"
#ifdef CK_ENABLE_FP8
#ifdef CK_ENABLE_FP8
namespace
ck
{
namespace
ck
{
...
@@ -11,12 +11,12 @@ namespace instance {
...
@@ -11,12 +11,12 @@ namespace instance {
static
constexpr
auto
MNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
static
constexpr
auto
MNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_padded_instances
(
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_
v1_
padded_instances
(
std
::
vector
<
std
::
unique_ptr
<
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
{
add_device_operation_instances
(
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_instances
<
MNKPadding
>
{});
instances
,
device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_
v1_
instances
<
MNKPadding
>
{});
}
}
}
// namespace instance
}
// namespace instance
...
...
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_default_instance.cpp
0 → 100644
View file @
ae20247a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_instance.hpp"
#ifdef CK_ENABLE_FP8
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v2_default_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v2_instances
<
GemmDefault
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_padded_instance.cpp
0 → 100644
View file @
ae20247a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_instance.hpp"
#ifdef CK_ENABLE_FP8
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
static
constexpr
auto
MNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v2_padded_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_v2_instances
<
MNKPadding
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
library/src/tensor_operation_instance/gpu/gemm_add/CMakeLists.txt
0 → 100644
View file @
ae20247a
add_instance_library
(
device_gemm_add_instance
device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instance.cpp
device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instance.cpp
)
Prev
1
…
5
6
7
8
9
10
11
12
13
14
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment