Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
ae20247a
Commit
ae20247a
authored
Feb 29, 2024
by
Adam Osewski
Browse files
Merge remote-tracking branch 'origin' into aosewski/ggemm_multi_d2
parents
d1f7a3cf
a776978c
Changes
277
Hide whitespace changes
Inline
Side-by-side
Showing
17 changed files
with
1464 additions
and
43 deletions
+1464
-43
profiler/src/profile_gemm_add_relu.cpp
profiler/src/profile_gemm_add_relu.cpp
+139
-0
profiler/src/profile_gemm_add_silu.cpp
profiler/src/profile_gemm_add_silu.cpp
+139
-0
profiler/src/profile_grouped_gemm_fixed_nk.cpp
profiler/src/profile_grouped_gemm_fixed_nk.cpp
+303
-0
profiler/src/profile_permute_scale.cpp
profiler/src/profile_permute_scale.cpp
+170
-0
test/CMakeLists.txt
test/CMakeLists.txt
+1
-0
test/gemm_add/CMakeLists.txt
test/gemm_add/CMakeLists.txt
+11
-0
test/gemm_add/test_gemm_add.hpp
test/gemm_add/test_gemm_add.hpp
+72
-0
test/gemm_add/test_gemm_add_fastgelu.cpp
test/gemm_add/test_gemm_add_fastgelu.cpp
+41
-0
test/gemm_add/test_gemm_add_relu.cpp
test/gemm_add/test_gemm_add_relu.cpp
+41
-0
test/gemm_add/test_gemm_add_silu.cpp
test/gemm_add/test_gemm_add_silu.cpp
+41
-0
test/permute_scale/test_permute_scale.cpp
test/permute_scale/test_permute_scale.cpp
+74
-10
test/wrapper/CMakeLists.txt
test/wrapper/CMakeLists.txt
+17
-10
test/wrapper/test_wrapper_copy.cpp
test/wrapper/test_wrapper_copy.cpp
+16
-11
test/wrapper/test_wrapper_gemm.cpp
test/wrapper/test_wrapper_gemm.cpp
+376
-0
test/wrapper/test_wrapper_layout.cpp
test/wrapper/test_wrapper_layout.cpp
+1
-1
test/wrapper/test_wrapper_partition.cpp
test/wrapper/test_wrapper_partition.cpp
+22
-11
test/wrapper/test_wrapper_tensor.cpp
test/wrapper/test_wrapper_tensor.cpp
+0
-0
No files found.
profiler/src/profile_gemm_add_relu.cpp
0 → 100644
View file @
ae20247a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_gemm_add_relu_impl.hpp"
#include "profiler_operation_registry.hpp"
#define OP_NAME "gemm_add_relu"
#define OP_DESC "GEMM+Add+ReLU"
using
INT8
=
int8_t
;
using
BF16
=
ck
::
bhalf_t
;
int
profile_gemm_add_relu
(
int
argc
,
char
*
argv
[])
{
enum
struct
MatrixLayout
{
MK_KN_MN_MN
,
// 0
MK_NK_MN_MN
,
// 1
KM_KN_MN_MN
,
// 2
KM_NK_MN_MN
,
// 3
};
enum
struct
MatrixDataType
{
F16_INT8_F16_F16
,
// 0
BF16_INT8_BF16_BF16
,
// 1
};
if
(
argc
!=
15
)
{
// clang-format off
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg2: data type (0: f16&i8 1: bf16&i8)
\n
"
);
printf
(
"arg3: matrix layout (0: E[m, n] = ReLU(A[m, k] * B[k, n] + D0[m, n]);
\n
"
);
printf
(
" 1: E[m, n] = ReLU(A[m, k] * B[n, k] + D0[m, n]);
\n
"
);
printf
(
" 2: E[m, n] = ReLU(A[k, m] * B[k, n] + D0[m, n]);
\n
"
);
printf
(
" 3: E[m, n] = ReLU(A[k, m] * B[n, k] + D0[m, n]))
\n
"
);
printf
(
"arg4: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg6: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg8 to 14: M, N, K, StrideA, StrideB, StrideD0, StrideE
\n
"
);
// clang-format on
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
MatrixDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
MatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
M
=
std
::
stoi
(
argv
[
8
]);
const
int
N
=
std
::
stoi
(
argv
[
9
]);
const
int
K
=
std
::
stoi
(
argv
[
10
]);
const
int
StrideA
=
std
::
stoi
(
argv
[
11
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideD0
=
std
::
stoi
(
argv
[
13
]);
const
int
StrideE
=
std
::
stoi
(
argv
[
14
]);
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
// using Col = ck::tensor_layout::gemm::ColumnMajor;
auto
profile
=
[
&
](
auto
a_type
,
auto
b_type
,
auto
acc_type
,
auto
d0_type
,
auto
e_type
,
auto
a_layout
,
auto
b_layout
,
auto
d0_layout
,
auto
e_layout
)
{
using
ADataType
=
decltype
(
a_type
);
using
BDataType
=
decltype
(
b_type
);
using
AccDataType
=
decltype
(
acc_type
);
using
D0DataType
=
decltype
(
d0_type
);
using
EDataType
=
decltype
(
e_type
);
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
D0Layout
=
decltype
(
d0_layout
);
using
ELayout
=
decltype
(
e_layout
);
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB
=
ck
::
is_same_v
<
BLayout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideD0
=
ck
::
is_same_v
<
D0Layout
,
Row
>
?
N
:
M
;
const
int
DefaultStrideE
=
ck
::
is_same_v
<
ELayout
,
Row
>
?
N
:
M
;
bool
pass
=
ck
::
profiler
::
profile_gemm_add_relu_impl
<
ADataType
,
BDataType
,
AccDataType
,
D0DataType
,
EDataType
,
ALayout
,
BLayout
,
D0Layout
,
ELayout
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
,
(
StrideB
<
0
)
?
DefaultStrideB
:
StrideB
,
(
StrideD0
<
0
)
?
DefaultStrideD0
:
StrideD0
,
(
StrideE
<
0
)
?
DefaultStrideE
:
StrideE
);
return
pass
?
0
:
1
;
};
if
(
data_type
==
MatrixDataType
::
F16_INT8_F16_F16
&&
layout
==
MatrixLayout
::
MK_KN_MN_MN
)
{
return
profile
(
F16
{},
INT8
{},
F32
{},
F16
{},
F16
{},
Row
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
MatrixDataType
::
BF16_INT8_BF16_BF16
&&
layout
==
MatrixLayout
::
MK_KN_MN_MN
)
{
return
profile
(
BF16
{},
INT8
{},
F32
{},
BF16
{},
BF16
{},
Row
{},
Row
{},
Row
{},
Row
{});
}
else
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_gemm_add_relu
);
profiler/src/profile_gemm_add_silu.cpp
0 → 100644
View file @
ae20247a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_gemm_add_silu_impl.hpp"
#include "profiler_operation_registry.hpp"
#define OP_NAME "gemm_add_silu"
#define OP_DESC "GEMM+Add+SiLU"
using
INT8
=
int8_t
;
using
BF16
=
ck
::
bhalf_t
;
int
profile_gemm_add_silu
(
int
argc
,
char
*
argv
[])
{
enum
struct
MatrixLayout
{
MK_KN_MN_MN
,
// 0
MK_NK_MN_MN
,
// 1
KM_KN_MN_MN
,
// 2
KM_NK_MN_MN
,
// 3
};
enum
struct
MatrixDataType
{
F16_INT8_F16_F16
,
// 0
BF16_INT8_BF16_BF16
,
// 1
};
if
(
argc
!=
15
)
{
// clang-format off
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg2: data type (0: f16&i8 1: bf16&i8)
\n
"
);
printf
(
"arg3: matrix layout (0: E[m, n] = ReLU(A[m, k] * B[k, n] + D0[m, n]);
\n
"
);
printf
(
" 1: E[m, n] = ReLU(A[m, k] * B[n, k] + D0[m, n]);
\n
"
);
printf
(
" 2: E[m, n] = ReLU(A[k, m] * B[k, n] + D0[m, n]);
\n
"
);
printf
(
" 3: E[m, n] = ReLU(A[k, m] * B[n, k] + D0[m, n]))
\n
"
);
printf
(
"arg4: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg6: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg8 to 14: M, N, K, StrideA, StrideB, StrideD0, StrideE
\n
"
);
// clang-format on
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
MatrixDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
MatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
M
=
std
::
stoi
(
argv
[
8
]);
const
int
N
=
std
::
stoi
(
argv
[
9
]);
const
int
K
=
std
::
stoi
(
argv
[
10
]);
const
int
StrideA
=
std
::
stoi
(
argv
[
11
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideD0
=
std
::
stoi
(
argv
[
13
]);
const
int
StrideE
=
std
::
stoi
(
argv
[
14
]);
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
// using Col = ck::tensor_layout::gemm::ColumnMajor;
auto
profile
=
[
&
](
auto
a_type
,
auto
b_type
,
auto
acc_type
,
auto
d0_type
,
auto
e_type
,
auto
a_layout
,
auto
b_layout
,
auto
d0_layout
,
auto
e_layout
)
{
using
ADataType
=
decltype
(
a_type
);
using
BDataType
=
decltype
(
b_type
);
using
AccDataType
=
decltype
(
acc_type
);
using
D0DataType
=
decltype
(
d0_type
);
using
EDataType
=
decltype
(
e_type
);
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
D0Layout
=
decltype
(
d0_layout
);
using
ELayout
=
decltype
(
e_layout
);
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB
=
ck
::
is_same_v
<
BLayout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideD0
=
ck
::
is_same_v
<
D0Layout
,
Row
>
?
N
:
M
;
const
int
DefaultStrideE
=
ck
::
is_same_v
<
ELayout
,
Row
>
?
N
:
M
;
bool
pass
=
ck
::
profiler
::
profile_gemm_add_silu_impl
<
ADataType
,
BDataType
,
AccDataType
,
D0DataType
,
EDataType
,
ALayout
,
BLayout
,
D0Layout
,
ELayout
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
,
(
StrideB
<
0
)
?
DefaultStrideB
:
StrideB
,
(
StrideD0
<
0
)
?
DefaultStrideD0
:
StrideD0
,
(
StrideE
<
0
)
?
DefaultStrideE
:
StrideE
);
return
pass
?
0
:
1
;
};
if
(
data_type
==
MatrixDataType
::
F16_INT8_F16_F16
&&
layout
==
MatrixLayout
::
MK_KN_MN_MN
)
{
return
profile
(
F16
{},
INT8
{},
F32
{},
F16
{},
F16
{},
Row
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
MatrixDataType
::
BF16_INT8_BF16_BF16
&&
layout
==
MatrixLayout
::
MK_KN_MN_MN
)
{
return
profile
(
BF16
{},
INT8
{},
F32
{},
BF16
{},
BF16
{},
Row
{},
Row
{},
Row
{},
Row
{});
}
else
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_gemm_add_silu
);
profiler/src/profile_grouped_gemm_fixed_nk.cpp
0 → 100644
View file @
ae20247a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_grouped_gemm_fixed_nk_impl.hpp"
#include "profiler_operation_registry.hpp"
enum
struct
GemmMatrixLayout
{
MK_KN_MN
,
// 0
MK_NK_MN
,
// 1
};
enum
struct
GemmDataType
{
BF16_I8_BF16
,
// 0
F16_F16_F16
,
// 1
F16_F8_F16
,
// 2
F16_I8_F16
,
// 3
};
#define OP_NAME "grouped_gemm_fixed_nk"
#define OP_DESC "Grouped GEMM Fixed NK"
namespace
{
std
::
vector
<
int
>
argToIntArray
(
char
*
input
)
{
std
::
vector
<
int
>
out
;
std
::
istringstream
in
(
input
);
std
::
string
item
;
while
(
std
::
getline
(
in
,
item
,
','
))
{
out
.
push_back
(
std
::
stoi
(
item
));
}
return
out
;
}
int
profile_grouped_gemm_fixed_nk
(
int
argc
,
char
*
argv
[])
{
if
(
argc
<
14
)
{
std
::
cout
<<
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
<<
"arg2: data type (0: bf16@int8; 1: fp16; 2: fp16@fp8; 3: fp16@int8)
\n
"
<<
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
<<
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
<<
"arg4: verification (0: no; 1: yes)
\n
"
<<
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
<<
"arg6: print tensor value (0: no; 1: yes)
\n
"
<<
"arg7: time kernel (0=n0, 1=yes)
\n
"
<<
"arg8 to 13: Ms, Ns, Ks, StrideAs, StrideBs, StrideCs (e.g., 256,256 128,128 64,64 "
"64,64 64,64 128,128)
\n
"
<<
"arg15: kbatch value (default 1)
\n
"
<<
"optional:
\n
"
<<
"arg16: number of warm-up cycles (default 1)
\n
"
<<
"arg17: number of iterations (default 10)
\n
"
<<
std
::
endl
;
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
GemmDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
GemmMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
auto
Ms
=
argToIntArray
(
argv
[
8
]);
const
auto
Ns
=
argToIntArray
(
argv
[
9
]);
const
auto
Ks
=
argToIntArray
(
argv
[
10
]);
const
auto
StrideAs
=
argToIntArray
(
argv
[
11
]);
const
auto
StrideBs
=
argToIntArray
(
argv
[
12
]);
const
auto
StrideCs
=
argToIntArray
(
argv
[
13
]);
const
int
kbatch
=
argc
==
15
?
std
::
stoi
(
argv
[
14
])
:
1
;
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
F8
=
ck
::
f8_t
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
int
n_warmup
=
1
;
int
n_iter
=
10
;
if
(
argc
==
17
)
{
n_warmup
=
std
::
stoi
(
argv
[
16
]);
n_iter
=
std
::
stoi
(
argv
[
17
]);
}
#if defined(CK_ENABLE_BF16) && defined(CK_ENABLE_INT8)
if
(
data_type
==
GemmDataType
::
BF16_I8_BF16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
ck
::
profiler
::
profile_grouped_gemm_fixed_nk_impl
<
BF16
,
I8
,
BF16
,
F32
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
,
n_warmup
,
n_iter
);
}
else
if
(
data_type
==
GemmDataType
::
BF16_I8_BF16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
ck
::
profiler
::
profile_grouped_gemm_fixed_nk_impl
<
BF16
,
I8
,
BF16
,
F32
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
,
n_warmup
,
n_iter
);
}
#endif
#if defined(CK_ENABLE_FP16)
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
ck
::
profiler
::
profile_grouped_gemm_fixed_nk_impl
<
F16
,
F16
,
F16
,
F32
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
,
n_warmup
,
n_iter
);
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
ck
::
profiler
::
profile_grouped_gemm_fixed_nk_impl
<
F16
,
F16
,
F16
,
F32
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
,
n_warmup
,
n_iter
);
}
#endif
#if defined(CK_ENABLE_FP16) && defined(CK_ENABLE_FP8)
else
if
(
data_type
==
GemmDataType
::
F16_F8_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
ck
::
profiler
::
profile_grouped_gemm_fixed_nk_impl
<
F16
,
F8
,
F16
,
F32
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
,
n_warmup
,
n_iter
);
}
else
if
(
data_type
==
GemmDataType
::
F16_F8_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
ck
::
profiler
::
profile_grouped_gemm_fixed_nk_impl
<
F16
,
F8
,
F16
,
F32
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
,
n_warmup
,
n_iter
);
}
#endif
#if defined(CK_ENABLE_FP16) && defined(CK_ENABLE_INT8)
else
if
(
data_type
==
GemmDataType
::
F16_I8_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
ck
::
profiler
::
profile_grouped_gemm_fixed_nk_impl
<
F16
,
I8
,
F16
,
F32
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
,
n_warmup
,
n_iter
);
}
else
if
(
data_type
==
GemmDataType
::
F16_I8_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
ck
::
profiler
::
profile_grouped_gemm_fixed_nk_impl
<
F16
,
I8
,
F16
,
F32
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
1
,
n_warmup
,
n_iter
);
}
#endif
else
{
throw
std
::
runtime_error
(
"wrong! this GEMM data_type & layout is not implemented"
);
}
return
0
;
}
}
// anonymous namespace
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_grouped_gemm_fixed_nk
);
profiler/src/profile_permute_scale.cpp
0 → 100644
View file @
ae20247a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_permute_scale_impl.hpp"
#include "profiler_operation_registry.hpp"
namespace
{
enum
struct
DataType
{
F32_F32
,
// 0
F16_F16
// 1
};
#define OP_NAME "permute_scale"
#define OP_DESC "Permute Scale"
static
void
print_helper_msg
()
{
std
::
cout
// clang-format off
<<
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
<<
"arg2: data type (0: Input fp32, Output fp32
\n
"
<<
" 1: Input fp16, Output fp16
\n
"
<<
"arg4: verification (0: no, 1: yes)
\n
"
<<
"arg5: initialization (0: no init, 1: integer value, 2: decimal value)
\n
"
<<
"arg6: print tensor value (0: no; 1: yes)
\n
"
<<
"arg7: time kernel (0: no, 1: yes)
\n
"
<<
"from arg8: tensor lengths
\n
"
<<
" input strides
\n
"
<<
" output strides
\n
"
<<
std
::
endl
;
// clang-format on
}
}
// namespace
int
profile_permute_scale
(
int
argc
,
char
*
argv
[])
{
constexpr
int
control_argc
=
7
;
const
int
dims_argc
=
argc
-
control_argc
;
// Number of lenghs, input strides and outputs strides must be equal
if
(
argc
<
control_argc
&&
dims_argc
%
3
!=
0
)
{
print_helper_msg
();
return
1
;
}
const
auto
data_type
=
static_cast
<
DataType
>
(
std
::
stoi
(
argv
[
2
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
3
]);
const
int
init_method
=
std
::
stoi
(
argv
[
4
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
5
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
6
]);
const
int
num_dims
=
dims_argc
/
3
;
std
::
vector
<
ck
::
index_t
>
lengths
(
num_dims
);
std
::
vector
<
ck
::
index_t
>
input_strides
(
num_dims
);
std
::
vector
<
ck
::
index_t
>
output_strides
(
num_dims
);
for
(
int
i
=
0
;
i
<
num_dims
;
i
++
)
{
lengths
[
i
]
=
std
::
stoi
(
argv
[
control_argc
+
i
]);
input_strides
[
i
]
=
std
::
stoi
(
argv
[
control_argc
+
num_dims
+
i
]);
output_strides
[
i
]
=
std
::
stoi
(
argv
[
control_argc
+
2
*
num_dims
+
i
]);
}
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
constexpr
auto
I1
=
ck
::
Number
<
1
>
{};
constexpr
auto
I2
=
ck
::
Number
<
2
>
{};
constexpr
auto
I3
=
ck
::
Number
<
3
>
{};
constexpr
auto
I4
=
ck
::
Number
<
4
>
{};
constexpr
auto
I5
=
ck
::
Number
<
5
>
{};
constexpr
auto
I6
=
ck
::
Number
<
6
>
{};
auto
profile
=
[
&
](
auto
num_dim_tmp
,
auto
in_type
,
auto
out_type
)
{
constexpr
ck
::
index_t
NDim
=
num_dim_tmp
.
value
;
using
InDataType
=
decltype
(
in_type
);
using
OutDataType
=
decltype
(
out_type
);
bool
pass
=
ck
::
profiler
::
profile_permute_scale_impl
<
InDataType
,
OutDataType
,
NDim
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
lengths
,
input_strides
,
output_strides
);
return
pass
?
0
:
1
;
};
if
(
num_dims
==
1
)
{
if
(
data_type
==
DataType
::
F32_F32
)
{
return
profile
(
I1
,
F32
{},
F32
{});
}
else
if
(
data_type
==
DataType
::
F16_F16
)
{
return
profile
(
I1
,
F16
{},
F16
{});
}
}
else
if
(
num_dims
==
2
)
{
if
(
data_type
==
DataType
::
F32_F32
)
{
return
profile
(
I2
,
F32
{},
F32
{});
}
else
if
(
data_type
==
DataType
::
F16_F16
)
{
return
profile
(
I2
,
F16
{},
F16
{});
}
}
else
if
(
num_dims
==
3
)
{
if
(
data_type
==
DataType
::
F32_F32
)
{
return
profile
(
I3
,
F32
{},
F32
{});
}
else
if
(
data_type
==
DataType
::
F16_F16
)
{
return
profile
(
I3
,
F16
{},
F16
{});
}
}
else
if
(
num_dims
==
4
)
{
if
(
data_type
==
DataType
::
F32_F32
)
{
return
profile
(
I4
,
F32
{},
F32
{});
}
else
if
(
data_type
==
DataType
::
F16_F16
)
{
return
profile
(
I4
,
F16
{},
F16
{});
}
}
else
if
(
num_dims
==
5
)
{
if
(
data_type
==
DataType
::
F32_F32
)
{
return
profile
(
I5
,
F32
{},
F32
{});
}
else
if
(
data_type
==
DataType
::
F16_F16
)
{
return
profile
(
I5
,
F16
{},
F16
{});
}
}
else
if
(
num_dims
==
6
)
{
if
(
data_type
==
DataType
::
F32_F32
)
{
return
profile
(
I6
,
F32
{},
F32
{});
}
else
if
(
data_type
==
DataType
::
F16_F16
)
{
return
profile
(
I6
,
F16
{},
F16
{});
}
}
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_permute_scale
);
test/CMakeLists.txt
View file @
ae20247a
...
...
@@ -122,6 +122,7 @@ add_subdirectory(space_filling_curve)
add_subdirectory
(
conv_util
)
add_subdirectory
(
reference_conv_fwd
)
add_subdirectory
(
gemm
)
add_subdirectory
(
gemm_add
)
add_subdirectory
(
gemm_layernorm
)
add_subdirectory
(
gemm_split_k
)
add_subdirectory
(
gemm_reduce
)
...
...
test/gemm_add/CMakeLists.txt
0 → 100644
View file @
ae20247a
add_gtest_executable
(
test_gemm_add test_gemm_add.hpp
)
target_link_libraries
(
test_gemm_add PRIVATE utility device_gemm_add_instance
)
add_gtest_executable
(
test_gemm_add_relu test_gemm_add_relu.cpp
)
target_link_libraries
(
test_gemm_add_relu PRIVATE utility device_gemm_add_instance device_gemm_add_relu_instance
)
add_gtest_executable
(
test_gemm_add_silu test_gemm_add_silu.cpp
)
target_link_libraries
(
test_gemm_add_silu PRIVATE utility device_gemm_add_instance device_gemm_add_silu_instance
)
add_gtest_executable
(
test_gemm_add_fastgelu test_gemm_add_fastgelu.cpp
)
target_link_libraries
(
test_gemm_add_fastgelu PRIVATE utility device_gemm_add_instance device_gemm_add_fastgelu_instance
)
test/gemm_add/test_gemm_add.hpp
0 → 100644
View file @
ae20247a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "ck/ck.hpp"
#include "profiler/profile_gemm_add_impl.hpp"
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
I8
=
int8_t
;
using
BF16
=
ck
::
bhalf_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
template
<
typename
Tuple
>
class
TestGemmAdd
:
public
::
testing
::
Test
{
protected:
using
ADataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
BDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
AccDataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
D0DataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
EDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
ALayout
=
std
::
tuple_element_t
<
5
,
Tuple
>
;
using
BLayout
=
std
::
tuple_element_t
<
6
,
Tuple
>
;
using
D0Layout
=
std
::
tuple_element_t
<
7
,
Tuple
>
;
using
ELayout
=
std
::
tuple_element_t
<
8
,
Tuple
>
;
constexpr
static
auto
ProfileGemmAddImpl
=
ck
::
profiler
::
profile_gemm_add_impl
<
ADataType
,
BDataType
,
AccDataType
,
D0DataType
,
EDataType
,
ALayout
,
BLayout
,
D0Layout
,
ELayout
>
;
virtual
decltype
(
ProfileGemmAddImpl
)
GetImpl
()
{
return
ProfileGemmAddImpl
;
}
void
Run
()
{
std
::
vector
<
std
::
vector
<
ck
::
index_t
>>
lengths
=
{
{
16
,
32
,
64
},
{
2048
,
4096
,
8192
},
{
2048
,
1024
,
16
}};
bool
all_success
=
true
;
for
(
auto
length
:
lengths
)
{
int
M
=
length
[
0
];
int
N
=
length
[
1
];
int
K
=
length
[
2
];
int
StrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
int
StrideB
=
ck
::
is_same_v
<
BLayout
,
Row
>
?
N
:
K
;
int
StrideD0
=
ck
::
is_same_v
<
D0Layout
,
Row
>
?
N
:
M
;
int
StrideE
=
ck
::
is_same_v
<
ELayout
,
Row
>
?
N
:
M
;
all_success
=
all_success
&
GetImpl
()(
true
,
1
,
false
,
false
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideD0
,
StrideE
);
}
EXPECT_TRUE
(
all_success
);
}
};
using
KernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
F16
,
I8
,
F32
,
F16
,
F16
,
Row
,
Row
,
Row
,
Row
>
,
std
::
tuple
<
BF16
,
I8
,
F32
,
BF16
,
BF16
,
Row
,
Row
,
Row
,
Row
>>
;
TYPED_TEST_SUITE
(
TestGemmAdd
,
KernelTypes
);
TYPED_TEST
(
TestGemmAdd
,
Test_BF16FP16_INT8
)
{
this
->
Run
();
}
test/gemm_add/test_gemm_add_fastgelu.cpp
0 → 100644
View file @
ae20247a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "ck/ck.hpp"
#include "profiler/profile_gemm_add_fastgelu_impl.hpp"
#include "test_gemm_add.hpp"
template
<
typename
Tuple
>
class
TestGemmAddFastgelu
:
public
TestGemmAdd
<
Tuple
>
{
private:
using
ADataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
BDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
AccDataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
D0DataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
EDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
ALayout
=
std
::
tuple_element_t
<
5
,
Tuple
>
;
using
BLayout
=
std
::
tuple_element_t
<
6
,
Tuple
>
;
using
D0Layout
=
std
::
tuple_element_t
<
7
,
Tuple
>
;
using
ELayout
=
std
::
tuple_element_t
<
8
,
Tuple
>
;
constexpr
static
auto
ProfileGemmAddFastgeluImpl
=
ck
::
profiler
::
profile_gemm_add_fastgelu_impl
<
ADataType
,
BDataType
,
AccDataType
,
D0DataType
,
EDataType
,
ALayout
,
BLayout
,
D0Layout
,
ELayout
>
;
decltype
(
ProfileGemmAddFastgeluImpl
)
GetImpl
()
override
{
return
ProfileGemmAddFastgeluImpl
;
}
};
using
KernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
F16
,
I8
,
F32
,
F16
,
F16
,
Row
,
Row
,
Row
,
Row
>
,
std
::
tuple
<
BF16
,
I8
,
F32
,
BF16
,
BF16
,
Row
,
Row
,
Row
,
Row
>>
;
TYPED_TEST_SUITE
(
TestGemmAddFastgelu
,
KernelTypes
);
TYPED_TEST
(
TestGemmAddFastgelu
,
Test_BF16FP16
)
{
this
->
Run
();
}
test/gemm_add/test_gemm_add_relu.cpp
0 → 100644
View file @
ae20247a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "ck/ck.hpp"
#include "profiler/profile_gemm_add_relu_impl.hpp"
#include "test_gemm_add.hpp"
template
<
typename
Tuple
>
class
TestGemmAddRelu
:
public
TestGemmAdd
<
Tuple
>
{
private:
using
ADataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
BDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
AccDataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
D0DataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
EDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
ALayout
=
std
::
tuple_element_t
<
5
,
Tuple
>
;
using
BLayout
=
std
::
tuple_element_t
<
6
,
Tuple
>
;
using
D0Layout
=
std
::
tuple_element_t
<
7
,
Tuple
>
;
using
ELayout
=
std
::
tuple_element_t
<
8
,
Tuple
>
;
constexpr
static
auto
ProfileGemmAddReluImpl
=
ck
::
profiler
::
profile_gemm_add_relu_impl
<
ADataType
,
BDataType
,
AccDataType
,
D0DataType
,
EDataType
,
ALayout
,
BLayout
,
D0Layout
,
ELayout
>
;
decltype
(
ProfileGemmAddReluImpl
)
GetImpl
()
override
{
return
ProfileGemmAddReluImpl
;
}
};
using
KernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
F16
,
I8
,
F32
,
F16
,
F16
,
Row
,
Row
,
Row
,
Row
>
,
std
::
tuple
<
BF16
,
I8
,
F32
,
BF16
,
BF16
,
Row
,
Row
,
Row
,
Row
>>
;
TYPED_TEST_SUITE
(
TestGemmAddRelu
,
KernelTypes
);
TYPED_TEST
(
TestGemmAddRelu
,
Test_BF16FP16_INT8
)
{
this
->
Run
();
}
test/gemm_add/test_gemm_add_silu.cpp
0 → 100644
View file @
ae20247a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "ck/ck.hpp"
#include "profiler/profile_gemm_add_silu_impl.hpp"
#include "test_gemm_add.hpp"
template
<
typename
Tuple
>
class
TestGemmAddSilu
:
public
TestGemmAdd
<
Tuple
>
{
private:
using
ADataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
BDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
AccDataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
D0DataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
EDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
ALayout
=
std
::
tuple_element_t
<
5
,
Tuple
>
;
using
BLayout
=
std
::
tuple_element_t
<
6
,
Tuple
>
;
using
D0Layout
=
std
::
tuple_element_t
<
7
,
Tuple
>
;
using
ELayout
=
std
::
tuple_element_t
<
8
,
Tuple
>
;
constexpr
static
auto
ProfileGemmAddSiluImpl
=
ck
::
profiler
::
profile_gemm_add_silu_impl
<
ADataType
,
BDataType
,
AccDataType
,
D0DataType
,
EDataType
,
ALayout
,
BLayout
,
D0Layout
,
ELayout
>
;
decltype
(
ProfileGemmAddSiluImpl
)
GetImpl
()
override
{
return
ProfileGemmAddSiluImpl
;
}
};
using
KernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
F16
,
I8
,
F32
,
F16
,
F16
,
Row
,
Row
,
Row
,
Row
>
,
std
::
tuple
<
BF16
,
I8
,
F32
,
BF16
,
BF16
,
Row
,
Row
,
Row
,
Row
>>
;
TYPED_TEST_SUITE
(
TestGemmAddSilu
,
KernelTypes
);
TYPED_TEST
(
TestGemmAddSilu
,
Test_BF16FP16_INT8
)
{
this
->
Run
();
}
test/permute_scale/test_permute_scale.cpp
View file @
ae20247a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "
test
_permute_scale_impl.hpp"
#include "
profiler/profile
_permute_scale_impl.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
...
...
@@ -15,15 +15,32 @@ class TestPermute : public ::testing::Test
using
ADataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
BDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
void
Run
()
constexpr
bool
skip_case
()
{
std
::
vector
<
std
::
vector
<
ck
::
index_t
>>
lengths
=
{
{
4
,
2
,
1
,
8
},
{
1
,
1
,
1
,
1
},
{
16
,
8
,
32
,
64
},
{
32
,
64
,
128
,
128
}};
#ifndef CK_ENABLE_FP16
if
constexpr
(
ck
::
is_same_v
<
ADataType
,
F16
>
||
ck
::
is_same_v
<
BDataType
,
F16
>
)
{
return
true
;
}
#endif
#ifndef CK_ENABLE_FP32
if
constexpr
(
ck
::
is_same_v
<
ADataType
,
F32
>
||
ck
::
is_same_v
<
BDataType
,
F32
>
)
{
return
true
;
}
#endif
return
false
;
}
for
(
auto
length
:
lengths
)
template
<
ck
::
index_t
NDims
>
void
Run
(
std
::
vector
<
ck
::
index_t
>
lengths
,
std
::
vector
<
ck
::
index_t
>
input_strides
,
std
::
vector
<
ck
::
index_t
>
output_strides
)
{
if
(
!
skip_case
())
{
bool
success
=
ck
::
test_permute_scale_impl
<
ADataType
,
BDataType
,
4
>
(
true
,
2
,
false
,
false
,
length
);
bool
success
=
ck
::
profiler
::
profile_permute_scale_impl
<
ADataType
,
BDataType
,
NDims
>
(
true
,
2
,
false
,
false
,
lengths
,
input_strides
,
output_strides
);
EXPECT_TRUE
(
success
);
}
}
...
...
@@ -32,5 +49,52 @@ class TestPermute : public ::testing::Test
using
KernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
F16
,
F16
>
,
std
::
tuple
<
F32
,
F32
>>
;
TYPED_TEST_SUITE
(
TestPermute
,
KernelTypes
);
TYPED_TEST
(
TestPermute
,
Test_FP16
)
{
this
->
Run
();
}
TYPED_TEST
(
TestPermute
,
Test_FP32
)
{
this
->
Run
();
}
TYPED_TEST
(
TestPermute
,
Test1D
)
{
constexpr
ck
::
index_t
NumDims
=
1
;
this
->
template
Run
<
NumDims
>({
8
},
{
1
},
{
2
});
this
->
template
Run
<
NumDims
>({
8
},
{
2
},
{
1
});
this
->
template
Run
<
NumDims
>({
1
},
{
1
},
{
1
});
}
TYPED_TEST
(
TestPermute
,
Test2D
)
{
constexpr
ck
::
index_t
NumDims
=
2
;
this
->
template
Run
<
NumDims
>({
8
,
4
},
{
4
,
1
},
{
1
,
8
});
this
->
template
Run
<
NumDims
>({
8
,
4
},
{
1
,
8
},
{
4
,
1
});
this
->
template
Run
<
NumDims
>({
1
,
1
},
{
1
,
1
},
{
1
,
1
});
}
TYPED_TEST
(
TestPermute
,
Test3D
)
{
constexpr
ck
::
index_t
NumDims
=
3
;
this
->
template
Run
<
NumDims
>({
2
,
4
,
4
},
{
16
,
4
,
1
},
{
1
,
2
,
8
});
this
->
template
Run
<
NumDims
>({
2
,
4
,
4
},
{
1
,
2
,
8
},
{
16
,
4
,
1
});
this
->
template
Run
<
NumDims
>({
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
});
}
TYPED_TEST
(
TestPermute
,
Test4D
)
{
constexpr
ck
::
index_t
NumDims
=
4
;
this
->
template
Run
<
NumDims
>({
2
,
4
,
4
,
4
},
{
64
,
16
,
4
,
1
},
{
1
,
2
,
8
,
32
});
this
->
template
Run
<
NumDims
>({
2
,
4
,
4
,
4
},
{
1
,
2
,
8
,
32
},
{
64
,
16
,
4
,
1
});
this
->
template
Run
<
NumDims
>({
1
,
1
,
1
,
1
},
{
1
,
1
,
1
,
1
},
{
1
,
1
,
1
,
1
});
}
TYPED_TEST
(
TestPermute
,
Test5D
)
{
constexpr
ck
::
index_t
NumDims
=
5
;
this
->
template
Run
<
NumDims
>({
2
,
4
,
4
,
4
,
4
},
{
256
,
64
,
16
,
4
,
1
},
{
1
,
2
,
8
,
32
,
128
});
this
->
template
Run
<
NumDims
>({
2
,
4
,
4
,
4
,
4
},
{
1
,
2
,
8
,
32
,
128
},
{
256
,
64
,
16
,
4
,
1
});
this
->
template
Run
<
NumDims
>({
1
,
1
,
1
,
1
,
1
},
{
1
,
1
,
1
,
1
,
1
},
{
1
,
1
,
1
,
1
,
1
});
}
TYPED_TEST
(
TestPermute
,
Test6D
)
{
constexpr
ck
::
index_t
NumDims
=
6
;
this
->
template
Run
<
NumDims
>(
{
2
,
4
,
4
,
4
,
4
,
4
},
{
1024
,
256
,
64
,
16
,
4
,
1
},
{
1
,
2
,
8
,
32
,
128
,
512
});
this
->
template
Run
<
NumDims
>(
{
2
,
4
,
4
,
4
,
4
,
4
},
{
1
,
2
,
8
,
32
,
128
,
512
},
{
1024
,
256
,
64
,
16
,
4
,
1
});
this
->
template
Run
<
NumDims
>({
1
,
1
,
1
,
1
,
1
,
1
},
{
1
,
1
,
1
,
1
,
1
,
1
},
{
1
,
1
,
1
,
1
,
1
,
1
});
}
test/wrapper/CMakeLists.txt
View file @
ae20247a
add_gtest_executable
(
test_layout test_layout.cpp
)
target_link_libraries
(
test_layout PRIVATE utility
)
add_gtest_executable
(
test_tensor test_tensor.cpp
)
target_link_libraries
(
test_tensor PRIVATE utility
)
add_gtest_executable
(
test_copy test_copy.cpp
)
target_link_libraries
(
test_copy PRIVATE utility
)
add_gtest_executable
(
test_partition test_partition.cpp
)
target_link_libraries
(
test_partition PRIVATE utility
)
add_custom_target
(
test_wrapper
)
add_gtest_executable
(
test_wrapper_layout test_wrapper_layout.cpp
)
target_link_libraries
(
test_wrapper_layout PRIVATE utility
)
add_dependencies
(
test_wrapper test_wrapper_layout
)
add_gtest_executable
(
test_wrapper_tensor test_wrapper_tensor.cpp
)
target_link_libraries
(
test_wrapper_tensor PRIVATE utility
)
add_dependencies
(
test_wrapper test_wrapper_tensor
)
add_gtest_executable
(
test_wrapper_copy test_wrapper_copy.cpp
)
target_link_libraries
(
test_wrapper_copy PRIVATE utility
)
add_dependencies
(
test_wrapper test_wrapper_copy
)
add_gtest_executable
(
test_wrapper_partition test_wrapper_partition.cpp
)
target_link_libraries
(
test_wrapper_partition PRIVATE utility
)
add_dependencies
(
test_wrapper test_wrapper_partition
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR
GPU_TARGETS MATCHES
"gfx940"
OR GPU_TARGETS MATCHES
"gfx941"
OR
GPU_TARGETS MATCHES
"gfx942"
)
add_gtest_executable
(
test_gemm test_gemm.cpp
)
target_link_libraries
(
test_gemm PRIVATE utility
)
add_gtest_executable
(
test_wrapper_gemm test_wrapper_gemm.cpp
)
target_link_libraries
(
test_wrapper_gemm PRIVATE utility
)
add_dependencies
(
test_wrapper test_wrapper_gemm
)
endif
()
test/wrapper/test_copy.cpp
→
test/wrapper/test_
wrapper_
copy.cpp
View file @
ae20247a
...
...
@@ -20,23 +20,25 @@
template
<
typename
InputTensor
,
typename
OutputTensor
,
typename
BlockShape
,
typename
ThreadLayout
Shape
,
typename
ThreadLayout
,
bool
UseOptimizedCopy
>
__global__
void
TestCopyDevice
(
const
InputTensor
input_tensor
,
OutputTensor
output_tensor
,
const
BlockShape
tile_shape
,
const
ThreadLayout
Shape
thread_layout
)
const
ThreadLayout
thread_layout
)
{
__shared__
ck
::
index_t
p_shared
[
ck
::
wrapper
::
size
(
tile_shape
)];
const
auto
tensor_lds
=
ck
::
wrapper
::
make_tensor
<
ck
::
wrapper
::
MemoryTypeEnum
::
Lds
>
(
p_shared
,
ck
::
wrapper
::
make_layout
(
tile_shape
));
const
auto
block_idx
=
static_cast
<
ck
::
index_t
>
(
blockIdx
.
x
);
const
auto
block_idxs
=
ck
::
make_tuple
(
static_cast
<
ck
::
index_t
>
(
blockIdx
.
x
),
static_cast
<
ck
::
index_t
>
(
blockIdx
.
y
));
// Get local tiles for global memory
const
auto
input_local_tile
=
ck
::
wrapper
::
make_local_tile
(
input_tensor
,
tile_shape
,
block_idx
);
const
auto
input_local_tile
=
ck
::
wrapper
::
make_local_tile
(
input_tensor
,
tile_shape
,
block_idxs
);
const
auto
output_local_tile
=
ck
::
wrapper
::
make_local_tile
(
output_tensor
,
tile_shape
,
block_idx
);
ck
::
wrapper
::
make_local_tile
(
output_tensor
,
tile_shape
,
block_idx
s
);
// Get partition per thread
const
auto
input_local_partition
=
...
...
@@ -49,7 +51,7 @@ __global__ void TestCopyDevice(const InputTensor input_tensor,
// Allocate VGPR
auto
tensor_vgpr
=
ck
::
wrapper
::
make_register_tensor
<
ck
::
wrapper
::
MemoryTypeEnum
::
Vgpr
,
ck
::
index_t
>
(
layout
(
lds_local_partition
));
ck
::
wrapper
::
make_layout
(
shape
(
lds_local_partition
))
)
;
// Perform copy
if
constexpr
(
UseOptimizedCopy
)
...
...
@@ -99,11 +101,14 @@ void PerformCopyGlobalToGlobalViaLDS()
auto
output_tensor_global
=
ck
::
wrapper
::
make_tensor
<
ck
::
wrapper
::
MemoryTypeEnum
::
Global
>
(
static_cast
<
ck
::
index_t
*>
(
out_buf
.
GetDeviceBuffer
()),
layout
);
const
auto
thread_layout
=
ck
::
make_tuple
(
ck
::
Number
<
1
>
{},
ck
::
Number
<
32
>
{});
const
auto
tile_shape
=
ck
::
make_tuple
(
ck
::
Number
<
4
>
{},
ck
::
Number
<
64
>
{});
const
auto
thread_layout
=
ck
::
wrapper
::
make_layout
(
ck
::
make_tuple
(
ck
::
Number
<
1
>
{},
ck
::
Number
<
32
>
{}));
const
auto
tile_shape
=
ck
::
make_tuple
(
ck
::
Number
<
4
>
{},
ck
::
Number
<
64
>
{});
const
ck
::
index_t
grid_size
=
ck
::
math
::
integer_divide_ceil
(
ck
::
wrapper
::
size
(
input_tensor_global
),
ck
::
wrapper
::
size
(
tile_shape
));
const
ck
::
index_t
grid_size_x
=
ck
::
math
::
integer_divide_ceil
(
ck
::
wrapper
::
size
<
0
>
(
input_tensor_global
),
ck
::
wrapper
::
size
<
0
>
(
tile_shape
));
const
ck
::
index_t
grid_size_y
=
ck
::
math
::
integer_divide_ceil
(
ck
::
wrapper
::
size
<
1
>
(
input_tensor_global
),
ck
::
wrapper
::
size
<
1
>
(
tile_shape
));
const
auto
kernel
=
TestCopyDevice
<
decltype
(
input_tensor_global
),
decltype
(
output_tensor_global
),
...
...
@@ -112,7 +117,7 @@ void PerformCopyGlobalToGlobalViaLDS()
UseOptimizedCopy
>
;
launch_and_time_kernel
(
StreamConfig
{},
kernel
,
dim3
(
grid_size
),
dim3
(
grid_size
_x
,
grid_size_y
,
1
),
dim3
(
ck
::
wrapper
::
size
(
thread_layout
)),
0
,
input_tensor_global
,
...
...
test/wrapper/test_wrapper_gemm.cpp
0 → 100644
View file @
ae20247a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <numeric>
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <vector>
#include <gtest/gtest.h>
#include "ck/library/utility/host_tensor.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/wrapper/layout.hpp"
#include "ck/wrapper/tensor.hpp"
#include "ck/wrapper/operations/copy.hpp"
#include "ck/wrapper/operations/gemm.hpp"
#include "ck/wrapper/utils/kernel_utils.hpp"
template
<
typename
DataType
>
void
CheckResult
(
const
std
::
vector
<
DataType
>&
a_data
,
const
std
::
vector
<
DataType
>&
b_data
,
std
::
vector
<
DataType
>&
c_m_n_device_result
,
const
ck
::
index_t
M
,
const
ck
::
index_t
N
,
const
ck
::
index_t
K
)
{
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
DataType
,
DataType
,
DataType
,
float
,
PassThrough
,
PassThrough
,
PassThrough
>
;
Tensor
<
DataType
>
a_m_k
(
HostTensorDescriptor
({
M
,
K
}));
Tensor
<
DataType
>
b_k_n
(
HostTensorDescriptor
({
K
,
N
},
{
1
,
K
}));
Tensor
<
DataType
>
c_m_n_host_result
(
HostTensorDescriptor
({
M
,
N
}));
a_m_k
.
mData
=
a_data
;
b_k_n
.
mData
=
b_data
;
auto
ref_op
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_op
.
MakeInvoker
();
auto
ref_argument
=
ref_op
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
EXPECT_TRUE
(
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
.
mData
));
}
template
<
bool
DoPad
,
typename
Layout
,
typename
PaddingDims
>
__device__
auto
ApplyPadding
(
const
Layout
&
layout
,
const
PaddingDims
&
padding_dims
)
{
if
constexpr
(
DoPad
)
{
return
ck
::
wrapper
::
pad
(
layout
,
padding_dims
);
}
else
{
return
layout
;
}
}
template
<
typename
DataType
,
typename
GemmTraits
,
ck
::
index_t
scalar_per_vector
,
typename
BlockShape
,
typename
ThreadLayout
,
bool
DoPadding
>
__global__
void
__CK_WRAPPER_LAUNCH_BOUNDS__
DeviceGemm
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
const
ck
::
index_t
M
,
const
ck
::
index_t
N
,
const
ck
::
index_t
K
,
const
BlockShape
tile_shape
,
const
ThreadLayout
thread_layout
)
{
constexpr
auto
MPerBlock
=
ck
::
wrapper
::
size
<
0
>
(
tile_shape
);
constexpr
auto
NPerBlock
=
ck
::
wrapper
::
size
<
1
>
(
tile_shape
);
constexpr
auto
KPerBlock
=
ck
::
wrapper
::
size
<
2
>
(
tile_shape
);
constexpr
auto
K1
=
GemmTraits
::
K1
;
constexpr
auto
K0PerBlock
=
KPerBlock
/
K1
;
const
auto
K0
=
ck
::
math
::
integer_divide_ceil
(
K
,
K1
);
const
auto
tile_shape_k0_m_n_k1
=
ck
::
make_tuple
(
K0PerBlock
,
MPerBlock
,
NPerBlock
,
K1
);
const
auto
a_global_layout
=
ck
::
wrapper
::
make_layout
(
ck
::
make_tuple
(
M
,
K
),
ck
::
make_tuple
(
K
,
1
));
const
auto
b_global_layout
=
ck
::
wrapper
::
make_layout
(
ck
::
make_tuple
(
N
,
K
),
ck
::
make_tuple
(
K
,
1
));
const
auto
c_global_layout
=
ck
::
wrapper
::
make_layout
(
ck
::
make_tuple
(
M
,
N
),
ck
::
make_tuple
(
N
,
1
));
auto
a_padded_global_layout
=
ApplyPadding
<
DoPadding
>
(
a_global_layout
,
ck
::
make_tuple
(
MPerBlock
,
KPerBlock
));
auto
b_padded_global_layout
=
ApplyPadding
<
DoPadding
>
(
b_global_layout
,
ck
::
make_tuple
(
NPerBlock
,
KPerBlock
));
auto
c_padded_global_layout
=
ApplyPadding
<
DoPadding
>
(
c_global_layout
,
ck
::
make_tuple
(
MPerBlock
,
NPerBlock
));
// Reshape from M,K to K0,M,K1
const
auto
reshaped_dims_idxs
=
ck
::
make_tuple
(
ck
::
Number
<
1
>
{},
ck
::
make_tuple
(
ck
::
Number
<
0
>
{},
ck
::
Number
<
2
>
{}));
auto
a_padded_unmerged_global_layout
=
ck
::
wrapper
::
unmerge
<
1
>
(
a_padded_global_layout
,
ck
::
make_tuple
(
K0
,
K1
),
reshaped_dims_idxs
);
auto
b_padded_unmerged_global_layout
=
ck
::
wrapper
::
unmerge
<
1
>
(
b_padded_global_layout
,
ck
::
make_tuple
(
K0
,
K1
),
reshaped_dims_idxs
);
auto
a_global_tensor
=
ck
::
wrapper
::
make_tensor
<
ck
::
wrapper
::
MemoryTypeEnum
::
Global
>
(
static_cast
<
const
DataType
*>
(
p_a
),
a_padded_unmerged_global_layout
);
auto
b_global_tensor
=
ck
::
wrapper
::
make_tensor
<
ck
::
wrapper
::
MemoryTypeEnum
::
Global
>
(
static_cast
<
const
DataType
*>
(
p_b
),
b_padded_unmerged_global_layout
);
auto
c_global_tensor
=
ck
::
wrapper
::
make_tensor
<
ck
::
wrapper
::
MemoryTypeEnum
::
Global
>
(
static_cast
<
DataType
*>
(
p_c
),
c_padded_global_layout
);
// Add extra M and N
constexpr
auto
a_tile_layout
=
ck
::
wrapper
::
make_layout
(
ck
::
make_tuple
(
K0PerBlock
,
MPerBlock
,
K1
),
ck
::
make_tuple
((
MPerBlock
+
ck
::
Number
<
1
>
{})
*
K1
,
K1
,
ck
::
Number
<
1
>
{}));
constexpr
auto
b_tile_layout
=
ck
::
wrapper
::
make_layout
(
ck
::
make_tuple
(
K0PerBlock
,
NPerBlock
,
K1
),
ck
::
make_tuple
((
NPerBlock
+
ck
::
Number
<
1
>
{})
*
K1
,
K1
,
ck
::
Number
<
1
>
{}));
__shared__
DataType
lds_a
[
ck
::
wrapper
::
size
(
a_tile_layout
)
+
NPerBlock
];
__shared__
DataType
lds_b
[
ck
::
wrapper
::
size
(
b_tile_layout
)
+
NPerBlock
];
auto
a_lds_tensor
=
ck
::
wrapper
::
make_tensor
<
ck
::
wrapper
::
MemoryTypeEnum
::
Lds
>
(
static_cast
<
DataType
*>
(
lds_a
),
a_tile_layout
);
auto
b_lds_tensor
=
ck
::
wrapper
::
make_tensor
<
ck
::
wrapper
::
MemoryTypeEnum
::
Lds
>
(
static_cast
<
DataType
*>
(
lds_b
),
b_tile_layout
);
const
auto
block_idxs
=
ck
::
make_tuple
(
ck
::
wrapper
::
slice
(),
static_cast
<
ck
::
index_t
>
(
blockIdx
.
x
),
static_cast
<
ck
::
index_t
>
(
blockIdx
.
y
),
ck
::
wrapper
::
slice
());
using
DimAccessOrder
=
ck
::
Tuple
<
ck
::
Number
<
1
>
,
ck
::
Number
<
0
>
,
ck
::
Number
<
2
>>
;
constexpr
ck
::
index_t
vector_dim
=
2
;
auto
c_global_local_tile
=
ck
::
wrapper
::
make_local_tile
(
c_global_tensor
,
tile_shape_k0_m_n_k1
,
block_idxs
,
make_tuple
(
ck
::
wrapper
::
slice
(
K0PerBlock
),
ck
::
Number
<
1
>
{},
ck
::
Number
<
1
>
{},
ck
::
wrapper
::
slice
(
K1
)));
auto
c_global_local_partition
=
ck
::
wrapper
::
make_blockwise_gemm_xdl_c_local_partition
<
DataType
,
decltype
(
a_tile_layout
),
decltype
(
b_tile_layout
),
ck
::
wrapper
::
size
(
thread_layout
),
GemmTraits
>
(
c_global_local_tile
);
auto
c_vgpr_reg
=
ck
::
wrapper
::
make_blockwise_gemm_xdl_c_vgpr
<
DataType
,
decltype
(
a_tile_layout
),
decltype
(
b_tile_layout
),
ck
::
wrapper
::
size
(
thread_layout
),
GemmTraits
>
();
ck
::
wrapper
::
clear
(
c_vgpr_reg
);
auto
a_lds_tensor_local_partition
=
ck
::
wrapper
::
make_local_partition
(
a_lds_tensor
,
thread_layout
,
threadIdx
.
x
);
auto
b_lds_tensor_local_partition
=
ck
::
wrapper
::
make_local_partition
(
b_lds_tensor
,
thread_layout
,
threadIdx
.
x
);
auto
make_global_partition
=
[
&
](
auto
tensor
,
auto
projection
,
ck
::
index_t
i
)
{
const
auto
k_slice
=
ck
::
make_tuple
(
ck
::
wrapper
::
slice
(
i
*
K0PerBlock
,
(
i
+
1
)
*
K0PerBlock
),
ck
::
wrapper
::
slice
(),
ck
::
wrapper
::
slice
());
auto
local_tile
=
ck
::
wrapper
::
make_local_tile
(
tensor
(
k_slice
),
tile_shape_k0_m_n_k1
,
block_idxs
,
projection
);
return
ck
::
wrapper
::
make_local_partition
(
local_tile
,
thread_layout
,
threadIdx
.
x
);
};
auto
a_global_local_partition
=
make_global_partition
(
a_global_tensor
,
make_tuple
(
ck
::
Number
<
1
>
{},
ck
::
Number
<
1
>
{},
ck
::
wrapper
::
slice
(
N
),
ck
::
Number
<
1
>
{}),
0
);
auto
b_global_local_partition
=
make_global_partition
(
b_global_tensor
,
make_tuple
(
ck
::
Number
<
1
>
{},
ck
::
wrapper
::
slice
(
M
),
ck
::
Number
<
1
>
{},
ck
::
Number
<
1
>
{}),
0
);
// (row-major vgpr layout)
auto
a_vgpr_tensor
=
ck
::
wrapper
::
make_register_tensor
<
ck
::
wrapper
::
MemoryTypeEnum
::
Vgpr
,
DataType
>
(
ck
::
wrapper
::
make_layout
(
shape
(
a_global_local_partition
),
ck
::
make_tuple
(
ck
::
wrapper
::
size
<
1
>
(
a_global_local_partition
)
*
ck
::
wrapper
::
size
<
2
>
(
a_global_local_partition
),
ck
::
wrapper
::
size
<
2
>
(
a_global_local_partition
),
ck
::
Number
<
1
>
{})));
auto
b_vgpr_tensor
=
ck
::
wrapper
::
make_register_tensor
<
ck
::
wrapper
::
MemoryTypeEnum
::
Vgpr
,
DataType
>
(
ck
::
wrapper
::
make_layout
(
shape
(
b_global_local_partition
),
ck
::
make_tuple
(
ck
::
wrapper
::
size
<
1
>
(
a_global_local_partition
)
*
ck
::
wrapper
::
size
<
2
>
(
a_global_local_partition
),
ck
::
wrapper
::
size
<
2
>
(
a_global_local_partition
),
ck
::
Number
<
1
>
{})));
ck
::
wrapper
::
copy
<
DimAccessOrder
,
vector_dim
,
scalar_per_vector
>
(
a_global_local_partition
,
a_vgpr_tensor
);
ck
::
wrapper
::
copy
<
DimAccessOrder
,
vector_dim
,
scalar_per_vector
>
(
b_global_local_partition
,
b_vgpr_tensor
);
ck
::
wrapper
::
copy
<
DimAccessOrder
,
vector_dim
,
scalar_per_vector
>
(
a_vgpr_tensor
,
a_lds_tensor_local_partition
);
ck
::
wrapper
::
copy
<
DimAccessOrder
,
vector_dim
,
scalar_per_vector
>
(
b_vgpr_tensor
,
b_lds_tensor_local_partition
);
const
ck
::
index_t
num_loop
=
__builtin_amdgcn_readfirstlane
(
ck
::
math
::
integer_divide_ceil
(
K
,
KPerBlock
));
if
(
num_loop
>
1
)
{
ck
::
index_t
i
=
0
;
do
{
auto
a_global_local_partition_i
=
make_global_partition
(
a_global_tensor
,
make_tuple
(
ck
::
Number
<
1
>
{},
ck
::
Number
<
1
>
{},
ck
::
wrapper
::
slice
(
N
),
ck
::
Number
<
1
>
{}),
i
+
1
);
auto
b_global_local_partition_i
=
make_global_partition
(
b_global_tensor
,
make_tuple
(
ck
::
Number
<
1
>
{},
ck
::
wrapper
::
slice
(
M
),
ck
::
Number
<
1
>
{},
ck
::
Number
<
1
>
{}),
i
+
1
);
ck
::
wrapper
::
copy
<
DimAccessOrder
,
vector_dim
,
scalar_per_vector
>
(
a_global_local_partition_i
,
a_vgpr_tensor
);
ck
::
block_sync_lds
();
ck
::
wrapper
::
copy
<
DimAccessOrder
,
vector_dim
,
scalar_per_vector
>
(
b_global_local_partition_i
,
b_vgpr_tensor
);
ck
::
wrapper
::
blockwise_gemm_xdl
<
DataType
,
ck
::
wrapper
::
size
(
thread_layout
),
GemmTraits
>
(
a_lds_tensor
,
b_lds_tensor
,
c_vgpr_reg
);
ck
::
block_sync_lds
();
ck
::
wrapper
::
copy
<
DimAccessOrder
,
vector_dim
,
scalar_per_vector
>
(
a_vgpr_tensor
,
a_lds_tensor_local_partition
);
ck
::
wrapper
::
copy
<
DimAccessOrder
,
vector_dim
,
scalar_per_vector
>
(
b_vgpr_tensor
,
b_lds_tensor_local_partition
);
++
i
;
}
while
(
i
<
(
num_loop
-
1
));
}
ck
::
block_sync_lds
();
ck
::
wrapper
::
blockwise_gemm_xdl
<
DataType
,
ck
::
wrapper
::
size
(
thread_layout
),
GemmTraits
>
(
a_lds_tensor
,
b_lds_tensor
,
c_vgpr_reg
);
ck
::
wrapper
::
copy
(
c_vgpr_reg
,
c_global_local_partition
);
}
template
<
typename
DataType
,
typename
GemmTraits
,
ck
::
index_t
scalar_per_vector
,
bool
DoPadding
,
typename
BlockShape
,
typename
ThreadLayout
>
void
PerformGemm
(
const
ck
::
index_t
M
,
const
ck
::
index_t
N
,
const
ck
::
index_t
K
,
const
BlockShape
&
tile_shape
,
const
ThreadLayout
&
thread_layout
)
{
// Global memory buffers
DeviceMem
a_mem
(
M
*
K
*
sizeof
(
DataType
));
DeviceMem
b_mem
(
K
*
N
*
sizeof
(
DataType
));
DeviceMem
c_mem
(
M
*
N
*
sizeof
(
DataType
));
std
::
vector
<
DataType
>
a_data
(
M
*
K
);
std
::
vector
<
DataType
>
b_data
(
K
*
N
);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
DataType
>
{
-
5.
f
,
5.
f
}(
a_data
);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
DataType
>
{
-
5.
f
,
5.
f
}(
b_data
);
a_mem
.
ToDevice
(
a_data
.
data
());
b_mem
.
ToDevice
(
b_data
.
data
());
c_mem
.
SetZero
();
const
ck
::
index_t
grid_size_x
=
ck
::
math
::
integer_divide_ceil
(
M
,
ck
::
wrapper
::
size
<
0
>
(
tile_shape
));
const
ck
::
index_t
grid_size_y
=
ck
::
math
::
integer_divide_ceil
(
N
,
ck
::
wrapper
::
size
<
1
>
(
tile_shape
));
const
auto
kernel
=
DeviceGemm
<
DataType
,
GemmTraits
,
scalar_per_vector
,
BlockShape
,
ThreadLayout
,
DoPadding
>
;
const
float
avg_time
=
launch_and_time_kernel
(
StreamConfig
{
nullptr
,
true
},
kernel
,
dim3
(
grid_size_x
,
grid_size_y
,
1
),
dim3
(
ck
::
wrapper
::
size
(
thread_layout
)),
0
,
a_mem
.
GetDeviceBuffer
(),
b_mem
.
GetDeviceBuffer
(),
c_mem
.
GetDeviceBuffer
(),
M
,
N
,
K
,
tile_shape
,
thread_layout
);
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
DataType
)
*
M
*
K
+
sizeof
(
DataType
)
*
K
*
N
+
sizeof
(
DataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
std
::
vector
<
DataType
>
c_data
(
M
*
N
);
c_mem
.
FromDevice
(
c_data
.
data
());
CheckResult
<
DataType
>
(
a_data
,
b_data
,
c_data
,
M
,
N
,
K
);
}
TEST
(
TestGemm
,
Float
)
{
using
DataType
=
float
;
// (dim1, dim2, dim0 thread layout)
const
auto
thread_layout
=
ck
::
wrapper
::
make_layout
(
ck
::
make_tuple
(
ck
::
Number
<
4
>
{},
ck
::
Number
<
64
>
{},
ck
::
Number
<
1
>
{}),
ck
::
make_tuple
(
ck
::
Number
<
1
>
{},
ck
::
Number
<
4
>
{},
ck
::
Number
<
1
>
{}));
const
auto
tile_shape
=
ck
::
make_tuple
(
ck
::
Number
<
128
>
{},
ck
::
Number
<
128
>
{},
ck
::
Number
<
16
>
{});
PerformGemm
<
DataType
,
ck
::
wrapper
::
BlockwisGemmXdlTraits_32x32Xdl_2x2XdlPerWave_4K1
,
4
,
false
>
(
512
,
512
,
128
,
tile_shape
,
thread_layout
);
// Irregular case
PerformGemm
<
DataType
,
ck
::
wrapper
::
BlockwisGemmXdlTraits_32x32Xdl_2x2XdlPerWave_4K1
,
1
,
true
>
(
129
,
129
,
67
,
tile_shape
,
thread_layout
);
}
TEST
(
TestGemm
,
Int8
)
{
using
DataType
=
int8_t
;
const
auto
thread_layout
=
ck
::
wrapper
::
make_layout
(
ck
::
make_tuple
(
ck
::
Number
<
4
>
{},
ck
::
Number
<
64
>
{},
ck
::
Number
<
1
>
{}),
ck
::
make_tuple
(
ck
::
Number
<
1
>
{},
ck
::
Number
<
4
>
{},
ck
::
Number
<
1
>
{}));
const
auto
tile_shape
=
ck
::
make_tuple
(
ck
::
Number
<
128
>
{},
ck
::
Number
<
128
>
{},
ck
::
Number
<
64
>
{});
PerformGemm
<
DataType
,
ck
::
wrapper
::
BlockwisGemmXdlTraits_32x32Xdl_2x2XdlPerWave_16K1
,
16
,
false
>
(
512
,
512
,
128
,
tile_shape
,
thread_layout
);
// Irregular case
PerformGemm
<
DataType
,
ck
::
wrapper
::
BlockwisGemmXdlTraits_32x32Xdl_2x2XdlPerWave_16K1
,
1
,
true
>
(
129
,
129
,
67
,
tile_shape
,
thread_layout
);
}
TEST
(
TestGemm
,
Half
)
{
using
DataType
=
ck
::
half_t
;
const
auto
thread_layout
=
ck
::
wrapper
::
make_layout
(
ck
::
make_tuple
(
ck
::
Number
<
4
>
{},
ck
::
Number
<
64
>
{},
ck
::
Number
<
1
>
{}),
ck
::
make_tuple
(
ck
::
Number
<
1
>
{},
ck
::
Number
<
4
>
{},
ck
::
Number
<
1
>
{}));
const
auto
tile_shape
=
ck
::
make_tuple
(
ck
::
Number
<
128
>
{},
ck
::
Number
<
128
>
{},
ck
::
Number
<
32
>
{});
PerformGemm
<
DataType
,
ck
::
wrapper
::
BlockwisGemmXdlTraits_32x32Xdl_2x2XdlPerWave_8K1
,
8
,
false
>
(
512
,
512
,
128
,
tile_shape
,
thread_layout
);
// Irregular case
PerformGemm
<
DataType
,
ck
::
wrapper
::
BlockwisGemmXdlTraits_32x32Xdl_2x2XdlPerWave_8K1
,
1
,
true
>
(
129
,
129
,
67
,
tile_shape
,
thread_layout
);
}
TEST
(
TestGemm
,
Float_2x4_4x2_XdlPerWave
)
{
using
DataType
=
float
;
const
auto
thread_layout
=
ck
::
wrapper
::
make_layout
(
ck
::
make_tuple
(
ck
::
Number
<
4
>
{},
ck
::
Number
<
64
>
{},
ck
::
Number
<
1
>
{}),
ck
::
make_tuple
(
ck
::
Number
<
1
>
{},
ck
::
Number
<
4
>
{},
ck
::
Number
<
1
>
{}));
const
auto
tile_shape
=
ck
::
make_tuple
(
ck
::
Number
<
256
>
{},
ck
::
Number
<
128
>
{},
ck
::
Number
<
16
>
{});
PerformGemm
<
DataType
,
ck
::
wrapper
::
BlockwisGemmXdlTraits_32x32Xdl_4x2XdlPerWave_4K1
,
4
,
false
>
(
512
,
512
,
128
,
tile_shape
,
thread_layout
);
}
test/wrapper/test_layout.cpp
→
test/wrapper/test_
wrapper_
layout.cpp
View file @
ae20247a
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2023
-2024
, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
...
...
test/wrapper/test_partition.cpp
→
test/wrapper/test_
wrapper_
partition.cpp
View file @
ae20247a
...
...
@@ -29,8 +29,11 @@ TEST(TestPartition, LocalPartition)
const
auto
tensor
=
ck
::
wrapper
::
make_tensor
<
ck
::
wrapper
::
MemoryTypeEnum
::
Generic
>
(
data
.
data
(),
layout
);
const
auto
thread_steps
=
ck
::
make_tuple
(
ck
::
Number
<
1
>
{},
ck
::
Number
<
8
>
{},
ck
::
Number
<
1
>
{});
const
auto
thread_layout
=
ck
::
make_tuple
(
ck
::
Number
<
4
>
{},
ck
::
Number
<
8
>
{},
ck
::
Number
<
1
>
{});
const
auto
thread_steps
=
ck
::
make_tuple
(
ck
::
Number
<
1
>
{},
ck
::
Number
<
8
>
{},
ck
::
Number
<
1
>
{});
// row-major thread layout
const
auto
thread_layout
=
ck
::
wrapper
::
make_layout
(
ck
::
make_tuple
(
ck
::
Number
<
4
>
{},
ck
::
Number
<
8
>
{},
ck
::
Number
<
1
>
{}),
ck
::
make_tuple
(
ck
::
Number
<
8
>
{},
ck
::
Number
<
1
>
{},
ck
::
Number
<
1
>
{}));
// 3d partition on 2d shape (calculate partition on 3d thread layout, and then skip first dim)
const
auto
thread_projection
=
ck
::
make_tuple
(
ck
::
wrapper
::
slice
(
4
),
ck
::
Number
<
1
>
{},
ck
::
Number
<
1
>
{});
...
...
@@ -70,29 +73,37 @@ TEST(TestPartition, LocalTile)
ck
::
make_tuple
(
ck
::
Number
<
2
>
{},
ck
::
Number
<
4
>
{},
ck
::
Number
<
2
>
{},
ck
::
Number
<
2
>
{});
const
auto
block_projection
=
ck
::
make_tuple
(
ck
::
Number
<
1
>
{},
ck
::
Number
<
1
>
{},
ck
::
Number
<
1
>
{},
ck
::
wrapper
::
slice
(
2
));
constexpr
ck
::
index_t
projection_block_dim
=
ck
::
Number
<
2
>
{};
const
auto
num_blocks
=
const
auto
grid_shape
=
ck
::
make_tuple
(
ck
::
wrapper
::
size
<
0
>
(
shape
)
/
ck
::
wrapper
::
size
<
0
>
(
block_shape
),
ck
::
wrapper
::
size
<
1
>
(
shape
)
/
ck
::
wrapper
::
size
<
1
>
(
block_shape
),
ck
::
wrapper
::
size
<
2
>
(
shape
)
/
ck
::
wrapper
::
size
<
2
>
(
block_shape
));
std
::
vector
<
ck
::
index_t
>
block_idxs
(
ck
::
wrapper
::
size
(
num_blocks
));
std
::
iota
(
block_idxs
.
begin
(),
block_idxs
.
end
(),
0
);
std
::
vector
<
ck
::
Tuple
<
ck
::
index_t
,
ck
::
index_t
,
ck
::
index_t
,
ck
::
index_t
>>
block_idxs
;
for
(
int
i
=
0
;
i
<
ck
::
wrapper
::
size
<
0
>
(
grid_shape
);
i
++
)
{
for
(
int
j
=
0
;
j
<
ck
::
wrapper
::
size
<
1
>
(
grid_shape
);
j
++
)
{
for
(
int
k
=
0
;
k
<
ck
::
wrapper
::
size
<
2
>
(
grid_shape
);
k
++
)
{
block_idxs
.
emplace_back
(
i
,
j
,
k
,
0
);
}
}
}
for
(
auto
block_idx
:
block_idxs
)
{
constexpr
ck
::
index_t
projection_block_dim
=
ck
::
Number
<
2
>
{};
const
auto
packed_tile
=
ck
::
wrapper
::
make_local_tile
(
tensor
,
block_shape
,
block_idx
,
block_projection
);
const
auto
expected_tile_size
=
ck
::
wrapper
::
size
(
block_shape
)
/
projection_block_dim
;
auto
expected_tile_first_val
=
(
block_idx
%
ck
::
wrapper
::
size
<
2
>
(
num_
block
s
)
)
*
auto
expected_tile_first_val
=
ck
::
wrapper
::
size
<
2
>
(
block
_idx
)
*
ck
::
wrapper
::
size
<
2
>
(
block_shape
)
*
ck
::
wrapper
::
size
<
2
>
(
strides
);
block_idx
/=
ck
::
wrapper
::
size
<
2
>
(
num_blocks
);
expected_tile_first_val
+=
(
block_idx
%
ck
::
wrapper
::
size
<
1
>
(
num_blocks
))
*
expected_tile_first_val
+=
ck
::
wrapper
::
size
<
1
>
(
block_idx
)
*
ck
::
wrapper
::
size
<
1
>
(
block_shape
)
*
ck
::
wrapper
::
size
<
1
>
(
strides
);
block_idx
/=
ck
::
wrapper
::
size
<
1
>
(
num_blocks
);
expected_tile_first_val
+=
(
block_idx
%
ck
::
wrapper
::
size
<
0
>
(
num_blocks
))
*
expected_tile_first_val
+=
ck
::
wrapper
::
size
<
0
>
(
block_idx
)
*
ck
::
wrapper
::
size
<
0
>
(
block_shape
)
*
ck
::
wrapper
::
size
<
0
>
(
strides
);
...
...
test/wrapper/test_tensor.cpp
→
test/wrapper/test_
wrapper_
tensor.cpp
View file @
ae20247a
File moved
Prev
1
…
10
11
12
13
14
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment