Commit ae20247a authored by Adam Osewski's avatar Adam Osewski
Browse files

Merge remote-tracking branch 'origin' into aosewski/ggemm_multi_d2

parents d1f7a3cf a776978c
...@@ -5,6 +5,8 @@ list(APPEND GROUPED_GEMM_FIXED_NK_INSTANCES device_grouped_gemm_xdl_fixed_nk_f16 ...@@ -5,6 +5,8 @@ list(APPEND GROUPED_GEMM_FIXED_NK_INSTANCES device_grouped_gemm_xdl_fixed_nk_f16
device_grouped_gemm_xdl_fixed_nk_f16_fp8_f16_mk_kn_mn_instance.cpp device_grouped_gemm_xdl_fixed_nk_f16_fp8_f16_mk_kn_mn_instance.cpp
device_grouped_gemm_xdl_fixed_nk_f16_fp8_f16_mk_nk_mn_instance.cpp device_grouped_gemm_xdl_fixed_nk_f16_fp8_f16_mk_nk_mn_instance.cpp
device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_kn_mn_instance.cpp device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_kn_mn_instance.cpp
device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_nk_mn_instance.cpp) device_grouped_gemm_xdl_fixed_nk_f16_i8_f16_mk_nk_mn_instance.cpp
device_grouped_gemm_xdl_fixed_nk_bf16_i8_bf16_mk_kn_mn_instance.cpp
device_grouped_gemm_xdl_fixed_nk_bf16_i8_bf16_mk_nk_mn_instance.cpp)
add_instance_library(device_grouped_gemm_fixed_nk_instance ${GROUPED_GEMM_FIXED_NK_INSTANCES}) add_instance_library(device_grouped_gemm_fixed_nk_instance ${GROUPED_GEMM_FIXED_NK_INSTANCES})
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using I8 = int8_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using DsDataType = ck::Tuple<>;
using DsLayout = ck::Tuple<>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_grouped_gemm_xdl_fixed_nk_bf16_i8_bf16_mk_kn_mn_irregular_tile_instances = std::tuple<
// clang-format off
//############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 2, 32, 32, 2, 1, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 16,16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 2, 32, 32, 1, 2, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 2, 32, 32, 2, 2, S< 1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S< 1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 2, 32, 32, 2, 2, S< 1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S< 1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>
// clang-format on
>;
void add_device_grouped_gemm_xdl_fixed_nk_bf16_i8_bf16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmFixedNK<Row,
Row,
DsLayout,
Row,
BF16,
I8,
DsDataType,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_fixed_nk_bf16_i8_bf16_mk_kn_mn_irregular_tile_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using I8 = int8_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using DsDataType = ck::Tuple<>;
using DsLayout = ck::Tuple<>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_grouped_gemm_xdl_fixed_nk_bf16_i8_bf16_mk_nk_mn_irregular_tile_instances = std::tuple<
// clang-format off
//############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 256, 64, 8, 8, 32, 32, 2, 4, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 8, 32, 32, 2, 2, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 64, 64, 8, 8, 32, 32, 2, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 64, 128, 64, 8, 8, 32, 32, 1, 2, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 128, 64, 8, 8, 32, 32, 4, 2, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 64, 64, 8, 8, 32, 32, 2, 2, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 128, 64, 8, 8, 32, 32, 2, 2, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 32, 64, 8, 8, 32, 32, 2, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 128, 64, 8, 8, 32, 32, 1, 2, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 32, 256, 64, 8, 8, 32, 32, 1, 4, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 64, 64, 8, 8, 32, 32, 2, 2, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 64, 8, 8, 32, 32, 2, 1, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, BF16, I8, F32, F32, DsDataType, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 64, 8, 8, 32, 32, 1, 2, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>
// clang-format on
>;
void add_device_grouped_gemm_xdl_fixed_nk_bf16_i8_bf16_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmFixedNK<Row,
Col,
DsLayout,
Row,
BF16,
I8,
DsDataType,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_fixed_nk_bf16_i8_bf16_mk_nk_mn_irregular_tile_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
add_instance_library(device_permute_scale_instance add_instance_library(device_permute_scale_instance
device_permute_scale_instances.cpp) device_permute_scale_1d_instances.cpp
device_permute_scale_2d_instances.cpp
device_permute_scale_3d_instances.cpp
device_permute_scale_4d_instances.cpp
device_permute_scale_5d_instances.cpp
device_permute_scale_6d_instances.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/permute_scale/device_permute_scale_instances.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_permute_scale_1d_f16_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F16>, ck::Tuple<F16>, Pass, UnaryOp, Scale, 1>>>& instances)
{
add_device_operation_instances(instances, device_permute_scale_f16_instances<1>{});
}
void add_device_permute_scale_1d_f32_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F32>, ck::Tuple<F32>, Pass, UnaryOp, Scale, 1>>>& instances)
{
add_device_operation_instances(instances, device_permute_scale_f32_instances<1>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/permute_scale/device_permute_scale_instances.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_permute_scale_2d_f16_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F16>, ck::Tuple<F16>, Pass, UnaryOp, Scale, 2>>>& instances)
{
add_device_operation_instances(instances, device_permute_scale_f16_instances<2>{});
}
void add_device_permute_scale_2d_f32_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F32>, ck::Tuple<F32>, Pass, UnaryOp, Scale, 2>>>& instances)
{
add_device_operation_instances(instances, device_permute_scale_f32_instances<2>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/permute_scale/device_permute_scale_instances.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_permute_scale_3d_f16_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F16>, ck::Tuple<F16>, Pass, UnaryOp, Scale, 3>>>& instances)
{
add_device_operation_instances(instances, device_permute_scale_f16_instances<3>{});
}
void add_device_permute_scale_3d_f32_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F32>, ck::Tuple<F32>, Pass, UnaryOp, Scale, 3>>>& instances)
{
add_device_operation_instances(instances, device_permute_scale_f32_instances<3>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/permute_scale/device_permute_scale_instances.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_permute_scale_4d_f16_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F16>, ck::Tuple<F16>, Pass, UnaryOp, Scale, 4>>>& instances)
{
add_device_operation_instances(instances, device_permute_scale_f16_instances<4>{});
}
void add_device_permute_scale_4d_f32_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F32>, ck::Tuple<F32>, Pass, UnaryOp, Scale, 4>>>& instances)
{
add_device_operation_instances(instances, device_permute_scale_f32_instances<4>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/permute_scale/device_permute_scale_instances.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_permute_scale_5d_f16_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F16>, ck::Tuple<F16>, Pass, UnaryOp, Scale, 5>>>& instances)
{
add_device_operation_instances(instances, device_permute_scale_f16_instances<5>{});
}
void add_device_permute_scale_5d_f32_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F32>, ck::Tuple<F32>, Pass, UnaryOp, Scale, 5>>>& instances)
{
add_device_operation_instances(instances, device_permute_scale_f32_instances<5>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/permute_scale/device_permute_scale_instances.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_permute_scale_6d_f16_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F16>, ck::Tuple<F16>, Pass, UnaryOp, Scale, 6>>>& instances)
{
add_device_operation_instances(instances, device_permute_scale_f16_instances<6>{});
}
void add_device_permute_scale_6d_f32_instances(
std::vector<std::unique_ptr<
DeviceElementwise<ck::Tuple<F32>, ck::Tuple<F32>, Pass, UnaryOp, Scale, 6>>>& instances)
{
add_device_operation_instances(instances, device_permute_scale_f32_instances<6>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -37,9 +37,9 @@ Best Perf: 1.1933 ms, 107.977 TFlops, 79.0848 GB/s ...@@ -37,9 +37,9 @@ Best Perf: 1.1933 ms, 107.977 TFlops, 79.0848 GB/s
################ op datatype in_layout wei_layout out_layout verify init log repeat N__ K___ C___ Y X Hi__ Wi__ Strides Dilations LeftPads RightPads ################ op datatype in_layout wei_layout out_layout verify init log repeat N__ K___ C___ Y X Hi__ Wi__ Strides Dilations LeftPads RightPads
./bin/ckProfiler conv2d_fwd 1 1 1 1 1 1 0 5 128 256 192 3 3 71 71 2 2 1 1 1 1 1 1 ./bin/ckProfiler conv2d_fwd 1 1 1 1 1 1 0 5 128 256 192 3 3 71 71 2 2 1 1 1 1 1 1
``` ```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16) Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
```bash
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192} in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
wei_k_c_y_x: dim 4, lengths {256, 192, 3, 3}, strides {1728, 1, 576, 192} wei_k_c_y_x: dim 4, lengths {256, 192, 3, 3}, strides {1728, 1, 576, 192}
out_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256} out_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
...@@ -104,6 +104,7 @@ arg.b_grid_desc_k0_n0_n1_k1_{2048, 4096, 2} ...@@ -104,6 +104,7 @@ arg.b_grid_desc_k0_n0_n1_k1_{2048, 4096, 2}
arg.e_grid_desc_m_n_{ 4096, 4096} arg.e_grid_desc_m_n_{ 4096, 4096}
.... ....
Best Perf: 58.0306 ms, 37.8942 TFlops, 27.7545 GB/s Best Perf: 58.0306 ms, 37.8942 TFlops, 27.7545 GB/s
```
## Profile grouped convolution backward data kernels ## Profile grouped convolution backward data kernels
```bash ```bash
# arg1: tensor operation (grouped_conv_bwd_data: Grouped Convolution Backward Data) # arg1: tensor operation (grouped_conv_bwd_data: Grouped Convolution Backward Data)
...@@ -129,10 +130,11 @@ Best Perf: 58.0306 ms, 37.8942 TFlops, 27.7545 GB/s ...@@ -129,10 +130,11 @@ Best Perf: 58.0306 ms, 37.8942 TFlops, 27.7545 GB/s
################ op datatype layout verify init log time Ndims G N K C Y X Hi Wi Sy Sx Dy Dx LeftPy LeftPx RightPy RightPx ################ op datatype layout verify init log time Ndims G N K C Y X Hi Wi Sy Sx Dy Dx LeftPy LeftPx RightPy RightPx
./bin/ckProfiler grouped_conv_bwd_data 1 0 1 1 0 1 2 32 4 192 192 3 3 28 28 1 1 1 1 1 1 1 1 ./bin/ckProfiler grouped_conv_bwd_data 1 0 1 1 0 1 2 32 4 192 192 3 3 28 28 1 1 1 1 1 1 1 1
``` ```
Result (MI100, FP16, GNHWC_GKYXC_GNHWK) Result (MI100, FP16, GNHWC_GKYXC_GNHWK)
```
```bash
out: dim 5, lengths {32, 4, 192, 28, 28}, strides {602112, 150528, 1, 5376, 192} out: dim 5, lengths {32, 4, 192, 28, 28}, strides {602112, 150528, 1, 5376, 192}
wei: dim 5, lengths {32, 192, 192, 3, 3}, strides {331776, 1728, 1, 576, 192} wei: dim 5, lengths {32, 192, 192, 3, 3}, strides {331776, 1728, 1, 576, 192}
in: dim 5, lengths {32, 4, 192, 28, 28}, strides {602112, 150528, 1, 5376, 192} in: dim 5, lengths {32, 4, 192, 28, 28}, strides {602112, 150528, 1, 5376, 192}
...@@ -173,10 +175,11 @@ GB/s: 127.947 ...@@ -173,10 +175,11 @@ GB/s: 127.947
################ op datatype layout verify init log time Ndims G N K C Y X Hi Wi Sy Sx Dy Dx LeftPy LeftPx RightPy RightPx SplitK ################ op datatype layout verify init log time Ndims G N K C Y X Hi Wi Sy Sx Dy Dx LeftPy LeftPx RightPy RightPx SplitK
./bin/ckProfiler grouped_conv_bwd_weight 1 1 0 1 0 1 2 32 256 256 512 3 3 28 28 1 1 1 1 1 0 0 0 1 ./bin/ckProfiler grouped_conv_bwd_weight 1 1 0 1 0 1 2 32 256 256 512 3 3 28 28 1 1 1 1 1 0 0 0 1
``` ```
Result (MI100, FP16, GNHWC_GKYXC_GNHWK) Result (MI100, FP16, GNHWC_GKYXC_GNHWK)
```
```bash
input: dim 5, lengths {32, 512, 1024, 28, 28}, strides {411041792, 802816, 1, 28672, 1024} input: dim 5, lengths {32, 512, 1024, 28, 28}, strides {411041792, 802816, 1, 28672, 1024}
weight: dim 5, lengths {32, 512, 1024, 3, 3}, strides {4718592, 9216, 1, 3072, 1024} weight: dim 5, lengths {32, 512, 1024, 3, 3}, strides {4718592, 9216, 1, 3072, 1024}
output: dim 5, lengths {32, 512, 512, 26, 26}, strides {177209344, 346112, 1, 13312, 512} output: dim 5, lengths {32, 512, 512, 26, 26}, strides {177209344, 346112, 1, 13312, 512}
...@@ -190,8 +193,9 @@ GB/s: 69.2301 ...@@ -190,8 +193,9 @@ GB/s: 69.2301
Note: This kernel use atomic add, this will cause output buffer to be accumulated multiple times, causing verification failure. To work around it, do not use CK's own timer and do verification at the same time. Note: This kernel use atomic add, this will cause output buffer to be accumulated multiple times, causing verification failure. To work around it, do not use CK's own timer and do verification at the same time.
## Profile image to column/column to image kernels ## Profile image to column/column to image kernels
```bash ```bash
# arg1: tensor operation (" OP_NAME ": " OP_DESC ") # arg1: tensor operation ( conv_tensor_rearrange : Conv Tensor Rearrange )
# arg2: data type (0: Input fp32, Weight fp32, Output fp32 # arg2: data type (0: Input fp32, Weight fp32, Output fp32
# 1: Input fp16, Weight fp16, Output fp16 # 1: Input fp16, Weight fp16, Output fp16
# 2: Input bf16, Weight bf16, Output bf16 # 2: Input bf16, Weight bf16, Output bf16
...@@ -216,10 +220,11 @@ Note: This kernel use atomic add, this will cause output buffer to be accumulate ...@@ -216,10 +220,11 @@ Note: This kernel use atomic add, this will cause output buffer to be accumulate
################ op datatype layout verify init log time opType Ndims G N K C Y X Hi Wi Sy Sx Dy Dx LeftPy LeftPx RightPy RightPx ################ op datatype layout verify init log time opType Ndims G N K C Y X Hi Wi Sy Sx Dy Dx LeftPy LeftPx RightPy RightPx
./bin/ckProfiler conv_tensor_rearrange 0 0 0 1 0 1 0 2 1 256 1 512 3 3 28 28 1 1 1 1 0 0 0 0 ./bin/ckProfiler conv_tensor_rearrange 0 0 0 1 0 1 0 2 1 256 1 512 3 3 28 28 1 1 1 1 0 0 0 0
``` ```
Result (MI210, FP32, NHWC) Result (MI210, FP32, NHWC)
```
```bash
input: dim 5, lengths {1, 256, 512, 28, 28}, strides {102760448, 401408, 1, 14336, 512} input: dim 5, lengths {1, 256, 512, 28, 28}, strides {102760448, 401408, 1, 14336, 512}
output: dim 2, lengths {173056, 4608}, strides {4608, 1} output: dim 2, lengths {173056, 4608}, strides {4608, 1}
.... ....
...@@ -229,3 +234,30 @@ avg_time: 3.12326 ...@@ -229,3 +234,30 @@ avg_time: 3.12326
GB/s: 2042.59 GB/s: 2042.59
``` ```
Note: Column to image kernel adds to the output memory, this will cause output buffer to be accumulated multiple times, causing verification failure. To work around it, do not use CK's own timer and do verification at the same time. Note: Column to image kernel adds to the output memory, this will cause output buffer to be accumulated multiple times, causing verification failure. To work around it, do not use CK's own timer and do verification at the same time.
## Profile Permute scale kernels
```bash
# arg1: tensor operation ( permute_scale : Permute Scale )
# arg2: data type (0: Input fp32, Output fp32
# 1: Input fp16, Output fp16
# arg4: verification (0: no, 1: yes)
# arg5: initialization (0: no init, 1: integer value, 2: decimal value)
# arg6: print tensor value (0: no; 1: yes)
# arg7: time kernel (0: no, 1: yes)
# from arg8: tensor lengths
# input strides
# output strides
################ op datatype verify init log time dim0 dim1 dim2 in_stride0 in_stride1 in_stride2 out_stride0 out_stride1 out_stride2
./bin/ckProfiler permute_scale 0 1 1 0 1 64 64 64 4096 64 1 1 64 4096
```
Result (MI100, FP32)
```bash
A: dim 3, lengths {64, 64, 64}, strides {4096, 64, 1}
B: dim 3, lengths {64, 64, 64}, strides {1, 64, 4096}
....
Best perf = 0.0146878 ms, 142.782 GB/s, DeviceElementwiseNormalizationImpl<3, 2>
```
...@@ -233,7 +233,7 @@ bool profile_elementwise_layernorm_impl(int do_verification, ...@@ -233,7 +233,7 @@ bool profile_elementwise_layernorm_impl(int do_verification,
y_dev.FromDevice(y.mData.data()); y_dev.FromDevice(y.mData.data());
bool pass = bool pass =
ck::utils::check_err(y.mData, host_y.mData, "Error: Incorrect results", 1e-3, 1e-3); ck::utils::check_err(y.mData, host_y.mData, "Error: Incorrect results", 5e-3, 5e-3);
if(do_log) if(do_log)
{ {
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_add.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename D0DataType,
typename EDataType,
typename ALayout,
typename BLayout,
typename D0Layout,
typename ELayout>
bool profile_gemm_add_impl(int do_verification,
int init_method,
bool /*do_log*/,
bool time_kernel,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideD0,
int StrideE)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<D0DataType> d0_m_n(f_host_tensor_descriptor(M, N, StrideD0, D0Layout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "d0_m_n: " << d0_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_device_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d0_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-5, 5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d0_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{0.0, 1.0});
}
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = Add;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{};
using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleD<
ALayout,
BLayout,
ck::Tuple<D0Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::Add>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
// run reference
if(do_verification)
{
Tensor<AccDataType> c_m_n({M, N});
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d0_m_n(m, n));
}
}
}
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem d0_m_n_device_buf(sizeof(D0DataType) * d0_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
d0_m_n_device_buf.ToDevice(d0_m_n.mData.data());
std::string best_op_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
bool pass = true;
// profile device operation instances
for(auto& op_ptr : op_ptrs)
{
auto argument_ptr = op_ptr->MakeArgumentPointer(
a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{d0_m_n_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, 1>{StrideD0},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
// re-init E to zero before profiling a kernel
e_device_buf.SetZero();
float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
pass = pass && ck::utils::check_err(e_m_n_device_result, e_m_n_host_result);
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return pass;
}
} // namespace profiler
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_add_relu.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename D0DataType,
typename EDataType,
typename ALayout,
typename BLayout,
typename D0Layout,
typename ELayout>
bool profile_gemm_add_relu_impl(int do_verification,
int init_method,
bool /*do_log*/,
bool time_kernel,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideD0,
int StrideE)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<D0DataType> d0_m_n(f_host_tensor_descriptor(M, N, StrideD0, D0Layout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "d0_m_n: " << d0_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_device_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d0_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-5, 5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d0_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{0.0, 1.0});
}
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddRelu = ck::tensor_operation::element_wise::AddRelu;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddRelu;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{};
using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleD<
ALayout,
BLayout,
ck::Tuple<D0Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::AddRelu>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
// run reference
if(do_verification)
{
Tensor<AccDataType> c_m_n({M, N});
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d0_m_n(m, n));
}
}
}
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem d0_m_n_device_buf(sizeof(D0DataType) * d0_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
d0_m_n_device_buf.ToDevice(d0_m_n.mData.data());
std::string best_op_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
bool pass = true;
// profile device operation instances
for(auto& op_ptr : op_ptrs)
{
auto argument_ptr = op_ptr->MakeArgumentPointer(
a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{d0_m_n_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, 1>{StrideD0},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
// re-init E to zero before profiling a kernel
e_device_buf.SetZero();
float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
pass = pass && ck::utils::check_err(e_m_n_device_result, e_m_n_host_result);
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return pass;
}
} // namespace profiler
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_add_silu.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename D0DataType,
typename EDataType,
typename ALayout,
typename BLayout,
typename D0Layout,
typename ELayout>
bool profile_gemm_add_silu_impl(int do_verification,
int init_method,
bool /*do_log*/,
bool time_kernel,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideD0,
int StrideE)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<D0DataType> d0_m_n(f_host_tensor_descriptor(M, N, StrideD0, D0Layout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "d0_m_n: " << d0_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_device_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d0_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-5, 5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d0_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{0.0, 1.0});
}
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddRelu = ck::tensor_operation::element_wise::AddSilu;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddRelu;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{};
using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleD<
ALayout,
BLayout,
ck::Tuple<D0Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::AddSilu>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
// run reference
if(do_verification)
{
Tensor<AccDataType> c_m_n({M, N});
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d0_m_n(m, n));
}
}
}
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem d0_m_n_device_buf(sizeof(D0DataType) * d0_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
d0_m_n_device_buf.ToDevice(d0_m_n.mData.data());
std::string best_op_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
bool pass = true;
// profile device operation instances
for(auto& op_ptr : op_ptrs)
{
auto argument_ptr = op_ptr->MakeArgumentPointer(
a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{d0_m_n_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, 1>{StrideD0},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
// re-init E to zero before profiling a kernel
e_device_buf.SetZero();
float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
pass = pass && ck::utils::check_err(e_m_n_device_result, e_m_n_host_result);
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return pass;
}
} // namespace profiler
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_fixed_nk.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename ALayout,
typename BLayout,
typename CLayout>
bool profile_grouped_gemm_fixed_nk_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
const std::vector<int>& Ms,
const std::vector<int>& Ns,
const std::vector<int>& Ks,
const std::vector<int>& StrideAs,
const std::vector<int>& StrideBs,
const std::vector<int>& StrideCs,
int kbatch = 1,
int n_warmup = 1,
int n_iter = 10)
{
bool pass = true;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
std::size_t group_count = Ms.size();
if(!(group_count == Ns.size() && group_count == Ks.size() && group_count == StrideAs.size() &&
group_count == StrideBs.size() && group_count == StrideCs.size()))
{
throw std::runtime_error("wrong! inconsistent M/N/Ks, StrideA/B/Cs size\n");
}
std::vector<Tensor<ADataType>> a_m_k;
std::vector<Tensor<BDataType>> b_k_n;
std::vector<Tensor<CDataType>> c_m_n_host_results;
std::vector<Tensor<CDataType>> c_m_n_device_results;
for(std::size_t i = 0; i < group_count; i++)
{
a_m_k.push_back(
Tensor<ADataType>(f_host_tensor_descriptor(Ms[i], Ks[i], StrideAs[i], ALayout{})));
b_k_n.push_back(
Tensor<BDataType>(f_host_tensor_descriptor(Ks[i], Ns[i], StrideBs[i], BLayout{})));
c_m_n_device_results.push_back(
Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{})));
c_m_n_host_results.push_back(
Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{})));
#if DEBUG_LOG
std::cout << "group: " << i << " a_m_k[" << i << "]:" << a_m_k[i].mDesc << ", b_k_n[" << i
<< "]:" << b_k_n[i].mDesc << ", c_m_n_device_results[" << i
<< "]:" << c_m_n_device_results[i].mDesc << std::endl;
#endif // DEBUG_LOG
std::size_t num_thread = 1;
switch(init_method)
{
case 0: break;
case 1:
a_m_k[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
b_k_n[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
break;
default:
a_m_k[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
b_k_n[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
}
}
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
std::vector<DeviceMemPtr> a_device_buf, b_device_buf, c_device_buf;
a_device_buf.reserve(group_count);
b_device_buf.reserve(group_count);
c_device_buf.reserve(group_count);
std::vector<const void*> p_a, p_b;
std::vector<void*> p_c;
p_a.reserve(group_count);
p_b.reserve(group_count);
p_c.reserve(group_count);
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
gemm_descs.reserve(group_count);
std::vector<ck::tensor_operation::device::GroupedGemmKernelArgument<1>>
grouped_gemm_kernel_args_;
grouped_gemm_kernel_args_.reserve(group_count);
for(std::size_t i = 0; i < group_count; i++)
{
a_device_buf.emplace_back(
std::make_unique<DeviceMem>(sizeof(ADataType) * a_m_k[i].mDesc.GetElementSpaceSize()));
b_device_buf.emplace_back(
std::make_unique<DeviceMem>(sizeof(BDataType) * b_k_n[i].mDesc.GetElementSpaceSize()));
c_device_buf.emplace_back(std::make_unique<DeviceMem>(
sizeof(CDataType) * c_m_n_device_results[i].mDesc.GetElementSpaceSize()));
a_device_buf[i]->ToDevice(a_m_k[i].mData.data());
b_device_buf[i]->ToDevice(b_k_n[i].mData.data());
gemm_descs.push_back({Ms[i], Ns[i], Ks[i], StrideAs[i], StrideBs[i], StrideCs[i], {}});
p_a.push_back(a_device_buf[i]->GetDeviceBuffer());
p_b.push_back(b_device_buf[i]->GetDeviceBuffer());
p_c.push_back(c_device_buf[i]->GetDeviceBuffer());
grouped_gemm_kernel_args_.push_back({a_device_buf[i]->GetDeviceBuffer(),
b_device_buf[i]->GetDeviceBuffer(),
{},
c_device_buf[i]->GetDeviceBuffer(),
Ms[i],
Ns[i],
Ks[i],
StrideAs[i],
StrideBs[i],
{},
StrideCs[i]});
}
using DeviceOp = ck::tensor_operation::device::DeviceGroupedGemmFixedNK<ALayout,
BLayout,
ck::Tuple<>,
CLayout,
ADataType,
BDataType,
ck::Tuple<>,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
if(op_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device GEMM instance found");
}
std::string best_gemm_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
float best_kbatch = 0;
auto p_ds = std::vector<std::array<const void*, 0>>{};
if(do_verification)
{
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_m_k[i],
b_k_n[i],
c_m_n_host_results[i],
a_element_op,
b_element_op,
c_element_op);
ref_invoker.Run(ref_argument);
}
}
// profile device GEMM instances
for(auto& gemm_ptr : op_ptrs)
{
auto argument_ptr =
gemm_ptr->MakeArgumentPointer(p_a,
p_b,
p_ds,
p_c,
gemm_descs,
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{});
auto invoker_ptr = gemm_ptr->MakeInvokerPointer();
DeviceMem gemm_desc_workspace(gemm_ptr->GetWorkSpaceSize(argument_ptr.get()));
DeviceMem grouped_gemm_kernel_args_dev(
gemm_ptr->GetDeviceKernelArgSize(argument_ptr.get()));
hipGetErrorString(hipMemcpy(grouped_gemm_kernel_args_dev.GetDeviceBuffer(),
grouped_gemm_kernel_args_.data(),
gemm_ptr->GetDeviceKernelArgSize(argument_ptr.get()),
hipMemcpyHostToDevice));
gemm_ptr->SetWorkSpacePointer(argument_ptr.get(), gemm_desc_workspace.GetDeviceBuffer());
gemm_ptr->SetDeviceKernelArgs(argument_ptr.get(),
grouped_gemm_kernel_args_dev.GetDeviceBuffer());
std::string gemm_name = gemm_ptr->GetTypeString();
std::vector<int> kbatch_list = {1, 2, 4, 8, 12, 16, 20, 24, 32, 48, 64};
if(kbatch > 0)
{
kbatch_list = {kbatch};
}
for(std::size_t j = 0; j < kbatch_list.size(); j++)
{
auto kbatch_curr = kbatch_list[j];
gemm_ptr->SetKBatch(argument_ptr.get(), kbatch_curr);
if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
{
for(std::size_t i = 0; i < gemm_descs.size(); i++)
c_device_buf[i]->SetZero();
invoker_ptr->Run(argument_ptr.get(),
StreamConfig{nullptr, false, 0, n_warmup, n_iter});
if(do_verification)
{
bool instance_pass = true;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
c_device_buf[i]->FromDevice(c_m_n_device_results[i].mData.data());
if(std::is_same_v<CDataType, ck::half_t> && kbatch_curr > 1)
{
instance_pass =
instance_pass && ck::utils::check_err(c_m_n_device_results[i],
c_m_n_host_results[i],
"Error: Incorrect results!",
0.06);
}
else
{
instance_pass =
instance_pass && ck::utils::check_err(c_m_n_device_results[i],
c_m_n_host_results[i]);
}
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k[i].mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n[i].mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_device: ", c_m_n_device_results[i].mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_host : ", c_m_n_host_results[i].mData, ",")
<< std::endl;
}
}
std::cout << "Instance: " << gemm_name << " verification "
<< (instance_pass ? "SUCCEED" : "FAILED") << std::endl;
pass = pass && instance_pass;
}
float ave_time = invoker_ptr->Run(
argument_ptr.get(), StreamConfig{nullptr, time_kernel, 0, n_warmup, n_iter});
if(time_kernel)
{
std::size_t flop = 0, num_btype = 0;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
flop += std::size_t(2) * Ms[i] * Ns[i] * Ks[i];
num_btype += sizeof(ADataType) * Ms[i] * Ks[i] +
sizeof(BDataType) * Ks[i] * Ns[i] +
sizeof(CDataType) * Ms[i] * Ns[i];
}
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops
<< " TFlops, " << gb_per_sec << " GB/s, " << gemm_name << ", KBatch "
<< kbatch_curr << std::endl;
if(tflops > best_tflops)
{
best_gemm_name = gemm_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
best_kbatch = kbatch_curr;
}
}
}
else
{
std::cout << "Instance: " << gemm_name << ", does not support this GEMM problem"
<< std::endl;
}
}
}
if(time_kernel)
{
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_gemm_name << ", KBatch = " << best_kbatch
<< std::endl;
}
return pass;
}
} // namespace profiler
} // namespace ck
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
#include <iomanip> #include <iomanip>
#include <random> #include <random>
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise_scale.hpp" #include "ck/tensor_operation/gpu/device/device_elementwise_scale.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_scale_impl.hpp" #include "ck/tensor_operation/gpu/device/impl/device_elementwise_scale_impl.hpp"
#include "ck/library/tensor_operation_instance/gpu/permute_scale.hpp" #include "ck/library/tensor_operation_instance/gpu/permute_scale.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp" #include "ck/library/utility/literals.hpp"
namespace ck { namespace ck {
template <typename HostTensorA, typename HostTensorB, typename FunctorA, typename FunctorB> template <typename HostTensorA,
void host_elementwise4D(HostTensorB& B_nhwc, typename HostTensorB,
const HostTensorA& A_nchw, typename AElementOp,
FunctorA functor_a, typename BElementOp,
FunctorB functor_b, typename ScaleElementOp>
float scale) void reference_permute_scale(HostTensorB& b_tensor,
{ const HostTensorA& a_tensor,
std::size_t N = A_nchw.mDesc.GetLengths()[0]; AElementOp a_tensor_op,
std::size_t C = A_nchw.mDesc.GetLengths()[1]; BElementOp b_tensor_op,
std::size_t H = A_nchw.mDesc.GetLengths()[2]; ScaleElementOp scale_op)
std::size_t W = A_nchw.mDesc.GetLengths()[3]; {
for(std::size_t w = 0; w < W; ++w) b_tensor.ForEach([&](auto& self, auto idx) {
for(std::size_t h = 0; h < H; ++h) auto tmp_val = a_tensor(idx);
for(std::size_t c = 0; c < C; ++c) b_tensor_op(tmp_val, tmp_val);
for(std::size_t n = 0; n < N; ++n) scale_op(tmp_val, tmp_val);
{ a_tensor_op(self(idx), tmp_val);
using tmp_type = ck::remove_reference_t<decltype(B_nhwc(0, 0))>; });
tmp_type tmp_val = 0; }
auto a_val = A_nchw.mData[(n) + (c * N) + (h * C * N) + (w * H * C * N)];
functor_b(tmp_val, a_val); namespace profiler {
functor_a(B_nhwc.mData[(n) + (c * W * H * N) + (h * N) + (w * H * N)],
scale * tmp_val); template <typename ADataType, typename BDataType, index_t NumDim>
} bool profile_permute_scale_impl(int do_verification,
} int init_method,
bool do_log,
template <typename ADataType, typename BDataType, index_t NumDim> bool time_kernel,
bool test_permute_scale_impl(int do_verification, std::vector<index_t> lengths_vector,
int init_method, std::vector<index_t> input_strides_vector,
bool do_log, std::vector<index_t> output_strides_vector)
bool time_kernel, {
std::vector<index_t> lengths) bool pass = true;
{ bool instance_found = false;
bool pass = true;
using ElementOp = ck::tensor_operation::element_wise::PassThrough;
using ElementOp = ck::tensor_operation::element_wise::PassThrough; using UnaryOp = ck::tensor_operation::element_wise::UnarySquare;
using UnaryOp = ck::tensor_operation::element_wise::UnarySquare; using Scale = ck::tensor_operation::element_wise::Scale;
using Scale = ck::tensor_operation::element_wise::Scale; float scale = 2.f;
float scale = 2.f;
Tensor<ADataType> a(lengths_vector, input_strides_vector);
index_t N = lengths[0]; Tensor<BDataType> b(lengths_vector, output_strides_vector);
index_t C = lengths[1]; Tensor<BDataType> host_b(lengths_vector, output_strides_vector);
index_t H = lengths[2];
index_t W = lengths[3]; std::cout << "A: " << a.mDesc << std::endl;
std::cout << "B: " << b.mDesc << std::endl;
std::vector<ck::index_t> nchw = {N, C, H, W};
std::vector<ck::index_t> nhwc = {N, H, W, C}; switch(init_method)
Tensor<ADataType> a(nchw); {
Tensor<BDataType> b(nhwc); case 0: break;
Tensor<BDataType> host_b(nhwc); case 1: a.GenerateTensorValue(GeneratorTensor_2<ADataType>{-1, 2}); break;
default: a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}); break;
std::array<ck::index_t, 4> ab_lengths; }
std::array<ck::index_t, 4> a_strides = {1, DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize());
static_cast<int>(nchw[0]), DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());
static_cast<int>(nchw[0] * nchw[1]),
static_cast<int>(nchw[0] * nchw[1] * nchw[2])}; a_device_buf.ToDevice(a.mData.data());
std::array<ck::index_t, 4> b_strides = {1, std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
static_cast<int>(nhwc[0] * nhwc[1] * nhwc[2]), std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
static_cast<int>(nhwc[0]), using DeviceOp = ck::tensor_operation::device::DeviceElementwise<ck::Tuple<ADataType>,
static_cast<int>(nhwc[0] * nhwc[1])}; ck::Tuple<BDataType>,
ck::ranges::copy(nchw, ab_lengths.begin()); ElementOp,
UnaryOp,
std::cout << "A: " << a.mDesc << std::endl; Scale,
std::cout << "B: " << b.mDesc << std::endl; NumDim>;
switch(init_method) // get device op instances
{ const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
case 0: break; DeviceOp>::GetInstances();
case 1: a.GenerateTensorValue(GeneratorTensor_2<ADataType>{-1, 2}); break;
default: // a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0} std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::mt19937 gen(11939);
std::uniform_int_distribution<int> dis(0, 1); std::string best_instance_name;
auto i = 0; float best_ave_time = std::numeric_limits<float>::max();
for(std::size_t w = 0; w < a.mDesc.GetLengths()[3]; ++w) float best_gb_per_sec = 0;
for(std::size_t h = 0; h < a.mDesc.GetLengths()[2]; ++h) float best_tflops = 0;
for(std::size_t c = 0; c < a.mDesc.GetLengths()[1]; ++c)
for(std::size_t n = 0; n < a.mDesc.GetLengths()[0]; ++n) if(do_verification)
{ {
a.mData[(n * nchw[1] * nchw[2] * nchw[3]) + (c * nchw[2] * nchw[3]) + reference_permute_scale(host_b, a, ElementOp{}, UnaryOp{}, Scale{scale});
(h * nchw[3]) + w] = i; }
i = dis(gen);
} auto copy = [](const auto& x, auto& y) { std::copy(x.begin(), x.end(), y.begin()); };
} std::array<ck::index_t, NumDim> lengths{};
std::array<ck::index_t, NumDim> input_strides{};
DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize()); std::array<ck::index_t, NumDim> output_strides{};
DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize()); copy(lengths_vector, lengths);
copy(input_strides_vector, input_strides);
a_device_buf.ToDevice(a.mData.data()); copy(output_strides_vector, output_strides);
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()}; for(auto& op_ptr : op_ptrs)
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()}; {
using DeviceOp = ck::tensor_operation::device::DeviceElementwise<ck::Tuple<ADataType>, auto argument_ptr = op_ptr->MakeArgumentPointer(lengths,
ck::Tuple<BDataType>, {input_strides},
ElementOp, {output_strides},
UnaryOp, input,
Scale, output,
NumDim>; ElementOp{},
UnaryOp{},
// get device op instances Scale{scale});
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances(); auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl; if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
std::string best_instance_name; instance_found = true;
float best_ave_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0; b_device_buf.SetZero();
float best_tflops = 0; invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
if(do_verification) if(do_verification)
{ {
host_elementwise4D(host_b, a, ElementOp{}, UnaryOp{}, scale); b_device_buf.FromDevice(b.mData.data());
}
pass &= ck::utils::check_err(
for(auto& op_ptr : op_ptrs) b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3);
{
auto argument_ptr = op_ptr->MakeArgumentPointer(ab_lengths, if(do_log)
{a_strides}, {
{b_strides}, LogRangeAsType<float>(std::cout << "a : ", a.mData, ",") << std::endl;
input, LogRangeAsType<float>(std::cout << "b: ", b.mData, ",") << std::endl;
output, }
ElementOp{}, }
UnaryOp{},
Scale{scale}); std::string op_name = op_ptr->GetTypeString();
auto invoker_ptr = op_ptr->MakeInvokerPointer(); float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{ std::size_t flop = std::size_t(2) * a.mDesc.GetElementSpaceSize() / sizeof(ADataType);
b_device_buf.SetZero();
std::size_t num_btype = sizeof(ADataType) * a.mDesc.GetElementSpaceSize() +
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); sizeof(BDataType) * b.mDesc.GetElementSpaceSize();
if(do_verification) float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
{
b_device_buf.FromDevice(b.mData.data()); float gb_per_sec = num_btype / 1.E6 / ave_time;
pass &= ck::utils::check_err( std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3); << gb_per_sec << " GB/s, " << op_name << std::endl;
if(do_log) if(tflops > best_tflops)
{ {
LogRangeAsType<float>(std::cout << "a : ", a.mData, ",") << std::endl; best_instance_name = op_name;
LogRangeAsType<float>(std::cout << "b: ", b.mData, ",") << std::endl; best_tflops = tflops;
} best_ave_time = ave_time;
} best_gb_per_sec = gb_per_sec;
}
std::string op_name = op_ptr->GetTypeString(); }
else
float ave_time = {
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel}); std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
}
std::size_t flop = std::size_t(2) * nchw[0] * nchw[1] * nchw[2] * nchw[3]; }
if(time_kernel)
std::size_t num_btype = sizeof(ADataType) * (nchw[0] * nchw[1] * nchw[2] * nchw[3]) + {
sizeof(BDataType) * (nchw[0] * nchw[1] * nchw[2] * nchw[3]); std::cout << "Best perf = " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_instance_name << std::endl;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time; }
float gb_per_sec = num_btype / 1.E6 / ave_time; return pass && instance_found;
}
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl; } // namespace profiler
} // namespace ck
if(tflops > best_tflops)
{
best_instance_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
}
}
if(time_kernel)
{
LogRange(std::cout << "length = ", lengths, ",") << ", ";
std::cout << "best perf = " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_instance_name << std::endl;
}
return true;
}
} // namespace ck
...@@ -32,6 +32,7 @@ set(PROFILER_SOURCES ...@@ -32,6 +32,7 @@ set(PROFILER_SOURCES
profile_grouped_conv_bwd_data.cpp profile_grouped_conv_bwd_data.cpp
profile_conv_tensor_rearrange.cpp profile_conv_tensor_rearrange.cpp
profile_transpose.cpp profile_transpose.cpp
profile_permute_scale.cpp
) )
if(DL_KERNELS) if(DL_KERNELS)
...@@ -43,11 +44,15 @@ if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES) ...@@ -43,11 +44,15 @@ if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_gemm_fastgelu.cpp) list(APPEND PROFILER_SOURCES profile_gemm_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_streamk.cpp) list(APPEND PROFILER_SOURCES profile_gemm_streamk.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_bilinear.cpp) list(APPEND PROFILER_SOURCES profile_gemm_bilinear.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_fastgelu.cpp) list(APPEND PROFILER_SOURCES profile_gemm_add_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_relu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_silu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_add_fastgelu.cpp) list(APPEND PROFILER_SOURCES profile_gemm_add_add_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_add_relu_add_layernorm.cpp) list(APPEND PROFILER_SOURCES profile_gemm_add_relu_add_layernorm.cpp)
list(APPEND PROFILER_SOURCES profile_batched_gemm_add_relu_gemm_add.cpp) list(APPEND PROFILER_SOURCES profile_batched_gemm_add_relu_gemm_add.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm.cpp) list(APPEND PROFILER_SOURCES profile_grouped_gemm.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fixed_nk.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp) list(APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp)
list(APPEND PROFILER_SOURCES profile_grouped_gemm_multiple_d_splitk.cpp) list(APPEND PROFILER_SOURCES profile_grouped_gemm_multiple_d_splitk.cpp)
endif() endif()
...@@ -97,6 +102,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_d ...@@ -97,6 +102,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_d
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_image_to_column_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_image_to_column_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_column_to_image_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_column_to_image_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_transpose_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_transpose_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_permute_scale_instance)
if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES) if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear_instance)
...@@ -110,7 +116,10 @@ if(DL_KERNELS) ...@@ -110,7 +116,10 @@ if(DL_KERNELS)
endif() endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES) if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_fastgelu_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_silu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_add_layernorm_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_add_layernorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_add_fastgelu_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_add_fastgelu_instance)
...@@ -119,6 +128,7 @@ if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES) ...@@ -119,6 +128,7 @@ if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_gemm_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_add_relu_gemm_add_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_add_relu_gemm_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fixed_nk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fastgelu_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_multiple_d_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_multiple_d_instance)
endif() endif()
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_gemm_add_impl.hpp"
#include "profiler_operation_registry.hpp"
#define OP_NAME "gemm_add"
#define OP_DESC "GEMM+Add"
using INT8 = int8_t;
using BF16 = ck::bhalf_t;
int profile_gemm_add(int argc, char* argv[])
{
enum struct MatrixLayout
{
MK_KN_MN_MN, // 0
MK_NK_MN_MN, // 1
KM_KN_MN_MN, // 2
KM_NK_MN_MN, // 3
};
enum struct MatrixDataType
{
F16_INT8_F16_F16, // 0
BF16_INT8_BF16_BF16, // 1
};
if(argc != 15)
{
// clang-format off
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (0: f16&i8 1: bf16&i8)\n");
printf("arg3: matrix layout (0: E[m, n] = ReLU(A[m, k] * B[k, n] + D0[m, n]);\n");
printf(" 1: E[m, n] = ReLU(A[m, k] * B[n, k] + D0[m, n]);\n");
printf(" 2: E[m, n] = ReLU(A[k, m] * B[k, n] + D0[m, n]);\n");
printf(" 3: E[m, n] = ReLU(A[k, m] * B[n, k] + D0[m, n]))\n");
printf("arg4: verification (0: no; 1: yes)\n");
printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg6: print tensor value (0: no; 1: yes)\n");
printf("arg7: time kernel (0=no, 1=yes)\n");
printf("arg8 to 14: M, N, K, StrideA, StrideB, StrideD0, StrideE\n");
// clang-format on
exit(1);
}
const auto data_type = static_cast<MatrixDataType>(std::stoi(argv[2]));
const auto layout = static_cast<MatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const bool time_kernel = std::stoi(argv[7]);
const int M = std::stoi(argv[8]);
const int N = std::stoi(argv[9]);
const int K = std::stoi(argv[10]);
const int StrideA = std::stoi(argv[11]);
const int StrideB = std::stoi(argv[12]);
const int StrideD0 = std::stoi(argv[13]);
const int StrideE = std::stoi(argv[14]);
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
// using Col = ck::tensor_layout::gemm::ColumnMajor;
auto profile = [&](auto a_type,
auto b_type,
auto acc_type,
auto d0_type,
auto e_type,
auto a_layout,
auto b_layout,
auto d0_layout,
auto e_layout) {
using ADataType = decltype(a_type);
using BDataType = decltype(b_type);
using AccDataType = decltype(acc_type);
using D0DataType = decltype(d0_type);
using EDataType = decltype(e_type);
using ALayout = decltype(a_layout);
using BLayout = decltype(b_layout);
using D0Layout = decltype(d0_layout);
using ELayout = decltype(e_layout);
const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int DefaultStrideB = ck::is_same_v<BLayout, Row> ? N : K;
const int DefaultStrideD0 = ck::is_same_v<D0Layout, Row> ? N : M;
const int DefaultStrideE = ck::is_same_v<ELayout, Row> ? N : M;
bool pass = ck::profiler::profile_gemm_add_impl<ADataType,
BDataType,
AccDataType,
D0DataType,
EDataType,
ALayout,
BLayout,
D0Layout,
ELayout>(
do_verification,
init_method,
do_log,
time_kernel,
M,
N,
K,
(StrideA < 0) ? DefaultStrideA : StrideA,
(StrideB < 0) ? DefaultStrideB : StrideB,
(StrideD0 < 0) ? DefaultStrideD0 : StrideD0,
(StrideE < 0) ? DefaultStrideE : StrideE);
return pass ? 0 : 1;
};
if(data_type == MatrixDataType::F16_INT8_F16_F16 && layout == MatrixLayout::MK_KN_MN_MN)
{
return profile(F16{}, INT8{}, F32{}, F16{}, F16{}, Row{}, Row{}, Row{}, Row{});
}
else if(data_type == MatrixDataType::BF16_INT8_BF16_BF16 && layout == MatrixLayout::MK_KN_MN_MN)
{
return profile(BF16{}, INT8{}, F32{}, BF16{}, BF16{}, Row{}, Row{}, Row{}, Row{});
}
else
{
std::cout << "this data_type & layout is not implemented" << std::endl;
return 1;
}
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_gemm_add);
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream> #include <iostream>
#include <numeric> #include <numeric>
...@@ -12,6 +12,9 @@ ...@@ -12,6 +12,9 @@
#define OP_NAME "gemm_add_fastgelu" #define OP_NAME "gemm_add_fastgelu"
#define OP_DESC "GEMM+Add+FastGeLU" #define OP_DESC "GEMM+Add+FastGeLU"
using INT8 = int8_t;
using BF16 = ck::bhalf_t;
int profile_gemm_add_fastgelu(int argc, char* argv[]) int profile_gemm_add_fastgelu(int argc, char* argv[])
{ {
enum struct MatrixLayout enum struct MatrixLayout
...@@ -28,13 +31,15 @@ int profile_gemm_add_fastgelu(int argc, char* argv[]) ...@@ -28,13 +31,15 @@ int profile_gemm_add_fastgelu(int argc, char* argv[])
F16_F16_F16_F16, // 1 F16_F16_F16_F16, // 1
BF16_BF16_BF16_BF16, // 2 BF16_BF16_BF16_BF16, // 2
INT8_INT8_INT8_INT8, // 3 INT8_INT8_INT8_INT8, // 3
F16_INT8_F16_F16, // 4
BF16_INT8_BF16_BF16, // 5
}; };
if(argc != 15) if(argc != 15)
{ {
// clang-format off // clang-format off
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"); printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)\n"); printf("arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f16&i8 5: bf16&i8)\n");
printf("arg3: matrix layout (0: E[m, n] = FastGeLU(A[m, k] * B[k, n] + D0[m, n]);\n"); printf("arg3: matrix layout (0: E[m, n] = FastGeLU(A[m, k] * B[k, n] + D0[m, n]);\n");
printf(" 1: E[m, n] = FastGeLU(A[m, k] * B[n, k] + D0[m, n]);\n"); printf(" 1: E[m, n] = FastGeLU(A[m, k] * B[n, k] + D0[m, n]);\n");
printf(" 2: E[m, n] = FastGeLU(A[k, m] * B[k, n] + D0[m, n]);\n"); printf(" 2: E[m, n] = FastGeLU(A[k, m] * B[k, n] + D0[m, n]);\n");
...@@ -135,6 +140,14 @@ int profile_gemm_add_fastgelu(int argc, char* argv[]) ...@@ -135,6 +140,14 @@ int profile_gemm_add_fastgelu(int argc, char* argv[])
{ {
return profile(F16{}, F16{}, F32{}, F16{}, F16{}, Col{}, Col{}, Row{}, Row{}); return profile(F16{}, F16{}, F32{}, F16{}, F16{}, Col{}, Col{}, Row{}, Row{});
} }
else if(data_type == MatrixDataType::F16_INT8_F16_F16 && layout == MatrixLayout::MK_KN_MN_MN)
{
return profile(F16{}, INT8{}, F32{}, F16{}, F16{}, Row{}, Row{}, Row{}, Row{});
}
else if(data_type == MatrixDataType::BF16_INT8_BF16_BF16 && layout == MatrixLayout::MK_KN_MN_MN)
{
return profile(BF16{}, INT8{}, F32{}, BF16{}, BF16{}, Row{}, Row{}, Row{}, Row{});
}
else else
{ {
std::cout << "this data_type & layout is not implemented" << std::endl; std::cout << "this data_type & layout is not implemented" << std::endl;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment